数字图像处理第六章线性系统
电子信息工程《数字图像处理》总复习题(第1-7章)(1)

二.选择题
1. 下面说法正确的是:( B )
A、基于像素的图像增强方法是一种线性灰度变换;
B、基于像素的图像增强方法是基于空间域的图像增强方法的一种;
C、基于频域的图像增强方法由于常用到傅里叶变换和傅里叶反变换,所以总比基于图
像域的方法计算复杂较高;
D、基于频域的图像增强方法比基于空域的图像增强方法的增强效果好。
灰度图像是指每个像素的信息由一个量化后的灰度级来描述的数字图像,灰度图像中 不包含彩色信息。标准灰度图像中每个像素的灰度值是 0-255 之间的一个值,灰度级数为 256 级。
彩色图像是根据三原色成像原理来实现对自然界中的色彩描述的。红、绿、蓝这三种 基色的的灰度分别用 256 级表示,三基色之间不同的灰度组合可以形成不同的颜色。
4. 图像与灰度直方图间的对应关系是:( B )
A、 一一对应 B、 多对一
C、 一对多
D、 都不对
一幅图像只有一个灰度直方图与之对应;但是内容不同的图像,他们的直方图有可能一
样。
5. 下列算法中属于局部处理的是:( D )
A、 灰度线性变换 B、二值化 C、 傅立叶变换 D、 中值滤波
6. 一幅 256*256 的图像,若灰度级数为 16,则该图像的大小是:( B )
分析。 ⑤图像识别与理解:通过对图像中各种不同的物体特征进行定量化描述后,将其所期望获
得的目标物进行提取,并且对所提取的目标物进行一定的定量分析。 2. 简述图像几何变换与图像变换的区别。
①图像的几何变换:改变图像的大小或形状。比如图像的平移、旋转、放大、缩小等,这 些方法在图像配准中使用较多。
②图像变换:通过数学映射的方法,将空域的图像信息转换到频域、时频域等空间上进行 分析。比如傅里叶变换、小波变换等。 3. 简述数字图像处理的至少 4 种应用。
数字图像处理第六章

彩色图像锐化(拉普拉斯微分)
RGB图像的 拉普拉斯变换 HSI图像的亮度I分量 图像的拉普拉斯变换 a图像和b图像的
差别图像
图a
图bLeabharlann 图c图c的原因:图a像素的锐化是不同彩色的锐化,而图b仅仅是亮度的 锐化,原彩色分量(色调H和饱和度S)保持不变
(把一幅图像分成多个区域)
基于彩色的图像分割
例: 多 R 光 谱 图 像 B 彩 色 编 码 R
G B 合 成
华盛顿特区的光谱卫星图像 G
近 红 外 近 红 外 代 替 R
木星卫星的伪彩色图像
在复杂图像中对感 兴趣的事物进行可 视化处理
活火山最 近喷出的 物质
第六章 彩色图像处理
彩色图像基础知识 彩色空间 伪彩色图像处理
全彩色图像处理
彩色变换
彩色图像平滑和尖锐化
全彩色图像处理
全彩色图像处理研究分为两大类:
分别处理每一分量图像,然后,合成彩色图像
直接对彩色像素处理:3个颜色分量表示像素
向量。令c代表RGB彩色空间中的任意向量
全彩色图像处理
彩色分量是坐标(x,y)的函数,有MN个这样的向量
对大小为 M N 的图像
彩色变换
彩色变换的简单形式
si Ti r1 , r2 ,..., rn
ri 和 si 是 f x , y 和
变量
g x, y
i 1,2,..., n
在任何点处彩色分量的
T1 , T2 ,...Tn 是一个对
射函数集
ri 操作产生 s i 的变换或彩色映
选择的彩色空间决定n的值,如RGB彩色空间,n=3,
研究生 数字图像处理 习题解答参考

习题 第 第 第 第 5 6 7 8 章 章 章 章 章 4 2 3 1 2 第 12 第 14 第 16 第 18 第 21 章 章 章 章 章
习题 10 补充题 7 3 1
第 11
习题解答参考
1. 有一幅在灰色背景下的黑白足球的图像,直方图如下所示。足球的直径为 230mm,其像素间距 为多少?(第 5 章 习题 4) [0 520 920 490 30 40 5910 240 40 60 50 80 20 80 440 960 420 0 ]
255 DB
0 = a ⋅ 32 + b 255 = a ⋅ 200 + b
解得:a=1.52 b=-48.57
0 32 -48.57 200 DA
GST 函数为: DB = 1.52DA − 48.57
DB ∈[0,255]
3. 下面是两幅大小为 100×100,灰度极为 16 的图像的直方图。求它们相加后所得图像的直方图? [0 [600 0 1000 0 10000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0] 0] 1800 2500 1900 1100 800 200 0
t
可验证:
1 1 1 1 1 1 1 1 1 1 1 ∗ 1 1 1 = 1 1 1 1 1 1 1 0 0
1 1 1 0 0
1 1 1 0 0
0 0 0 0 0
0 1 0 1 0 ∗ 1 0 0 0 0
⇒ ⇒ ⇒
a r = +1.23 br = −61.84 a g = +1.03 bg = −15.85 ab = +1 bb = +4
数字图像处理_期末考试及答案(三篇)

《数字图像处理》试卷答案(2009级)一、名词解释(每题4分,共20分)1.灰度直方图:灰度直方图(histogram)是灰度级的函数,它表示图象中具有每种灰度级的象素的个数,反映图象中每种灰度出现的频率。
它是多种空间域处理技术的基础。
直方图操作能够有效用于图像增强;提供有用的图像统计资料,其在软件中易于计算,适用于商用硬件设备。
灰度直方图性质:1)表征了图像的一维信息。
只反映图像中像素不同灰度值出现的次数(或频数)而未反映像素所在位置。
2)与图像之间的关系是多对一的映射关系。
一幅图像唯一确定出与之对应的直方图,但不同图像可能有相同的直方图。
3)子图直方图之和为整图的直方图。
2.线性移不变系统:一个系统,如果满足线性叠加原理,则称为线性系统,用数学语言可作如下描述:对于,若T[a+b]=aT[]+bT[]=a+b(2.15)则系统T[·]是线性的。
这里,、分别是系统输入,、分别是系统输出。
T[·]表示系统变换,描述了输入输出序列关系,反映出系统特征。
对T[·]加上不同的约束条件,可定义不同的系统。
一个系统,如果系统特征T[·]不受输入序列移位(序列到来的早晚)的影响,则系统称为移不变系统。
由于很多情况下序号对应于时间的顺序,这时也把“移不变”说成是“时不变”。
用数学式表示:对于y(n)= T[x(n)] 若y(n-)=T[x(n-)] (2.16)则系统是移不变的。
既满足线性,又满足移不变条件的系统是线性移不变系统。
这是一种最常用、也最容易理论分析的系统。
这里约定:此后如不加说明,所说的系统均指线性移不变/时不变系统,简称LSI/LTI系统。
3.图像分割:为后续工作有效进行而将图像划分为若干个有意义的区域的技术称为图像分割(Image Segmentation)而目前广为人们所接受的是通过集合所进行的定义:令集合R代表整个图像区域,对R的图像分割可以看做是将R分成N个满足以下条件的非空子集R1,R2,R3,…,RN;(1)在分割结果中,每个区域的像素有着相同的特性(2)在分割结果中,不同子区域具有不同的特性,并且它们没有公共特性(3)分割的所有子区域的并集就是原来的图像(4)各个子集是连通的区域4.数字图像处理:数字图像处理(Digital Image Processing)又称为计算机图像处理,它是指将图像信号转换成数字信号并利用计算机对其进行处理的过程。
(完整版)数字图像处理每章课后题参考答案

数字图像处理每章课后题参考答案第一章和第二章作业:1.简述数字图像处理的研究内容。
2.什么是图像工程?根据抽象程度和研究方法等的不同,图像工程可分为哪几个层次?每个层次包含哪些研究内容?3.列举并简述常用表色系。
1.简述数字图像处理的研究内容?答:数字图像处理的主要研究内容,根据其主要的处理流程与处理目标大致可以分为图像信息的描述、图像信息的处理、图像信息的分析、图像信息的编码以及图像信息的显示等几个方面,将这几个方面展开,具体有以下的研究方向:1.图像数字化,2.图像增强,3.图像几何变换,4.图像恢复,5.图像重建,6.图像隐藏,7.图像变换,8.图像编码,9.图像识别与理解。
2.什么是图像工程?根据抽象程度和研究方法等的不同,图像工程可分为哪几个层次?每个层次包含哪些研究内容?答:图像工程是一门系统地研究各种图像理论、技术和应用的新的交叉科学。
根据抽象程度、研究方法、操作对象和数据量等的不同,图像工程可分为三个层次:图像处理、图像分析、图像理解。
图像处理着重强调在图像之间进行的变换。
比较狭义的图像处理主要满足对图像进行各种加工以改善图像的视觉效果。
图像处理主要在图像的像素级上进行处理,处理的数据量非常大。
图像分析则主要是对图像中感兴趣的目标进行检测和测量,以获得它们的客观信息从而建立对图像的描述。
图像分析处于中层,分割和特征提取把原来以像素描述的图像转变成比较简洁的非图形式描述。
图像理解的重点是进一步研究图像中各目标的性质和它们之间的相互联系,并得出对图像内容含义的理解以及对原来客观场景的解释,从而指导和规划行为。
图像理解主要描述高层的操作,基本上根据较抽象地描述进行解析、判断、决策,其处理过程与方法与人类的思维推理有许多相似之处。
第三章图像基本概念1.图像量化时,如果量化级比较小时会出现什么现象?为什么?答:当实际场景中存在如天空、白色墙面、人脸等灰度变化比较平缓的区域时,采用比较低的量化级数,则这类图像会在画面上产生伪轮廓(即原始场景中不存在的轮廓)。
线性系统课件

1.2.1 The terminology of Digital Image Processing
A picture is a restricted type of image
a representation made by painting, drawing, or photography, …a vivid, graphic, accurate description of an object or thing so as to suggest a mental image or give an accurate idea of the thing itself.
1.2.1 The terminology of Digital Image Processing
Digital image processing starts with one image and produces a modified version of that image Digital image analysis is taken to mean a process that takes a digital image into something other than a digital image, such as a set of measurement data or a decision
1.2.1 The terminology of Digital Image Processing
Chapter 1
Images and Digital Processing1.1来自Introduction (a)
1.
2.
Digital image processing—the manipulation of images by computers Several factors indicate continued growth perpetually declining cost of the computer equipment required Increasing availability of equipment for digitizing and displaying images
数字图像处理(许录平着)课后答案(全)

+a
+b
−b +a −a
h ( x, y )e − jux e − jvy dxdy e − jux dx ∫ e − jvy dy
−b
jua
+b
− e e − jvb − e jvb − ju − jv sin ua sin vb = 4E uv =E e
(3) H (u, v ) =
− jua
图像通信
图像输入
处理和分析
图像输出
图像存储
各个模块的作用分别为: 图像输入模块:图像输入也称图像采集或图像数字化,它是利用图像采集设备(如数码照相机、数 码摄像机等)来获取数字图像,或通过数字化设备(如图像扫描仪)将要处理的连续图像转换成适于计 算机处理的数字图像。 图像存储模块:主要用来存储图像信息。 图像输出模块:将处理前后的图像显示出来或将处理结果永久保存。 图像通信模块:对图像信息进行传输或通信。 图像处理与分析模块:数字图像处理与分析模块包括处理算法、实现软件和数字计算机,以完成图 像信息处理的所有功能。
《数字图像处理》各章要求及必做题参考答案
第一章要求 了解图像及图像处理的概念、图像的表达方法、图像处理系统的构成及数字图像处理技术的应用。 必做题及参考答案 1.4 请说明图像数学表达式 像? 解答:
I = f (x, y, z, λ , t,) 图像数学表达式 中, (x,y,z)是空间坐标,λ是波长,t 是时间,I 是光点(x,y,z) 的强度(幅度) 。 上式表示一幅运动 (t) 的、彩色/多光谱 (λ) 的、立体(x,y,z)图像。
⎡10 ⎢0 则 F1 = H 4 f1 H 4 = ⎢ ⎢0 ⎢ ⎣0 ⎡16 ⎢0 F3 = H 4 f 3 H 4 = ⎢ ⎢0 ⎢ ⎣0
数字图像处理第六章色彩模型与彩色处理课件

Chapter 6 Color Image Processing
6.1 彩色基础
在颜料或着色剂中 ,原色的定义是这样 的:
白:减去一种原色 , 反射或传输另两种 原色。故其原色是: 深红、青、黄。而二 次色是R、G、B。如 图6.4所示。
Chapter 6 Color Image Processing
Chapter 6 Color Image Processing
6.2 彩色模型
6.2.1 RGB彩色模型
下面介绍所谓 全RGB彩色子集。
Chapter 6
Color Image Processing
6.2 彩色模型
Chapter 6 Color Image Processing
6.2 彩色模型
6.3 伪彩色处理
6.3 伪彩色处理 给特定的灰度值赋以彩色。伪彩色的 目的是为了人眼观察和解释图像中的目标。
Chapter 6 Color Image Processing
6.3 伪彩色处理
6.3.1 强度分层
参见图6.18,图像被看成三维函数。
Chapter 6 Color Image Processing
6.3.2 灰度级到 彩色转换
例6.5是一突出 装在行李内的爆炸物 的伪彩色应用。
Chapter 6 Color Image Processing
6.3 伪彩色处理
6.3.2 灰度级到彩 色转换
例6.5是一突出装 在行李内的爆炸物的伪彩 色应用。
Chapter 6 Color Image Processing
6.3 伪彩色处理
Chapter 6 Color Image Processing
6.3 伪彩色处理
数字图像处理6ppt课件

img_median=medfilt2(img_noise); %对附加有椒盐噪声的图像实行中 值滤波
figure; imshow(img_median,[]); %显示中值滤波后的图像
img_median2=medfilt2(img_median); %对中值滤波处理后的图像再次 实行中值滤波
figure; imshow(img_median2,[]); %显示再次中值滤波后的图像
erage',3));
figure; imshow(img_mean,[]); %显示逆谐波滤波后的图像
Q=1.5;
%对高斯噪声图像实行Q取正数的逆谐波滤波
img_mean=imfilter(img_noise.^(Q+1),fspecial('average',3))./imfilter(img_noise.^Q,fspecial('av
%矩阵点乘实现频域滤波
out = ifftshift(out);
%原点移回左上角
out = ifft2(out);
%傅里叶逆变换
out = abs(out);
%取绝对值
out = out/max(out(:)); figure,imshow(out,[]);
%归一化 %显示滤波结果数字图像处理6
数字图像处理6
for i=1:M
(完整版)数字图像处理课后题答案

1. 图像处理的主要方法分几大类?答:图字图像处理方法分为大两类:空间域处理(空域法)和变换域处理(频域法)。
空域法:直接对获取的数字图像进行处理。
频域法:对先对获取的数字图像进行正交变换,得到变换系数阵列,然后再进行处理,最后再逆变换到空间域,得到图像的处理结果2. 图像处理的主要内容是什么?答:图形数字化(图像获取):把连续图像用一组数字表示,便于用计算机分析处理。
图像变换:对图像进行正交变换,以便进行处理。
图像增强:对图像的某些特征进行强调或锐化而不增加图像的相关数据。
图像复原:去除图像中的噪声干扰和模糊,恢复图像的客观面目。
图像编码:在满足一定的图形质量要求下对图像进行编码,可以压缩表示图像的数据。
图像分析:对图像中感兴趣的目标进行检测和测量,从而获得所需的客观信息。
图像识别:找到图像的特征,以便进一步处理。
图像理解:在图像分析的基础上得出对图像内容含义的理解及解释,从而指导和规划行为。
3. 名词解释:灰度、像素、图像分辨率、图像深度、图像数据量。
答:像素:在卫星图像上,由卫星传感器记录下的最小的分立要素(有空间分量和谱分量两种)。
通常,表示图像的二维数组是连续的,将连续参数 x,y ,和 f 取离散值后,图像被分割成很多小的网格,每个网格即为像素 图像分辨率:指对原始图像的采样分辨率,即图像水平或垂直方向单位长度上所包含的采样点数。
单位是“像素点/单位长度”图像深度是指存储每个像素所用的位数,也用于量度图像的色彩分辨率.图像深度确定彩色图像的每个像素可能有的颜色数,或者确定灰度图像的每个像素可能有的灰度级数.它决定了彩色图像中可出现的最多颜色数,或灰度图像中的最大灰度等级(图像深度:位图图像中,各像素点的亮度或色彩信息用二进制数位来表示,这一数据位的位数即为像素深度,也叫图像深度。
图像深度越深,能够表现的颜色数量越多,图像的色彩也越丰富。
)图像数据量:图像数据量是一幅图像的总像素点数目与每个像素点所需字节数的乘积。
数字图像处理第六章

L 1
平均码长
B
i 0
L 1
i
pi
i
是灰度值为i的编码长度
B 冗余度为 r H 1
编码效率为
H 1 B 1 r
6.3 统计编码方法
6.3.2 霍夫曼编码 Huffman编码是1952年由Huffman提出的一种编码方法。 这种编码方法是根据信源数据符号发生的概率进行编码的。 思想:在信源数据中出现概率越大的符号,编码以后相应 的码长越短;出现概率越小的符号,其码长越长,从而达 到用尽可能少的码符表示信源数据。它在无损变长编码方 法中是最佳的。下面通过实例来说明这种编码方法。 设输入编码为 X x1 , x2 , x3 , x4 , x5 , x6 ,其频率 分布分别为P(x1)=0.4 ,P(x2)=0.3,P(x3)=0.1,P(x4) =0.1,P(x5)=0.06,P(x6)=0.04。求其最佳霍夫曼编码
图像数据的特点之一是信息量大。海量数据 需要巨大的存储空间。如多媒体中的海量图像数 据,不进行编码压缩处理,一张600M字节的光盘, 能存放20秒左右的640× 480像素的图像,没有 编码压缩多媒体信息保存有多么困难是可想而知 的。 在现代通信中,图像传输已成为重要内容之 一。采用编码压缩技术,减少传输数据量,是提 高通信速度的重要手段。 可见,没有图像编码与压缩技术的发展,大 容量图像信息的存储与传输是难以实现的,多媒 体、信息高速公路等新技术在实际中的应用会遇 到很大困难。
行程编码:4a3b2c1d5e7f (共(8+3)*6=66Bits )
Huffman编码: f=0 e=10 a=110 b=1111 c=11100 d=11101
110110110110111111111111111001110011101101010101000000 00 (共 4*3+3*4+ 2*5+1*5+5*2+7*1=56 bits) 176 66 56
数字图像处理第六章

转移函数的设计思路:允许一定频率通过(保留某些频率分
量),限制或消减另一些频率分量(消除某些频率分量),得
到需要的增强效果
数字图像处理第六章
a 损坏的集成 电路板图
b a的频谱图
数字图像处理第六章
a c
二二维维低高通通滤滤波波数函函字数数图像处理db第六章高低通通滤滤波波结结果果
高通滤波增强结 果,(所加常数 为滤波器高度的 一半)
数字图像处理第六章
实现原理:卷积定理--时域卷积,频域乘积 (一个信号经过一个系统后输出是信号与系统函数的卷积)
f(x,y)
F(u,v) FFT
G(u,v)=F(u,v)H(u,v)
转移函数 H(u,v)
I FFT
g(x,y)
f(x,y):实际(原始)图象 , g(x,y) :增强图象 H(u,v) :转移函数(频率传递函数)(频域处理中的关键)
数字图像处理第六章
6.1 频域增强原理
原理:让某个范围内的分量或某些频率分量受到抑制,而其 他分量不受影响,就可以改变输出图像的频率分布,达到不 同的增强目的。
频域空间增强的关键: 将图像从图像空间(频域空间)转换到频域空间(图像空间) 所需的变换,用T表示 在频域空间对图像进行增强的操作,以EH做表示 增强表示为:g(x,y)=T-1{EH[T[f(x,y)]]}
第六章 频域 图象增强
本章说明 6.1 频域增强原理 6.2 低通滤波 6.3 高通滤波 6 .4 带通和带阻滤波器 6 .5 同态滤波 6.6 频域技术和空域技术
数字图像处理第六章
本章说明
本章内容:从本章开始讲解图象处理的基本方法,本章主要讲 解频域处理的各种方法,图象增强属于整个 图象处理系统中的预处理部分,有很重要的作用。
图像处理课件-chapter6讲解

X射线管
准直器
扫描
检测器
测量电路
计算机
CT扫描成像的示意图
1
第一代CT
单个探测器 平移-旋转 并行光光束
(From G. Wang)
1
第二代CT
多个探测器 平移-旋转 小扇形光束
(From G. Wang)
1
第三代CT
多个探测器 平移-旋转 大扇形光束
(From G. Wang)
1
➢ CT一次平移扫描所获得的输出信号
F
u,
vexp
j
2ux
vdudv
F
u,
v
vdv
exp
j
2uxdu
F
u,0exp
j
2uxdu
2
上式表明gy(x)是F(u,0)的傅立叶反变换 。或者说gy(x)的傅立叶变换G(u)与 F(u,0)相同。由此可知,函数f(x,y)在x 轴上投影的傅立叶变换等于f(x,y)的傅立 叶变换在(u,v)平面上沿u轴平面上的切 片。
f x, y
f
x,
y;
d
0
3
➢ 由此可得,用傅立叶变换法重建图像的 步骤如下:
➢ ① 根据式(6.12)或式(6.18)对N个不 同θ方向上投影进行一维傅立叶变换。
➢ ② 在傅立叶变换空间从极坐标向直角坐 标插值。
➢ ③ 利用式(6.15)或离散形式的傅立叶 频谱进行反变换得到重建图像。
3
6.4 卷积逆投影重建
1 f (x, y) e xp[ j2 r(xu yv)]dxdy F (u, v)
G(r, ) F(r cos ,r sin ) F(u,v)
3
上式表明,f(x,y)在一条与x轴夹角为θ, 离开原点距离为r的直线上的投影的傅立 叶变换等于二维傅立叶变换在与u轴成θ 方向上的切片,这就是投影定理,也称 之为切片定理。
数字图像处理期末重点复习

1.欧氏距离:坐标分别位于(x,y)和(u,v)处的像素p和像素q之间的欧氏距离定义为:D e(p,q)=(x−u)2+(y−u)212。
2.街区距离:坐标分别位于(x,y)和(u,v)处的像素p和像素q之间的街区距离定义为:D4p,q=x−u+y−v。
3.棋盘距离:坐标分别位于(x,y)和(u,v)处的像素p和像素q之间的街区距离定义为:D8p,q=man(x−u,y−v)。
4.灰度数字图像有什么特点?答:灰度数字图像的特点是只有灰度(亮度)属性,没有彩色属性。
对于灰度级为L的图像,起灰度取值范围为[0,L-1].5.一副200×300的二值图像、16灰度级图像和256灰度级图像分别需要多少存储空间?答:由于存储一副M×N的灰度级为L 的数字图像所需的位数为:M ×N×L,其中L=2k。
二值图像,16灰度级图像和256灰度级图像的k值分别为1、4和8,也即存储一个像素需要的位数分别为1位、4位和8位。
所以,一副200×300的二值图像所需的存储空间为200×300×1/8=7.5kB;一副200×300的16灰度级图像所需的存储空间为200×300×4/8=30kB;一副200×300的256灰度级的图像所需的存储空间为200×300×8/8=60kB。
6.简述采样数变化对图像视觉效果的影响。
答:在对某景物的连续图像进行均匀采样时,在空间分辨率(这里指线对宽度)不变的情况下,采样数越少,即采样密度越低,得到的数字图像阵列M×N越小,也即数字图像尺寸就越小。
反之,采样数越多,即采样密度越高,得到的数字图像阵列M×N 越大,也即数字图像的尺寸就越大。
7.简述灰度级分辨率变化对图像视觉效果的影响。
答:灰度级分辨率是指在灰度级别克分辨的最小变化。
灰度级别越大,也即图像的灰度级分辨率越高,景物图像总共反映其亮度的细节就越丰富,图像质量也就越高。
第6章 遥感数字图像处理_图像变换(2)

IR R IR R
式中:IR为遥感多波段图像中的近红外 (infrared)波段;R为红波段。 利用植被指数可监测某一区域农作物长势,并 在此基础上建立农作物估产模型,从而进行大 面积的农作物估产。
南京紫金山和玄武湖的NDVI分布
LANDSAT7的ETM影像,2000.6
常用的红外(IR)与红(R)波段
其中, R、G、B ∈[0, 1],r,g,b ∈[0, 1],M=max[R、 G、B],m=min[r、g、b] 注意,R、G、B中至少有一个值是0,与最大值的 颜色对应,并且至少有一个的值是1,与最小值 的颜色对应。
RGB到HSI
I M m 2
如果 M m , S 0 如果 I 0 . 5, S 如果 I 0 . 5, S M m M m M -m 2M m , S 的取值范围是 [ 0 ,1]
例如,在地质探测中,地质学家用TM的某种组 合解译矿石类型:B3/B1突出铁氧化物,B5/B7 突出粘土矿物,B5/B4突出铁矿石,B5/B6突出 大片白陶土蚀变区域,B4/B3突出植被信息, B5/B2分离陆地和水体,等等。
波段比值方法还可以用来探测地物随季节变化 的信息。例如,如果需要监测地区植被的变化, 可以使用不同季节的第3波段的比值,新建立的 波段可能是20060810B3/20040810B3。图像的 时段可以是不同年的同一个月,或同一年的不 同月,新产生的波段将突出变化信息,变化的 像素具有较高的亮度值。没有变化的像素值较 低,在图像中比较暗。
传感器Landsat TM所对应的指数函数
函数名称
归一化植被指数(NDVI) 比值植被指数(IR/R) 差值植被指数(Veg.index) 转换植被指数(TNDVI) 氧化铁指数(IRON OXIDE)
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
厦门大学机电系
第六章 滤波和滤波器设计
线性系统理论 卷积的定义与性质 经典数字滤波
低通滤波器 高通滤波器 带通和带阻滤波器
一、线性系统理论
系统 线性系统
线性时不变系统
系统的冲击响应 h(s) 系统的传递函数 G (s )
二、卷积的定义和性质
−1
卷积的过程
低通滤波器
带通滤波器
带阻滤波器
高通滤波器
重要术语
线性系统-Linear 线性系统-Linear System 卷积-Convolution 卷积-Convolution 滤波-Filtering 滤波-Filtering 滤波器-Filter 滤波器-Filter 冲击响应-Shock 冲击响应-Shock Response 传递函数-Transfer 传递函数-Transfer Function
y (t ) =
∫
∞
y = g∗x f *g = g* f f * ( g + h) = f * g + f * h f * ( g * h) = ( f * g ) * h ∂ [ f * g ] = f '*g = f * g ' ∂t
−∞
g (t − τ ) x (τ ) d τ
பைடு நூலகம்积定理
F{ f (t ) * g (t )} = F ( s )G ( s ) F {F ( s )G ( s )} = f (t ) * g (t )