13.4 课题学习 最短路径问题 新版八年级数学上册
合集下载
相关主题
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
问题解决
A
如图,平移A到A1,使A A1等于河宽,连接A1B 交河岸于N作桥MN,此 时路径AM+MN+BN 最短.
A1
M N
M1 N1
B
理由;另任作桥M1N1,连接AM1,BN1,A1N1.
由平移性质可知,AM=A1N,AA1=MN=M1N1,AM1=A1N1 . AM+MN+BN转化为AA1+A1B,而AM1+M1N1+BN1 转 化为AA1+A1N1+BN1. 在△A1N1B中,由线段公理知A1N1+BN1>A1B 因此AM1+M1N1+BN1> AM+MN+BN
A A1 A2 M N P Q B
思维方法二
沿垂直于第一条河岸方 向平移A点至A1 点,沿 垂直于第二条河岸方向平移 B点至B1点,连接A1B1 分别交A、B的对岸于N、P 两点,建桥MN和PQ. 最短路径 AM+MN+NP+PQ+QB转化为 AA1+A1B1+BB1.
A A1
M N P Q B
思维方法三
作法:1.将点B沿垂直与河岸的方向平移一个河宽到E, 2.连接AE交河对岸与点M, 则点M为建桥的位置,MN为所建的桥。 证明:由平移的性质,得 BN∥EM 且BN=EM, MN=CD, B BD=CE, 所以A.B两地的距:AM+MN+BN=AM+MN+EM=AE+MN, 若桥的位置建在CD处,连接AC.CD.DB.CE, 则AB两地的距离为: M C AC+CD+DB=AC+CD+CE=AC+CE+MN, 在△ACE中,∵AC+CE>AE, ∴AC+CE+MN>AE+MN, N D E 即AC+CD+DB >AM+MN+BN 所以桥的位置建在CD处,AB两地的路程最短。
沿垂直于河岸方向依次把 B点平移至B1、B2,使 BB1=PQ,B1B2 =MN ; 连接B2A交于A点相邻河 岸于M点,建桥MN; 连接B1N交B1的对岸于 P点,建桥PQ; 从A点到B点的最短路径 为AM+MN+NP+MN +NP+PQ+QB转化 为AB2+B2B1+B1B.
A
M N P Q B2 B1 B
A
M N P Q B
思维方法一
1、沿垂直于第一条河岸的方向平移A点至 AA1使AA1=MN,此时问题转化为问题基本题 型两点(A1、B点)和一条河建桥(PQ)
A A1
点此播放讲课视频
B
2、利用基本问题的解决方法确定桥PQ: (1)在沿垂直于第二条河岸的方向平移A1至A2, 使A1A2=PQ. (2)连接A2B交A2的对岸Q点,在点处建桥PQ.
A1 A2 M N P Q G H B1 B
点此播放解题视频
延伸小结
同样,当A、B两点之间有4、5、 6,...n条河时,我们仍可以利用 平移转化桥长来解决问题.
例如: 沿垂直于河岸方向平移A点依次至 A1、A2、A3 ,...,An,平移距离分 别等于各自河宽,AnB交第n条河近B点河岸于 Nn,建桥MnNn,连接MnAn-1交第(n-1)条河近 B点河岸与Nn-1,建桥Mn-1Nn-1,...,连接 M1A交第一条河近B点河岸于N1,建桥M1N1, 此时所走路径最短.
A·
B
问题延伸一
如图,A和B两地之间 有两条河,现要在两 条河上各造一座桥MN 和PQ.桥分别建在何处 才能使从A到B的路径 最短?பைடு நூலகம்假定河的两 岸是平行的直线,桥 要与河岸垂直)
A
B
点此播放动画视频
思维分析
如图,问题中所走总路径是 AM+MN+NP+PQ+QB. 桥MN和PQ在中间,且方向不 能改变,仍无法直接利用“两 点之间,线段最短”解决问题, 只有利用平移变换转移到两侧 或同一侧先走桥长. 平移的方法有三种:两个桥长都平移 到A点处、都平移到B点处、MN平移 到A点处,PQ平移到B点处
问题延伸二
A
如图,A和B两地之间 有三条河,现要在两 条河上各造一座桥MN、 PQ和GH.桥分别建在 何处才能使从A到B的 路径最短?(假定河 的两岸是平行的直线, 桥要与河岸垂直)
B
思维分析
A
如图,问题中所走总路径是 AM+MN+NP+PQ+QG+GH+HB. 桥MN、PQ和GH在中间,且方 向不能改变,仍无法直接利用 “两点之间,线段最短”解决 问题,只有利用平移变换转移 到两侧或同一侧先走桥长. 平移的方法有四种:三个桥长都平移 到A点处;都平移到B点处;MN、PQ 平移到A点处;PQ、GH平移到B点处
A1
M N P Q G H B2 B1 B
问题解决
A
沿垂直于河岸方向依次把A点平移 至A1、A2,使AA1=MN,A1 A2=PQ,平移B点至B1 ,使BB1 =GH ; 连接A2B1交第三条河与B点相对 河岸于G点,交第二条河与G相邻 河岸于Q点,建桥GH、PQ; 连接A1P交第一条河与P相邻河岸 的N点,建桥MN; 此时从A到B点路径最短.
M
N
B
2、利用线段公理解决问题我们遇到了什 么障碍呢?
点此播放分析视频
思维火花
我们能否在不改变AM+MN+BN的前提 下把桥转化到一侧呢?什么图形变换能帮助 我们呢?
各抒己见
1、把A平移到岸边. 2、把B平移到岸边. 3、把桥平移到和A相连. 4、把桥平移到和B相连.
合作与交流
上述方法都能做到使AM+MN+BN不变吗?请 检验. 1、2两种方法改变了. 怎样调整呢? 把A或B分别向下或上平移一个桥长 那么怎样确定桥的位置呢?
M N P Q G H
B
问题解决
A
沿垂直于河岸方向依次把A点平 移至A1、A2、A3,使AA1 =MN,A1A2 =PQ, A2A3 =GH ; 连接A3B交于B点相邻河岸于H 点,建桥GH; 连接A2G交第二河与G对岸的P 点,建桥PQ; 连接A1P交第一条河与A的对岸 于N点,建桥MN. 此时从A到B点路径最短.
13.4 课题学习 最短路径问题
点此播放教学视频
造桥选址问题
如图,A和B两地在一条河的两岸,现要在 河上造一座桥MN.桥造在何处才能使从A到 B的路径AMNB最短?(假定河的两岸是平 行的直线,桥要与河垂直)
A
B
思维分析
A
1、如图假定任选位置造 桥MN,连接AM和BN,从 A到B的路径是AM+MN+BN, 那么怎样确定什么情况下最短 呢?
点此播放讲题视频
M N P Q G H B3 B2 B1 B
问题解决
A
沿垂直于河岸方向依次把A点平移 至A1,使AA1=MN,平移B点至 B1、B2 ,使BB1=GH,B1B2 =PQ ; 连接A1B2交第一条河与A点相对河 岸于N点,交第二条河与N相邻河岸 于P点,建桥MN、PQ; 连接B1Q交第三条河与Q相邻河岸 的G点,建桥GH; 此时从A到B点路径最短.
A A1 A2
P Q B
3、确定PQ的位置,也确定了BQ和PQ,此时问题 可转化为由A点、P点和第一条河确定桥MN的位置.
A A1 A1 A
M P Q Q N P
连接A1P交A1的对岸于N点,在N点处建桥MN.
问题解决
沿垂直于河岸方向依次把 A点A1、A2,使AA 1=MN,A1A2 = PQ ; 连接A2B交于B点相邻 河岸于Q点,建桥PQ; 连接A1P交A1的对岸 于N点,建桥MN; 从A点到B点的最短路径 为AM+MN+NP+P Q+QB.
A1 A2 A3 M N P Q G H B
问题解决
A
沿垂直于河岸方向依次把A点平 移至A1、A2、A3,使AA1 =MN,A1A2 =PQ, A2A3 =GH ; 连接A3B交于B点相邻河岸于H 点,建桥GH; 连接A2G交第二河与G对岸的P 点,建桥PQ; 连接A1P交第一条河与A的对岸 于N点,建桥MN. 此时从A到B点路径最短.