各进制之间的相互转换
进制数之间的转换方法
进制数之间的转换方法一般来说,对于任意大于1的整数n,存在n进制,其特点是基数为n,逢n进一。
其中最常用的是二进制、八进制和十六进制。
任意进制的数字对应的十进制值为:Kn×Bn + Kn-1×Bn-1 + …… + K1×B1 + K0×B0 + K-1×B-1 + K-2×B-2 …… + K-m×B-m上式中,B称为数字系统的基数,Bn至B0称为数字Kn至K0的权值。
1.基本知识十进制基数为10,逢10进1。
在十进制中,一共使用10个不同的数字符号,这些符号处于不同位置时,其权值各不相同。
二进制基数为2,逢2进1。
在二进制中,使用0和1两种符号。
八进制基数为8,逢8进1。
八进制使用8种不同的符号,它们与二进制的转换关系为:0:000 1:001 2:010 3:011 4:100 5:101 6:110 7:111十六进制基数为16,逢16进1。
十六进制使用16种不同的符号,它们与二进制的转换关系为:0:0000 1:0001 2:0010 3:0011 4:0100 5:0101 6:0110 7:01118:1000 9:1001 A:1010 B:1011 C:1100 D:1101 E:1110 F:1111二进制数的运算算术运算:加法0 + 0 = 0 0 + 1 = 1 1 + 0 = 1 1 + 1 = 10(向高位进1)算术运算:减法0 ? 0 = 0 0 ? 1 = 1(向高位借1)1 ? 0 = 1 1 - 1 = 0逻辑运算:或(∨)0 ∨0 = 0 0 ∨1 = 1 1 ∨0 = 1 1 ∨1 = 1逻辑运算:与(∧)0 ∧0 = 0 0 ∧1 = 0 1 ∧0 = 0 1 ∧1 = 1逻辑运算:取反0取反为1 1取反为0注意:算术运算会发生进位、借位,逻辑运算则按位独立进行,不发生位与位之间的关系,其中,0表示逻辑假,1表示逻辑真。
各个进制之间的转化公式
各个进制之间的转化公式
1. 二进制转换为十进制,将二进制数按权展开,然后相加即可。
例如,二进制数1011转换为十进制的计算公式为,12^3 + 02^2 + 12^1 + 12^0 = 8 + 0 + 2 + 1 = 11。
2. 十进制转换为二进制,采用除以2取余数的方法,将余数倒
序排列即可得到二进制数。
例如,十进制数13转换为二进制的计算
公式为,13÷2=6余1,6÷2=3余0,3÷2=1余1,1÷2=0余1,所
以13的二进制表示为1101。
3. 十进制转换为八进制,采用除以8取余数的方法,将余数倒
序排列即可得到八进制数。
4. 八进制转换为十进制,将八进制数按权展开,然后相加即可。
5. 十进制转换为十六进制,采用除以16取余数的方法,将余
数倒序排列即可得到十六进制数。
6. 十六进制转换为十进制,将十六进制数按权展开,然后相加
即可。
以上就是各个进制之间的转化公式,通过这些公式,我们可以在不同进制之间进行转换,从而更好地理解和应用数字。
希望这些信息能对你有所帮助。
十进制、二进制、八进制、十六进制之间的转换doc
十进制转二进制: 用 2 辗转相除至结果为 1 将余数和最后的 1 从下向上倒序写 就是结果 例如 302 302/2 = 151 余 0 151/2 = 75 余 1 75/2 = 37 余 1 37/2 = 18 余 1 18/2 = 9 余 0 9/2 = 4 余 1 4/2 = 2 余 0 2/2 = 1 余 0 故二进制为 100101110 二进制转十进制 从最后一位开始算,依次列为第 0、1、2...位 第 n 位的数(0 或 1)乘以 2 的 n 次方 得到的结果相加就是答案 例如:01101011.转十进制: 第 0 位:1 乘 2 的 0 次方=1 1 乘 2 的 1 次方=2 0 乘 2 的 2 次方=0 1 乘 2 的 3 次方=8 0 乘 2 的 4 次方=0 1 乘 2 的 5 次方=32 1 乘 2 的 6 次方=64 0 乘 2 的 7 次方=0 然后:1+2+0 +8+0+32+64+0=107.二进制 01101011=十进制 107. .十进制转二进制(整数及小数部分): 十进制转二进制(整数及小数部分):1、把该十进制数,用二因式分解,取余。
、把该十进制数,用二因式分解,取余。
以 235 为例,转为二进制 235 除以 2 得 117,余 1 117 除以 2 得 58,余 1 58 除以 2 得 29,余 0 29 除以 2 得 14,余 114 除以 2 得 7,余 0 7 除以 2 得 3,余 1 3 除以 2 得 1,余 1 从得到的 1 开始写起,余数倒排,加在它后面,就可得 11101011。
2、把十进制中的小数部份,转为二进制。
、把十进制中的小数部份,转为二进制。
把该小数不断乘 2,取整,直至没有小数为止,注意不是所有小数都能转为二进制! 以 0.75 为例, 0.75 剩以 2 得 1.50,取整数 1 0.50 剩以 2 得 1,取整数 1,顺序取数就可得 0.11。
各进制数相互转换大全
0001 = 1 = 1 = 1
(3)十进制与十六进制的相互转化。
十--->十六:方法同上,以后不再赘述
例: 589(10)--->24D(16)
商 余数
589/16 36 13(用16进制的D表示)
0100 = 4 = 4 = 4
0101 = 5 = 5 = 5
1110 = 14 = E = 16
1111 = 15 = F = 17
... 4*16^2=1024
15*16^3= 61440
3*16^4=196608
10*16^5=10485760
结果10744845
(4)二进制、八进制、十进制、十六进制之间相互转化对照表
二进制数(仅4位的2进制数) = 十进制数 = 十六进制数 = 八进制数
385/8 48 1
48/8 6 0
6/8 0 6
1111=F
1101=D
1010=A
0101=5
1001=9
1011=B
那么它所对应的16进制数就是“FDA59B”
十六---->二
FD5(16)--->1111 1101 0101(2)
Part I 整型部分
(1)十进制与二进制的相互转化。
十---->二:十进制数除以2,得到一个商和余数(余数无非 0/1),余数单单保存。
拿得到的商继续除以2,又得到一个商和余数。保存余数。继续除以2...
直到除得的商为0.把除得的余数按先后顺寻从低位到高位排起(个位开始),
余数按先后顺寻从低到高排列。得到的就是二进制数1011001 。
各种进制之间的转换方法
各种进制之间的转换方法⑴二进制B转换成八进制Q:以小数点为分界线,整数部分从低位到高位,小数部分从高位到低位,每3位二进制数为一组,不足3位的,小数部分在低位补0,整数部分在高位补0,然后用1位八进制的数字来表示,采用八进制数书写的二进制数,位数减少到原来的1/3。
例:◆二进制数转换成八进制数:= 110 110 . 101 100B↓↓ ↓ ↓6 6 . 5 4 =◆八进制数转换成二进制数:3 6 . 2 4Q↓ ↓ ↓ ↓011 110. 010 100 =◆低位,每4位二进制数为一组,不足4位的,小数部分在低位补0,整数部分在高位补0,然后用1位十六进制的数字来表示,采用十六进制数书写的二进制数,位数可以减少到原来的1/4。
例:◆二进制数转换成十六进制数:.100111B = 1011 0101 1010 . 1001 1100B↓ ↓ ↓ ↓ ↓B 5 A . 9C = 5A◆十六进制数转换成二进制数:= A B . F EH↓ ↓ ↓ ↓1010 1011. 1111 1110 = .1111111B即先把八进制数Q转换成二进制数B,再转换成十六进制数H。
例:◆八进制数转换成十六进制数:= 111 100 000 010 .100 101B= .100101B= 1111 0000 0010 . 1001 0100B= F 0 2 . 9 4H=◆十六进制数转换成八进制数:= 0001 1011 . 1110B== 011 011 . 111B= 3 3 .7Q=⑷二进制数B转换成十进制数D:利用二进制数B按权展开成多项式和的表达式,取基数为2,逐项相加,其和就是相应的十进制数。
例:◆二进制数转换成十进制数:= 1×25+1×24+0×23+0×22+1×21+0×20+1×2-1= 32+16+2+=◆求8位二进制数能表示的最大十进制数值:最大8位二进制数是BB = 1×27+1×26+1×25+1×24+1×23+1×22+1×21+1×20= 255⑸十进制数D转换成二进制数B:十进制数转换成二进制数时,整数部分和小数部分换算算法不同,需要分别进行。
各个进制数的转换方式
各个进制数的转换方式在计算机科学中,我们经常需要处理不同进制数的转换。
以下是各种进制数之间的转换方式:1.二进制(Binary)转十进制(Decimal):这种转换是通过不断乘以2的幂,然后求和来实现的。
例如,二进制数1101(在8位系统中为1101 0000)可以这样转换:1 * 2^3 + 0 * 2^2 + 1 * 2^1 + 1 * 2^0 = 13所以,二进制数1101等于十进制数13。
2.十进制转二进制:这种转换是通过不断除以2,然后记录余数来实现的。
例如,十进制数13可以这样转换:13 / 2 = 6 余 16 / 2 = 3 余 03 / 2 = 1 余 12 / 2 = 1 余 01 /2 = 0 余 1然后,从下往上读取这些余数,得到二进制数1101。
3.二进制转十六进制(Hexadecimal):这种转换和二进制转十进制类似,只不过在每一步中,我们乘以的是16的幂,而不是2的幂。
例如,二进制数1101(在8位系统中为1101 0000)可以这样转换:(1 * 8) + (0 * 4) + (0 * 2) + (0 * 1) = 8所以,二进制数1101等于十六进制数8。
4.十六进制转二进制:这种转换是通过不断除以16,然后记录余数来实现的。
例如,十六进制数8可以这样转换:8 / 16 = 0 余 8所以,十六进制数8等于二进制数1000。
5.十进制转十六进制:这种转换是通过不断除以16,然后记录余数来实现的。
例如,十进制数13可以这样转换:13 / 16 = 0 余 7 (即十六进制的7)所以,十进制数13等于十六进制数7。
6.十六进制转十进制:这种转换是通过不断乘以16的幂,然后求和来实现的。
例如,十六进制数7可以这样转换:7 * 16^0 = 7 (即十进制的7)所以,十六进制数7等于十进制数7。
以上就是各种进制数之间的转换方式。
在实际使用中,我们常常会遇到不同进制数的转换问题,特别是在计算机科学和电子工程领域中。
二、八、十、十六进制之间的相互转换
在计算机应用中,二进制使用后缀B表示;十进制使用后缀D表示,八进制用Q表示,十六制使用后缀H表示。
1、二、八、十六进制数转十进制各位数字分别乖以各自的基数的(N-1)次方,其和相加之和便是相应的十进制数。
个位,N=1;十位,N=2...举例:110B=1*2的2次方+1*2的1次方+0*2的0次方=0+4+2+0=6D110Q=1*8的2次方+1*8的1次方+0*8的0次方=64+8+0=72D110H=1*16的2次方+1*16的1次方+0*16的0次方=256+16+0=272D2、十进制数转二、八、十六进制数方法是相同的,即整数部分用除基取余的算法,小数部分用乘基取整的方法,然后将整数与小数部分拼接成一个数作为转换的最后结果。
要将十进制转为各进制的方式,只需除以各进制的权值,取得其余数,第一次的余数当个位数,第二次余数当十位数,其余依此类推,直到被除数小于权值,最后的被除数当最高位数。
十进制转二进制如:55转为二进制2|5527――1 个位13――1 第二位6――1 第三位3――0 第四位1――1 第五位最后被除数1为第七位,即得110111十进制转八进制如:5621转为八进制8|5621702 ――5 第一位(个位)87 ――6 第二位10 ――7 第三位1 ――2 第四位最后得八进制数:12765十进制数十六进制如:76521转为十六进制16|765214782 ――9 第一位(个位)298 ――14 第二位18 ――10 第三位1 ――2 第四位最后得12AE93、二进制数转换八、十、十六进制数二进制转八进制:从小数点位置开始,整数部分向左,小数部分向右,每三位二进制为一组用一位八进制的数字来表示,不足三位的用0补足,就是一个相应八进制数的表示。
010110.001100B=26.14Q八进制转二进制反之则可。
二进制转十进制:当前位乘以基数2的(N-1)次方计算公式:二进制数据N位数字乘以2的N-1次方的积的总和例:10101011B=( )D数据1 0 1 0 1 0 1 1N-1位7 6 5 4 3 2 1 0相应的十进制值即为:27 +25+23+21+20=128+32+8+2+1=171二进制转十六进制:从小数点位置开始,整数部分向左,小数部分向右,每四位二进制为一组用一位十六进制的数字来表示,不足四位的用0补足,就是一个相应十六进制数的表示。
计算机进制之间相互转换
计算机进制之间的相互转换一、进位计数制所谓进位计数制是指按照进位的方法进行计数的数制,简称进位制。
在计算机中主要采用的数制是二进制,同时在计算机中还存在八进制、十进制、十六进制的数据表示法。
下面先来介绍一下进制中的基本概念:1、基数数制是以表示数值所用符号的个数来命名的,表明计数制允许选用的基本数码的个数称为基数,用R表示。
例如:二进制数,每个数位上允许选用0和1,它的基数R=2;十六进制数,每个数位上允许选用1,2,3,…,9,A,…,F共16个不同数码,它的基数R=16。
2、权在进位计数制中,一个数码处在数的不同位置时,它所代表的数值是不同的。
每一个数位赋予的数值称为位权,简称权。
权的大小是以基数R为底,数位的序号i为指数的整数次幂,用i表示数位的序号,用Ri表示数位的权。
例如,543.21各数位的权分别为102、101、100、10-1和10-2。
3、进位计数制的按权展开式在进位计数制中,每个数位的数值等于该位数码与该位的权之乘积,用Ki表示第i位的系数,则该位的数值为KiRi。
任意进位制的数都可以写成按权展开的多项式和的形式。
二、计算机中的常用的几种进制。
在计算机中常用的几种进制是:二进制、八进制、十进制和十六进制。
二进制数的区分符用字母B表示,八进制数的区分符用字母O表示,十进制数的区分符用字母D表示或不用区分符,十六进制数的区分符用字母H表示。
1、二进制(Binary System)二进制数中,是按“逢二进一”的原则进行计数的。
其使用的数码为0,1,二进制数的基为“2”,权是以2为底的幂。
2、八进制(Octave System)八进制数中,是按“逢八进一”的原则进行计数的。
其使用的数码为0,1,2,3,4,5,6,7,八进制数的基为“8”,权是以8为底的幂。
3、十进制(Decimal System)十进制数中,是按“逢十进一”的原则进行计数的。
其使用的数码为1,2,3,4,5,6,7,8,9,0,十进制数的基为“10”,权是以10为底的幂。
二进制、八进制、十进制、十六进制之间的转换
⼆进制、⼋进制、⼗进制、⼗六进制之间的转换⼆进制是Binary,简写为B⼋进制是Octal,简写为O⼗进制为Decimal,简写为D⼗六进制为Hexadecimal,简写为H⽅法为:⼗进制数除2取余法,即⼗进制数除2,余数为权位上的数,得到的商值继续除2,依此步骤继续向下运算直到商为0为⽌。
读数要倒叙读。
⼩数:乘2取整法,即将⼩数部分乘以2,然后取整数部分,剩下的⼩数部分继续乘以2,然后取整数部分,剩下的⼩数部分⼜乘以2,⼀直取到⼩数部分为零。
如果永远不能为零,就同⼗进制数的四舍五⼊⼀样,按照要求保留多少位⼩数时,就根据后⾯⼀位是0还是1,取舍,如果是零,舍掉,如果是1,向⼊⼀位。
换句话说就是0舍1⼊。
读数要从前⾯的整数读到后⾯的整数,即读数要顺序读。
0.125 转⼆进制第⼀步,将0.125乘以2,得0.25,则整数部分为0,⼩数部分为0.25;第⼆步, 将⼩数部分0.25乘以2,得0.5,则整数部分为0,⼩数部分为0.5;第三步, 将⼩数部分0.5乘以2,得1.0,则整数部分为1,⼩数部分为0.0;第四步,读数,从第⼀位读起,读到最后⼀位,即为0.001。
积整数部分0.125 x 2 = 0.25 00.25 x 2 = 0.5 00.5 x 2 = 1.0 1150.125 转⼆进制10010110.0010.45 转⼆进制(保留到⼩数点第四位)第⼀步,将0.45乘以2,得0.9,则整数部分为0,⼩数部分为0.9;第⼆步, 将⼩数部分0.9乘以2,得1.8,则整数部分为1,⼩数部分为0.8;第三步, 将⼩数部分0.8乘以2,得1.6,则整数部分为1,⼩数部分为0.6;第四步, 将⼩数部分0.6乘以2,得1.2,则整数部分为1,⼩数部分为0.2; 算到这⼀步就可以了,因为只需要保留四位⼩数第五步, 将⼩数部分0.2乘以2,得0.4,则整数部分为0,⼩数部分为0.4;第六步, 将⼩数部分0.4乘以2,得0.8,则整数部分为0,⼩数部分为0.8;后⾯会⼀直循环重复第七步, 将⼩数部分0.8乘以2,得1.6,则整数部分为1,⼩数部分为0.6;。
各种进制的相互转换
各种进制的相互转换进制是计算机科学中非常重要的概念。
在计算机中,所有的数字都是以二进制的形式存储的。
二进制是一种只有0和1两个数字的进制,也被称为基数为2的进制。
除了二进制,还有很多其他的进制,如八进制、十进制、十六进制等。
不同的进制在计算机中有着不同的应用,因此我们需要学会各种进制之间的相互转换。
一、十进制转二进制十进制是我们最为熟悉的进制,它是基数为10的进制。
在计算机中,我们需要将十进制转换为二进制,才能进行计算。
十进制转换为二进制的方法是不断地除以2,直到商为0为止,将每个余数从下往上排列起来就是二进制数。
例如,将十进制数13转换为二进制数:13 ÷ 2 = 6 (1)6 ÷ 2 = 3 03 ÷ 2 = 1 (1)1 ÷ 2 = 0 (1)因此,13的二进制数为1101。
二、二进制转十进制二进制转换为十进制的方法是将每个二进制位上的数字乘以2的n次方,其中n表示这个二进制位的位数。
然后将每个乘积相加起来就是十进制数。
例如,将二进制数1101转换为十进制数:1 × 2^3 + 1 × 2^2 + 0 × 2^1 + 1 × 2^0 = 13因此,1101的十进制数为13。
三、十进制转八进制八进制是基数为8的进制。
将十进制数转换为八进制数的方法是不断地除以8,直到商为0为止,将每个余数从下往上排列起来就是八进制数。
例如,将十进制数125转换为八进制数:125 ÷ 8 = 15 (5)15 ÷ 8 = 1 (7)1 ÷ 8 = 0 (1)因此,125的八进制数为175。
四、八进制转十进制将八进制数转换为十进制数的方法是将每个八进制位上的数字乘以8的n次方,其中n表示这个八进制位的位数。
然后将每个乘积相加起来就是十进制数。
例如,将八进制数175转换为十进制数:1 × 8^2 + 7 × 8^1 + 5 × 8^0 = 125因此,175的十进制数为125。
二进制、十进制、十六进制相互转换
⼆进制、⼗进制、⼗六进制相互转换1.⼆进制->10进制例如:1101(2)=1*2^0+0*2^1+1*2^2+1*2^3=1+0+4+8=13转化成⼗进制要从右到左⽤⼆进制的每个数去乘以2的相应次⽅不过次⽅要从0开始2.⼆进制转16进制:要将⼆进制转为16进制,只需将⼆进制的位数由右向左每四位⼀个单位分隔,分的不够的前边补零,⽤四位数的⼆进制数来代表⼀个16进制。
说的⽐较啰嗦,就是2^4=16,每四位⼆进制正好是1位16进制例如: 10112->0001 0112->18 (16)3. 10进制->2进制⽤10进制数不断除2,取余,余数倒写。
例如:302302/2 = 151 余0151/2 = 75 余175/2 = 37 余137/2 = 18 余118/2 = 9 余09/2 = 4 余14/2 = 2 余02/2 = 1 余01/2 = 0 余1 故⼆进制为1001011104. 10进制转16进制:原理与转2进制⼀样,不断除16取余,余数倒写。
例如:23785/16=1486余9,1486/16=92余14,92/16=5余12,5/16=0余5⼗六进制中,10对应为a,11对应为b,15对应为f,再将余数倒写为5ce9,则⼗进制23785=⼗六进制5ce95. 16进制转10进制:与2进制转10进制⼀样。
例如:把上⾯的5ce9转成10进制:9*16^0+e*16^1+c*16^2+5*16^3 = 237856. 16进制转⼆进制:就把⼆进制转16进制倒过来就可以,16进制的每⼀位对应⼆进制的4位。
例如:ABA ->1010 B->1011 AB->10101011。
各种进制之间的转换方法
各种进制之间的转换方法进制是数学中用来表示数字的一种方法。
常见的进制包括二进制、八进制、十进制和十六进制。
不同进制之间的转换可以用以下方法实现。
一、二进制与八进制的互相转换:二进制转换为八进制:将二进制数从右到左按照三位一组进行分组,然后将每组转换为对应的八进制数即可。
从右到左分组得到:(1)(011)(101)(011)。
将每组转换为对应的八进制数:(1)(3)(5)(3)。
八进制转换为二进制:将八进制数的每个位转换为对应的三位二进制数即可。
例如:将八进制数652转换为二进制数。
将八进制数的每个位转换为对应的三位二进制数:(6)(5)(2)=(110)(101)(010)。
二、二进制与十进制的互相转换:二进制转换为十进制:将二进制数的每个位与其对应的权重相乘,再将乘积相加即可得到十进制数。
例如:将二进制数1101转换为十进制数。
将二进制数的每个位与其对应的权重相乘,并将乘积相加:1×2³+1×2²+0×2¹+1×2⁰=13因此,二进制数1101转换为十进制数为13十进制转换为二进制:将十进制数不断除以二,将余数从下到上排列即可得到二进制数。
例如:将十进制数25转换为二进制数。
将十进制数25不断除以二,将余数从下到上排列:25/2=12余1、12/2=6余0、6/2=3余0、3/2=1余1、1/2=0余1三、二进制与十六进制的互相转换:二进制转换为十六进制:将二进制数从右到左按照四位一组进行分组,然后将每组转换为对应的十六进制数即可。
从右到左分组得到:(1)(0110)(0110)。
将每组转换为对应的十六进制数:(1)(6)(6)。
十六进制转换为二进制:将十六进制数的每个位转换为对应的四位二进制数即可。
例如:将十六进制数F8转换为二进制数。
将十六进制数的每个位转换为对应的四位二进制数:F=1111、8=1000。
四、八进制与十进制的互相转换:八进制转换为十进制:将八进制数的每个位与其对应的权重相乘,再将乘积相加即可得到十进制数。
计算机进制之间相互转换
计算机进制之间的相互转换一、进位计数制所谓进位计数制是指按照进位的方法进行计数的数制,简称进位制.在计算机中主要采用的数制是二进制,同时在计算机中还存在八进制、十进制、十六进制的数据表示法。
下面先来介绍一下进制中的基本概念:1、基数数制是以表示数值所用符号的个数来命名的,表明计数制允许选用的基本数码的个数称为基数,用R表示。
例如:二进制数,每个数位上允许选用0和1,它的基数R=2;十六进制数,每个数位上允许选用1,2,3,…,9,A,…,F共16个不同数码,它的基数R=16。
2、权在进位计数制中,一个数码处在数的不同位置时,它所代表的数值是不同的.每一个数位赋予的数值称为位权,简称权。
权的大小是以基数R为底,数位的序号i为指数的整数次幂,用i表示数位的序号,用Ri表示数位的权.例如,543.21各数位的权分别为102、101、100、10-1和10—2.3、进位计数制的按权展开式在进位计数制中,每个数位的数值等于该位数码与该位的权之乘积,用Ki表示第i位的系数,则该位的数值为KiRi。
任意进位制的数都可以写成按权展开的多项式和的形式。
二、计算机中的常用的几种进制。
在计算机中常用的几种进制是:二进制、八进制、十进制和十六进制。
二进制数的区分符用字母B表示,八进制数的区分符用字母O表示,十进制数的区分符用字母D表示或不用区分符,十六进制数的区分符用字母H表示。
1、二进制(Binary System)二进制数中,是按“逢二进一”的原则进行计数的。
其使用的数码为0,1,二进制数的基为“2”,权是以2为底的幂。
2、八进制(Octave System)八进制数中,是按“逢八进一”的原则进行计数的。
其使用的数码为0,1,2,3,4,5,6,7,八进制数的基为“8”,权是以8为底的幂。
3、十进制(Decimal System)十进制数中,是按“逢十进一”的原则进行计数的.其使用的数码为1,2,3,4,5,6,7,8,9,0,十进制数的基为“10”,权是以10为底的幂。
各种进制之间的转换方法
各种进制之间的转换方法进制是数学中的一个重要概念,它是指数的计数方式。
在日常生活中,我们常用的进制是十进制,即以10为基数的计数方法。
除了十进制之外,还有二进制、八进制、十六进制等不同的进制方式。
在计算机领域中,二进制、八进制和十六进制被广泛应用。
本文将介绍各种进制之间的转换方法,帮助读者更好地理解进制之间的关系。
首先,我们来介绍十进制到其他进制的转换方法。
对于将十进制数转换为二进制数,可以采用“除2取余”法。
具体步骤如下,将十进制数不断除以2,直到商为0为止,然后将每次的余数倒序排列即可得到对应的二进制数。
例如,将十进制数25转换为二进制数的过程如下,25 ÷ 2 = 12 余 1,12 ÷ 2 = 6 余 0,6 ÷ 2 = 3 余 0,3 ÷ 2 = 1 余 1,1 ÷ 2 = 0 余 1,所以25的二进制表示为11001。
其次,我们来介绍二进制到其他进制的转换方法。
对于将二进制数转换为十进制数,可以采用“按权展开求和”法。
具体步骤如下,将二进制数从右向左每一位乘以2的相应次方,然后将结果相加即可得到对应的十进制数。
例如,将二进制数11001转换为十进制数的过程如下,1×2^4 + 1×2^3 + 0×2^2 + 0×2^1 + 1×2^0 = 16 + 8 + 0 + 0 + 1 = 25。
接着,我们来介绍十进制到八进制和十六进制的转换方法。
对于将十进制数转换为八进制数,可以先将十进制数转换为二进制数,然后将二进制数每3位一组进行分割,再将每一组转换为对应的八进制数。
对于将十进制数转换为十六进制数,也可以先将十进制数转换为二进制数,然后将二进制数每4位一组进行分割,再将每一组转换为对应的十六进制数。
最后,我们来介绍八进制和十六进制到十进制的转换方法。
对于将八进制数转换为十进制数,可以采用“按权展开求和”法,将八进制数从右向左每一位乘以8的相应次方,然后将结果相加即可得到对应的十进制数。
进制间的相互转换
进制间的相互转换1.十进制(1)、十进制转二进制十进制整数转换为二进制整数采用"除2取余,逆序排列"法。
例如:(2)、十进制转八进制和转为二进制一样,将十进制数除以八,按顺序记录每次得到的余数,直到商为0,然后将得到的各个余数从最后得到的那个开始向右排起就是一个八进制数了例如:(3)、十进制转十六进制跟上面差不多,就是变成了除以16例如:2.二进制(1)、二进制转十进制从二进制的右边第一个数开始,每一个乘以2的n次方,n从0开始,每次递增1。
然后得出来的每个数相加即是十进制数。
(2)、二进制转八进制取三合一法,即从二进制的小数点为分界点,向左(向右)每三位取成一位,接着将这三位二进制按权相加,得到的数就是一位八位二进制数,然后,按顺序进行排列,小数点的位置不变,得到的数字就是我们所求的八进制数。
如果向左(向右)取三位后,取到最高(最低)位时候,如果无法凑足三位,可以在小数点最左边(最右边),即整数的最高位(最低位)添0,凑足三位。
例:1、将二进制数101110.101转换为八进制得到结果:将101110.101转换为八进制为56.52、将二进制数1101.1转换为八进制得到结果:将1101.1转换为八进制为15.4简易背过,也可以自己找规律。
(3)、二进制转十六进制二进制转换成十六进制的方法是,取四合一法,即从二进制的小数点为分界点,向左(或向右)每四位取成一位3.八进制(1),八进制转二进制八进制转二进制,另一方面,方法是三分之一,即将一个八进制数除以三个二进制数,将三个二进制数加权相加,最后得到二进制,小数点还是可以的。
可以参考上表(2)、八进制转十进制跟二进制转换为十进制差不多(3)、八进制转化为十六进制八进制转换bai成十六进制算法通常有两种方法:1、先将八进制转换成二进制,再将二进制转换成十六进制2、先将八进制转换成十进制,再将十进制转换成十六进制4.十六进制(1)、十六进制转换为二进制将16进制转为二进制,反过来啦,方法就是一分四,即一个十六进制数分成四个二进制数,用四位二进制按权相加,最后得到二进制,小数点依旧就可以啦(2)、十六进制转换为十进制和上面的二进制转十进制和八进制转十进制差不多(3)、十六进制转八进制可以先转换成十进制,再转换成十六进制。
各种进制的相互转换
各种进制的相互转换在计算机科学中,常用的进制有二进制、八进制、十进制和十六进制。
进制相互转换的方法如下:1、二进制转八进制二进制数每三位一组,从小数点开始向左或向右加0补齐,再将每组转换为相应的八进制数即可。
例如:二进制数111101.1101,将小数点左边的111101和右边的1101分别转换为八进制数,即得到:175.54。
2、八进制转二进制将每个八进制数转换为相应的三位二进制数,再将结果拼接在一起即可。
例如:八进制数345.67,将3、4、5、6、7分别转换为三位二进制数,即011、100、101、110、111,连接起来即得到:011100101110.110。
3、二进制转十六进制二进制数每四位一组,从小数点开始向左或向右加0补齐,再将每组转换为相应的十六进制数即可。
例如:二进制数101110.0111,将小数点左边的101110和右边的0111分别转换为十六进制数,即得到:5E.7。
4、十六进制转二进制将每个十六进制数转换为相应的四位二进制数,再将结果拼接在一起即可。
例如:十六进制数3C.5D,将3、C、5、D分别转换为四位二进制数,即0011、1100、0101、1101,连接起来即得到:0011110001011101。
5、十进制转二进制将十进制数不断除以2,得到的余数即为二进制数的每一位,将余数从低位到高位排列即可。
例如:十进制数153,将其除以2得到商76、余数1,再将76除以2得到商38、余数0,依次计算下去得到二进制数10011001。
6、二进制转十进制将每一位上的数值乘上2的n次方(从右到左,n从0开始递增),再将结果相加即可。
例如:二进制数1011001,将其中每一位上的数值乘上2的n次方,然后相加,即得到:1×2^6+0×2^5+1×2^4+1×2^3+0×2^2+0×2^1+1×2^0=89。
以上是进制相互转换的一些基本方法,可以方便地将不同进制之间的数据互相转换。
二进制、八进制、十进制、十六进制之间转换(含小数部分)
二进制、八进制、十进制、十六进制之间转换一、十进制与二进制之间的转换(1)十进制转换为二进制,分为整数部分和小数部分①整数部分方法:除2取余法,即每次将整数部分除以2,余数为该位权上的数,而商继续除以2,余数又为上一个位权上的数,这个步骤一直持续下去,直到商为0为止,最后读数时候,从最后一个余数读起,一直到最前面的一个余数。
下面举例:例:将十进制的168转换为二进制得出结果将十进制的168转换为二进制,(10101000)2分析:第一步,将168除以2,商84,余数为0。
第二步,将商84除以2,商42余数为0。
第三步,将商42除以2,商21余数为0。
第四步,将商21除以2,商10余数为1。
第五步,将商10除以2,商5余数为0。
第六步,将商5除以2,商2余数为1。
第七步,将商2除以2,商1余数为0。
第八步,将商1除以2,商0余数为1。
第九步,读数,因为最后一位是经过多次除以2才得到的,因此它是最高位,读数字从最后的余数向前读,即10101000(2)小数部分方法:乘2取整法,即将小数部分乘以2,然后取整数部分,剩下的小数部分继续乘以2,然后取整数部分,剩下的小数部分又乘以2,一直取到小数部分为零为止。
如果永远不能为零,就同十进制数的四舍五入一样,按照要求保留多少位小数时,就根据后面一位是0还是1,取舍,如果是零,舍掉,如果是1,向入一位。
换句话说就是0舍1入。
读数要从前面的整数读到后面的整数,下面举例:例1:将0.125换算为二进制得出结果:将0.125换算为二进制(0.001)2分析:第一步,将0.125乘以2,得0.25,则整数部分为0,小数部分为0.25;第二步, 将小数部分0.25乘以2,得0.5,则整数部分为0,小数部分为0.5;第三步, 将小数部分0.5乘以2,得1.0,则整数部分为1,小数部分为0.0;第四步,读数,从第一位读起,读到最后一位,即为0.001。
例2,将0.45转换为二进制(保留到小数点第四位)大家从上面步骤可以看出,当第五次做乘法时候,得到的结果是0.4,那么小数部分继续乘以2,得0.8,0.8又乘以2的,到1.6这样一直乘下去,最后不可能得到小数部分为零,因此,这个时候只好学习十进制的方法进行四舍五入了,但是二进制只有0和1两个,于是就出现0舍1入。
各种进制之间的转换方法
各种进制之间的转换方法⑴二进制B转换成八进制Q:以小数点为分界线,整数部分从低位到高位,小数部分从高位到低位,每3位二进制数为一组,不足3位的,小数部分在低位补0,整数部分在高位补0,然后用1位八进制的数字来表示,采用八进制数书写的二进制数,位数减少到原来的1/3。
例:◆二进制数转换成八进制数:110110.1011B = 110 110 . 101 100B↓↓↓↓6 6 . 5 4 = 66.54Q◆八进制数36.24Q转换成二进制数:3 6 . 2 4Q↓↓↓↓011 110 . 010 100 = 11110.0101B◆低位,每4位二进制数为一组,不足4位的,小数部分在低位补0,整数部分在高位补0,然后用1位十六进制的数字来表示,采用十六进制数书写的二进制数,位数可以减少到原来的1/4。
例:◆二进制数转换成十六进制数:101101011010.100111B = 1011 0101 1010 . 1001 1100B↓↓↓↓↓B 5 A . 9C = B5A.9CH◆十六进制数转换成二进制数:AB.FEH = A B . F EH↓↓↓↓1010 1011. 1111 1110 = 10101011.1111111B先把八进制数Q转换成二进制数B,再转换成十六进制数H。
例:◆八进制数转换成十六进制数:7402.45Q = 111 100 000 010 .100 101B= 111100000010.100101B= 1111 0000 0010 . 1001 0100B= F 0 2 . 9 4H= F02.94H◆十六进制数转换成八进制数:1B.EH = 0001 1011 . 1110B= 11011.111B= 011 011 . 111B= 3 3 .7Q= 33.7Q⑷二进制数B转换成十进制数D:利用二进制数B按权展开成多项式和的表达式,取基数为2,逐项相加,其和就是相应的十进制数。
各种进制转换
二进制、八进制、十进制、十六进制之间转换一、十进制与二进制之间的转换(1)十进制转换为二进制,分为整数部分和小数部分①整数部分方法:除2取余法,即每次将整数部分除以2,余数为该位权上的数,而商继续除以2,余数又为上一个位权上的数,这个步骤一直持续下去,直到商为0为止,最后读数时候,从最后一个余数读起,一直到最前面的一个余数。
下面举例:例:将十进制的168转换为二进制得出结果将十进制的168转换为二进制,(10101000)2分析:第一步,将168除以2,商84,余数为0。
第二步,将商84除以2,商42余数为0。
第三步,将商42除以2,商21余数为0。
第四步,将商21除以2,商10余数为1。
第五步,将商10除以2,商5余数为0。
第六步,将商5除以2,商2余数为1。
第七步,将商2除以2,商1余数为0。
第八步,将商1除以2,商0余数为1。
第九步,读数,因为最后一位是经过多次除以2才得到的,因此它是最高位,读数字从最后的余数向前读,即10101000(2)小数部分方法:乘2取整法,即将小数部分乘以2,然后取整数部分,剩下的小数部分继续乘以2,然后取整数部分,剩下的小数部分又乘以2,一直取到小数部分为零为止。
如果永远不能为零,就同十进制数的四舍五入一样,按照要求保留多少位小数时,就根据后面一位是0还是1,取舍,如果是零,舍掉,如果是1,向入一位。
换句话说就是0舍1入。
读数要从前面的整数读到后面的整数,下面举例:例1:将0.125换算为二进制得出结果:将0.125换算为二进制(0.001)2分析:第一步,将0.125乘以2,得0.25,则整数部分为0,小数部分为0.25;第二步, 将小数部分0.25乘以2,得0.5,则整数部分为0,小数部分为0.5;第三步, 将小数部分0.5乘以2,得1.0,则整数部分为1,小数部分为0.0;第四步,读数,从第一位读起,读到最后一位,即为0.001。
例2,将0.45转换为二进制(保留到小数点第四位)大家从上面步骤可以看出,当第五次做乘法时候,得到的结果是0.4,那么小数部分继续乘以2,得0.8,0.8又乘以2的,到1.6这样一直乘下去,最后不可能得到小数部分为零,因此,这个时候只好学习十进制的方法进行四舍五入了,但是二进制只有0和1两个,于是就出现0舍1入。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1个烽火可以表示几个信息? 2个 2个烽火可以表示几个信息? 4个 3个烽火可以表示几个信息? 8个
…
n个烽火可以表示几个信息? 2n个
N位二进制数能表示2n种信息, 能表示的十进制数的范围0~2n-1 。
一、二进制转化为十进制
问题:如有18万敌人来犯,约定一个 烽火可以表示1万敌军,需要几个烽 火呢?
逢十进一
十六进制
0,1 … 9, A,B,C,D,E,F
16
逢十六进一
位权
字母 标识
… 22,21,20 …
… 82,81,80 …
… 102,101,100 …
… 162,161, 160 …
B
O
D
H
各种进制数与十进制数之间的转换
二进制 八进制 加 十六进制
转换为 “十进制” 的方法:数码*位权,相
11101010101 35 2 5
三、二进制数和八进制的转换
11101010101 35 2 5
二进制数转换成十六进制数的规则:
1、把二进制数从低位到高位按3位一组划 分 2、每组用一位八进制数表示
四、二进制数和十六进制数的转换
既生瑜,何生亮?
101010111110101111111010101010101100111110101011100001
第二节 二进制数(二)
——各进制之间的相互转换
一、二进制转化为十进制
二进制转化为十进制的方法 (数码*位权,相加)
例:二进制10011转化为十进制是多少? (10011)2=1*24+0*23+0*22+1*21+1*20 =16+0+0+2+1=(19)10
一、二进制转化为十进制
点 烽 火
一、二进制转化为十进制
提示:4个烽火最多可以表示16个信息,5个烽火最 多可以表示32个信息,现在要表示18个信息,需要 几个烽火?
Байду номын сангаас
一、二进制转化为十进制
小组讨论完成以下练习
练习册 P3 一: 13、14 p4 二: 7、8
二、十进制转化为二进制
十进制转化为二进制的方法 (除2逆序取余)
例:十进制19转化为二进制是多少?
4.N位二进制数能表示2n种信息, 能表示的十进制数的范围0~2n-1 。
余 2 19 1 29 1 24 0 2 20
1
(19)10=(10011)2
二、十进制转化为二进制
小组讨论完成以下练习
练习册 P5、三 1
三、二进制数和八进制的转换
思考:八进制数有几个数码? 一位八进制数需要几位二进制数来表示?
01234567 000 001 010 011 100 101 110 111
2AFAFEAAB3EAE1 二进制数转换成十六进制数的规则: 1、把二进制数从低位到高位按4位一组划分 2、每组用一位十六进制数表示 3、高位不足4位的二进制数用“0”补齐
五、常见的进位计数制
数制
数码
基数 进位 规则
二进制
0,1 2
逢二进一
八进制
0,1 … 7 8
逢八进一
十进制
0,1 … 9 10
二进制 “十进制” 转换为 八进制 的方法:除以“基数” ,逆序取余
十六进制
第二节小结
1.为什么计算机内部处理信息采用二进制? 二进制在电路上容易实现.所以将信息数字化成二进 制
2.二进制的特点是什么? 只有二个数码 0,1 ; 逢二进一
3.二进制转化为十进制的方法 (数码*位权,相加) 十进制转化为二进制的方法 (除2逆序取余)