数字图像处理整理经典

合集下载

dip管理经典做法

dip管理经典做法

dip管理经典做法DIP(Digital Image Processing,数字图像处理)是一种广泛应用于计算机视觉和图像处理领域的技术方法。

它涵盖了许多经典的管理做法,以下是10个不包含网络地址、数学公式或计算公式的介绍:1. 图像采集与预处理:DIP中的第一步是采集图像,并对其进行预处理。

预处理包括去噪、增强、平滑和调整图像的亮度和对比度等。

2. 图像分割:图像分割是将图像划分为不同的区域或物体的过程。

常用的方法有阈值分割、边缘检测和区域生长等。

3. 特征提取:特征提取是从图像中抽取有用信息的过程,用于后续的分析和分类。

常用的特征包括纹理、形状和颜色等。

4. 图像变换:图像变换是将图像从一个域转换到另一个域的过程。

常用的变换包括傅里叶变换、小波变换和离散余弦变换等。

5. 图像恢复与重建:图像恢复与重建是通过图像处理技术来修复受损的图像或生成缺失的图像。

常用的方法有去模糊、去噪和插值等。

6. 图像压缩与编码:图像压缩与编码是将图像数据进行压缩和编码以减少存储空间和传输带宽的过程。

常用的方法有无损压缩和有损压缩等。

7. 图像识别与分类:图像识别与分类是通过图像处理技术来自动识别和分类图像中的物体或场景。

常用的方法有模板匹配、神经网络和支持向量机等。

8. 图像检索与索引:图像检索与索引是通过图像特征来检索和索引图像数据库中的图像。

常用的方法有基于内容的图像检索和基于标签的图像检索等。

9. 图像分析与理解:图像分析与理解是对图像内容进行分析和理解的过程。

常用的方法有目标检测、目标跟踪和场景理解等。

10. 图像处理系统与应用:图像处理系统与应用是将图像处理技术应用于实际问题的过程。

常见的应用包括医学影像处理、遥感图像处理和安防监控等。

以上是DIP中的一些经典管理做法,它们涵盖了图像处理的各个方面。

通过合理应用这些方法,可以处理和分析图像数据,从而提取有用的信息并解决实际问题。

数字图像处理领域的二十四个典型算法

数字图像处理领域的二十四个典型算法

数字图像处理领域的⼆⼗四个典型算法数字图像处理领域的⼆⼗四个典型算法及vc实现、第⼀章⼀、256⾊转灰度图⼆、Walsh变换三、⼆值化变换四、阈值变换五、傅⽴叶变换六、离散余弦变换七、⾼斯平滑⼋、图像平移九、图像缩放⼗、图像旋转数字图像处理领域的⼆⼗四个典型算法及vc实现、第三章图像处理,是对图像进⾏分析、加⼯、和处理,使其满⾜视觉、⼼理以及其他要求的技术。

图像处理是信号处理在图像域上的⼀个应⽤。

⽬前⼤多数的图像是以数字形式存储,因⽽图像处理很多情况下指数字图像处理。

本⽂接下来,简单粗略介绍下数字图像处理领域中的24个经典算法,然后全部算法⽤vc实现。

由于篇幅所限,只给出某⼀算法的主体代码。

ok,请细看。

⼀、256⾊转灰度图算法介绍(百度百科):什么叫灰度图?任何颜⾊都有红、绿、蓝三原⾊组成,假如原来某点的颜⾊为RGB(R,G,B),那么,我们可以通过下⾯⼏种⽅法,将其转换为灰度: 1.浮点算法:Gray=R*0.3+G*0.59+B*0.11 2.整数⽅法:Gray=(R*30+G*59+B*11)/100 3.移位⽅法:Gray =(R*28+G*151+B*77)>>8; 4.平均值法:Gray=(R+G+B)/3; 5.仅取绿⾊:Gray=G; 通过上述任⼀种⽅法求得Gray后,将原来的RGB(R,G,B)中的R,G,B统⼀⽤Gray替换,形成新的颜⾊RGB(Gray,Gray,Gray),⽤它替换原来的RGB(R,G,B)就是灰度图了。

灰度分为256阶。

所以,⽤灰度表⽰的图像称作灰度图。

程序实现: ok,知道了什么叫灰度图,下⾯,咱们就来实现此256⾊灰度图。

这个Convert256toGray(),即是将256⾊位图转化为灰度图:void Convert256toGray(HDIB hDIB) { LPSTR lpDIB; // 由DIB句柄得到DIB指针并锁定DIB lpDIB = (LPSTR) ::GlobalLock((HGLOBAL)hDIB); // 指向DIB象素数据区的指针 LPSTR lpDIBBits; // 指向DIB象素的指针 BYTE * lpSrc; // 图像宽度 LONG lWidth; // 图像⾼度 LONG lHeight; // 图像每⾏的字节数 LONG lLineBytes; // 指向BITMAPINFO结构的指针(Win3.0) LPBITMAPINFO lpbmi; // 指向BITMAPCOREINFO结构的指针 LPBITMAPCOREINFO lpbmc; // 获取指向BITMAPINFO结构的指针(Win3.0) lpbmi = (LPBITMAPINFO)lpDIB; // 获取指向BITMAPCOREINFO结构的指针 lpbmc = (LPBITMAPCOREINFO)lpDIB; // 灰度映射表 BYTE bMap[256]; // 计算灰度映射表(保存各个颜⾊的灰度值),并更新DIB调⾊板 int i,j; for (i = 0; i < 256;i ++) { // 计算该颜⾊对应的灰度值 bMap[i] = (BYTE)(0.299 * lpbmi->bmiColors[i].rgbRed + 0.587 * lpbmi->bmiColors[i].rgbGreen + 0.114 * lpbmi->bmiColors[i].rgbBlue + 0.5); // 更新DIB调⾊板红⾊分量 lpbmi->bmiColors[i].rgbRed = i; // 更新DIB调⾊板绿⾊分量 lpbmi->bmiColors[i].rgbGreen = i; // 更新DIB调⾊板蓝⾊分量 lpbmi->bmiColors[i].rgbBlue = i; // 更新DIB调⾊板保留位 lpbmi->bmiColors[i].rgbReserved = 0; } // 找到DIB图像象素起始位置 lpDIBBits = ::FindDIBBits(lpDIB); // 获取图像宽度 lWidth = ::DIBWidth(lpDIB); // 获取图像⾼度 lHeight = ::DIBHeight(lpDIB); // 计算图像每⾏的字节数 lLineBytes = WIDTHBYTES(lWidth * 8); // 更换每个象素的颜⾊索引(即按照灰度映射表换成灰度值) //逐⾏扫描 for(i = 0; i < lHeight; i++) { //逐列扫描 for(j = 0; j < lWidth; j++) { // 指向DIB第i⾏,第j个象素的指针 lpSrc = (unsigned char*)lpDIBBits + lLineBytes * (lHeight - 1 - i) + j; // 变换 *lpSrc = bMap[*lpSrc]; } } //解除锁定 ::GlobalUnlock ((HGLOBAL)hDIB); }变换效果(以下若⽆特别说明,图⽰的右边部分都是为某⼀算法变换之后的效果):程序实现:函数名称:WALSH()参数:double * f - 指向时域值的指针double * F - 指向频域值的指针r -2的幂数返回值:⽆。

数字图像处理知识点总结

数字图像处理知识点总结

数字图像处理知识点总结第一章导论1.图像:对客观对象的一种相似性的生动性的描述或写真.2.图像分类:按可见性(可见图像、不可见图像),按波段数(单波段、多波段、超波段),按空间坐标和亮度的连续性(模拟和数字)。

3.图像处理:对图像进行一系列操作,以到达预期目的的技术。

4.图像处理三个层次:狭义图像处理、图像分析和图像理解。

5.图像处理五个模块:采集、显示、存储、通信、处理和分析。

第二章数字图像处理的基本概念6.模拟图像的表示:f(x,y)=i(x,y)×r(x,y),照度分量0< i(x,y)< ∞ ,反射分量0 <r(x,y)〈1.7.图像数字化:将一幅画面转化成计算机能处理的形式——数字图像的过程。

它包括采样和量化两个过程。

像素的位置和灰度就是像素的属性。

8.将空间上连续的图像变换成离散点的操作称为采样。

采样间隔和采样孔径的大小是两个很重要的参数。

采样方式:有缝、无缝和重叠。

9.将像素灰度转换成离散的整数值的过程叫量化。

10.表示像素明暗程度的整数称为像素的灰度级(或灰度值或灰度)。

11.数字图像根据灰度级数的差异可分为:黑白图像、灰度图像和彩色图像。

12.采样间隔对图像质量的影响:一般来说,采样间隔越大,所得图像像素数越少,空间分辨率低,质量差,严重时出现像素呈块状的国际棋盘效应;采样间隔越小,所得图像像素数越多,空间分辨率高,图像质量好,但数据量大。

13.量化等级对图像质量的影响:量化等级越多,所得图像层次越丰富,灰度分辨率高,图像质量好,但数据量大;量化等级越少,图像层次欠丰富,灰度分辨率低,会出现假轮廓现象,图像质量变差,但数据量小.但在极少数情况下对固定图像大小时,减少灰度级能改善质量,产生这种情况的最可能原因是减少灰度级一般会增加图像的对比度。

例如对细节比较丰富的图像数字化.14.数字化器组成:1)采样孔:保证单独观测特定的像素而不受其它部分的影响。

2)图像扫描机构:使采样孔按预先确定的方式在图像上移动。

数字图像处理知识点总结

数字图像处理知识点总结

定小于任何其他排列形式.
矢量量化原理
第7章
矢量量化的编码就是根据一定的失真测度 在码书搜索出与输入矢量失真最小的码字的索引。
用Canny算子进行边缘检测的主要步骤
① 用高斯滤波器平滑图像 第9章
② 计算滤波后图像梯度的幅值和方向
③ 对梯度幅值应用非极大值抑制,其过程为找处图像梯度中的局 部极大值点,把其它非局部极大值点置零以得到得到细化的边 缘 ④ 用双阈值算法检测和连接边缘,使用两个阈值T1和T2(T1>T2), T1用来找到每条线段,T2用来在这些线段的两个方向上延伸寻 找边缘的断裂处,并连接这些边缘。
背景差分法 如何利用多幅运动图像构造一个 第9章 基准图像
• 找出多幅对应像素点灰度值变化在一定阈值范围内的部 分为基准图像,可通过检测图像序列相邻两帧之间的变 化,保留对应像素点灰度值变化在一定阈值范围内的部 分,再与下一帧的图像对比,重复上述过程,最终取得 基准图像。
• I=imread(‘原图像名.tif’); % 读入原图像,tif格式 • whos I • imshow(I) % 显示图像I的基本信息 % 显示图像
自动阈值 迭代式阈值选择算法的基本思想
第9章
• 开始时选择一个阈值作为初始估计值,然后按某种策略 不断地改进这一估计值,直到满足给定的准则为止。在 迭代过程中,关键之处在于选择什么样的阈值改进策略, 好的阈值的改进策略应该具备两个特征,一是能够快速 收敛,二是在每一个迭代过程中,新产生阈值优于上一 次的阈值。
• title(‘原图像’);
• %对原图像进行屏幕控制;显示直方图均衡化后 的图像 • figure;imshow(J); • %给直方图均衡化后的图像加标题名 • title(‘直方图均衡化后的图像’) ;

哈工大数字图像处理知识点总结

哈工大数字图像处理知识点总结

1. 引言1.1图像的概念图像:是对客观存在的物体的一种相似性的、生动性的模仿或描述,是一种不完全的、不精确的,但在某种意义上是适当的表示。

也是对客观存在的物体的某种属性的描述。

(非所见即所得,对事物不能完全描述)1.2数字图像的起源与应用1.3 数字图像处理的概念●图像的类型:从图像生成角度:物理图像(可见图像(光学图像)、不可见图像(红外)、数学图像等)从照明角度:多光谱图像(特指不可见光谱)和单光谱图像(激光);从人眼视觉特点上:可见图像、不可见图像。

从波段多少分为:单波段(每点只有一亮度值)、多波段(每点不只一特性如红绿蓝光谱图像)和超波段图像。

从图像空间坐标和明暗程度的连续性:模拟图像、数字图像(空间坐标和灰度均不连续,用离散的数字表示)。

●图像的表现形式●图像的属性:构成数字图像的要素,灰度坐标图像的属性:1.对比度:灰度差别 0~255(256个灰度级)2. 灰度分辨力:适于人眼3.空间分辨力:越高越好4.放大率对比度与灰度的关系:量化?灰度量化最高、最暗差值尽可能大。

减少灰度级一般会提高图像的对比度。

构成数字图像的要素:地址(坐标)和灰度值●数字图像的处理概念及三种分类:处理\分析\理解操作对象:狭义数字图像处理:图像——图像图像分析:图像——数据(特征值)图像理解:数据——概念狭义图像处理强调图像之间进行变换,指对图像进行各种操作以改善图像的视觉效果,或对图像进行压缩编码以减少所需存储空间或传输时间、传输通路的要求。

图像分析是对图像中感兴趣的目标进行检测的测量,从而建立对图像的描述,是从图像到数值或符号的过程。

经分割和特征提取,把原来以像素构成的图像转变成比较简洁的非图像形式的描述。

图像理解研究图像中各目标的性质和它们之前的相互联系,并得出对图像内容含义的理解以及对原来客观场景的解译,人而指导和规划行动●数字图像的运算形式:全局、局部、点,串行、并行全局:快速傅立叶变换局部:点运算:对于一幅输入图像,经过点运算产生一幅输出图像,后者的每个像素的灰度值仅由相应输入像素的值决定(对比度增强,对比度拉伸,灰度变换)串行:后一像素输出结果依赖于前面像素处理的结果,并且只能依次处理各像素而不能同时对各像素进行相同处理的一种处理形式。

数字图像处理知识点总结

数字图像处理知识点总结

数字图像处理知识点总结第二章:数字图像处理的基本概念2.3 图像数字化数字化是将一幅画面转化成计算机能处理的数字图像的过程。

包括:采样和量化。

2.3.1、2.3.2采样与量化1.采样:将空间上连续的图像变换成离散点。

(采样间隔、采样孔径)2.量化:采样后的图像被分割成空间上离散的像素,但是灰度是连续的,量化就是将像素灰度转换成离散的整数值。

一幅数字图像中不同灰度值的个数称为灰度级。

二值图像是灰度级只有两级的。

(通常是0和1)存储一幅大小为M×N、灰度级数为G的图像所需的存储空间:(bit)2.3.3像素数、量化参数与数字化所得到的数字图像间的关系1.一般来说,采样间隔越大,所得图像像素数越少,空间分辨率低,质量差,严重时会出现国际棋盘效应。

采样间隔越小,所的图像像素数越多,空间分辨率高,图像质量好,但是数据量大。

2.量化等级越多,图像层次越丰富,灰度分辨率高,图像质量好,但数据量大。

量化等级越少,图像层次欠丰富,灰度分辨率低,会出现假轮廓,质量变差,但数据量小。

2.4 图像灰度直方图2.4.1定义灰度直方图是反映一幅图像中各灰度级像素出现的频率,反映灰度分布情况。

2.4.2性质(1)只能反映灰度分布,丢失像素位置信息(2)一幅图像对应唯一灰度直方图,反之不一定。

(3)一幅图像分成多个区域,多个区域的直方图之和是原图像的直方图。

2.4.3应用(1)判断图像量化是否恰当(2)确定图像二值化的阈值(3)物体部分灰度值比其他部分灰度值大的时候可以统计图像中物体面积。

(4)计算图像信息量(熵)2.5图像处理算法的形式2.5.1基本功能形式(1)单幅->单幅(2)多幅->单幅(3)多幅/单幅->数字或符号2.5.2图像处理的几种具体算法形式(1)局部处理(邻域,如4-邻域,8-邻域)(移动平均平滑法、空间域锐化等)(2)迭代处理反复对图像进行某种运算直到满足给定条件。

(3)跟踪处理选择满足适当条件的像素作为起始像素,检查输入图像和已得到的输出结果,求出下一步应该处理的像素。

数字图像处理(冈萨雷斯)-4_fourier变换和频域介绍(dip3e)经典案例幻灯片PPT

数字图像处理(冈萨雷斯)-4_fourier变换和频域介绍(dip3e)经典案例幻灯片PPT

F (u,v)
F *(u, v)
f ( x ,y ) ☆ h ( x ,y ) i f f t c o n j F ( u , v ) H ( u , v )
h(x,y):CD 周期延拓
PAC1
h:
PQ
QBD1
DFT
H (u,v)
F*(u,v)H(u,v)
IDFT
R(x,y):PQ
✓ 使用这组基函数的线性组合得到任意函数f,每个基函数的系 数就是f与该基函数的内积
图像变换的目的
✓ 使图像处理问题简化; ✓ 有利于图像特征提取; ✓ 有助于从概念上增强对图像信息的理解;
图像变换通常是一种二维正交变换。
一般要求: 1. 正交变换必须是可逆的; 2. 正变换和反变换的算法不能太复杂; 3. 正交变换的特点是在变换域中图像能量将集中分布在低频率 成分上,边缘、线状信息反映在高频率成分上,有利于图像处理
4.11 二维DFT的实现
沿着f(x,y)的一行所进 行的傅里叶变换。
F (u ,v ) F ( u , v ) (4 .6 1 9 )
复习:当两个复数实部相等,虚部互为相 反数时,这两个复数叫做互为共轭复数.
4.6
二维离散傅里叶变换的性质
其他性质:
✓尺度变换〔缩放〕及线性性
a f( x ,y ) a F ( u ,v ) f( a x ,b y ) 1 F ( u a ,v b ) |a b |
域表述困难的增强任务,在频率域中变得非常普通
✓ 滤波在频率域更为直观,它可以解释空间域滤波的某些性质
✓ 给出一个问题,寻找某个滤波器解决该问题,频率域处理对 于试验、迅速而全面地控制滤波器参数是一个理想工具
✓ 一旦找到一个特殊应用的滤波器,通常在空间域用硬件实现

《数字图像处理》期末考试重点总结(5篇材料)

《数字图像处理》期末考试重点总结(5篇材料)

《数字图像处理》期末考试重点总结(5篇材料)第一篇:《数字图像处理》期末考试重点总结*数字图像处理的主要内容及特点图像获取、图像变换、图像增强、图像恢复、图像压缩、图像分析、图像识别、图像理解。

(1)处理精度高,再现性好。

(2)易于控制处理效果。

(3)处理的多样性。

(4)图像数据量庞大。

(5)图像处理技术综合性强。

*图像增强:通过某种技术有选择地突出对某一具体应用有用的信息,削弱或抑制一些无用的信息。

图像增强不存在通用理论。

图像增强的方法:空间域方法和变换域方法。

*图像反转:S=L-1-r 1.与原图像视觉内容相同2.适用于增强嵌入于图像暗色区域的白色或灰色细节。

*对数变换 S=C*log(1+r)c为常数,r>=0 作用与特点:对数变换将输入中范围较窄的低灰度值映射为输出中较宽范围的灰度值,同时,对输入中范围较宽的高灰度值映射为输出中较窄范围的灰度值。

对数函数的一个重要特征是可压缩像素值变化较大的图像的动态范围;*幂律(伽马)变换 s=c*(r+ɛ)ɤ伽马小于1时减小图像对比度,伽马大于1时增大对比度。

*灰度直方图:是数字图像中各灰度级与其出现的频数间的统计关系。

*直方图均衡化:直方图均衡化就是通过变换函数将原图像的直方图修正为均匀的直方图,即使各灰度级具有相同的出现频数,图象看起来更清晰。

直方图均衡化变换函数必须为严格单调递增函数。

直方图均衡化的特点:1.能自动增强图像的对比度2.得到了全局均衡化的直方图,即均匀分布3.但其效果不易控制*直方图规定化(匹配):用于产生处理后有特殊直方图的图像的方法*空间滤波即直接对图像像素进行处理。

获得最佳滤波效果的唯一方法是使滤波掩模中心距原图像边缘的距离不小于(n-1)/2个像素。

*平滑滤波器用于模糊处理和减小噪声。

平滑线性空间滤波器的输出是:待处理图像在滤波器掩模邻域内的像素的简单平均值。

优点:减小了图像灰度的“尖锐”变化,故常用于图像降噪。

负面效应:模糊了图像的边缘,因为边缘也是由图像灰度的尖锐变化造成的。

《数字图像处理》期末考试重点总结

《数字图像处理》期末考试重点总结

《数字图像处理》期末考试重点总结work Information Technology Company.2020YEAR*数字图像处理的主要内容及特点图像获取、图像变换、图像增强、图像恢复、图像压缩、图像分析、图像识别、图像理解。

(1)处理精度高,再现性好。

(2)易于控制处理效果。

(3)处理的多样性。

(4)图像数据量庞大。

(5)图像处理技术综合性强。

*图像增强:通过某种技术有选择地突出对某一具体应用有用的信息,削弱或抑制一些无用的信息。

图像增强不存在通用理论。

图像增强的方法:空间域方法和变换域方法。

*图像反转:S=L-1-r1.与原图像视觉内容相同2.适用于增强嵌入于图像暗色区域的白色或灰色细节。

*对数变换 S=C*log(1+r)c为常数,r>=0作用与特点:对数变换将输入中范围较窄的低灰度值映射为输出中较宽范围的灰度值,同时,对输入中范围较宽的高灰度值映射为输出中较窄范围的灰度值。

对数函数的一个重要特征是可压缩像素值变化较大的图像的动态范围;*幂律(伽马)变换 s=c*(r+ɛ)ɤ伽马小于1时减小图像对比度,伽马大于1时增大对比度。

*灰度直方图:是数字图像中各灰度级与其出现的频数间的统计关系。

*直方图均衡化:直方图均衡化就是通过变换函数将原图像的直方图修正为均匀的直方图,即使各灰度级具有相同的出现频数,图象看起来更清晰。

直方图均衡化变换函数必须为严格单调递增函数。

直方图均衡化的特点:1.能自动增强图像的对比度2.得到了全局均衡化的直方图,即均匀分布3.但其效果不易控制*直方图规定化(匹配):用于产生处理后有特殊直方图的图像的方法*空间滤波即直接对图像像素进行处理。

获得最佳滤波效果的唯一方法是使滤波掩模中心距原图像边缘的距离不小于(n-1)/2个像素。

*平滑滤波器用于模糊处理和减小噪声。

平滑线性空间滤波器的输出是:待处理图像在滤波器掩模邻域内的像素的简单平均值。

优点:减小了图像灰度的“尖锐”变化,故常用于图像降噪。

数字图像处理知识点汇总

数字图像处理知识点汇总

数字图像处理知识点汇总1. 什么是数字图像处理?就是利⽤数字计算机或其他⾼速、⼤规模集成数字硬件,对从图像信息转换来的数字电信号进⾏某些数字运算或处理,以期提⾼图像的质量或达到⼈们所要求的某些预期的结果。

2.图像的表⽰⽅法:.不等长码3. 图像数字化的过程包括两个⽅⾯:采样和量化。

i. 图像在空间上的离散化称为采样,即使空间上连续变化的图像离散化。

也就是⽤空间上部分点的灰度值来表⽰图像,这些点称其为样点。

ii. 对样点灰度值的离散化过程称为量化。

也就是对每个样点值数量化,使其只和有限个可能电平数中的⼀个对应,即使图像的灰度值离散化。

量化也可以分为两种:⼀种是将样点灰度值等间隔分档取数,称为均匀量化;另⼀种是不等间隔分档取整,称为⾮均匀量化。

4. 样点的约束条件:由这些样点,采⽤某种⽅法能够正确重建原图像,采样的⽅法有两类:⼀类是直接对表⽰图像的⼆维函数值进⾏采样,即读取各离散点上的信号值,所得结果就是⼀个样点值阵列,所以也成为点阵采样;另⼀类是先将图像函数进⾏某种正交变换,⽤其变换系数作为采样值,故称为正交系数采样。

5. 最佳量化:6. 图像噪声的分类:按噪声的来源外部噪声:从处理系统外来的影响。

内部噪声:(1)由光和电的基本0(0o)1(45o) 2(90o)3(135o)4(180o) 5(225o)6(270o)7(315o)性质引起的噪声。

(2)电器的机械运动产⽣噪声。

(3)元器件材料本⾝引起的噪声。

(4)系统内部电路噪声。

从统计观点:平稳噪声、⾮平稳噪声从噪声幅度分布:⾼斯噪声、瑞利噪声、椒盐噪声……按噪声和信号之间关系:加法性噪声乘法性噪声7. 图像质量评价:(1)客观保真度准则(2)主观保真度准则相对评价::对⼀批图象从好到坏进⾏排队,按排队关系评分8.三基⾊原理:颜⾊的基本属性:⾊调(hue):由物体反射光线的波长决定,是颜⾊本质的基本特性。

饱和度(saturation):由物体反射光中混⼊⽩光的多少决定,指颜⾊的鲜明程度。

数字图像处理与分析基础整理ppt

数字图像处理与分析基础整理ppt
视频锁相方式,即图像系统分解场同步和行 同步信号。
显示功能:
显示的类型,黑白/伪彩色/真彩色显示 每个象素显示的bit数。 查找表(LUT,look -up table) 重叠显示、动态显示等。
指标3
帧存容量:图像硬件系统内部,图像存储体容 量的大小。
三部分:帧存的数目/单位帧存的点阵数(指图像系 统用来存储一幅图像必需的帧存,其容量大于等于 一幅数字图像的点阵数,小于两幅图像的点阵数, 通常取512512或10241024)/每个象素的字长 (用bit数表示,黑白或伪彩色系统为8bit,真彩色 系统通常为83bit/84bit),新增的通道用于图像 叠加处理。
优于46db
1/50(60)to1/100,000 数位处理AUTO
带稳压直流DC12V±10%
-20℃~+50℃ 自动AUTO 自动AUTO 380公克 60(宽)×50(高)×102(深)
摄像管
摄像机中利用电子束扫描把景物的光学 图像转换成电信号的一种真空电子管。
摄像管类别
氧化铅摄像管
具有良好的光电特性,灵敏度和分辨率高,靶面的 均匀性好。
图像存储
压缩、存储
压缩由系统内置的微处理器来完成。 压缩处理与存储图像所用的时间不可忽略,
因此在使用数码相机时可以明显感到较长的 等待时间。 图像格式的种类繁多,JPEG格式。
存储器
内置存储器
半导体存储器,安装在相机内部,用于临时 存储图像,接口传送。
可移动存储器
CompactFlash卡(CF) SmartMedia卡(SSFDC) ATA Flash
2.2.2图像数字化器的性能
像素大小 图像大小 被测对象的局部特征 线性度 灰度级 噪声

《数字图像处理》知识点汇总

《数字图像处理》知识点汇总

《数字图像处理》知识点汇总1.什么是图像?“图”是物体投射或反射光的分布,“像”是⼈的视觉系统对图的接受在⼤脑中形成的印象或反映。

图像是客观和主观的结合。

2.数字图像是指由被称作象素的⼩块区域组成的⼆维矩阵。

将物理图象⾏列划分后,每个⼩块区域称为像素(pixel)。

对于单⾊即灰度图像⽽⾔,每个像素包括两个属性:位置和灰度。

灰度⼜称为亮度,灰度⽤⼀个数值来表⽰,通常数值范围在0到255之间,即可⽤⼀个字节来表⽰。

0表⽰⿊、255表⽰⽩。

3.彩⾊图象可以⽤红、绿、蓝三元组的⼆维矩阵来表⽰。

通常,三元组的每个数值也是在0到255之间,0表⽰相应的基⾊在该象素中没有,⽽255则代表相应的基⾊在该象素中取得最⼤值,这种情况下每个象素可⽤三个字节来表⽰。

4.数字图像处理就是利⽤计算机系统对数字图像进⾏各种⽬的的处理。

5.对连续图像f(x,y)进⾏数字化需要在空间域和值域进⾏离散化。

空间上通过图像抽样进⾏空间离散,得到像素。

像素亮度需要通过灰度级量化实现灰度值离散。

数字图像常⽤矩阵来表⽰。

6.从计算机处理的⾓度可以由⾼到低将数字图像分为三个层次,分别为图像处理、图像分析和图像理解。

这三个层次覆盖了图像处理的所有应⽤领域。

(1). 图像处理指对图像进⾏各种加⼯,以改善图像的视觉效果;强调图像之间进⾏的变换。

图像处理是⼀个从图像到图像的过程。

(2). 图像分析指对图像中感兴趣的⽬标进⾏提取和分割,获得⽬标的客观信息(特点或性质),建⽴对图像的描述;图像分析以观察者为中⼼研究客观世界,它是⼀个从图像到数据的过程。

(3). 图像理解指研究图像中各⽬标的性质和它们之间的相互联系,得出对图像内容含义的理解及原来客观场景的解释;图像理解以客观世界为中⼼,借助知识、经验来推理、认识客观世界,属于⾼层操作(符号运算)。

7.图像处理、图像分析和图像理解是处在三个抽象程度和数据量各有特点的不同层次上。

图像处理是⽐较低层的操作,它主要在图像像素级上进⾏处理,处理的数据量⾮常⼤。

数字图像处理知识点与考点(经典)

数字图像处理知识点与考点(经典)
数字图像处理知识点与考点(经典)
第 1 章 导论(知识引导)
1. 图像、数字图像和数字图像处理: 答: “图”是物体投射或反射光的分布,是客观存在的。“像”是人的视觉系统对图在大脑中形成的 印象或认识。图像(image)是图和像的有机结合,即反映物体的客观存在,又体现人的心理因素;是 客观对象的一种可视表示,它包含了被描述对象的有关信息。 数字图像是指由被称作像素(pixel)的小块区域组成的二维矩阵。将物理图像行列划分后,每个小 块区域称为像素。 数字图像处理是指用数字计算机及其它有关数字技术,对图像施加某种运算和处理,从而达到某种 预想目的的技术. 2. 数字图像处理一般包括图像处理、图像分析、图像理解三个层次。 图像处理是对图像本身进行加工,以改善其视觉效果或表现形式,为图像分析打下基础,图像处理 的输出仍是图像。 图像分析是目标图像进行检测和各种物理量的计算,以获取对图像的客观描述。 图像理解是在图像分析的基础上。理解图像所表现的内容,分析图像间的相互联系,得出对客观场 景的解释。 3. 数字图像处理主要包括哪些研究内容? 答:图像处理的任务是将客观世界的景象进行获取并转化为数字图像、进行增强、变换、编码、恢复、 重建、编码和压缩、分割等处理,它将一幅图像转化为另一幅具有新的意义的图像。 4. 一个数字图像处理系统由哪几个模块组成?试说明各模块的作用。 答: 一个基本的数字图像处理系统由图像输入、图像处理和分析、图像存储、图像通信、图像输出5 个模块组成,如下图所示。
说明:通过细心调整折线拐点的位置及控制分段直线的斜率,可对任一灰度区间进行拉伸或压缩。 4.曝光不足或过度的情况下,图像灰度可能会局限在一个很小的范围内,故采用线性变换拉伸图像。 5.直方图的均衡化(考)(习题第四章 6 题,如下示例)与规定化

数字图像处理知识点与考点(经典)

数字图像处理知识点与考点(经典)
答: Laplacian 算子进行检测边缘是利用阶跃边缘灰度变化的二阶导数特性,根据边缘点是零交叉点来检测图像边缘位 置。 它对应的模板为 -1 -1 -4 1 -1
Laplacian 增强算子通过扩大边缘两边像素的灰度差(或对比度)来增强图像的边缘,改善视觉效果。它对应的模板为 -1 -1 5 -1 -1
例题:(1) 存储一幅1024×768,256 (8 bit 量化)个灰度级的图像需要多少位? (2) 一幅512×512 的32 bit 真彩图像的容量为多少位? 解: (1)一幅1024×768,256 =28 (8 bit 量化)个灰度级的图像的容量为:b=1024×768×8 = 6291456 bit (2)一幅512×512 的32 位真彩图像的容量为:b=512×512×32 =8388608 bit
5.数字图像根据灰度级数的差异可分为:黑白图像、灰度图像和彩色图像。 6.灰度直方图:灰度直方图是灰度级的函数。灰度级为横坐标,纵坐标为灰度级的频率,是频率同灰度级 的关系图。可以反映了图像的对比度、灰度范围(分布)、灰度值对应概率等情况。 7.灰度直方图的性质:(1)只能反映图像的灰度分布情况,而不能反映图像像素的位置,即丢失了像 素的位置信息。(2)一幅图像对应唯一的灰度直方图,反之不成立。不同的图像可对应相同的直方图。 (3)一幅图像分成多个区域,多个区域的直方图之和即为原图像的直方图。 L −1 8.图像信息量H(熵)的计算公式:反映图像信息的丰富程度。 H = − Pi log2 Pi
傅立叶变换
f ( x, y) F ( u , v)
滤波器
H (u , v) G ( u , v)
傅立叶反变换
g ( x , y)
(1) 将图像 f(x,y)从图像空间转换到频域空间,得到 F(u,v); (2) 在频域空间中通过不同的滤波函数 H(u,v)对图像进行不同的增强,得到 G(u,v) (3) 将增强后的图像再从频域空间转换到图像空间,得到图像g(x,y)。 说明: (也可演变为简述频域图像锐化(或平滑)的步骤,需要指明滤波器的类型:高通或低通滤波器) 9.频率域平滑: 由于噪声主要集中在高频部分, 为去除噪声改善图像质量, 滤波器采用低通滤波器H(u,v) 来抑制高频成分,通过低频成分,然后再进行逆傅立叶变换获得滤波图像,就可达到平滑图像的目的。 10.常用的频率域低滤波器H(u,v)有四种: (1)理想低通滤波器: 由于高频成分包含有大量的边缘信息,因此采用该滤波器在去噪声的同时将会 导致边缘信息损失而使图像边模糊。 (2)Butterworth低通滤波器:它的特性是连续性衰减,而不象理想滤波器那样陡峭变化,即明显的不连 续性。因此采用该滤波器滤波在抑制噪声的同时,图像边缘的模糊程度大大减小,没有振铃效应产生。 (说明:振铃效应越不明显效果越好) (3)指数低通滤波器: 采用该滤波器滤波在抑制噪声的同时, 图像边缘的模糊程度较用Butterworth滤波 产生的大些,无明显的振铃效应。 (4)梯形低通滤波器:它的性能介于理想低通滤波器和指数滤波器之间, 滤波的图像有一定的模糊和振铃 效应。 13.频率域锐化:图像的边缘、细节主要位于高频部分,而图像的模糊是由于高频成分比较弱产生的 。 频率域锐化就是为了消除模糊,突出边缘。因此采用高通滤波器让高频成分通过,使低频成分削弱, 再经逆傅立叶变换得到边缘锐化的图像。 14.常用的高通滤波器有四种: (1)理想高通滤波器 (2)巴特沃斯高通滤波器 (3)指数高通滤波器 (4)梯形高通滤波器 说明:(1)四种滤波函数的选用类似于低通。 (2)理想高通有明显振铃现象,即图像的边缘有抖动现象。 (3)巴特沃斯高通滤波效果较好,但计算复杂,其优点是有少量低频通过,H(u,v)是渐变的, 振铃现象不明显。 (4)指数高通效果比Butterworth差些,振铃现象不明显. (5)梯形高通会产生微振铃效果,但计算简单,较常用。 (6)一般来说,不管在图像空间域还是频率域,采用高频滤波不但会使有用的信息增强,同时也 使噪声增强。因此不能随意地使用。 (7)高斯低通滤波器无振铃效应是因为函数没有极大值、极小值,经过傅里叶变换后还是本身 , 故没有振铃效应。 15.同态滤波:在频域中同时将亮度范围进行压缩(减少亮度动态范围)和对比度增强的频域方法。 现象:(1)线性变换无效(2)扩展灰度级能提高反差,但会使动态范围变大(3)压缩灰度级,可以减 小灰度级,但物体的灰度层次会更不清晰 改进措施:加一个常数到变换函数上,如:H(u,v)+A(A取0→1)这种方法称为:高度强调(增强)。 为了解决变暗的趋势,在变换结果图像上再进行一次直方图均衡化,这种方法称为:后滤波处理。

数字图像处理考试简答题经典30道题

数字图像处理考试简答题经典30道题

数字图像处理考试简答题经典30道题work Information Technology Company.2020YEAR1. 数字图像处理的主要研究内容包含很多方面,请列出并简述其中的4种。

①图像数字化:将一幅图像以数字的形式表示。

主要包括采样和量化两个过程。

②图像增强:将一幅图像中的有用信息进行增强,同时对其无用信息进行抑制,提高图像的可观察性。

③图像的几何变换:改变图像的大小或形状。

④图像变换:通过数学映射的方法,将空域的图像信息转换到频域、时频域等空间上进行分析。

⑤图像识别与理解:通过对图像中各种不同的物体特征进行定量化描述后,将其所期望获得的目标物进行提取,并且对所提取的目标物进行一定的定量分析。

2. 什么是图像识别与理解?图像识别与理解是指通过对图像中各种不同的物体特征进行定量化描述后,将其所期望获得的目标物进行提取,并且对所提取的目标物进行一定的定量分析。

比如要从一幅照片上确定是否包含某个犯罪分子的人脸信息,就需要先将照片上的人脸检测出来,进而将检测出来的人脸区域进行分析,确定其是否是该犯罪分子。

3. 简述数字图像处理的至少3种主要研究内容。

①图像数字化:将一幅图像以数字的形式表示。

主要包括采样和量化两个过程。

②图像增强:将一幅图像中的有用信息进行增强,同时对其无用信息进行抑制,提高图像的可观察性。

③图像的几何变换:改变图像的大小或形状。

④图像变换:通过数学映射的方法,将空域的图像信息转换到频域、时频域等空间上进行分析。

4. 简述图像几何变换与图像变换的区别。

①图像的几何变换:改变图像的大小或形状。

比如图像的平移、旋转、放大、缩小等,这些方法在图像配准中使用较多。

②图像变换:通过数学映射的方法,将空域的图像信息转换到频域、时频域等空间上进行分析。

比如傅里叶变换、小波变换等。

5. 图像的数字化包含哪些步骤?简述这些步骤。

图像的数字化主要包含采样、量化两个过程。

采样是将空域上连续的图像变换成离散采样点集合,是对空间的离散化。

数字图像处理第三版中文答案解析冈萨雷斯

数字图像处理第三版中文答案解析冈萨雷斯

数字图像处理第三版中文答案解析引言《数字图像处理》是一本经典的图像处理教材,目前已经出版了第三版。

本文是对该书答案解析的总结,将分析和解释书中的问题和答案。

目录•第一章:绪论•第二章:数字图像基础•第三章:灰度变换•第四章:空间滤波•第五章:频域滤波•第六章:图像复原•第七章:几何校正•第八章:彩色图像处理•第九章:小波与多分辨率处理第一章:绪论本章主要介绍了数字图像处理的概念和基本步骤。

答案解析中包括对一些基本概念和术语的解释,以及相关的数学公式和图像处理方法的应用。

第二章:数字图像基础本章介绍了数字图像的表示和存储方法,以及图像的采样和量化过程。

答案解析中详细解释了图像的像素值和灰度级之间的关系,以及采样频率和量化步长对图像质量的影响。

第三章:灰度变换本章讲述了图像的灰度变换方法,包括线性和非线性变换。

答案解析中对不同灰度变换函数的作用和效果进行了解释,并给出了一些实例和应用。

第四章:空间滤波本章介绍了图像的空间滤波方法,包括平滑和锐化滤波。

答案解析中解释了不同滤波器的原理和效果,并给出了滤波器设计的步骤和实例。

第五章:频域滤波本章讲述了图像的频域滤波方法,包括傅里叶变换和滤波器设计。

答案解析中详细解释了傅里叶变换的原理和应用,以及频域滤波器的设计方法和实例。

第六章:图像复原本章介绍了图像的复原方法,包括退化模型和复原滤波。

答案解析中详细解释了退化模型的建立和复原滤波器的设计方法,以及如何根据退化模型进行图像复原的实例。

第七章:几何校正本章讲述了图像的几何校正方法,包括图像的旋转、缩放和平移等操作。

答案解析中给出了不同几何变换的矩阵表示和变换规则,以及几何校正的应用实例。

第八章:彩色图像处理本章介绍了彩色图像的表示和处理方法,包括RGB和HSV 等颜色模型的转换和处理。

答案解析中详细解释了不同颜色模型的表示和转换方法,以及彩色图像处理的实例和应用。

第九章:小波与多分辨率处理本章讲述了小波和多分辨率处理的方法和应用。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

名词解释数字图像:是将一幅画面在空间上分割成离散的点(或像元),各点(或像元)的灰度值经量化用离散的整数来表示,形成计算机能处理的形式。

1.数字图像:一幅图像f(x,y),当x,y和幅值f为有限的离散数值时,称该图像为数字图像。

图像:是自然生物或人造物理的观测系统对世界的记录,是以物理能量为载体,以物质为记录介质的信息的一种形式。

数字图像处理:采用特定的算法对数字图像进行处理,以获取视觉、接口输入的软硬件所需要数字图像的过程。

图像增强:通过某种技术有选择地突出对某一具体应用有用的信息,削弱或抑制一些无用的信息。

无损压缩:可精确无误的从压缩数据中恢复出原始数据。

灰度直方图:灰度直方图是灰度级的函数,描述的是图像中具有该灰度级的像素的个数。

或:灰度直方图是指反映一幅图像各灰度级像元出现的频率。

细化:提取线宽为一个像元大小的中心线的操作。

8、8-连通的定义:对于具有值V的像素p和q ,如果q在集合N8(p)中,则称这两个像素是8-连通的。

9、中值滤波:中值滤波是指将当前像元的窗口(或领域)中所有像元灰度由小到大进行排序,中间值作为当前像元的输出值。

10、像素的邻域: 邻域是指一个像元(x,y)的邻近(周围)形成的像元集合。

即{(x=p,y=q)}p、q为任意整数。

像素的四邻域:像素p(x,y)的4-邻域是:(x+1,y),(x-1,y) ,(x,y+1), (x,y-1) 11、灰度直方图:以灰度值为自变量,灰度值概率函数得到的曲线就是灰度直方图。

12.无失真编码:无失真编码是指压缩图象经解压可以恢复原图象,没有任何信息损失的编码技术。

13.直方图均衡化:直方图均衡化就是通过变换函数将原图像的直方图修正为平坦的直方图,以此来修正原图像之灰度值。

14.采样:对图像f(x,y)的空间位置坐标(x,y)的离散化以获取离散点的函数值的过程称为图像的采样。

15.量化:把采样点上对应的亮度连续变化区间转换为单个特定数码的过程,称之为量化,即采样点亮度的离散化。

16.灰度图像:指每个像素的信息由一个量化的灰度级来描述的图像,它只有亮度信息,没有颜色信息。

17.色度:通常把色调和饱和度通称为色度,它表示颜色的类别与深浅程度。

18.图像锐化:是增强图象的边缘或轮廓。

19.直方图规定化(匹配):用于产生处理后有特殊直方图的图像的方法20. 数据压缩:指减少表示给定信息量所需的数据量。

像素的邻域:邻域是指一个像元(x,y)的邻近(周围)形成的像元集合。

即{(x=p,y=q)}p、q为任意整数。

像素的四邻域:像素p(x,y)的4-邻域是:(x+1,y),(x-1,y) ,(x,y+1),(x,y-1)灰度直方图:灰度直方图是指反映一幅图像各灰度级像元出现的频率。

ﻫ、中值滤波:中值滤波是指将当前像元的窗口(或领域)中所有像元灰度由小到大进行排序,中间值作为当前像元的输出值。

像素数字图像是由有限的元素组成的,每个元素都有一个特定的位置和幅值,这些元素称为图像元素、画面元素或像素。

4.空间分辨率:是图像中可辨别的最小细节。

灰度级分辨率:是指在灰度级别中可分辨的最小变化。

.取样:数字化坐标值;量化:数字化幅度值。

11:HSI 彩色模型:HSI 颜色模型用H、S、I 三参数描述颜色特性,其中H 定义颜色的波长,称为色调;S 表示颜色的深浅程度,称为饱和度;I 表示强度或亮度。

12:伪彩色:伪彩色图像的每个像素值实际上是一个索引值或代码,该代码值作为色彩查找表CLUT 中某一项的入口地址,根据该地址可查找出包含实际R、G、B 的强度值。

这种用查找映射的方法产生的色彩称为伪彩色。

自适应滤波器:包含有自适应局部噪声消除滤波器和自适应中值滤波器。

随机变量最简单的统计度量是均值和方差。

这些参数是自适应滤波器的基础.。

均值给出了计算均值的区域中灰度平均值的度量,方差给出了这个区域的平均对比度的度量。

简答1、图像复原和图像增强的主要区别是:图像增强主要是一个主观过程,而图像复原主要是一个客观过程;图像增强不考虑图像是如何退化的,而图像复原需知道图像退化的机制和过程等先验知识2.图像减法处理的作用。

两幅图像f(x,y)与h(x,y)的差异表示为g(x,y)=f(x,y)-h(x,y)。

减法处理最主要的作用是增强两幅图像的差异。

12.简述直方图均衡化的基本原理。

直方图均衡化方法的基本思想是,对在图像中像素个数多的灰度级进行展宽,而对像素个数少的灰度级进行缩减。

从而达到清晰图像的目的。

因为灰度分布可在直方图中描述,所以该图像增强方法是基于图像的灰度直方图。

5.什么是直方图均衡化?将原图象的直方图通过变换函数修正为均匀的直方图,然后按均衡直方图修正原图象。

图象均衡化处理后,图象的直方图是平直的,即各灰度级具有相同的出现频数,那么由于灰度级具有均匀的概率分布,图象看起来就更清晰了。

8、图像锐化与图像平滑有何区别与联系?答:区别:图像锐化是用于增强边缘,导致高频分量增强,会使图像清晰;图像平滑用于消除图像噪声,但是也容易引起边缘的模糊。

联系:都属于图像增强,改善图像效果。

17.什么是区域?什么是图像分割?区域可以认为是图像中具有相互连通、一致属性的像素集合。

图像分割时把图像分成互不重叠的区域并提取出感兴趣目标的技术。

5. 什么是中值滤波?中值滤波有何特点中值滤波法是一种非线性平滑技术,它将每一象素点的灰度值设置为该点某邻域窗口内的所有象素点灰度值的中值.中值滤波能够较好的处理脉冲状噪声,其优点主要在于去除图像噪声的同时,还能保护图像的边缘信息。

1.请简述快速傅里叶变换的原理。

傅里叶变换是复杂的连加运算,计算时间代价很大。

快速傅里叶变换的核心思想是,将原函数分解成一个奇数项和一个偶数项加权和,然后对所分解的奇数项和偶数项再分别分解成其中的奇数项和偶数项的加权和。

这样,通过不断重复两项的加权和来完成原有傅里叶变换的复杂运算,达到较少计算时间代价的目的。

3.DCT变换编码的主要思想是什么?DCT变换编码的思想是利用离散余弦变换对数据信息强度的集中特性,可以将数据中视觉上容易察觉的部分与不容易察觉的部分进行分离,由此可以达到进行有损压缩的目的。

、伪彩色增强与假彩色增强有何异同点?前者使用的数据是单色波段图像,后者使用的数据是多波段图像伪彩色增强是对一幅灰度图像经过三种变换得到三幅图像,进行彩色合成得到一幅彩色图像;假彩色增强是对一幅彩色图像进行处理得到与原图像不同的彩色图像;主要差异在于处理对象不同。

相同点是利用人眼对彩色的分辨能力高于灰度分辨能力的特点,将目标用人眼敏感的颜色表示。

.什么是逆滤波?如果退化图像有噪声,逆滤波的结果会如何?答:逆滤波是指在频域中,直接用图像除以退化器,进行图象恢复的方法。

如果退化图像有噪声,逆滤波会使噪声放大。

图像锐化滤波的几种方法。

答:(1)直接以梯度值代替;(2)辅以门限判断;(3)给边缘规定一个特定的灰度级;(4)给背景规定灰度级;(5)根据梯度二值化图像。

6、图像增强的目的是什么?答:图像增强目的是要改善图像的视觉效果,针对给定图像的应用场合,有目的地强调图像的整体或局部特性,将原来不清晰的图像变得清晰或强调某些感兴趣的特征,扩大图像中不同物体特征之间的差别,抑制不感兴趣的特征,使之改善图像质量、丰富信息量,加强图像判读和识别效果,满足某些特殊分析的需要。

7、什么是中值滤波及其它的原理?答:中值滤波法是一种非线性平滑技术,它将每一象素点的灰度值设置为该点某邻域窗口内的所有象素点灰度值的中值。

中值滤波是基于排序统计理论的一种能有效抑制噪声的非线性信号处理技术,中值滤波的基本原理是把数字图像或数字序列中一点的值用该点的一个邻域中各点值的中值代替,让周围的像素值接近的真实值,从而消除孤立的噪声点。

、在彩色图像处理中,常使用HSI模型,它适于做图像处理的原因有:1、在HIS模型中亮度分量与色度分量是分开的;2、色调与饱和度的概念与人的感知联系紧密。

11、图像增强时,平滑和锐化有哪些实现方法?平滑的实现方法:邻域平均法,中值滤波,多图像平均法,频域低通滤波法。

锐化的实现方法:微分法,高通滤波法。

16.对于椒盐噪声,为什么中值滤波效果比均值滤波效果好?椒盐噪声是复制近似相等但随机分布在不同的位置上,图像中又干净点也有污染点。

中值滤波是选择适当的点来代替污染点的值,所以处理效果好。

因为噪声的均值不为0,所以均值滤波不能很好地去除噪声。

14、说明一幅灰度图像的直方图分布与对比度之间的关系答:直方图的峰值集中在低端,则图象较暗,反之,图象较亮。

直方图的峰值集中在某个区域,图象昏暗,而图象中物体和背景差别很大的图象,其直方图具有双峰特性,总之直方图分布越均匀,图像对比度越好。

15、简述梯度法与Laplacian算子检测边缘的异同点?梯度算子是利用阶跃边缘灰度变化的一阶导数特性,认为极大值点对应于边缘点;而Laplacian算子检测边缘是利用阶跃边缘灰度变化的二阶导数特性,认为边缘点是零交叉点。

(2分)相同点都能用于检测边缘,且都对噪声敏感。

20.试述图像退化的基本模型,并画出框图且写出数学表达式。

图像复原处理的关键是建立退化模型,原图像f(x,y)是通过一个系统H及加入一来加性噪声n(x,y)而退化成一幅图像g(x ,y)的,如下图所示填空1.图像锐化除了在空间域进行外,也可在频率域进行。

2.对于彩色图像,通常用以区别颜色的特性是色调、饱和度、亮度。

3.依据图像的保真度,图像压缩可分为无损压缩和有损压缩4.存储一幅大小为1024×1024,256个灰度级的图像,需要8M bit。

5、一个基本的数字图像处理系统由图像输入、图像存储、图像输出、图像通信、图像处理和分析5个模块组成。

6、低通滤波法是使高频成分受到抑制而让低频成分顺利通过,从而实现图像平滑。

7、一般来说,采样间距越大,图像数据量少 ,质量差;反之亦然。

8、多年来建立了许多纹理分析法,这些方法大体可分为统计分析法和结构分析法两大类。

9、直方图修正法包括直方图均衡和直方图规定化两种方法。

10、图像压缩系统是有编码器和解码器两个截然不同的结构块组成的。

11、图像处理中常用的两种邻域是4-邻域和8-邻域。

12. 若将一幅灰度图像中的对应直方图中偶数项的像素灰度均用相应的对应直方图中奇数项的像素灰度代替(设灰度级为256),所得到的图像将亮度增加,对比度减少。

13、数字图像处理,即用计算机对图像进行处理。

14、图像数字化过程包括三个步骤:采样、量化和扫描14、图像数字化过程包括三个步骤:采样、量化和扫描15、MPEG4标准主要编码技术有DCT变换、小波变换等16、灰度直方图的横坐标是灰度级,纵坐标是该灰度出现的频率17、数据压缩技术应用了数据固有的冗余性和不相干性,将一个大的数据文件转换成较小的文件。

相关文档
最新文档