河南省驻马店市平舆县2019-2020学年九年级上学期期末数学试题(word无答案)

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

河南省驻马店市平舆县2019-2020学年九年级上学期期末数学试题

(word无答案)

一、单选题

(★) 1 . 下面的图形中,是轴对称图形但不是中心对称图形的是()

A.B.C.D.

(★) 2 . 下列说法正确的是()

A.“经过有交通信号的路口遇到红灯”是必然事件

B.已知某篮球运动员投篮投中的概率为0.6,则他投10次一定可投中6次

C.投掷一枚硬币正面朝上是随机事件

D.明天太阳从东方升起是随机事件

(★) 3 . 如图,将△AOB绕点O按逆时针方向旋转45°后得到△A'OB',若∠AOB=15°,则

∠AOB'的度数是()

A.25°B.30°C.35°D.40°

(★★) 4 . 关于的方程有实数根,则满足()

A.B.且C.且D.

(★) 5 . 若将抛物线 y=2( x+4)2﹣1平移后其顶点落 y在轴上,则下面平移正确的是()

A.向左平移4个单位B.向右平移4个单位

C.向上平移1个单位D.向下平移1个单位

(★) 6 . 已知方程的两根为,则的值为()

A.-1B.1C.2D.0

(★★) 7 . 如图,菱形 ABCD中,∠ B=70°, AB=3,以 AD为直径的⊙ O交 CD于点 E,则弧 DE的长为()

A.πB.πC.πD.π

(★★) 8 . 在同一直角坐标系中,函数 y= kx-k与( k≠0)的图象大致是()

A.B.

C.D.

(★) 9 . 如图△ ABC中, BE平分∠ ABC,DE∥ BC,若 DE=2 AD, AE=2,那么 AC的长为()

A .3

B .4

C .5

D .6

(★★★★) 10 . 如图,边长为1的正方形 ABCD 中,点 E 在 CB 的延长线上,连接 ED 交 AB 于

点 F , AF = x (0.2≤ x≤0.8), EC = y .则在下面函数图象中,大致能反映 y 与 x 之间函数关系的是( )

A .

B .

C .

D .

二、填空题

(★) 11 . 若函数

是二次函数,则

的值为__________.

(★★) 12 . 如图,在△ ABC 中, AB=4, BC=7,∠ B=60°,将△ ABC 绕点 A 按顺时针旋转一

定角度得到△ ADE,当点 B 的对应点 D 恰好落在 BC 边上时,则 CD 的长为

__________ .

(★★) 13 . 如图,在平面直角坐标系中,▱ ABCD 的顶点 B , C 在 x 轴上, A , D 两点分别在

反比例函数 y =﹣ ( x <0)与 y = ( x >0)的图象上,若▱ ABCD 的面积为4,则 k 的值

为:_____.

(★) 14 . 在矩形

中, ,以点 为圆心,

为半径的圆弧交 于点 ,

的延长线于点

,连接

,则图中阴影部分的面积为:

__________.

(★★) 15 . 动手操作:在矩形纸片ABCD中,AB=3,AD=5.如图所示,折叠纸片,使点A落在

BC边上的A’处,折痕为PQ,当点A’在BC边上移动时,折痕的端点P、Q也随之移动.若限定

点P、Q分别在AB、AD边上移动,则点A’在BC边上可移动的最大距离为 .

三、解答题

(★★) 16 . 用你喜欢的方法解方程

(1) x 2﹣6 x﹣6=0

(2)2 x 2﹣ x﹣15=0

(★★) 17 . 如图,在Rt△ABC中,∠ACB=90°,以AC为直径的⊙O与AB边交于点D,过点

D作⊙O的切线.交BC于点

A.

(1)求证:BE=EC

(2)填空:①若∠B=30°,AC=2,则DE=______;

②当∠B=______度时,以O,D,E,C为顶点的四边形是正方形.

(★★)18 . “每天锻炼一小时,健康生活一辈子”,学校准备从小明和小亮2人中随机选拔一人

当“阳光大课间”领操员,体育老师设计的游戏规则是:将四张扑克牌(方块2、黑桃4、黑桃5、梅花5)的牌面如图1,扑克牌洗匀后,如图2背面朝上放置在桌面上.小亮和小明两人各抽

取一张扑克牌,两张牌面数字之和为奇数时,小亮当选;否则小明当选.

(1)请用树状图或列表法求出所有可能的结果;

(2)请问这个游戏规则公平吗?并说明理由.

(★) 19 . 如图,在中,是边上的高,且.

(1)求的度数;

(2)在(1)的条件下,若,求的长.

(★★★★) 20 . 如图,反比例函数 y=( x>0)和一次函数 y= mx+ n的图象过格点(网格线的交点) B、 P.

(1)求反比例函数和一次函数的解析式;

(2)观察图象,直接写出一次函数值大于反比例函数值时 x的取值范围是:.

(3)在图中用直尺和2 B铅笔画出两个矩形(不写画法),要求每个矩形均需满足下列两个条件:

①四个顶点均在格点上,且其中两个顶点分别是点 O,点 P;

②矩形的面积等于 k的值.

(★★) 21 . 某商场经销一种高档水果,原价每千克50元.

(1)连续两次降价后每千克32元,若每次下降的百分率相同,求每次下降的百分率;

(2)若每千克盈利10元,每天可售出500千克,经市场调查发现,在进货价不变的情况下,商场决定采取适当的涨价措施,若每千克涨价1元,则日销售量将减少20千克,那么每千克水果应涨价多少元时,商场获得的总利润(元)最大,最大是多少元?

(★★) 22 . (1)问题发现:如图1,在等腰直角三角形中,,将边绕点顺时针旋转90°得到线段,连接,则的面积为__________;(请用含

的式子表示的面积;提示:过点作边上的高)

(2)类比探究:如图2,在一般的中,,将边绕点顺时针旋转90°得到线段,连接.(1)中的结论是否成立,若成立,请说明理由.

(3)拓展应用:如图3,在等腰三角形中,,将边绕点顺时针旋转90°得到线段,连接.试直接用含的式子表示的面积.(不写探究过程)

(★★★★★) 23 . 已知直线 y= x+3交 x轴于点 A,交 y轴于点 B,抛物线 y=﹣ x 2+ bx+ c经过点 A, B.

相关文档
最新文档