4向量组的线性相关性
向量组的线性相关性
则称向量 b 能由向量组 A 的线性表示.
引言
问题1:给定向量组 A,零向量是否可以由向量组 A 线性表 示?
问题2:如果零向量可以由向量组 A 线性表示,线性组合的 系数是否不全为零?
P.83 定理1 的结论:
a2l
b21
b22
aml bl1 bl 2
b1n
b2n
bln
b11 b12
b1n
则
c1,c2,
, cn a1, a2 ,
, al
b21
b22
b2n
bl1 bl 2
bln
结论:矩阵 C 的列向量组能由矩阵 A 的列向量组线性表示, B 为这一线性表示的系数矩阵.
当 a 不是零向量时,线性无关.
向量组 A:a1, a2, …, am (m ≥2) 线性相关,也就是向量组 A 中,至少有一个向量能由其余 m-1 个向量线性表示.
设有向量组 A:a1, a2, …, am 及 B:b1, b2, …, bl , 若向量组 B 能由向量组 A 线性表示,即
b1 k11a1 k21a2 b2 k12a1 k22a2
km1am km2am
bl k1la1 k2la2 kmlam
线性表示的 系数矩阵
k11 k12
b1 1 0 0
b2
0
1
0
b
b3
b1
0
b2
0
b3
1
bn 0 0 0
0
0
bn
0
1
b1 1 0 0
4.3 向量组的线性相关性
证 (方法1) 设 B 1, 2,L n , 且
有数x1,x2,…,xn,使得 x11 x22 L xnn 0,
即
x1
1, 2,L
,
n
x2
M
0,
xn
右边等式两边同时左乘矩阵A,得
ABx 0, 即 Ex 0, 所以 x 0, 即 x1 x2 L xn 0, 故由定义可知,
0
0
1
证 令 A (1,2,L ,n ),
则A恰为单位矩阵E,故R(A)=n。 根据判定定理,单位向量组线性无关。
例8
已知向量组 , ,
1
2
3
线性无关, 1
1
2
, ,
2
2
3
3
3
1
证明向量组 , ,
1
2
3
也线性无关.(典型考题,典型方法)
证明:(方法 1: 根据定义) 设有数k1,k2,k3,使得
则称向量组A 线性相关,否则称它线性无关。
当且仅当k1 k2 L ks =0时,
表达式 k11 k22 L kss 0成立。
定理2
线性相关和无关的判定定理
1,2 ,L ,s 线性无关
x11 x22 L xss 0 仅有零解
对矩阵 A=(1,2,L ,s ), R( A) 向量的个数s.
例2 零向量是任何一个同维向量组的线性组合
Q 0 01 02 L 0m
线性表示的表示系数可以是零
例3 向量组中的任何一个向量都是该向量组的线性组合。
i 01 02 L 1i L 0m
例4 对如下向量
(0,1,2)T ,1 (1,1,0)T ,2 (0,1,1)T ,3 (3, 4,0)T ,
线性代数第四章
§3 向量组的秩
定义5 设有向量组 A, 如果在A中能选出 r个向量a1 , a 2 , , a r, 满足(1) 向量组A0 : a1 , a 2 , , a r 线性无关; ( 2) 向量组中 任意r 1个向量(如果A中有r 1个向量的话 )都线性相关 , 那么称向量组 A0 是向量组 A的一个最大线性无关向 量组(简 称最大无关组 ), 最大无关组所含向量个 数r称为向量组 A 的秩, 记为RA .
a T (a1 , a2 ,, an )
二、向量的运算
三、向量组
定义 由若干个同维数的列向 量(或同维数的行向量 )构成 的集合称为向量组 . a11 a12 a1n a21 a22 a 2 n A a a a m2 mn m1 A (1 , 2 , , n ) , 其中 j (a1 j , a 2 j , , a mj )T T T A ( , , , ) , 其中 1 2 m i ( a i 1 , a i 2 , , a in )
向量组B : b1 , b2 , , bl 能由向量组向量 A : a1 , a2 , , am 线性表示 R( A) R( A, B ) 有矩阵K, 使得B AK 矩阵方程 AX B有解
例( P 86例 3) 设n维 向 量 组 A : a1 , a 2 , , a m 构 成n m 矩 阵 A ( a1 , a 2 , , a m ),n阶 单 位 矩 阵 E (e1 , e 2 , , e n )的 列 向 量 称 为n维 单 位 坐 标 向 量 .证 明 : n 维 单 位 坐 标 向 量 e1 , e 2 , , e n能 由 向 量 组 A线 性 表 示 的 充 要 条 件 是 R( A) n.
第四章向量组的线性相关性线性代数含答案.docx
第四章向量组的线性相尖性441基础练习1.设有斤维向量组e,,•••、%与几,02,...,仇若存在两组不全为零的数人、入,…,九和k], kzM使(人+灯⑦+—(心+k丿a卄(石一k) 0汁…+(入一n『#m=0则( )(A)(X、,吆…,J和0户卩2,…,“也都线性相矢(B)(ZI,么2,…,么加和0F“2,..., 0加都线性无矢(C)么汁伤,…,时门曲g—fip…,久线性无矢(D)e+伤,…,皤//”,5_卩[,…,线性相尖2.设如如一os与为,卩2,…,久为两个料维向量组,且R@\, a2, -,a s) = /?(/?… /?2,= r,则( )(A)当s = t吋,两向量组等价;(B)两向量组等价;(C)幻…,冬,卩7几)二”(D)当向量组如S被向量组伤,卩2,…,戸,线性表示时,两个向量组等价.3.设/是4阶方阵,且同=0,则/中( )(A)必有一列元素全为零;(B)必有两列元素成比例;(C)必有一列向量是其余列向量的线性组合;(D)任一列向量是其余列向量的线性组合.4.设力是矩阵,〃是矩阵,贝%)(A)当m > n时,必有14B | HO ;(B)当m > n时,必有(C)当HKD时,必有IMIW;(D)当m < n时,必有IMIP5.设向量组勺,血,他线性无尖,向量几可由勺,么2,么3线性表示,而向量02不能由(A) z a2,k/?7+/?2线性无尖;(B)血竝,冬,k/?7+y?2线性相矢;(C) a J9购么3, 0/+k“2线性无尖;(D)么勿,/ 线性相尖.6.设有向量组勺=(1,- 1,2,4), « = 0,3,1,2), «=(3,0,7,14),勺=(1,-2,2,0)与冬=(2丄5,10), 则向量组的极大线性无尖组是( )(A) °人3 ;(B) ar a2,弘;(C) ap a?, a.门(D) z av a4, as.7.设有向量组a=(a,0,c)fa=(b,c,0),a5=(0,a,b)线性无尖,则a,也c必须满足矢系式.& 向量组a=(l,2,3,4), (i2=(2,3,4,5), a3=(3,4,5,6),恥=(4,5,6,7)的秩等于 ___________________ . 9•已知向量组a =(1,2,-1,1),血=(2,0,0),购=(0,-4,5,-2)的秩为2,则.r 1 2 -2-10 •设矩阵/=2 1 2,向量a=(a,l,l),,已知/la与么线性无矢,则心_________________30 411•向量空间r二(x,2x,y)lx,yG R }的维数是______________________________ ,它的基a= _________ ,a2 = __________ .向量么=(3,6,-4)在基勺下的坐标是________________ . 12 ・设有向量组a, =(2,4,7); a2 =(3,2,5);^=(5,6,Q; “ = (1,3,5),当上为何值时,“能由舛42 线性表示?13.设有向量组a, =(2,1,5,3);血=(1,-1,2,1);佝=(0,3,1,1);恥=(1,2,3,2);少=(-1,1,-2,-8)求向量组的秩和它的一个极大线性无尖组•14.设有向量组© =(1,1,1);血=(1,1,-1);试把P表为a, ,a2用3的线性组合.X,-2X2+X3+X4 • X5 二02XI+x 厂Xq-Xd+Xq 二015 •求方程组12 3 4 5的基础解系和通解.X(+7X2 ・ 5%3 ・5x4+5x5 二03x r X2-2X3+X4-X5 二0*X!-2X2+3X3-4X4=4x?-x.+xd =316•求方程组 2 3 4的通解.XI • 3X2-3X4 二1-7X2+3X3+X4 二-34.4.2提高练习1 .已知a, =(1,0,2,5/, a? =(1,1,3,5/, =Q,」a + 2,l)r他二(l,2,4,a+ 8 几0 = (1,10 +3,5)T(1)a,b为何值时,0不能表示为a…a2,a3,a4的线性组合;(2)a, b为何值时,“有⑦皿2,偽皿4的唯一线性表示,并写出该表达式.2.设向量线性相矢,而其屮任何卩1个向量线性无矢,证明存在不全为零的数《,©, • • •& 便滋+••• + ©%=()・3•设ai9a29a3线性无尖,证明 /?( =a)-2a2 +2a3,/?2 二加-a A py = 2a)-a2 +3a3 线性无尖•4.验证向量a. =(l,-l,0)r,a2 =(2丄3/,=(3,1,2/是疋的一个基,并分别将向量件二(5Q7)丁,仏二(一9,一&・13卩用这个基表示.5.已知H的两个基T3<3<5><A:a)=1/<2 二11;B卩严3,02 =-1'03 二4<2<2><2<3,J2求基力到基〃的过渡矩阵C6•设由向量么〕二(0丄2),血二(1,3,5),么3二(2丄0)生成的向量空间为V】,由向量几二(1,2,3),仏二(一1,0,1)生成的向量空间为V2,试证匕二V2・7•设/?”的3个基分别为1)求由基(2)到基(1)的过渡矩阵;2)求向S.a 二e 【+e2"・e3在基(2)下的坐标; 3) 求向量fl = 3ej+ 2es -3A4在基(1)下的坐标;4) 求由基(2)到基(3)的过渡矩阵.8.设加个n 维向量a 〕9ay«”线性无矢,P 为n 阶方阵‘证明:向量组Pa?Pa2, - .Pan1,<o>v9、6具有相同的秩,且“3可由向量组(2)线「7(3): VI(--I疋2 =1 0 <0 • •<i>r-P了-1 1 、6 二 ?.1<o><0,[1 1 ?也二 311d 丿线性无尖的充耍条件是IPL0.na29•已知向量组(1):fi 二T0]],“2= ri 丿< 1、n3向量组(2) : a2,亿>二佝二严)A \/(?)作性表不,求* b 的值.,03=10•已知3阶方阵力与3维向量X,使得向量组X9AX9A2X线性无尖,且满足A3X =3A X-2A2X ;1)记P二(x, Axjxj.求3 阶方阵B使A = PBP-;2)计算行列式・A%! + 兀 2 + 兀 3= 1问2取何值时,(1) o 可由勺,J 么3线性表示,且表达式唯一? (2) "可由勺,《2,冬线性表示,但表达式不唯一? (3) “不能由勺,色线性表示?x ( +X2+&3 =413. k 为何值时,线性方程组w -x, + kx 2 + x 3 = A:2X]_ 勺 + 2 兀 3 =-4有唯一解、无解、有无穷个解?在有解时求出其全部解. 14. 己知二(1,0,2,3),力二(1丄3,5),«3二(1,一 1 卫 + 2,1),如二(124卫 + &),,(1 丄/? +3,5).(1)心b 为何值时,“不能表示为勺,j s 他的线性组合?(2)么/?为何值时,“可表示为么” J 5么4的线性组合?并写出该表示式.11 •讨论并求解方程组<%! + AX2 +X3 = A.12•设有3维列向量a =x]+兀 2+ 7C 3 = Q215. 已知下列线性方程组 兀1+兀〉一2兀4 = 一6(1){4 西-X2 -X3-X4 = 1; 3兀L 兀2_兀3 = 3 ⑴求出方程组⑴的通解;(2)当⑵中的参数明/为何值时‘方程组⑴与(2)同解?X] + inx? -XS -XA --5 72X1 —七一2 兀二—1 121第四章参考解答4.4.1基础练习:1. (D )提示:由题设知,入 5+0) + 希 a+02 + - • • + An J&+Q + kg-卩)+・・・=o又知人,易,…,无,k 、,心…,红不全为零,均+伤,a 2+#2,臥盘,a 厂卩p 卩卫…,亦仇线性相尖.2. (D )提示:设向量组A :弘幻 …,匕:向量组B : P],'T(因向量组/可被向量组B 表示),则用為?仞二/? (C )o L所以%® r 故选(D )3. (C )提示:因仏2,则R (/) v4, /经初等列变换化为阶梯阵〃,〃必有零列,该列就是其余列的线性组合.4. (B )提示:也习 时,R (4) <n<m,又R (4B )vR 么),则«BX m ,为降阶方阵,所以AB=O.«/'a /A =orf4-k(A ir/+A 2 厂2+7丿Ta 、 M =B «3«3g+02_A_又勺,j 冬线性无尖,且肉不能由勺,叫冬线性表示,则R勺,J 他,妙+几线性无尖•这个结论肯定了(A )而排除了(B ),对条件(C ),取R 二0即与5. (A )提示:由可由勺,5幺3线性表示知件二人勺+入么仝+入冬,那么 (4)二R0?>4,即题设矛盾,可排除•对于(D),取21时与(A)中炉1相同,已知(A)正确,从而否定(D)・6.(B)1. abcO ・提示:ar n 冬线性无尖。
西北工业大学《线性代数》课件-第四章 向量组的线性相关性
b
b2
bm
三、两向量相等
设向量
α (a1, a2 ,, ak )
β (b1, b2 ,, bl )
则
α β k l 且 ai bi
(i 1,2,, k)
四、零向量
分量都是0的向量称为零向量,记做 0,即
0 (0,0,,0).
五、向量的线性运算
⒈ 加法 设
α (a1, a2 ,, an )
2 2 2 ( )2
几何解释:三角形两边 之和大于第三边
α
β
α β
⒊ 夹角 设 与 是n维非零向量,则其夹角定义为
arccos [ , ]
arccos
a1b1 a2b2 anbn
a12 a22 an2 b12 b22 bn2
(0 )
定义的合理性:由不等式 (5) α, β α β
2
➢ 非零向量单位化
设 0 ,单位化向量
0
则有 0 1且 0与 同向.
九、小结
1. n维向量的定义; 2. n维向量的运算规律;
§4.2 向量组的线性相关性
一、线性相关与线性无关
1. 线性组合 定义4.6 设 ,1,2,,m均为n维向量,若有一组 数 k1, k2 ,, km ,使得
⑶ 数量积:a b a b cos
bx
(a
x
,
a
y
,
az
)
by bz
axbx a yby azbz
向量内积及 与模,夹角关系
矩阵乘积表示
可用作内积定义
⑷ 模: a aa
模的定义
三维向量全体构成的集合,称为三维向量空间.记做 R3
解析几何
向量
4 向量组的线性相关性
第四章 向量一 内容概要1 向量的概念:(1)定义;(2)与矩阵之间的关系;(3)向量的相等;2 向量的运算:(1)向量的和、差;(2)向量的数乘;(3)向量的线性运算;3 向量组的线性关系(1)线性组合:对于给定的向量组βααα,21s ,,, ;如果存在一组数s k k ,,1 使得:s s k k k αααβ+++= 2211则称向量s 21αααβ,,,是向量组 的一个线性组合,或称β可以由向量组:,21s ααα,,, 线性表示;(2)线性相关、线性无关的定义设,21s ααα,,, 是一组n 维向量(当然是同型),如果存在一组不全为0的数s k k ,,1 使得:02211=+++s s k k k ααα则称向量组,21s ααα,,, 线性相关 指出,这里一定要注意关键词:(1)它是不全为0的数s k k ,,1 ;(2)存在;至于这一组数具体是什么样的一组数无关紧要。
反之 则称向量组,21s ααα,,, 线性无关,即若要 02211=+++s s k k k ααα成立,必有021====s k k k ,则称向量组,21s ααα,,, 线性无关。
(3)向量组的线性相关性与方程组之间的关系向量组,21s ααα,,, 线性关系式02211=+++s s k k k ααα 具体表示出来实际上就是一个方程组:⎪⎪⎩⎪⎪⎨⎧=+++=+++=+++000221122221211212111s ms m m ss s s x a x a x a x a x a x a x a x a x a其中:()m j a a a Tmj j j j ,,2,1,,,21 ==,α因此,通俗的话来说,向量组s 21,ααα ,,线性相关的充要条件是:上述方程组有非0解。
这是判断一个向量组s ααα,,, 21是否线性相关最常用的方法。
(2)向量有解的关系线性表示与方程组,,,可被向量组βαααβ=AX n 21 设()()j Tm n b b b A αβααα,,,,,,,,2121 ==的意义同上,则方程组β=AX 可表示成:βααα=+++n n x x x 2211,或⎪⎪⎩⎪⎪⎨⎧=+++=+++=+++mn mn m m n n n n b x a x a x a b x a x a x a b x a x a x a 22112222212111212111 因此向量线性表示,,,可被向量组n 21αααβ 的充要条件是方程组β=AX 有解。
第四章 向量组的线性相关性总结
第四章 向量组的线性相关性§1 n 维向量概念一、向量的概念定义1 n 个有次序的数12,,,n a a a 所组成的数组称为n 维向量,这n 个数称为该向量的n 个分量,第i 个数i a 称为第i 个分量.注1分量全为实数的向量称为实向量.分量不全为实数的向量称为复向量. 注2 n 维向量可以写成一行的形式()12,,,n a a a a =,出可以写成一列的形式12n a a a a ⎛⎫⎪ ⎪= ⎪ ⎪⎝⎭,前者称为行向量,而后者称为列向量.行向量可看作是一个1n ⨯矩阵,故又称行矩阵;而列向量可看作一个1n ⨯矩阵,故又称作列矩阵.因此它们之间的运算就是矩阵之间的运算,从而符合矩阵运算的一切性质.向量之间的运算只涉及到线性运算和转置运算.为叙述方便,特别约定:在不特别声明时说到的向量均为列向量,行向量视为列向量的转置.注3 用小写黑体字母,,,a b αβ 等表示列向量,用,,,T T T T a b αβ表示行向量. 例1 设123(1,1,0),(0,1,1),(3,4,0)T T T v v v ===,求12v v -及12332v v v +-.解 12v v -(1,1,0)(0,1,1)T T =-(10,11,01)T =---(1,0,1)T =-12332v v v +-3(1,1,0)2(0,1,1)(3,4,0)T T T =+-(31203,31214,30210)T =⨯+⨯-⨯+⨯-⨯+⨯-(0,1,2)T =定义 设v 为n 维向量的集合,如果集合v 非空,且集合v 对于加法与数乘两种运算封闭(即若α∈v,β∈v ,有α+β∈v ;若α∈v, k ∈R ,有k α∈v ),称v 为向量空间。
§2 向量组的线性相关性一、向量组的线性组合 定义3 给定向量组A :12,,,m a a a ,对于任何一组实数12,,,m k k k ,称向量1122m m a a a k k k +++ 为向量组A 的一个线性组合,12,,,m k k k 称为这个线性组合的系数.定义4 给定向量组A :12,,,m a a a 和向量b ,若存在一组实数12,,,m λλλ,使得1122m m a a a b λλλ=+++则称向量b 是向量组A 的一个线性组合,或称向量b 可由向量组A 线性表示.注1任一个n 维向量12n a a a a ⎛⎫ ⎪ ⎪= ⎪ ⎪⎝⎭都可由n 维单位向量组12,,,n e e e 线性表示:1122n n a a a a e e e =+++ .注2向量b 可由向量组A :12,,,n a a a 线性表示(充要条件)⇔方程组1122n n a a a x x x b +++=有解m n A x b ⨯⇔=有解()(,)R A R A b ⇔=注3 由于线性方程组的解分为:无解,有唯一解,有无穷多解三种情况,所以向量β由向量12,,,n a a a 线性表示的情形也分为三种:不能线性表示,唯一线性表示,无穷多种线性表示,且线性表示式中的系数就是对应线性方程组的解。
第4章 向量组的线性相关性 20100425 0845
α, 2 , α 1α s
若向量组(B)中每一向量都可以由向量组 (A)线性表示,则称向量组(B)可由向量 组(A)线性表示。 若向量组(A)与向量组(B)可以互相线性 表示,则称这两个向量组等价.
4-13
把向量组A和B依次记为A=(a1,a2,…,as), B=(b1,b2,…,bt),B由A表示的线性式中 的系数构成矩阵K,则有 (b1,b2,…,bt)=(a1,a2,…,as)K 其中
例4 讨论n维单位向量组的线性相关性
1 (1,0,0), 2 (0,1,0,0),, n (0,0,,0,1)
4-15
由上章定理6,立即可得: 定理2 向量组B :b1,b2,…,bt能由向量组 A:a1,a2,…,as线性表示的充分必要条件 是:R(A)=R(A,B) 推论 向量组B :b1,b2,…,bt与向量组A: a1,a2,…,as等价的充分必要条件是: R(A)=R(B) =R(A,B)
4-16
4-2
一般的线性方程组可写成常数列向量与 系数列向量有如下的线性关系:
x11 x2 2 xnn
称为方程组的向量形式。其中
a1 j b1 a b 2 j ( j 1, 2, , n), = 2 j a mj bm
4-20
向量的线性表示、矩阵、线性方程 组之间的关系: 向量组B:b1,…,bl能由向量组A:a1,…,am 线 性表示存在矩阵K,使得AK=B 矩阵方程AX=B有解
4-21
第二节 向量组的线性相关
4 定义5:对于向量组1 , 2 s,如果存在一组
不全为零的数,使关系式
k11 k22 kss 0
线性代数(同济大学第五版)第四章
3. 将其余n–r个分量依次组成 n–r 阶单位矩阵, 于 是得齐次线性方程组的一个基础解系:
b11 b12 b1,n r b21 b22 b2,n r br 1 br 2 br ,n r 1 , 2 , , n r . 1 0 0 0 1 0 0 0 1
提示:可用方法2证明!
课后题9 设 b1 a1 a2 , b2 a2 a3 , b3 a3 a4 , b4 a4 a1 , 证明向量组 b1 , b2 , b3 , b4 线性相关. 2011期选考题
1、 设 向 量 组 1 , 2 , 3线 性 无 关 , 则 向 量 组 D) ( (A) 1 2 , 2 3 , 3 1线 性 无 关 ; (B) 1 2 , 2 3 , 1 2 2 3线 性 无 关 ; (C) 1 2 3 ,2 1 3 2 3 , 1 4 2线 性 无 关 ; (D) 1 2 2 ,2 2 3 3 , 1 2 2 3线 性 无 关 ;
如无特殊要求,建议用第三章的方法求解线性方程组!
d1 d2 dr , 0 0
考试类型题
一、向量组线性相关性的判定
方法1. 从定义出发 令 k11 + k22 + · + kmm = 0, 即 · ·
若只有零解, 则1, 2, · , m线性无关; 否则, 1, · · 2, · , m线性相关. · · 方法2. 利用矩阵的秩与向量组的秩之间的关系 给出一组n维向量1, 2, · , m, 就得到一个相应 · · 的矩阵A=(1, 2, · , m), 求R(A), 则 · · 若R(A)=m, 则 1, 2, · , m线性无关; · · 若R(A)<m, 则 1, 2, · , m线性相关. · · 利用相关定理(秩的相关性质)
第4章向量组的线性相关性
[定义]若向量组A与B能相互线性表示 则称这两个向量组等价。
➢矩阵等价与向量组等价的关系
若矩阵A与B 行等价 则这两个矩阵的行向量组等价 若矩阵A与B 列等价 则这两个矩阵的列向量组等价
➢向量组等价的判据 [定理4-2]推论:向量组 A a1, a2, , an 与向量组 B : b1,b2, ,bm 等价的充要条件是R(A)R(B)=R(A B) 。
分量全为实数的向量称为实向量, 例如 (1,2,3,,n)
分量全为复数的向量称为复向量。 例如 (1 2i,2 3i,,n (n 1)i)
第四章 向量组的线性相关性
2、向量的表示
n维向量写成一列,称为列向量(即列矩阵),
通常用 a, b,, 等表示,如:
a1
a
a2
an
n维向量写成一行,称为行向量(即行矩阵),
1 1 1 1
1 0 3 2
~ ~ B
1 2
2 1
1 4
0
3
r
0
1
2
1
r
0
1
2
1
0 0 0 0
0 0 0 0
2
3
0
1
0
0
0
0
0
0
0
0
R(A) R(B) 2
向量b能由向量组 a1, a2, a3 线性表示。
第四章 向量组的线性相关性
由B最简形可得线性方程组 (a1,a2,a3)x b即Ax b 解为
(a11 a12 a1n)
(a21 a22 a2n)
(am1 am2 amn)
第四章 向量组的线性相关性
2、向量组的线性组合
线性代数 第4章 向量组的线性相关性
线性组合: 线性组合
定义 2 给定向量组 A : α 1 , α 2 , ⋯ , α m , 对于任何一组 实数 k1, k 2, , k m,向量 ⋯ k1α 1 + k 2α 2 + ⋯ + k mα m 称为向量组 A 的一个 线性组合 , k1, k 2, , k m 称为这 ⋯ 个线性组合的系数。
《线性代数》
学习要求: 学习要求:
第四章向量组的线性相关
维向量; 向量组的线性组合 向量组的线性组合; 1、掌握下列基本概念:[1] n维向量;[2]向量组的线性组合;[3] 掌握下列基本概念: 维向量 向量的线性表示; 向量组的线性相关与线性无关 向量组的线性相关与线性无关; 向量组的 向量的线性表示;[4]向量组的线性相关与线性无关;[5]向量组的 极大无关组; 向量组的秩 向量组的秩; 两向量组的等价 两向量组的等价。 极大无关组;[5]向量组的秩;[6]两向量组的等价。 2、知道向量组线性相关的性质;初步掌握用定义、定理判别向量 知道向量组线性相关的性质;初步掌握用定义、 组的线性相关性。 组的线性相关性。 3、理解矩阵的秩和向量组的秩之间的关系,熟炼掌握用矩阵的初 理解矩阵的秩和向量组的秩之间的关系, 等变换求向量组的秩和它的极大无关组。 等变换求向量组的秩和它的极大无关组。 4、理解线性方程组解的结构、基础解系、通解及解空间的概念。 理解线性方程组解的结构、基础解系、通解及解空间的概念。 5、理解非齐次方程解的结构和通解的概念。 理解非齐次方程解的结构和通解的概念。 6、熟炼掌握用矩阵来表示向量组,用矩阵及线性方程组理论判 熟炼掌握用矩阵来表示向量组, 别向量组的线性相关性。 别向量组的线性相关性。 7、知道向量空间、子空间的概念;会求向量空间的基和维数。 知道向量空间、子空间的概念;会求向量空间的基和维数。
第四章 向量组的线性相关性 线性代数 含答案
第四章 向量组的线性相关性4.4.1 基础练习1. 设有n 维向量组12m ⋅⋅⋅ααα,,,与⋅⋅⋅12m ββ,β,,若存在两组不全为零的数 12m λλλ⋅⋅⋅,,,和12k k k m ⋅⋅⋅,,,使11111m m m k k k k 0m m m λλλλ⋅⋅⋅⋅⋅⋅1ααββ(+)++(+)+(-)++(-)=则( )(A )12m ⋅⋅⋅ααα,,,和⋅⋅⋅12m ββ,β,,都线性相关 (B) 12m ⋅⋅⋅ααα,,,和⋅⋅⋅12m ββ,β,,都线性无关(C) 1m m 1m m ⋅⋅⋅⋅⋅⋅11αβαβαβαβ+,,+,-,,-线性无关 (D) 1m m 1m m ⋅⋅⋅⋅⋅⋅11αβαβαβαβ+,,+,-,,-线性相关 2. 设12s ⋅⋅⋅ααα,,,与t ⋅⋅⋅12ββ,β,,为两个n 维向量组,且12s t ()()r R R ⋅⋅⋅=⋅⋅⋅=12αααββ,β,,,,,,则( )(A )当s t =时,两向量组等价; (B )两向量组等价; (C )12s t ()r R ⋅⋅⋅⋅⋅⋅12αααββ,β,,,,,,=;(D )当向量组12s ⋅⋅⋅ααα,,,被向量组t ⋅⋅⋅12ββ,β,,线性表示时,两个向量组等价. 3. 设A 是4阶方阵,且0A =,则A 中( ) (A) 必有一列元素全为零; (B )必有两列元素成比例; (C)必有一列向量是其余列向量的线性组合; (D )任一列向量是其余列向量的线性组合. 4. 设A 是矩阵,B 是矩阵,则( )(A )当m n >时,必有0≠AB ; (B )当m n >时,必有0AB = (C )当m n <时,必有0≠AB ; (D )当m n <时,必有0AB =5. 设向量组231ααα,,线性无关,向量1β可由231ααα,,线性表示,而向量2β不能由231ααα,,线性表示,则对于任意常数k ,必有( )(A )232k 11αααββ,,,+线性无关;(B )232k 11αααββ,,,+线性相关; (C )232k 11αααββ,,,+线性无关;(D )232k 11αααββ,,,+线性相关.6. 设有向量组1α=(1,-1,2,4),2α=(0,3,1,2),3α=(3,0,7,14),4α=(1,-2,2,0)与5α=(2,1,5,10),则向量组的极大线性无关组是( )(A )231ααα,,; (B) 241ααα,,; (C) 251ααα,,; (D) 2451αααα,,,.7. 设有向量组(,0,)(,,0)(0,,)a c b c a b 123ααα=,=,=线性无关,则a ,b ,c 必须满足关系式 .8.向量组(1,2,3,4)(2,3,4,5)(3,4,5,6)(4,5,6,7)1234αααα=,=,=,=的秩等于 . 9. 已知向量组23(1,2,-1,1)(2,0,,0),(0,-4,5,-2)t 1ααα=,==的秩为2,则t = .10. 设矩阵122212304⎡⎤⎢⎥⎢⎥⎢⎥⎣⎦A -=,向量(,1,1)T a α=,已知A α与α线性无关,则a = .11. 向量空间{}V ∈=x=(x,2x,y)|x,y R 的维数是 ,它的基2________,________.=1αα=向量 ()α=3,6,-4 在基21αα,下的坐标是 . 12. 设有向量组 123(2,4,7);(3,2,5);(5,6,);(1,3,5)k ====αααβ,当k 为何值时, β能由123ααα,,线性表示? 13. 设有向量组12345(2,1,5,3);(1,1,2,1);(0,3,1,1);(1,2,3,2);(1,1,2,8)==-===---ααααα求向量组的秩和它的一个极大线性无关组. 14. 设有向量组 123(111);(111);(111);(121)==-=-=αααβ,,,,,,,,,试把β表为123ααα,,的线性组合.15. 求方程组12345123451234512345x -2x +x +x -x 02x +x -x -x +x 0x +7x -5x -5x +5x 03x -x -2x +x -x 0=⎧⎪=⎪⎨=⎪⎪=⎩的基础解系和通解.16. 求方程组1234234124234x -2x +3x -4x 4x -x +x 3x -3x -3x 1-7x +3x +x 3=⎧⎪=-⎪⎨=⎪⎪=-⎩的通解.4.4.2 提高练习1. 已知 123(1,0,2,3),(1,1,3,5),(1,1,2,1)T T Ta ===-+ααα 4(1,2,4,8),(1,1,3,5)T T ab =+=+αβ(1)a ,b 为何值时,β不能表示为1234,,,αααα的线性组合;(2)a ,b 为何值时,β有1234,,,αααα的唯一线性表示,并写出该表达式.2. 设向量12,,,r ααα 线性相关,而其中任何r -1个向量线性无关,证明存在不全为零的数12,,,r k k k 使110r r k k ++=αα .3. 设123,,ααα线性无关,证明 1123223312322,,23=-+=-=-+βαααβααβααα 线性无关.4. 验证向量123(1,1,0),(2,1,3),(3,1,2)T T T =-==ααα是3R 的一个基,并分别将向量12(5,0,7),(9,8,13)T T ==---ββ用这个基表示.5. 已知3R 的两个基123123333536:1,1,1;:3,1,422211312⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪=====-= ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭A αααB βββ,求基A 到基B 的过渡矩阵C . 6. 设由向量()1230,1,2,(1,3,5),(2,1,0)===ααα生成的向量空间为V 1,由向量()121,2,3,(1,0,1)==-ββ生成的向量空间为V 2,试证V 1= V 2.7. 设4R 的3个基分别为12341234110000100(1):,,,;0010000120100101(2):,,,;1012010021(3):01⎛⎫⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪==== ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭--⎛⎫⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪ ⎪-- ⎪ ⎪ ⎪ ⎪==== ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎛=e e e e εεεεη234021113,,,.211222-⎫⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪=== ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭ηηη1) 求由基(2)到基(1)的过渡矩阵; 2) 求向量123=++αe e e 在基(2)下的坐标; 3) 求向量134323=+-βεεε在基(1)下的坐标; 4) 求由基(2)到基(3)的过渡矩阵.8. 设m 个n 维向量12,,,n ααα 线性无关,P 为n 阶方阵,证明:向量组12,,,n P αPαPα 线性无关的充要条件是0≠P .9. 已知向量组(1):1230a b121110⎛⎫⎛⎫⎛⎫ ⎪ ⎪⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪-⎝⎭⎝⎭⎝⎭βββ=,=,=,向量组(2):123⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭ααα139=2,=0,=6-31-7具有相同的秩,且3β可由向量组(2)线性表示,求a ,b 的值.10. 已知3阶方阵A 与3维向量x ,使得向量组2x,Ax,A x 线性无关,且满足332=-2A x Ax A x ;1) 记(),,=2P x Ax A x ,求3阶方阵B ,使1-A =PBP ;2) 计算行列式+A I .11. 讨论并求解方程组 12312321231x x x x x x x x x λλλλ⎧++=⎪++=⎨⎪++=⎩.12. 设有3维列向量 2321110111111λλλλλ⎡⎤⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦⎣⎦1αααβ+=,=+,=,=+问λ取何值时,(1)β可由231ααα,,线性表示,且表达式唯一? (2)β可由231ααα,,线性表示,但表达式不唯一? (3)β不能由231ααα,,线性表示?13. k 为何值时,线性方程组 1232123123424x x kx x x x k x x x +=⎧⎪-++=⎨⎪-+=-⎩+k有唯一解、无解、有无穷个解?在有解时求出其全部解. 14. 已知234(1,0,2,3),(1,1,3,5),(1,1,2,1),(1,2,4,8),(1,1,3,5).a a b ===-+=+=+1ααααβ(1)a 、b 为何值时,β不能表示为234,1αααα,,的线性组合?(2)a 、b 为何值时,β可表示为234,1αααα,,的线性组合?并写出该表示式. 15. 已知下列线性方程组1234124123413412334526(1)41;(2)2113321x mx x x x x x x x x x nx x x x x x x x t +--=-+-=-⎧⎧⎪⎪---=--=-⎨⎨⎪⎪--=-=-+⎩⎩(1) 求出方程组(1)的通解;(2) 当(2)中的参数m 、n 、t 为何值时,方程组(1)与(2)同解?第四章参考解答4.4.1 基础练习:1. (D )提示:由题设知,1122211222m m m m mk k k λλλ⋅⋅⋅⋅⋅⋅+11αβαβαβαβαβαβ(+)+(+)++(+)+(-)+(-)+(-)=m 0又知12m 12m k k k λλλ⋅⋅⋅⋅⋅⋅,,,,,,,不全为零,122122m m m m ⋅⋅⋅⋅⋅⋅11αβαβαβαβαβαβ+,+,,+,-,-,,-线性相关.2.(D )提示:设向量组12s ⋅⋅⋅αααA :,,,:向量组t B ⋅⋅⋅12ββ,β:,,⎛⎫⎛⎫=→ ⎪ ⎪⎝⎭⎝⎭A O CB B (因向量组A 可被向量组B 表示),则()()()R R R r ===A B C , 所以A B ,故选(D )3.(C )提示:因0A =,则()4R <A ,A 经初等列变换化为阶梯阵B ,B 必有零列,该列就是其余列的线性组合.4.(B )提示:m n >时,n m ≤<A R (),又≤AB A R ()R (),则AB R ()<m ,AB 为降阶方阵,所以0AB =.5.(A )提示:1β由可由231ααα,,线性表示知12233λλλ11βααα=++,那么42233()2233122r k r r r K λλλβββ-++⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥=→=⎢⎥⎢⎥⎢⎥⎢⎥+⎢⎥⎢⎥⎣⎦⎣⎦1111ααααA B αα 又231ααα,,线性无关,且2β不能由231ααα,,线性表示,则A B R ()=R ()=4,即2312k +1αααββ,,,线性无关.这个结论肯定了(A )而排除了(B ),对条件(C ),取k =0即与题设矛盾,可排除. 对于(D ),取k =1时与(A )中k =1相同,已知(A )正确,从而否定(D ). 6.(B )7. 0abc ≠.提示:231ααα,,线性无关230⇔≠1ααα,,,即0000a cbc a b≠,由此求得0abc ≠.8. 向量组的秩为2. 提示:因为23412341234123423450123012334560246000045670369000⎡⎤⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥→→⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦⎣⎦1αααα------=------ 9. t =3. 提示:2312111211121120t 004t 2204t 2204520452003t 0⎡⎤⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥→→⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦⎣⎦1ααα---=-+--+------向量组的秩为22t ⇔= 10. a =-1. 提示:1221a 21212a 3,2a 312a 2130413a 43a 413a 31⎡⎤⎡⎤⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥→=⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦⎣⎦⎣⎦A αAααB -aa 0a ==+(,)=+++++a =-1时,010101R ⎡⎤⎢⎥⎢⎥⎢⎥⎣⎦B A ααB -=,(,)=R ()=1<2(向量个数),则A α与α线性相关.11. V 的维数是2,它的基()()21αα=1,2,0,=0,0,1.向量α的坐标是(3,-4).提示:对V 中任意向量()()(),2,x x y x y x ==1,2,0+0,0,1,向量()(),1,2,00,0,1线性无关. 12. 12k ≠. 13. 秩为3,125ααα,,是它的一个极大线性无关组. 14. 12331022βααα =+-. 15. 基础解系为(0,0,0,1,1)T=ξ,通解为(0,0,0,,)Tk k k ==x ξ(k 为任意常数). 16. (8,0,0,3)T=--x4.4.2 提高练习:1. 解 设有数1234,,,x x x x ,使11223344x x x x +++=ααααβ即 123411111111110112101121,(,)232430010351850010x x x a b a b x a a ⎛⎫⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪⎪-- ⎪ ⎪ ⎪⎪==→ ⎪ ⎪ ⎪⎪+++ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪++⎝⎭⎝⎭⎝⎭⎝⎭B A β (1)当a =-1,b 时,方程组无解,此时β不能表示为1234,,,αααα的线性组合; (2)当a =-1,b 时,方程组有唯一的解,此时β有1234,,,αααα的唯一线性表示,求解线性方程组12342344321341234121b ,0,,(1)(1)0b 0x x x x x x x x x x x a x b a x +++=⎧⎪-+=⎪⎨+=⎪⎪+=⎩+++βααααa+b+1-2b 解出=,===a+1a+1a+1-2b a+b+1=a+1a+1a+1.2. 解: 反证法:若110r r k k ++=αα 至少有一个0i k =,那么11111100i i i i r r k k k k --++++++==αααα ,由于r -1个向量是线性无关的,必有1110i i r k k k k -+====== ,这样,12,,,r ααα 线性无关,与假设矛盾. 3. 提示:利用过渡矩阵可逆.4. 提示:1231210023(,,,,)010*******⎛⎫⎪→- ⎪ ⎪--⎝⎭αααββ初等变换123,,ααα与123,,e e e 等价,则123,,ααα是3R 的一个基,并且1123212333+βαααβααα=2-,=3--2. 5. ()()1123123312,,,,111203-⎛⎫⎪==- ⎪ ⎪⎝⎭C αααβββ6. 提示:只需证()()R R R ⎛⎫== ⎪⎝⎭A AB B , 01212313501221000012300010100⎛⎫⎛⎫ ⎪ ⎪ ⎪ ⎪⎛⎫ ⎪ ⎪==→ ⎪ ⎪ ⎪⎝⎭ ⎪ ⎪ ⎪ ⎪-⎝⎭⎝⎭A CB ,所以()()2R R R ⎛⎫===⎪⎝⎭A AB B ,A B ,由此V 1= V 2. 7. 解:()12341234(,,,),,,=e e e e εεεεC1)()1123412120001,,,14240101-----⎛⎫ ⎪⎪== ⎪ ⎪ ⎪--⎝⎭C εεεε; 2)设α在基(2)下的坐标为1234,,,l l l l ,已知α在基(1)下的坐标为()()1234,,,1,1,1,0k k k k =-,根据坐标变换公式11223344121210000110142411010101l k l k l k l k ----⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎪ ⎪ ⎪⎪ ⎪- ⎪ ⎪ ⎪⎪ ⎪=== ⎪ ⎪ ⎪⎪ ⎪- ⎪ ⎪⎪⎪ ⎪ ⎪⎪ ⎪ ⎪ ⎪--⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭C 所以α在基(2)下的坐标为0,0,-1,1. 3) 13432=+-βεεε在基(1)下的坐标112213344121238000101142423010110k l k l k l k l ------⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎪ ⎪ ⎪⎪ ⎪ ⎪ ⎪ ⎪⎪ ⎪=== ⎪ ⎪ ⎪⎪ ⎪ ⎪ ⎪⎪⎪ ⎪ ⎪⎪ ⎪ ⎪ ⎪---⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭C 所以,β在基(1)下的坐标是-8,1,3,0.4)设由基(2)到基(3)的过渡矩阵为Q ,它可以认为是由基(2)到基(1)(过渡矩阵C ),再由基(1)到基(3)的变换,设由基(1)到基(3)的过渡矩阵为G ,则()()12341234,,,,,,==ηηηηe e e e G G ,于是由基(2)到基(3)的过渡矩阵为()12341212202168512000111131222,,,1424021110161223010112222335---------⎛⎫⎛⎫⎛⎫⎪⎪ ⎪⎪⎪⎪==== ⎪⎪ ⎪ ⎪⎪ ⎪ ⎪⎪ ⎪------⎝⎭⎝⎭⎝⎭Q CG C ηηηη.8. 提示:已知12,,,n ααα 线性无关,则1212120,0n n n ≠=≠αααP αααPαPαPα ,所以0≠P9. 提示:()123⎛⎫ ⎪→ ⎪ ⎪⎝⎭ααα139,,012000,则()1232R =ααα,,且12αα,为一个最大无关组 ()1231211013003a b ⎛⎫⎪ ⎪⎪→ ⎪ ⎪ ⎪- ⎪⎝⎭βββ,,,因()123123(,,)2R R ==βββααα,,,则03a b -=, 即3a b =,又3β可由向量组(2)线性表示,即可由最大无关组12αα,线性表示,那么1231313020106122103100103b bb b b===--=--ααβ,则5,15b a ==.10. 提示: 1)()()()2322232000103012==-⎛⎫⎪== ⎪ ⎪-⎝⎭AP Ax A x A x Ax A x Ax A x x Ax A x PB, 故000103012⎛⎫⎪= ⎪ ⎪-⎝⎭B2) 由111,---+=+A =PBP A I PBP PP ,所以 101134011+=+==--A I B I11. 提示: 2222231111111011110021λλλλλλλλλλλλλλλλ⎛⎫⎛⎫⎪⎪=→--- ⎪ ⎪⎪ ⎪--+--⎝⎭⎝⎭B(1)有唯一解21λ⇔≠-,,这时唯一解为 ()2111,,222x x x λλλλλ++=-==+++123. (2) 2λ=-时无解.(3) 1λ=有无穷多解,这时通解为 12111010001k k --⎛⎫⎛⎫⎛⎫⎪ ⎪ ⎪++ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭x =(k 1,k 2为任意常数).12.提示:(1)β可由123ααα,,线性表示()123⇔=αααx β,,有唯一解0λ⇔≠,且11 3λ≠-; (2)β可由123ααα,,线性表示,但表达式不唯一()123⇔=αααx β,,有无穷多解0λ⇔=;(3)β不能由123ααα,,线性表示()123⇔=αααx β,,无解3λ⇔=-13. 提示:(1)1,4k ≠-时,有唯一解 221232242,,111k k k k k x x x k k k+++-===+++; (2)k =1时,无解;(3) k =4时有无穷多解,全部解为 034101k -⎛⎫⎛⎫ ⎪ ⎪=+- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭x (k 为任意常数).14. 提示:设234(,,,)=1A αααα,则本题是要求a 、b 为何值时,=Ax β有解和无解.(1)1a =-且0b ≠时,β不能由1234αααα,,,线性表示 ;(2)1a ≠- 时,β可由1234αααα,,,唯一线性表示 1234b 1011a b b a a +++++++βαααα-2=a+1; 当1a =-且0b =时,β可由1234αααα,,,线性表示为1234(12)++-++βαααα121212=(-2c +c )c c c c (,12c c 为任意常数)15. 提示:先求出(1)的解,然后代入(2),定出m 、n 和t 的值1)(2,4,5,0)(1,1,2,1)T T k =---+x ; 2) 将(2,4,5,0)T---代入(2),得关于m 、n 和t 的线性方程组 2455451151m n t --+=-⎧⎪-+=-⎨⎪-=-+⎩解之得2,4,6m n t ===当2,4,6m n t ===时,(2)的系数矩阵的秩等于(1)的系数矩阵的秩,都是2,则基础解系含一个向量,可由验证(1)的基础解系()T1,1,2,1也是(2)的基础解系. 所以(1)与(2)是同解方程组.。
向量组的线性表示与线性相关性
向量组等价结论:向量组A : a1 ,a2 , ,am与B : b1,b2 , ,bl 等价的充分必要条件是: R( A) R(B) R( A, B)
分析:由定理2和向量组等价定义易推出结论成立
不等式推论: 若向量B : b1,b2, ,bs能由向量组A : a1,a2, ,am 线性表示,则: R( A) R(a1,a2, ,am ) R(B) R(b1,b2, ,bs )
班级:
星期 : 节
年月 日
教学目的 重点
掌握向量的概念,掌握向量组线性表示向量 (组)的判定方法,会用初等变换求解向量 的线性表达式。掌握线性相关性的概念和基 本判定方法。
向量组的线性表示、相关性及判定方法
作业
练习册
难点 向量组线性表示方法
讲授方法 讲授
讲授内容 主线
向量定义-分类—线性组合—线性表示及秩的 判断定理和推论—练习—向量组线性表示及 等价和秩的判断方法—向量组线性相关定义 -判定方法
给定向量组 A :a1, a2 , , am 和向量 b , 如果存在一组数 1, 2 , , m , 使
b 1a1 2a2 m am ,
则向量b 是向量组 A 的线性组合, 这时称向量 b能由向量组 A 线性表示。 线性表示的关键是线性表示系数的存在与求解
线性代数 第四章 向量组的线性相关性
这是s个同系数A的方程组AX1 b1, AX2 b2 , , AXs bs , 写成矩阵形式,即: ( AX1, AX2 , , AXs ) (b1,b2 , ,bs ), 令X ( X1, X2 , , X s ), B (b1,b2 , ,bs ),则上式成 矩阵方程组: AX B
向量组的线性相关性
向量组的线性相关性1.1向量组的线性相关性的概念与判定1.1.1向量组的线性相关性概念定义1: 给定向量组12(,,)m A ααα=⋅⋅⋅,如果存在不全为零的数 12,,,m k k k ⋅⋅⋅,使11220m m k k k ααα++⋅⋅⋅+=则称向量组A 是线性相关的, 否则称它是线性无关的.定义2:若向量组A 中每一个向量(1,2,,)i i t α= 都可由向量组{}1,,s B ββ= 线性表示,则称A 可由B 线性表示。
若两个向量组可互相线性表示,则称这两个向量组等价.性质:向量组的等价具有1)反射性;2)对称性;3)传递性.定义3: 向量组{}s αα,,1 称为线性无关,若它不线性相关,或:由11220s s k k k ααα+++= ,则必021====s k k k 。
即:11220s s x x x ααα+++= 只有唯一零解.定义6:一向量组的一个部分组称为一个极大线性无关组,如果这个部分组本身是线性无关的,并且从这向量组中任意添一个向量(如果还有的话).所得的部分向量组都线性相关.定义7:一个向量组的极大线性无关组所含向量个数称为这个向量组的秩数.性质:1.向量组{}r αα,,1 线性无关⇔{}r αα,,1 秩r =. 向量组{}r αα,,1 线性相关⇔{}r αα,,1 秩r <. 2.等价向量组的秩数相同.n P 中向量组的极大线性无关组的求法. 注意1: 对于任一向量组而言, 不是线性无关的就是线性相关的. 注意2: 若12,,m ααα⋅⋅⋅线性无关, 则只有当120m λλλ==== 时, 才有11220m m λαλαλα++⋅⋅⋅+=成立.注意3: 向量组只包含一个向量α 时,若0α=则说α线性相关; 若0α≠, 则说α 线性无关.注意4: 包含零向量的任何向量组是线性相关的.注意5: 对于含有两个向量的向量组, 它线性相关的充要条件是两向量的分量对应成比例, 几何意义是两向量共线; 三个向量线性相关的几何意义是三向量共面.1.1.2线性相关性的判定向量组12,,m ααα⋅⋅⋅ (当m 2≥时)线性相关的充分必要条件是12,,m ααα⋅⋅⋅中至少有一个向量可由其余1m -个向量线性表示.证明: 充分性. 设12,,m ααα⋅⋅⋅中有一个向量(比如m α)能由其余向量线性表示,即有112211m m m αλαλαλα--=++⋅⋅⋅+也就是112211(1)0m m m λαλαλαα--++⋅⋅⋅++-=因121,,,m λλλ-⋅⋅⋅,(-1)这m 个数不全为0,故12,,m ααα⋅⋅⋅线性相关.必要性. 设12,,m ααα⋅⋅⋅线性相关. 则有不全为0的数12,,,m k k k ⋅⋅⋅,使11220m m k k k ααα++⋅⋅⋅+=不妨设10k ≠, 则有32123111()()().m m k k k k k k αααα=-+-++- 即1α能由其余向量线性表示. 证毕1.2 向量组线性相关性的性质和应用1.2.1向量组线性相关性的性质:1.含零向量的向量组必线性相关,即{}s ααθ,,,1 线性相关.θααθ=⋅++⋅+⋅s 00112.一个向量组若有部分向量线性相关,则此向量组线性相关。
第4章向量组的线性相关性1-3
注意 1.行向量和列向量总被看作是两个不同的 行向量和列向量总被看作是两个不同的 向量; 向量; 2.行向量和列向量都按照矩阵的运算法则 行向量和列向量都按照矩阵的运算法则 进行运算; 进行运算; 3.当没有明确说明是行向量还是列向量时, 当没有明确说明是行向量还是列向量时, 都当作列向量 列向量. 都当作列向量
第四章 向量组的线性相关性
1、向量组及其线性组合 2、向量组的线性相关性 3、向量组的秩 4、线性方程组的解的结构 5、向量空间
第一节、 第一节、向量组及其线性组合
一、n维向量的概念 维向量的概念
定义1 定义1 n 个有次序的数 a1 , a2 ,L , an 所组成的数 维向量, 个分量, 组称为 n维向量,这 n个数称为该向量的 n个分量,
定理1 定理1 向量b能由向量组 A线性表示的充分必要
L 条件是矩阵 A = (α 1,α 2, ,α m )的秩等于矩阵 B = (α 1,α 2, ,α m , b )的秩 . L
定义3 定义3 设有两个向量组
A : α 1 , α 2 , L , α m 及B : β 1 , β 2 , L , β s . 线性表示, 若B组中的每个向量都能由 向量组 A线性表示,则 称 向量组B能由向量组A线性表示 . 若向量组 A与向 能相互线性表示, 量组B能相互线性表示,则称 这两个向量组等价. 向量组等价.
若干个同维数的列向量(或同维数的行向量) 若干个同维数的列向量(或同维数的行向量) 所组成的集合叫做向量组. 所组成的集合叫做向量组. 例如 矩阵A = (a ij )m×n 有n个m 维列向量 aj a1 a2 an
a11 a12 L a1 j L a1n a 21 a 22 L a 2 j L a 2 n A= M M M M M M a L a mj L a mn m1 a m 2 向量组 a1, a2 ,L, an 称为矩阵 A的列向量组 .
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
若干个同维数的列向量 (或同维数的行向量 ) 所
组成的集合叫做向量组.
定义3 向量组1 ,2 ,..., s (s 1)称为线性相关,如果
存在不全为零的数k1 , k2 ,..., ks ,使得
k1 1 k 2 2 ... k S s 0
否则称线性无关, 即
CH4
向量组的线性相关性
向量组的线性相关性
n维向量的概念 向量组的线性相关性 线性相关性的判别定理
向量组的秩
向量空间
§1 N维向量的概念
一、n维向量(Vector) 1、定义 n个数 a1 , a2 , , an 组成的有序数组
=(a1 , a 2 ,...,a n)
称为一个n维向量,其中 ai 称为第 i 个分量(坐标).
19
2. 定理6
向量组 a1 , a2 , 矩阵 A (a1 , a2 ,
, am 线性相关 它所构成的 , am ) 的秩小于向量个数 m ;
向量组线性无关 R ( A) m .
推论1 n个n维向量线性无关 | a1 , a2 ,L, an | 0
推论2当m n时, m个n维向量 线性相关 特别地 : n 1个n维向量 线性相关
线性方程组的向量表示 a11 x1 a12 x2 a x a x 21 1 22 2 am 1 x1 am 2 x2
a1n xn b1 a2 n xn b2 amn xn bm
n xn b x1 x 2 b 即 Ax b 或 (1 , 2 ,..., n ) xn 方程组与增广矩阵的列向量组之间一一对应.
三、应用举例
例1 设
1 1,1,0 , 2 0,1,1 , 3 (3,4,0)T
T T
3 1 2 1 . , , 其中 ( , ) ( , , ) 求 1 2 3 1 1 解 , 31 2 2 3, 1 2 3 1 0 3 0 31 2 2 3 3 1 2 1 1 4 1 0 1 0 2 T (0,1,2) . 1 0 3 4 4 1 2 3 1 1 1 1 1 4 0 1 0 1 T (4,4, 1) .
3. 定理1:向量组1 ,2 ,...,s ( s 2)线性相关
存在一个向量是其余向量的线性组合 或可被其他向量线性表出(示).
例2 =( 0, ... , 1, ...,0 ), i 1,2,...,n为n维单位向量 i
=(1 , 2 , ..., n )为任意n维向量,
亦即( x1 x s )a1 ( x1 x2 )a2 ... ( x s1 x s )a s 0,
因 a1 , a 2 , ...,a s 线性无关 ,故有
xs 0 x1 x x 0 1 2 x2 x3 0 ....... x s 1 x s 0
0 1 1 1 3 4 0 0 0 0 0 0 0 0 0
有无穷多解.取k3 1, k4 0,
得到方程组的一组解
(k1 ,k2 ,k3 ,k4 )=(1, 3,1,0) 即有:1 32 3 04 0, 故1 ,2 ,3 ,4线性相关.
可见 R (a1 , a2 , a3 ) 2 ,
故向量组 a1 , a2 , a3 线性相关 ;
同时 R (a1 , a2 ) 2 , 故向量组 a1 , a2 线性无关 .
例 3 已知向量组 a1 , a 2 , ...a s ( s 2)线性无关 , 设b1 a1 a 2 ,
4、对应分量相等的向量相等.
二、向量的运算 1、加法 (a1 ,a2 ,...,an ), (b1 ,b2 ,...,bn ),
a1 b1 , a2 b2 ,
, an bn , an bn
( ) a1 b1 , a2 b2 ,
k1 k2 2k3 3k4 0 2k 2k 4k 6k 0 1 2 3 4 3k 3 3k 4 0 即 3k1 4k 5k 19k 24k 0 2 3 4 1 3k1 k..,b s a s a1 , 讨论b1 , b2 , ...,bs线性相关性 .
证一
设 x1b1 x2 b2 ... xs bs 0,
即 x1 (a1 a2 ) x2 (a2 a3 ) ... x s (a s a1 ) 0,
则 =1 1+ 2 2 ... n n 故 , 1 , 2 ,..., n线性相关, 而 1 , 2 ,..., n线性无关.
21
定理:向量组1 ,2 ,..., s ( s 2)线性相关
存在一个向量是它前面向量的线性组合
推论:设1 ,2 ,..., s ( s 2)是由非零向量组成的 向量组, 若每个向量i (2 i s)都不是它 前面向量的线性组合,则1 ,2 , ..., s
设 i (ai 1 , ai 2 , ..., ain )T , 方程组 a11 x1 a21 x2 ... a s1 x s 0 i.e. a12 x1 a22 x2 ... a s 2 x s 0 (没) 有非零解. ....... an1 x1 an2 x2 ... ans x s 0
线性无关
定义 2 设n维向量 , a1 , a2 , L , am , 若存在 一组实数 k , k , L , k , 使得
1 2 m
=k1a1 k2 a2 L km am
则称 为向量 a 1 , a 2 , L , a m , 的一个线性组合 或称 能由向量 a , a , L , a 线性表示
(8) ( )
三维向量的全体所组成 的集合 3 T R { r ( x , y , z ) x, y, z R }
叫做三维向量空间. n 维向量的全体所组成的 集合
T R { X ( x1 , x2 , L , x n ) x1 , x2 , L , x n R } 叫做 n 维向量空间 . n
解
对矩阵 (a1 , a2 , a3 ) 施行初等行变换成行阶梯形 矩阵 ,
1 0 2 a1 , a2 , a3 1 2 4 1 5 7
5 r3 r2 2
r2 r1
r3 r1
1 0 2 0 2 2 0 5 5
1 0 2 0 2 2 0 0 0
18
对系数矩阵进行初等行变换 1 2 3 1 1 0 2 2 4 6 A 3 0 3 3 ... 0 0 4 5 19 24 0 3 1 6 7 k1 k 3 k4 0 同解方程组 k 2 3k 3 4k4 0
记作α,β,γ.
n维向量写成一行,称为行矩阵,也就是行向量, n维向量写成一列,称为列矩阵,也就是列向量, a1 a 2 如: an
2、几种特殊向量
1、元素是实数的向量称为实向量(Real Vector). 元素是复数的向量称为复向量(Complex Vector). 2、元素全为零的向量称为零向量(Null Vector). 3、维数相同的列(行)向量同型.
线性无关.
从向量组中找尽量多的线性无关向量
22
1 0 2 例 2 已知 a1 1, a2 2 , a3 4 , 1 5 7
试讨论向量组 a1 , a2 , a3 及向量组a1 , a2 的线性 相关性 .
向量个数 向量维数 未知数的个数 方程的个数
17
例1.设1 (1, 2, 3,4, 3)T , 2 (1, 2,0, 5,1)T ,
3 (2,4, 3, 19,6)T , 4 (3,6, 3, 24,7)T
试判断1 ,2 ,3 ,4的线性相关性. 解 : 设k11 k22 k33 k44 0
若k11 k2 2 ... k S s 0, 则k1 k2 ... k s 0
★
一个向量a=0线性相关,而 0时线性无关
★
★
两个向量线性相关
它们对应分量成比例
如果向量组中有零向量,则向量组一定线性相关.
16
二、判别方法 1.
向量组1 ,2 ,..., s线性相(无) 关 方程 x11 x22 ... xs s 0 (没)有非零解.
a1 j n个m维列向量. a2 j 其第j个列向量记作 j a mj
A (1 , 2 ,..., n )
§2 向量组的线性相关性
一、向量组的线性相关性定义 线性相关
向量 , 共线 不全为零的数k1 , k2使得k1 k2 0 向量 , , 共面 不全为零的数k1 , k2 ,k3使得k1 k2 k3 0 向量 , 不共线 若k1 k2 0,则k1 k2 0 向量 , , 不共面 若k1 k2 k3 0,则k1 k2 k3 0
2、数乘
=(a1 , a2 ,...,an),k R
, kan
k k ka1 , ka2 ,
向量的加法与数乘合称为向量的线性运算.
3、运算律 (设α,β,γ均是n维向量,λ,μ为实数) (1) (交换律) (2) ( ) ( ) (结合律) ( 3) O (4) ( ) O (5) 1 (6) ( ) ( ) ( ) (7) ( )