初一-探索规律经典题
初一数学找规律题有答案
归纳—猜想~~~找规律给出几个具体的、特殊的数、式或图形,要求找出其中的变化规律,从而猜想出一般性的结论.解题的思路是实施特殊向一般的简化;具体方法和步骤是(1)通过对几个特例的分析,寻找规律并且归纳;(2)猜想符合规律的一般性结论;(3)验证或证明结论是否正确,下面通过举例来说明这些问题.一、数字排列规律题1、观察下列各算式:1+3=4=2的平方,1+3+5=9=3的平方,1+3+5+7=16=4的平方…按此规律(1)试猜想:1+3+5+7+…+2005+2007的值?1008016(2)推广:1+3+5+7+9+…+(2n-1)+(2n+1)的和是多少?{ (2n+1)/2)* { (2n+1)/2)2、下面数列后两位应该填上什么数字呢?2 3 5 8 12 17 _23_ _30_3、请填出下面横线上的数字。
1 123 5 8 _13___ 214、有一串数,它的排列规律是1、2、3、2、3、4、3、4、5、4、5、6、……聪明的你猜猜第100个数是什么?34 位置除以3,整除加2,另就是余数余多少加多少5、有一串数字3 6 10 15 21 _28__ 第6个是什么数?6、观察下列一组数的排列:1、2、3、4、3、2、1、2、3、4、3、2、1、…,那么第2005个数是(A ).A.1 B.2 C.3 D.47、100个数排成一行,其中任意三个相邻数中,中间一个数都等于它前后两个数的和,如果这100个数的前两个数依次为1,0,那么这100个数中“0”的个数为 __33___个.二、几何图形变化规律题1、观察下列球的排列规律(其中●是实心球,○是空心球):●○○●●○○○○○●○○●●○○○○○●○○●●○○○○○●……从第1个球起到第2004个球止,共有实心球602 个.2、观察下列图形排列规律(其中△是三角形,□是正方形,○是圆),□○△□□○△□○△□□○△□┅┅,若第一个图形是正方形,则第2008个图形是三角形(填图形名称).三、数、式计算规律题1、已知下列等式:①13=12;②13+23=32;③13+23+33=62;④13+23+33+43=102;由此规律知,第⑤个等式是13+23+33+43+53=152.2、观察下面的几个算式:1+2+1=4,1+2+3+2+1=9,1+2+3+4+3+2+1=16,1+2+3+4+5+4+3+2+1=25,…根据你所发现的规律,请你直接写出下面式子的结果:1+2+3+…+99+100+99+…+3+2+1=_10000___.3、1+2+3+…+100=?经过研究,这个问题的一般性结论是1+2+3+…+()121+=n n n ,其中n是正整数.现在我们来研究一个类似的问题:1×2+2×3+…()1+n n = ()1)n (2122+++n n n 观察下面三个特殊的等式()2103213121⨯⨯-⨯⨯=⨯ ()3214323132⨯⨯-⨯⨯=⨯()4325433143⨯⨯-⨯⨯=⨯将这三个等式的两边相加,可以得到1×2+2×3+3×4=2054331=⨯⨯⨯ 读完这段材料,请你思考后回答:⑴=⨯++⨯+⨯1011003221 10100⑵()()=+++⋯⋯⋯⋯+⨯⨯+⨯⨯21432321n n n ()()()()()()[]4/121321++-+++n n n n n n n n ⑶4、,,,,已知:24552455154415448338333223222222⨯=+⨯=+⨯=+⨯=+09110102=+⨯=+b a aba b K沪科版七年级数学试卷一、填空题:1、如果飞机离地面6000米记为+6000米,现在它又下降了1600米,那么现在飞机的高度可记为___+4400_______米.2、当n=______时,3x 2y 5 与 -2x 2y 3n -4是同类项.3、比较大小:23-__<__-78. 4﹑若关于x 的方程a-x=3的解是4,则a=75、你玩过“24点”游戏吗?就是让你将给定的四个数,用加、减、乘、除、乘方运算(每 个数只能使用一次),使运算结果等于24. 现在给你四个数3、2、6、9,请你列算式:__(_9-3)*(6-2)6 已知︱a-2︱+(b+3)2=0,则ab 的值等于7、一粒废旧电池大约会污染60万升的水。
初一数学找规律练习题
初一数学找规律练习题一、数字规律1. 观察下列数列,找出规律,并写出下一个数:2, 4, 8, 16, 32, ____1, 3, 6, 10, 15, ____1, 4, 9, 16, 25, ____二、图形规律1. 观察下列图形,找出规律,并画出下一个图形:(图形:△ △△ △△△ △△△△)(图形:○□○□○□○□)3. 观察下列图形,找出规律,并画出下一个图形:(图形:□■□■■□■■■)三、数列与图形结合规律1. 观察下列数列与图形的结合,找出规律,并写出下一个数和画出对应的图形:数列:1, 2, 3, 4, 5图形:(△)(△△)(△△△)(△△△△)数列:1, 3, 6, 10, 15图形:(○)(□□)(△△△)(■■■■)四、应用题1. 小明发现一个有趣的现象,从1开始,连续几个自然数的和等于这几个自然数的个数乘以(个数加1)除以2。
请你找出这个规律,并计算1到100的和。
2. 小华在纸上画了一排正方形,每个正方形的边长分别为1cm、2cm、3cm、4cm……,请问这排正方形总面积是多少平方厘米?3. 一个数字三角形,第一行有1个数字,第二行有2个数字,以此类推,第n行有n个数字。
求这个数字三角形前10行的数字总和。
五、数表规律1 2 3 42 3 4 53 4 5 64 5 6 __1 3 6 102 5 9 143 7 12 184 __ __ __六、操作规律A → A + 1B → B + 2C → C + 3D → D + 4(初始值:A=1, B=2, C=3, D=4)A → A × 2B → B × 3C → C × 4D → D × 5(初始值:A=1, B=1, C=1, D=1)七、逻辑推理规律A > B,B > C,C > D那么 A > D 是否成立?如果 P 则 Q,如果 Q 则 R那么如果 P 则 R 是否成立?八、综合应用题1. 一个班级有50名学生,每名学生都有一个唯一的编号,编号从1到50。
七年级初一常考找规律题目探索(精选汇总)
七年级常考找规律题目探索(精选汇总)类型一根据数据的排列找规律1.有一列数按5,4,3,2,1,5,4,3,2,1,……排列,第42个数字应该是()A、5B、4C、3D、22.在数列3,12,30,60,……中,请你观察数列的排列规律,则第5个数是()A.75B.90C.105D.1203.若下面每个表格中的4个数字所有相同的规律,则其中n的值为()A、105B、107C、109D、1114.按一定的规律排列的一列数依次为:…,按此规律排列下去,这列数中的第7个数是()A.B.C.D.5.把全体自然数按下面的方式进行排列:按照这样的规律推断,从2014到2016,箭头的方向应是()A.↓→B.→↑C.↑→D.→↓6.计算1﹣2+3﹣4+5﹣6+7﹣8+…+2009﹣2010的结果是()A.﹣1005B.﹣2010C.0D.﹣17.观察下列算式,用你所发现的规律得出22015的末位数字是()21=2,22=4,23=8,24=16,25=32,26=64,27=128,28=256,….A.2B.4C.6D.88.等边△ABC在数轴上的位置如图所示,点A、C对应的数分别为0和﹣1,若△ABC绕着顶点顺时针方向在数轴上连续翻转,翻转1次后,点B所对应的数为1;则翻转2012次后,点B所对应的数是()A.2013B.2010C.2011D.20129.任何实数a,可用[a]表示不超过a的最大整数,如:[4]=4,[]=1,现对36进行如下操作:36[]=6[]=2[]=1,这样对36只需进行3次操作后变为1,类似地,对99只需进行多少次操作后变为1?()A.1次B.2次C.3次D.4次10、如图所示,将圆的周长分为4个单位长度,在圆的4等分点处标上数字0,1,2,3,先让圆周上数字0所对应的点与数轴上的数1所对应的点重合,再让圆沿着数轴按逆时针方向滚动,那么数轴上的数 2020将与圆周上的数字()重合.A.0B.1C.2D.312.填在下面各正方形中的四个数之间都有一定的规律,据此规律得出a+b+c=________13、如图,填在下面各正方形中的4个数之间都有相同的规律:根据这种规律,n的值应该等于.14.下面每个正方形中的五个数之间都有相同的规律,根据这种规律,则第4个正方形中间数字m为,第n个正方形的中间数字为.(用含n的代数式表示)17.如图,圆圈内分别标有0,1,2,3,4,…,11这12个数字.电子跳蚤每跳一次,可以从一个圆圈跳到相邻的圆圈,现在,一只电子跳蚤从标有数字“0”的圆圈开始,按逆时针方向跳了2011次后,落在一个圆圈中,该圆圈所标的数字是.18.有若干个数,第1个数记为a 1,第2个数记为a 2,第3个数记为a 3,···,第n 个数记为an ,若a 1=21,从第2个数起,每个数都等于“1与它前面的那个数的差的倒数”。
初一找规律经典题带答案
初一找规律经典题带答案-CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN一、数字排列1、观察下列各算式: 1+3=4=22,1+3+5=9=23,1+3+5+7=16=24… 按此规律 (1)试猜想:1+3+5+7+…+2005+2007的值 (2)(2)推广: 1+3+5+7+9+…+(2n-1)+(2n+1)的和是多少2、下面数列后两位应该填上什么数字呢? 2 3 5 8 12 17 __ __3、请填出下面横线上的数字。
1 1 2 3 5 8 ____ 214、有一串数,它的排列规律是1、2、3、2、3、4、3、4、5、4、5、6、……聪明的你猜猜第100个( )二、几何图形变化1、观察下列球的排列规律(其中●是实心球,○是空心球):●○○●●○○○○○●○○●●○○○○○●○○●●○○○○○●……从第1个球起到第2004个球止,共有实心球 个.2、观察下列图形排列规律(其中△是三角形,□是正方形,○是圆),□○△□□○△□○△□□○△□┅┅,若第一个图形是正方形,则第2008个图形是 (填图形名称). 三、数、式计算 1、已知下列等式:① 13=12; ② 13+23=32; ③ 13+23+33=62; ④ 13+23+33+43=102 ;由此规律知,第⑤个等式是 . 2、观察下面的几个算式:1+2+1=4, 1+2+3+2+1=9, 1+2+3+4+3+2+1=16, 1+2+3+4+5+4+3+2+1=25,…根据你所发现的规律,请你直接写出下面式子的结果: 1+2+3+…+99+100+99+…+3+2+1=____.3、,,,,已知:24552455154415448338333223222222⨯=+⨯=+⨯=+⨯=+=+⨯=+b a aba b 则符合前面式子的规律,,若 (21010)规律发现……1.用黑白两种颜色的正六边形地砖按如下所示的规律拼成若干个图案:第(4)个图案中有黑色地砖4块;那么第(n )个图案中有白色..地砖 块。
七年级探索规律型问题题目
一、选择题 1.(2010安徽省中中考)下面两个多位数1248624……、6248624……,都是按照如下方法得到的:将第一位数字乘以2,若积为一位数,将其写在第2位上,若积为两位数,则将其个位数字写在第2位。
对第2位数字再进行如上操作得到第3位数字……,后面的每一位数字都是由前一位数字进行如上操作得到的。
当第1位数字是3时,仍按如上操作得到一个多位数,则这个多位数前100位的所有数字之和是…………………………( ) A )495 B )497 C )501 D )503 2.(2010江苏盐城)填在下面各正方形中的四个数之间都有相同的规律,根据此规律,m 的值是A .38B .52C .66D .74 4.(2010 福建晋江)如图,将一张正方形纸片剪成四个小正方形,得到4个小正方形,称为第一次操作;然后,将其中的一个正方形再剪成四个小正方形,共得到7个小正方形,称为第二次操作;再将其中的一个正方形再剪成四个小正方形,共得到10个小正方形,称为第三次操作;...,根据以上操作,若要得到2011个小正方形,则需要操作的次数是( ) .A. 669B. 670C.671D. 6725.(2010山东日照)古希腊人常用小石子在沙滩上摆成各种形状来研究数,例如:他们研究过图1中的1,3,6,10,…,由于这些数能够表示成三角形,将其称为三角形数;类似地,称图2中的1,4,9,16,…,这样的数为正方形数.下列数中既是三角形数又是正方形数的是( )第7题图0 2 8 4 2 4 6 22 4 6 844(A )15 (B )25 (C )55 (D )12257.(2010 河北)将正方体骰子(相对面上的点数分别为1和6、2和5、3和4)放置于水平桌面上,如图6-1.在图6-2中,将骰子向右翻滚90°,然后在桌面上按逆时针方向旋转90°,则完成一次变换.若骰子的初始位置为图6-1所示的状态,那么按上述规则连续完成10次变换后,骰子朝上一面的点数是 ( )A .6B .5C .3D .28.(2010江苏淮安)观察下列各式:()1121230123⨯=⨯⨯-⨯⨯ ()1232341233⨯=⨯⨯-⨯⨯()1343452343⨯=⨯⨯-⨯⨯……计算:3×(1×2+2×3+3×4+…+99×100)=A .97×98×99B .98×99×100C .99×100×101D .100×101×102 9.(2010江苏扬州)电子跳蚤游戏盘是如图所示的△ABC ,AB =6,AC =7,BC =8.如果跳蚤开始时在BC 边的P 0处,BP 0=2.跳蚤第一步从P 0跳到AC 边的P 1(第一次落点)处,且CP 1=CP 0;第二步从P 1跳到AB 边的P 2(第一次落点)处,且AP 2=AP 1;第三步从P 2跳到BC 边的P 3(第三次落点)处,且BP 3=BP 2;……;跳蚤按上述规则一致跳下去,第n 次落点为P n (n 为正整数),则点P 2007与P 2010之间的距离为( )A .1B .2C .3D .4 10.(2010 四川绵阳)如图,在一个三角点阵中,从上向下数有无数多行,其中各行点数依次为2,4,6,…,2n ,…,请你探究出前n 行的点数和所满足的规律.若前n 行点数和为930,则n =( ).A .29B .30C .31D .3211.(2010 山东淄博)如图所示的运算程序中,若开始输入的x 值为48,我们发现第一次输出的结果为24,第二次输出的结果为12,…,则第2010次输出的结果为图6-1 图6-2(A )6 (B )3 (C )200623 (D )10033231003⨯+12.(2010广东茂名)用棋子摆出下列一组“口”字,按照这种方法摆下去,则摆第n 个“口”字需用棋子A .4n 枚B .(4n -4)枚C .(4n+4)枚D . n 2枚 13.(2010广东深圳)观察下列算式,用你所发现的规律得出20102的末位数字是( )21=2,22=4,23=8,24=16,25=32,26=64,27=128,28=256,… A .2 B .4 C .6 D .814.(2010广东湛江)观察下列算式:,65613,21873,7293,2433,813,273,93,1387654321========,通过观察,用你所发现的规律确定20023的个位数字是( )A.3B.9C.7D.1 15.(2010广西百色)如图,在直角坐标系中,射线OA 与x 轴正半轴重合,以O 为旋转中心,将OA 逆时针旋转:OA ⇒1OA ⇒2OA ⇒…⇒n OA …,旋转角,21︒=∠AOA ,421︒=∠OA A ︒=∠832OA A ,… 要求下一个旋转角(不超过︒360)是前一个旋转角的2倍.当旋转角大于︒360时,又从︒2开始旋转,即,4,210998︒=∠︒=∠OA A OA A … 周而复始.则当n OA 与y轴正半轴重合时,n 的最小值为( ) (提示:2+22+23+24+25+26+27+28=510)(第11题)第2个“口” 第1个“口” 第3个“口”第n 个“口”………………?……图③图②图①FEC A. 16 B. 24 C.27 D. 32二、填空题1.(2010湖北武汉)如图,所有正方形的中心均在坐标原点,且各边与x 轴或y 轴平行,从内到外,它们的边长依次为2,4,6,8,…,顶点依次用1234,,,A A A A …表示为,则顶点A 100的坐标为 ,则顶点A 2011的坐标为 2.(2010山东青岛)如图,是用棋子摆成的图案,摆第1个图案需要7枚棋子,摆第2个图案需要19枚棋子,摆第3个图案需要37枚棋子,按照这样的方式摆下去,则摆第6个图案需要 枚棋子,摆第n 个图案需要 枚棋子.3.(2010四川眉山)如图,将第一个图(图①)所示的正三角形连结各边中点进行分割,得到第二个图(图②);再将第二个图中最中间的小正三角形按同样的方式进行分割,得到第三个图(图③);再将第三个图中最中间的小正三角形按同样的方式进行分割,……,则得到的第五个图中,共有________个正三角形.4.(2010 嵊州市)如图,平面内有公共端点的六条OA,OB,OC,OD,OE,OF,从射线OA 数字1,2,3,4,5,6,7,….则“17”在射线 上;“射线 上。
七年级数学(上)探索规律类-问题及答案
七年级数学(上)探索规律类 问题班级 学号 姓名 成绩一、数字规律类:1、一组按规律排列的数:41,93,167,2513,3621,…… 请你推断第9个数是 .2、(2005年山东日照)已知下列等式: ① 13=12; ② 13+23=32; ③ 13+23+33=62;④ 13+23+33+43=102 ;…………由此规律知,第⑤个等式是 .3、(2005年内蒙古乌兰察布)观察下列各式;①、12+1=1×2 ;②、22+2=2×3; ③、32+3=3×4 ;………请把你猜想到的规律用自然数n 表示出来 。
4、(2005年辽宁锦州)观察下面的几个算式:①、1+2+1=4; ②、1+2+3+2+1=9; ③、1+2+3+4+3+2+1=16;④、1+2+3+4+5+4+3+2+1=25,……根据你所发现的规律,请你直接写出第n 个式子 5、(2005年江苏宿迁)观察下列一组数的排列:1、2、3、4、3、2、1、2、3、4、3、2、1、…,那么第2005个数是( ) A .1 B . 2 C .3 D .4 6、(2005年山东济南市)把数字按如图所示排列起来,从上开始,依次为第一行、第二行、第三行、……,中间用虚线围的一列,从上至下依次为1、5、13、25、……,则第10个数为________。
第1行 1第2行 -2 3第3行 -4 5 -6第4行 7 -8 9 -10(第6题图) 第5行 11 -12 13 -14 15 ……………… (第7题图) 7、(05年江苏省金湖实验区)已知一列数:1,―2,3,―4,5,―6,7,… 将这列数排成如上所示的形式:按照上述规律排下去,那么第10行从左边数第5个数等于 . 二、图形规律类: 8、(2005年云南玉溪)一质点P 从距原点1个单位的A 点处向原点方向跳动,第一次跳动到OA 的中点1A 处,第二次从1A 点跳动到O 1A 的中点2A 处,第三次从2A 点跳动到1条 2条 3条 图1 图2 图 3 O 2A 的中点3A 处,如此不断跳动下去,则第n 次跳动后,该质点到原点O 的距离为 。
七年级数学找规律经典题型
七年级数学找规律经典题型一、数字规律1. 数列规律例1:观察数列1,3,5,7,9,…,求第n个数。
解析:首先观察这个数列,发现相邻两个数的差值都是2。
第1个数是1 = 2×1 1;第2个数是3 = 2×2 1;第3个数是5 = 2×3 1;第4个数是7 = 2×4 1;第5个数是9 = 2×5 1。
所以可以得出第n个数为2n 1。
例2:观察数列2,4,8,16,32,…,求第n个数。
解析:这个数列中,后一个数都是前一个数的2倍。
第1个数是2 = 2^1;第2个数是4 = 2^2;第3个数是8 = 2^3;第4个数是16 = 2^4;第5个数是32 = 2^5。
所以第n个数为2^n。
2. 数字循环规律例:有一组数按照1, 1,1, 1,…的规律排列,求第n个数。
解析:观察这组数字,发现数字是1和 1交替出现。
当n为奇数时,第n个数为1;当n为偶数时,第n个数为 1。
可以用(-1)^(n + 1)来表示,当n = 1时,(-1)^(1+1)=1;当n = 2时,(-1)^(2 + 1)= 1。
二、图形规律1. 图形数量规律例1:用火柴棒搭三角形,搭1个三角形需要3根火柴棒,搭2个三角形需要5根火柴棒,搭3个三角形需要7根火柴棒,…,求搭n个三角形需要多少根火柴棒。
解析:搭1个三角形需要3根火柴棒,即2×1+1;搭2个三角形时,第二个三角形和第一个三角形共用一条边,所以需要3 + 2 = 5根火柴棒,即2×2+1;搭3个三角形时,第三个三角形和前面的三角形共用两条边,所以需要3+2×2 = 7根火柴棒,即2×3 + 1。
所以搭n个三角形需要2n+1根火柴棒。
例2:观察下列图形的点数规律:第1个图形有1个点;第2个图形有1 + 3 = 4个点;第3个图形有1+3 + 5 = 9个点;第4个图形有1+3+5 + 7 = 16个点;求第n个图形的点数。
十道初中数学找规律的题型及解题思路
十道初中数学找规律的题型及解题思路这里有10道初中数学找规律的题目,涵盖了常见的数列、图形等多种类型,希望能帮助学生更好地掌握找规律的技巧:数列找规律1.等差数列:1.1, 4, 7, 10, ... 下一个数是多少?2.100, 97, 94, ... 第10个数是多少?2.等比数列:1.2, 4, 8, 16, ... 第8个数是多少?2.81, 27, 9, ... 第6个数是多少?3.混合数列:1.1, 4, 9, 16, 25, ... 下一个数是多少?(提示:考虑每个数的平方)2.2, 5, 10, 17, ... 下一个数是多少?(提示:观察相邻两数的差)4.周期数列:1.1, 2, 3, 1, 2, 3, ... 第20个数是多少?2.A, B, C, A, B, C, ... 第100个数是多少?图形找规律图形的变化:1.一组图形,每个图形由小方块组成,观察图形的变化规律,画出下一个图形。
图形的旋转:1.一个图形不断旋转,观察旋转的规律,画出旋转后的图形。
图形的翻转:1.一个图形不断翻转,观察翻转的规律,画出翻转后的图形。
数字与图形结合数字与图形对应:1.一组图形,每个图形对应一个数字,找出数字与图形之间的对应关系。
图形中的数字规律:1.一个图形中包含多个数字,找出数字之间的规律。
综合题型1.数字和图形的综合:1.一组图形和数字交替出现,找出数字和图形之间的关系。
解题技巧:•观察:仔细观察数列或图形的变化规律,找出其中的共同点和差异点。
•比较:比较相邻的数或图形,找出它们的递增、递减或其他变化关系。
•联想:将题目与以前学过的知识联系起来,寻找解题思路。
•归纳:根据观察和比较的结果,归纳出一般性的规律。
•验证:将得到的规律代入后面的数或图形中进行验证,确保规律的正确性。
注意事项:•找规律题的答案可能不唯一,只要找到一种合理的规律即可。
•遇到困难时,可以尝试从不同的角度去观察和分析。
(完整)七年级数学专题规律探究题
七年级数学专题-----规律探究题题型一:数字变化类问题1.观察下列按顺序排列的等式:,,,,…,试猜想第n个等式(n为正整数):a n=__________.2.下表中的数字是按一定规律填写的,表中a的值应是.1 2 3 5 8 13 a …2 3 5 8 13 21 34 …3.观察下面的单项式:a,﹣2a2,4a3,﹣8a4,…根据你发现的规律,第8个式子是.4.有一组等式:2222222222222222++=++=++=++=……请观察1233,2367,341213,452021它们的构成规律,用你发现的规律写出第8个等式为_________5.把奇数列成下表,根据表中数的排列规律,则上起第8行,左起第6列的数是.5.在计数制中,通常我们使用的是“十进位制”,即“逢十进一”。
而计数制方法很多,如60进位制:60秒化为1分,60分化为1小时;24进位制:24小时化为1天;7进位制:7天化为1周等…而二进位制是计算机处理数据的十进位0 1 2 3 4 5 6 …制二进制0 1 10 11 100 101 110 …写成十进制数为 .(二)6.观察下列各数,它们是按一定规律排列的,则第n个数是.,,,,,…7.观察一列单项式:1x,3x2,5x2,7x,9x2,11x2,…,则第2013个单项式是.8.有这样一组数据a1,a2,a3,…a n,满足以下规律:,(n≥2且n为正整数),则a2013的值为______(结果用数字表示).9.观察下列各式的计算过程:5×5=0×1×100+25,15×15=1×2×100+25,25×25=2×3×100+25,35×35=3×4×100+25,…………请猜测,第n个算式(n为正整数)应表示为____________________________.10.如图,下列各图形中的三个数之间均具有相同的规律.根据此规律,图形中M与m、n的关系是A.M=mn B.M=n(m+1) C.M=mn+1 D.M=m(n+1)11.观察下列等式:31=3,32=9,33=27,34=81,35=243,36=729,37=2187…解答下列问题:3+32+33+34…+32013的末位数字是()A.0 B.1 C.3 D.712.如下表,从左到右在每个小格中都填入一个整数,使得任意三个相邻格子所填整数之和都相等,则第2013个格子中的整数是.-4 a b c 6 b -2…13.将连续正整数按以下规律排列,则位于第7行第7列的数x 是85.题型二:图形变化类问题14.如图,是用火柴棒拼成的图形,则第n个图形需__________根火柴棒.15.电脑系统中有个“扫雷”游戏,要求游戏者标出所有的雷,游戏规则:一个方块下面最多埋一个雷,如果无雷,掀开方块下面就标有数字,提醒游戏者此数字周围的方块(最多八个)中雷的个数(实际游戏中,0通常省略不标,此WORD 中为方便大家识别与印刷,我还是把图乙中的0都标出来吧,以示与未掀开者的区别),如图甲中的“3”表示它的周围八个方块中仅有3个埋有雷.图乙第一行从左数起的七个方块中(方块上标有字母),能够确定一定是雷的有.(请填入方块上的字母)16.如图,在△ABC中,∠A=m°,∠ABC和∠ACD的平分线交于点A1,得∠A1;∠A 1BC和∠A1CD的平分线交于点A2,得∠A2;…∠A2012BC和∠A2012CD的平分线交于点A2013,则∠A2013= 度。
初一找规律经典题型(含部分答案)
精心整理图1 图2 图3初一数学规律题应用知识汇总“有比较才有鉴别”。
通过比较,可以发现事物的相同点和不同点,更容易找到事物的变化规律。
找规律的题目,通常按照一定的顺序给出一系列量,要求我们根据这些已知的量找出一般规律。
揭示的规律,常常包含着事物的序列号。
所以,把变量和序列号放在一起加以比较,就比较容易发现其中的奥秘。
初中数学考试中,经常出现数列的找规律题,下面就此类题的解题方法进行探索:n 个n 位的例:4=6n -2例1(1(2例2共有(二)如增幅不相等,但是增幅以同等幅度增加(即增幅的增幅相等,也即增幅为等差数列)。
如增幅分别为3、5、7、9,说明增幅以同等幅度增加。
此种数列第n 位的数也有一种通用求法。
基本思路是:1、求出数列的第n-1位到第n 位的增幅;2、求出第1位到第第n 位的总增幅;3、数列的第1位数加上总增幅即是第n 位数。
此解法虽然较烦,但是此类题的通用解法,当然此题也可用其它技巧,或用分析观察的方法求出,方法就简单的多了。
例1.古希腊数学家把数1,3,6,10,15,21,……,叫做三角形数,它有一定的规律性,则第24个三角形数与第22个三角形数的差为。
妙题赏析:规律类的中考试题,无论在素材的选取、文字的表述、题型的设计等方面都别具一格,令人耳目一新,其目的是继续考察学生的创新意识与实践能力,在往年“数字类”、“计算类”、“图形类”的基础上,今年又推陈出新,增加了“设计类”与“动态类”两种新题型,现将历年来中考规律类中考试题分析如下:1、设计类【例1】(2005年大连市中考题)在数学活动中,小明为了求的值(结果用n表示),设计如图a所示的图形。
(1)请你利用这个几何图形求的值为。
(2)请你利用图b,再设计一个能求的值的几何图形。
【例2】(2005年河北省中考题)观察下面的图形(每一个正方形的边长均为1)和相应的等式,探究其中的规律:(1)写出第五个等式,并在下边给出的五个正方形上画出与之对应的图示;(2)猜想并写出与第n个图形相对应的等式。
初一找规律经典题带答案
……一、数字排列1、观察下列各算式: 1+3=4=22,1+3+5=9=23,1+3+5+7=16=24… 按此规律 (1)试猜想:1+3+5+7+…+2005+2007的值 ?(2)推广: 1+3+5+7+9+…+(2n-1)+(2n+1)的和是多少 ?2、下面数列后两位应该填上什么数字呢? 2 3 5 8 12 17 __ __3、请填出下面横线上的数字。
1 1 2 3 5 8 ____ 214、有一串数,它的排列规律是1、2、3、2、3、4、3、4、5、4、5、6、……聪明的你猜猜第100个( )二、几何图形变化1、观察下列球的排列规律(其中●是实心球,○是空心球):●○○●●○○○○○●○○●●○○○○○●○○●●○○○○○●……从第1个球起到第2004个球止,共有实心球 个.2、观察下列图形排列规律(其中△是三角形,□是正方形,○是圆),□○△□□○△□○△□□○△□┅┅,若第一个图形是正方形,则第2008个图形是 (填图形名称).三、数、式计算 1、已知下列等式:① 13=12; ② 13+23=32; ③ 13+23+33=62; ④ 13+23+33+43=102 ;由此规律知,第⑤个等式是 . 2、观察下面的几个算式: 1+2+1=4, 1+2+3+2+1=9, 1+2+3+4+3+2+1=16, 1+2+3+4+5+4+3+2+1=25,… 根据你所发现的规律,请你直接写出下面式子的结果: 1+2+3+…+99+100+99+…+3+2+1=____.3、,,,,已知:24552455154415448338333223222222⨯=+⨯=+⨯=+⨯=+ =+⨯=+b a aba b 则符合前面式子的规律,,若…21010 规律发现1.用黑白两种颜色的正六边形地砖按如下所示的规律拼成若干个图案:第(4)个图案中有黑色地砖4块;那么第(n )个图案中有白色..地砖 块。
2.我国著名数学家华罗庚曾说过:“数形结合百般好,隔裂分家万事非。
初一-探索规律经典题
……图③图②图①初一探索规律1.直线上有2010个点,我们进行如下操作:在每相邻两点间插入1个点,经过3次这样的操作后,直线上共有________个点.答案:16073 ,若本题将2010改为2011,结果是多少?2. (2010年安徽中考)下面两个多位数1248624……、6248624……,都是按照如下方法得到的:将第一位数字乘以2,若积为一位数,将其写在第2位上,若积为两位数,则将其个位数字写在第2位。
对第2位数字再进行如上操作得到第3位数字……,后面的每一位数字都是由前一位数字进行如上操作得到的。
当第1位数字是3时,仍按如上操作得到一个多位数,则这个多位数前100位的所有数字之和是( ) A )495 B )497 C )501 D )503 答案:A3.(2010年浙江省)阅读材料,寻找共同存在的规律:有一个运算程序a ⊕b = n , 可以使:(a+c )⊕b= n+c ,a ⊕(b+c )=n -2c , 如果1⊕1=2,那么2010⊕2010 =________.答案:-2007;若本题将2010⊕2010改为2011⊕2011,结果是多少?4.(2010重庆市)有两个完全重合的矩形,将其中一个始终保持不动,另一个矩形绕其对称中心O 按逆时针方向进行旋转,每次均旋转45°,第1次旋转后得到图①,第2次旋转后得到图②,……,则第10次旋转后得到的图形与图①~④中相同的是()A .图①B .图②C .图③D .图④解析:观察图形,可知每转动4次为一个循环,所以10÷4=2…2,即第10次旋转后得到图形是图②.答案:B. 循环型探索规律主要是弄清循环节。
5.(2010年四川省)如图,将第一个图(图①)所示的正三角形连结各边中点进行分割,得到第二个图(图②);再将第二个图中最中间的小正三角形按同样的方式进行分割,得到第三个图(图③);再将第三个图中最中间的小正三角形按同样的方式进行分割,……,则得到的第五个图中,共有________个正三角形.答案:176.(2010年福建省)如图,将一张正方形纸片剪成四个小正方形,得到4个小正方形,称为第一次操作;然后,将其中的一个正方形再剪成四个小正方形,共得到7个小正方形,称为第二次操作;再将其中的一个正方形再剪成四个小正方形,共得到10个小正方形,称为第三次操作;...,根据以上操作,若要得到2011个小正方形,则需要操作的次数是( ) .A. 669B. 670C.671D. 672 答案:B先从特殊到一般,然后采用列表法进行观察,或利用等差数列通项公式d n a a n )1(1-+=。
初一找规律经典题型(含部分答案)
精心整理图1 图2 图3初一数学规律题应用知识汇总“有比较才有鉴别”。
通过比较,可以发现事物的相同点和不同点,更容易找到事物的变化规律。
找规律的题目,通常按照一定的顺序给出一系列量,要求我们根据这些已知的量找出一般规律。
揭示的规律,常常包含着事物的序列号。
所以,把变量和序列号放在一起加以比较,就比较容易发现其中的奥秘。
初中数学考试中,经常出现数列的找规律题,下面就此类题的解题方法进行探索:n 个n 位的例:4=6n -2例1(1(2例2共有(二)如增幅不相等,但是增幅以同等幅度增加(即增幅的增幅相等,也即增幅为等差数列)。
如增幅分别为3、5、7、9,说明增幅以同等幅度增加。
此种数列第n 位的数也有一种通用求法。
基本思路是:1、求出数列的第n-1位到第n 位的增幅;2、求出第1位到第第n 位的总增幅;3、数列的第1位数加上总增幅即是第n 位数。
此解法虽然较烦,但是此类题的通用解法,当然此题也可用其它技巧,或用分析观察的方法求出,方法就简单的多了。
例1.古希腊数学家把数1,3,6,10,15,21,……,叫做三角形数,它有一定的规律性,则第24个三角形数与第22个三角形数的差为。
妙题赏析:规律类的中考试题,无论在素材的选取、文字的表述、题型的设计等方面都别具一格,令人耳目一新,其目的是继续考察学生的创新意识与实践能力,在往年“数字类”、“计算类”、“图形类”的基础上,今年又推陈出新,增加了“设计类”与“动态类”两种新题型,现将历年来中考规律类中考试题分析如下:1、设计类【例1】(2005年大连市中考题)在数学活动中,小明为了求的值(结果用n表示),设计如图a所示的图形。
(1)请你利用这个几何图形求的值为。
(2)请你利用图b,再设计一个能求的值的几何图形。
【例2】(2005年河北省中考题)观察下面的图形(每一个正方形的边长均为1)和相应的等式,探究其中的规律:(1)写出第五个等式,并在下边给出的五个正方形上画出与之对应的图示;(2)猜想并写出与第n个图形相对应的等式。
初一找规律经典题带答案
初一找规律经典题带答案一、数字排列1、按照题目给出的规律,可以猜想1+3+5+7+…+2005+2007的值为1004×1004=xxxxxxx。
推广式子为1+3+5+7+9+…+(2n-1)+(2n+1)=n(2n+1)。
2、数列后两位应该填上22,因为每个数都是前两个数之和。
3、横线上的数字应该填13,因为每个数都是前两个数之和。
4、这串数的排列规律为1、2、3、2、3、4、3、4、5、4、5、6、…,即从1开始,每次增加1,到达一个峰值后再减少1.第100个数为13.二、几何图形变化1、实心球和空心球交替出现,每两个球中有一个实心球。
因此,2004个球中实心球的个数为1002个。
2、第一个图形是正方形,按照规律,每隔两个图形就循环一次□○△。
因此,第2008个图形是○。
三、数、式计算1、根据题目给出的等式,可以得出第5个等式为13+23+33+43+53=225.2、根据规律,1+2+3+…+n=(1+n)×n/2,因此1+2+3+…+99+100+99+…+3+2+1=2×(1+2+3+…+99)+100=.3、根据题目给出的规律,可以得出10+ =102×,因此a+b=22.规律发现:1.第n个图案中有白色地砖n-1块。
2.将正方形沿着对角线对折,可以得到两个直角三角形,其斜边长均为1.因此,将矩形纸片按照斜边长度从小到大排列,可以拼成一个直角三角形,其面积为1/2.根据等差数列求和公式,可以得到1/2×(1+1/4+1/9+…+1/n^2)=1/2×π^2/6=π^2/12.4.将一张长方形的纸对折,如图所示可得到一条折痕(图中虚线)。
继续对折,每次折痕与上次的折痕保持平行,连续对折三次后,可以得到7条折痕。
那么对折四次可以得到几条折痕?如果对折n次,可以得到多少条折痕?答案:对折四次可以得到15条折痕,对折n次可以得到2^n-1条折痕。
(完整版)七年级找规律经典题汇总带答案
……一、数字排列规律题1、观察下列各算式: 1+3=4=22,1+3+5=9=23,1+3+5+7=16=24… 按此规律 (1)试猜想:1+3+5+7+…+2005+2007的值 ?(2)推广: 1+3+5+7+9+…+(2n-1)+(2n+1)的和是多少 ?2、下面数列后两位应该填上什么数字呢? 2 3 5 8 12 17 __ __3、请填出下面横线上的数字。
1 1 2 3 5 8 ____ 214、有一串数,它的排列规律是1、2、3、2、3、4、3、4、5、4、5、6、……聪明的你猜猜第100个( )二、几何图形变化规律题1、观察下列球的排列规律(其中●是实心球,○是空心球):●○○●●○○○○○●○○●●○○○○○●○○●●○○○○○●……从第1个球起到第2004个球止,共有实心球 个.2、观察下列图形排列规律(其中△是三角形,□是正方形,○是圆),□○△□□○△□○△□□○△□┅┅,若第一个图形是正方形,则第2008个图形是 (填图形名称).三、数、式计算规律题 1、已知下列等式:① 13=12; ② 13+23=32; ③ 13+23+33=62; ④ 13+23+33+43=102 ;由此规律知,第⑤个等式是 . 2、观察下面的几个算式: 1+2+1=4, 1+2+3+2+1=9, 1+2+3+4+3+2+1=16, 1+2+3+4+5+4+3+2+1=25,… 根据你所发现的规律,请你直接写出下面式子的结果: 1+2+3+…+99+100+99+…+3+2+1=____.3、,,,,已知:24552455154415448338333223222222⨯=+⨯=+⨯=+⨯=+ =+⨯=+b a aba b 则符合前面式子的规律,,若…21010 规律发现专题训练1.用黑白两种颜色的正六边形地砖按如下所示的规律拼成若干个图案:第(4)个图案中有黑色地砖4块;那么第(n )个图案中有白色..地砖 块。
七年级数学(上)探索规律类_问题
11条 2条 3条 图1 图2 图3七年级数学(上)探索规律类 问题班级 学号 姓名 成绩一、数字规律类:1、一组按规律排列的数:41,93,167,2513,3621,…… 请你推断第9个数是 . 2、已知下列等式: ① 13=12; ② 13+23=32; ③ 13+23+33=62;④ 13+23+33+43=102 ;…………由此规律知,第⑤个等式是 .3、观察下列各式;①、12+1=1×2 ;②、22+2=2×3;③、32+3=3×4 ;………请把你猜想到的规律用自然数n 表示出来 。
4、观察下面的几个算式:①、1+2+1=4; ②、1+2+3+2+1=9;③、1+2+3+4+3+2+1=16;④、1+2+3+4+5+4+3+2+1=25,……根据你所发现的规律,请你直接写出第n 个式子 5、观察下列一组数的排列:1、2、3、4、3、2、1、2、3、4、3、2、1、…,那么第2005个数是( ) A .1 B . 2 C .3 D .46、把数字按如图所示排列起来,从上开始,依次为第一行、第二行、第三行、……,中间用虚线围的一列,从上至下依次为1、5、13、25、……,则第10个数为________。
第1行 1第2行 -2 3第3行 -4 5 -6第4行 7 -8 9 -10第5行 11 -12 13 -14 15 ………………7、已知一列数:1,―2,3,―4,5,―6,7,… 将这列数排成如上所示的形式:按照上述规律排下去,那么第10行从左边数第5个数等于 . 二、图形规律类:8、一质点P 从距原点1个单位的A 点处向原点方向跳动,第一次跳动到OA 的中点1A 处,第二次从1A 点跳动到O 1A 的中点2A 处,第三次从2A 点跳动到O 2A 的中点3A 处,如此不断跳动下去,则第n 次跳动后,该质点到原点O 的距离为 。
9、如下图是小明用火柴搭的1条、2条、3条“金鱼”……,则搭n 条“金鱼”需要火柴 根.……10、观察下列球的排列规律(其中●是实心球,○是空心球):●○○●●○○○○○●○○●●○○○○○●○○●●○○○○○● ………… 从第1个球起到第2005个球止,共有实心球 个.11、如图,在图1中,互不重叠的三角形共有4个,在图2中,互不重叠的三角形共有7个,在图3中,互不重叠的三角形共有10个,……,则在第n 个图形中,互不重叠的三角形共有 个(用含n 的代数式表示)。
七年级数学探索规律练习题.docx
七年级数学探索规律练习题1. 找出下列各数列的规律,并按其规律在()内填上合适的数:(1) 4, 7, 10, 13, ( ) ( ); (2)84, 72, 60,(),();(3)2, 6, 18, ( ), ( ), (4)625, 125, 25,(),();(5)1, 4, 9, 16, ( ), ( ), (6)2, 6, 12, 20,(),(),2. 观察下面的一列单项式:%, -2兀彳,4x 1 2 3 4, -8/,…根据你发现的规律,第7 个单项式为 _ ,第n 个单项式为 ____________________________ 3•观察下列一组数:1, 2, 2, Z,……,它们是按一定规律排列的.那么2 4 6 8这一组数的第n 个数是 __________ •4•观察下面一列有规律的数:| 春,……,根据这个规律 3 8 15 24 35 48可他n 个数是 _____ (n 是正整数)5•古希腊数学家把数1, 3, 6, 10, 15, 21,……,叫做三角形数,它有一定的 规律性,则第24个三角形数与第22个三角形数的差为 __________________ o6.观察下列顺序排列的等式:9X0+l = l 9X1 + 2 = 11 9X2 + 3 = 21 9X3+4=31 9X4+5 = 41,猜 想:第21个等式应为: _____________ 。
7•给有一列数-1,-,-丄上,…,那么第7个数是 2 5 10 17 -----------&有若干学生围成8圈(一圈套一圈),从外圈到内圈,人数依次减少4人;(1) 如果最内圈有32人,共有多少学生?(2) 如果共有304名学生,最外圈有多少人?9.出依次排列的一列数列:1、-2、3、-4、5、-6、……(1) 找出这数列的规律;按照规律,写出紧接后面的三项;(2) 这一•数列的第2009项是多少?第2010项是多少?第〃项乂是多少? 10・已知平面内任意三个点都不在同一直线上,过其屮任两点画直线。
七年级数学规律探索题
七年级数学规律探索题班级:姓名1、如果把人的头顶和脚底分别看作一个点,把地球赤道看作一个圆,那么身高2米的汤姆沿地球赤道环行一周,他的头顶比脚底多行_____米。
解完这道题你有什么体会?(或你发现了什么?)______________________________________(圆周长2×3.14×圆半径)2、观察下列每组数据,按某种规律在横线上填上适当的数。
(1)1,-2,3,-4,____,___,_____。
(2)-23,-18,-13,_____,______,______。
3、探索规律(1A、2张桌子拼在一起可坐______人。
3张桌子拼在一起可坐____人,n张桌子拼在一起可坐______人。
B、家餐厅有40张这样的长方形桌子,按照上图方式每5张桌子拼成1张大桌子,则40张桌子可拼成8张大桌子,共可坐______人。
(2)、火柴棒按下图的方式搭三角形。
(3)、读儿歌,并用字母表示这首儿歌。
1只青蛙1张嘴,2只眼睛4条腿,1声扑通跳下水,2只青蛙2张嘴,4只眼睛8条腿,2声扑通跳下水,3只青蛙3张嘴,6只眼睛12条腿,3声扑通跳下水,____________,_____________,_______________,_______________。
4、用棋子按下面的方式摆出正方形。
○○○○○○○○○○○○○○○①○○○○○②○○○○③5、1米长的小棒,第一次截去一半,第二次截去剩下的一半,如此截下去,第七次后剩下的小棒有______米?6、欢吃拉面吗?拉面馆的师傅,用一根很粗的面条,把两头捏合在一起拉伸,再捏合,再拉伸,反复几次,就把这根很粗的面条拉成了许多细的面条。
如图所示:……第一次捏合后第二次捏合后第三次捏合后这样捏合到第_____次后可拉出128根面条。
7、探索规律(每小题5分,共10分)(1)火柴棒按下面的方式搭图形:(2)(2)(3)填写下表:8、下图是一个数值转换机示意图,请按要求在括号内填写转换步骤,在表格中填写数值。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
初一-探索规律经典题 -CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN
初一探索规律
1.直线上有2010个点,我们进行如下操作:在每相邻两点间插入1个点,经过3次这样的操作后,直线上共有________个点.
答案:16073 ,若本题将2010改为2011,结果是多少?
2.(2010年安徽中考)下面两个多位数1248624……、6248624……,都是按照如下方法得到的:将第一位数字乘以2,若积为一位数,将其写在第2位上,若积为两位数,则将其个位数字写在第2位。
对第2位数字再进行如上操作得到第3位数字……,后面的每一位数字都是由前一位数字进行如上操作得到的。
当第1位数字是3时,仍按如上操作得到一个多位数,则这个多位数前100位的所有数字之和是()
A)495 B)497 C)501 D)503
答案:A
3.(2010年浙江省)阅读材料,寻找共同存在的规律:有一个运算程序a⊕b = n,
可以使:(a+c)⊕b= n+c,a⊕(b+c)=n-2c,
如果1⊕1=2,那么2010⊕2010=________.
答案:-2007;若本题将2010⊕2010改为2011⊕2011,结果是多少?
4.(2010重庆市)有两个完全重合的矩形,将其中一个始终保持不动,另一个矩形绕其对称中心O按逆时针方向进行旋转,每次均旋转45°,第1次旋转后得到图①,第2次旋转后得到图②,……,则第10次旋转后得到的图形与图①~④中相同的是()
A.图① B.图② C.图③ D.图④
解析:观察图形,可知每转动4次为一个循环,所以10÷4=2…2,即第10次旋转后得到图形是图②.
答案:B. 循环型探索规律主要是弄清循环节。
……
图③
图②图①5.(2010年四川省)如图,将第一个图(图①)所示的正三角形连结各边中点
进行分割,得到第二个图(图②);再将第二个图中最中间的小正三角形按同样的方式进行分割,得到第三个图(图③);再将第三个图中最中间的小正三角形按同样的方式进行分割,……,则得到的第五个图中,共有________个正三角形.
答案:17
6.(2010年福建省)如图,将一张正方形纸片剪成四个小正方形,得到4个小正方形,称为第一次操作;然后,将其中的一个正方形再剪成四个小正方形,共得到7个小正方形,称为第二次操作;再将其中的一个正方形再剪成四个小正方形,共得到10个小正方形,称为第三次操作;...,根据以上操作,若要得到2011个小正方形,则需要操作的次数是( ) . A. 669 B. 670 C.671 D. 672 答案:B
先从特殊到一般,然后采用列表法进行观察,或利用等差数列通项公式
d n a a n )1(1-+=。
然后列方程进行求解
7.(2010日照市)古希腊人常用小石子在沙滩上摆成各种形状来研究数,例如:
他们研究过图1中的1,3,6,10,…,由于这些数能够表示成三角形,将其称为三角形数;类似地,称图2中的1,4,9,16,…,这样的数为正方形数.下列数中既是三角形数又是正方形数的是
(A )15 (B )25 (C )55 (D )1225 答案:D
8.我们常用的数是十进制数,计算机程序使用的是二进制数(只有数码0和1),它们两者之间可以互相换算,如将(101)2,(1011)2换算成十进制数应为:
5104212021)101(0122=++=⨯+⨯+⨯= 1121212021)1011(01232=⨯+⨯+⨯+⨯=
按此方式,将二进制(1001)2换算成十进制数的结果是_______________. 答案: 9
9.(2010·汕头)阅读下列材料:
1×2 = 31
(1×2×3-0×1×2),
2×3 = 31
(2×3×4-1×2×3),
3×4 = 3
1
(3×4×5-2×3×4),由以上三个等式相加,可得
1×2+2×3+3×4= 3
1
×3×4×5 = 20.
读完以上材料,请你计算下列各题:
(1) 1×2+2×3+3×4+···+10×11(写出过程);
(2) 1×2+2×3+3×4+···+n ×(n +1) = _________; (3) 1×2×3+2×3×4+3×4×5+···+7×8×9 = _________.
10.(2010·汕头)如图(1),已知小正方形ABCD 的面积为1,把它的各边延长一倍得到新正方形A 1B 1C 1D 1;把正方形A 1B 1C 1D 1边长按原法延长一倍得到正方形A 2B 2C 2D 2(如图(2));以此下去···,则正方形A 4B 4C 4D 4的面积为__________.
11.(2007四川)一个叫巴尔末的中学教师成功地从光谱数据5
9,12
16
,
2125,32
36,…中得到巴尔末公式,从而打开了光谱奥秘的大门,请你按照这种规
律,写出第n (n ≥1)个数据是___________.
解:
)
4()2(2++n n n 或
4
)2()2(2
2-++n n
12.(2007山东威海)观察下列等式:
223941401⨯=-,224852502⨯=-,225664604⨯=-,226575705⨯=-,228397907⨯=-…
请你把发现的规律用字母表示出来:n m • .
答案:22
22m n m n +-⎛⎫⎛⎫- ⎪ ⎪⎝⎭⎝⎭
13.(2007湖北武汉)下列图案是由边长为单位长度的小正方形按一定的规律
拼接而成。
依此规律,第5个图案中小正方形的个数为_______________。
第10题图(1) 1
B 1
C 1
D 1
D 2
A 2
B 2
C 2
D 1
C 1
B 1
A 1
第10题图(2)
答案:41
14.(2007贵州贵阳)如图12,平面内有公共端点的六条射线OA ,OB ,
OC ,OD ,OE ,OF ,从射线OA 开始按逆时针方向依次在射线上写出数字1,2,3,4,5,6,7,…. (1)“17”在射线 上.
(2)请任意写出三条射线上数字的排列规律. (3)“2007”在哪条射线上
解:(1)“17”在射线OE 上.
(2)射线OA 上数字的排列规律:65n - 射线OB 上数字的排列规律:64n - 射线OC 上数字的排列规律:63n - 射线OD 上数字的排列规律:62n - 射线OE 上数字的排列规律:61n - 射线OF 上数字的排列规律:6n
(3)在六条射线上的数字规律中,只有632007n -=有整数解.解为335n = “2007”在射线OC 上.
15.(2009年重庆)观察下列图形,则第n 个图形中三角形的个数是( )
图12
A B D
E
O 1 7
2
8 3 9 4 10 5
11
6 12
A .22n +
B .44n +
C .44n -
D .4n
答案:D .
16.(2009年河北)古希腊著名的毕达哥拉斯学派把1、3、6、10 … 这样的数称为“三角形数”,而把1、4、9、16 … 这样的数称为“正方形数”. 从图7中可以发现,任何一个大于1的“正方形数”都可以看作两个相邻“三角形数”之和.下列等式中,符合这一规律的是( )
A .13 = 3+10
B .25 = 9+16
C .36 = 15+21
D .49 = 18+31
【答案】C
17.(2009成都)已知2
1
(123...)(1)n a n n =
=+,,,,记112(1)b a =-,
2122(1)(1)b a a =--,…,122(1)(1)...(1)n n b a a a =---,则通过计算推测出n b 的
表达式n b =_______.(用含n 的代数式表示) 【答案】1
2
++n n
18.(2009年济宁市)观察图中每一个大三角形中白色三角形的排列规律,则第5个大三角形中白色三角形有 个 .
【答案】121
4=1+3 9=3+6 16=6+10
图7
…
……
第1个 第2个 第3个
第1个第2个
第3个
19.(2009年广西梧州)图(3)是用火柴棍摆成的边长分别是1,2,3 根火柴棍时的正方形.当边长为n
根火柴棍时,设摆出的正方形所用的火柴棍的根数为s,则s=.(用n的代数式表示s)
【答案】2(1)
n n
20.有一个四等分转盘,在它的上、右、下、左的位置挂着“众”“志”“成”“城”四个字牌,如图5-1.若将位于上下位置的两个字牌对调,同时将位于左右位置的两个字牌对调,再将转盘顺时针旋转90°,则完成一次变换.图5-2、图5-3分别表示第1次变换和第2次变换.按上述规则完成第9次变换后,“众”
A.上 B.下 C.左 D.右
答案C;四次变换为一周期;通过观察、分析、归纳、抽象、概括迅速发现每一次变换“众”字逆时针旋转90°这一规律。
图5-1图5-2
…
图5-3
……
n=1 n=2 n=3。