人教版必修一《集合的概念》课件

合集下载

人教版必修一:1.1集合的概念(共31张PPT)

人教版必修一:1.1集合的概念(共31张PPT)


2、互异性:集合中的元素是互异的。即集合元素是没有重复现象的。 (互不相同)
集合中元素的特性(判定是否是集合的依据)
先思考以下两个问题:
① 高一级身高较高的同学,能否构成集合?

② 高一级身高160cm以上的同学,能否构成集合?

③ 2, 4, 2 这三个数能否组成一个集合?

④ 玩斗地主时,3、4、5、6、7是一个顺子,那如果出牌时摆成5、6、3、4、7,还
集合中元素的特性(判定是否是集合的依据)
集合相等: 只要构成两个集合的元素是一样的,我们就称这两个集合相等.
下面两组集合分别是否相等?
集合一:不超过5的自然数组成的集合 集合二:0,1,2,3,4,5组成的集合
集合三:不超过5的奇数组成的集合

集合四:1,3, 5组成的集合
元素与集合的关系
高一级所有的同学组成的集合记为A, a是高一(7)班的同学,b是高二(7)班的同 学,那么a与A,b与A之间各自有什么关系?
B={0,1}
集合B:印度洋,大西洋,太平洋组成的集合
(5)函数y x 1图象上的点组成的集合: A={0,1,2,3,4,5,6,7,8,9}
一般的,我们把研究对象统称为元素,通常用小写拉丁字母a,b,c…表示,把一些元素组成的总体叫做集合(简称为集),通常用大写拉丁字母A,B,C …表示。 集合中元素的特性(判定是否是集合的依据)
(4)若C { x N | 1 x 10}, 8 ____ C, 9.1____C
2、试选用适当的方法表示下列集合 (1)方程x2 9 0的所有实数组成的集合; (2)由小于8的所有素数组成的集合; (3)y x 3与y 2x 6的图象的交点组成的集合; (4)不等式4 x 5 3的解集

数学人教A版(2019)必修第一册1.1集合的概念(共24张ppt)

数学人教A版(2019)必修第一册1.1集合的概念(共24张ppt)

新课引入
课堂小结
1. 集合的定义; 3. 集合的分类;
元素
新课引入
概念形成
一、概念 元素:一般地,我们把研究对象统称为元素.
集合:把一些元素组成的总体叫做集合(简称为集).
我们通常用大写拉丁字母
表示集合,用小
写拉丁字母
表示集合中的元素.
康托尔(Georg Cantor,1845~ 1918) 德国数学 家, 集合论创始 人, 他于1895年 谈到“集合”一词.
新课引入
新知探究
探究1 分别找出下列例子的研究对象:
(1)
之间的所有偶数;
(2)武鸣高中今年入学的全体高一学生;
(3)所有的正方形;
(4)到直线 的距离等于定长 的所有点;
(5)方程
的所有实数根;
(6)地球上的四大洋.
集合
2, 4, 6, 8, 10
全体高一新生 全部正方形 点构成了直线
太平洋,大西洋,北冰洋, 印度洋
新课引入
概念深化
二、集合中元素的特性 1.确定性: 主要用来判断元素是否能构成集合; 2.互异性:考察较多,主要用来求参数的值; 3.无序性:主要用来判断两集合是否相等.
新课引入
概念深化
三、 元素与集合的关系
属于:如果 是集合 的元素,就说 属于集合 ,记作 ;
不属于:如果 不是集合 的元素,就说 不属于集合 ,记 作.
概念深化
二、集合中元素的特性
2.互异性:一个给定的集合中的元素是互不相同的.也就是说, 集合中的元素是不重复出现的.
例:英语单词mathematics(数学)中所有英文字母构成的集合 有________个元素.
8
新课引入

人教版高中数学必修第一册第一章1.1集合的概念课时1集合的概念【课件】

人教版高中数学必修第一册第一章1.1集合的概念课时1集合的概念【课件】
集,能求两个集合的并集与交集和给定子集的补集.
知识要点及教学要求
4. 能使用Venn图表达集合的基本关系并进行集合的基本运算,
体会数形结合的数学思想.
5. 通过对典型数学命题的梳理,帮助学生理解必要条件、充分条
件、充要条件的意义,理解性质定理与必要条件的关系、判定定
理与充分条件的关系、数学定义与充要条件的关系.
(3) 所有等边三角形;
(4) 方程 = 的实数解;
(5) 不等式x+2>0的所有实数解.
思路点拨:判断一组对象能否构成集合,关键是看这组对象是否确定.
【解】“高一(1)班个子高的男生”无确定的标准,因此(1)不能构成
集合.(2)(3)(4)(5)的元素有点、图形、实数等,虽然不尽相同,但它
怎么表示一个集合和集合中的元素?
【问题3】结合问题1,你能说出集合中的元素应具
有怎样的特征吗?
【活动2】理解元素与集合的关系,熟悉常用数集的
表示方法
【问题4】某中学2021级高一年级的20个班构成一个集合,
则高一(1)班是这个集合中的元素吗?高二(2)班呢?
【问题5】结合问题4,你能说出集合与元素之间 具有怎
(3)(4)中的元素表示出来.
【问题9】从上面的例子看到,我们可以用自然语言描述一
个集合.除此之外,还可以用什么方式表示集合呢?
【问题10】什么是列举法?什么是描述法?怎样用列举法和
描述法表示集合?
典例精析
【例1】(教材改编题)下列元素的全体能否构成一个集合?
(1) 高一(1)班个子高的男生;
(2) 平面上到原点的距离等于1的所有点;
3. 在呈现方式上,以选择题、填空题为主.
学法指导
用观察、比较法研究典型的数学实例、回顾旧知,

高中数学人教A版必修第一册课件集合的概念(课件共14张PPT)

高中数学人教A版必修第一册课件集合的概念(课件共14张PPT)

(2){(x, y)y 2x 3, x, y N*} (2){(1,1)}
(3){rr (1)n, n Z}
(3){1,1}
12345 (4){ , , , , , }
23456 (5){ x N | 9 N }
9 x
(6){ 9 N | x N } 9 x
(4){ xx n , n N * } n1
(5){0, 6, 8}
(6){1, 3, 9}
三、例题讲授
例5、设集合P={0, 2, 5}, Q={1, 2, 6},试求集 合S={a+b|a∈P, b ∈Q}。
例6、已知集合 A x | ax2 2x 1 0, a R, x R
(1)若A中有且只有一个元素,求a值,并求出相 应集合A;
1.1.1 集合的表示
2024年11月9日星期六
1、集合的表示方法
(1)列举法:把集合的元素一一列举出来,并 用花括号“{ }”括起来
列举法的优点: 可以很清楚地看清其中的元素和元素的个数
使用列举法必须注意: ①元素间用“,”分隔. ②元素不能遗漏. ③适用范围:ⅰ.含有有限个元素且个数较少的集合. ⅱ.元素个数较多或无限个但构成集合的元素有明显规律. 例如:不超过100的正整数构成的集合可表示为 {1,2,3,…,100}
错误表示法:实数集不能表示成 {实数集}或{全体实数}
R R
(3)描述法二(代表元素描述法)用集合 中元素的特征来描述集合。 描述法的一般情势:{x∈A| P(x)} ,简记为{x| P(x)} .
含义:在集合A中满足条件P(x)的x的集合,其中x为集 合的代表元素, P(x)为元素的共同特征(限定条件).
例如 (1) 大于0小于10的实数可表示为 {x|0<x<10} (2)大于0小于10的整数可表示为 {x∈N|0<x<10}

人教版高中数学必修1《集合的概念》PPT课件

人教版高中数学必修1《集合的概念》PPT课件

• 题型二 元素与集合的关系 • 【学透用活】
• 元素与集合的关系解读
a∈A与a∉A取决于a是不是集合A中的元素,只 唯一性
有属于和不属于两种关系 符号“∈”“∉”具有方向性,左边是元素, 方向性 右边是集合
[典例 2] (1)满足“a∈A 且 4-a∈A,a∈N 且 4-a∈N ”,有且只有 2
名称 自然数集 正整数集 整数集 有理数集 实数集
记法
N _________
_N_*_或N_+_
_Z__
_Q__
_R__
• [微思考] N与N*有何区别?
• 提示:N*是所有正整数组成的集合,而N是由0和所有的 正整数组成的集合,所以N比N*多一个元素0.
(二)基本知能小试
1.给出下列关系:①13∈R ;② 5∈Q ;③-3∉Z ;④- 3∉N ,其中正确的个
数为
()
A.1
B.2
C.3
D.4
解析:13是实数,①正确; 5是无理数,②错误;-3 是整数,③错误;- 3
是无理数,④正确.故选 B. 答案:B
2.已知集合 M 有两个元素 3 和 a+1,且 4∈M,则实数 a=________.
解析:由题意可知 a+1=4,即 a=3. 答案:3
• 知识点三 集合的表示方法
• [方法技巧] • 用列举法表示集合的3个步骤
• (1)求出集合的元素.
• (2)把元素一一列举出来,且相同元素只能列举一次.
• (3)用花括号括起来.
• 提醒:二元方程组的所有实数解组成的集合、函数图象 上的所有点构成的集合都是点的集合,一定要写成实数对 的形式,元素与元素之间用“,”隔开,如{(2,3),(5,- 1)}.

数学人教A版必修第一册1.1集合的概念课件

数学人教A版必修第一册1.1集合的概念课件

常用的数集 自然数集 正整数集 整数集 有理数集 实数集
记法
—N— —N—或—N— —Z—
—Q— —R—
新知探究3
练习
用符号“∈”或“∉”填空.
(1)0 N; 2
(3)0.5 Z;
(5) 1 Q.
3
(2)-3 N;
(4) 2 Z.
(6) R.
新知探究4
集合的表示方法
思考6:(1)地球上的四大洋 组成的集合如何表示? 列举法
x∈R
(2)集合中的元素都小于10;
x<10
这个集合可以通过描述其元素性质的方法来表示,
写作:x R x 10 .
新知探究4
集合的表示方法:描述法
描述法:设A是一个集合,我们把集合A中所有具有共同特征 P( x)的元素
所组成的集合表示为 { x A | p( x)} ,这种表示方法称为描述法.
元素与集合的概念
1.元素:一般的我们把研究对象统称为元素,
通常用小写拉丁字母a,b,c,...来表示.
2.集合:我们把一些元素组成的总体叫做集合(简称为集).
通常用大写拉丁字母A,B,C,...来表示.
集合中的元素
问题:组成集合的元素一定是数吗? 有哪些特性呢?
组成集合的元素可以是物、数、图、点等
新知探究2
方程x2-2=0的所有实数根
所有正整数组成的集合
1—10之间所有偶数组成的集合 方程x2-2=0所有实数根组成的集合
点 同一平面内到一个顶点的距离等于定长的所有点——圆 集 到定直线l的距离等于定长2的所有点——两条平行直线
所有正方形
其他 集合
石龙中学202X年入学的全体高一学生 地球上的四大洋

集合的概念ppt课件

集合的概念ppt课件
04
差集的应用举例:在数据筛选中,可以使用差集运算找出满足某一条 件但不满足另一条件的记录。
补集及其运算
补集的定义:对于全集U 和它的一个子集A,由全 集U中所有不属于A的元 素组成的集合称为A的补 集,记作∁UA或~A。
补集的运算性质:满足德 摩根定律,即 ∁U(A∩B)=(∁UA)∪(∁UB) , ∁U(A∪B)=(∁UA)∩(∁UB) 。
集合的包含关系
01
集合包含的定义
对于两个集合A和B,如果集合A的每一个元素都是集合B的元素,则称
集合B包含集合A。
02
集合包含的性质
如果集合B包含集合A,则A是B的子集,即A⊆B。
03
集合包含的符号表示
B⊇A表示集合B包含集合A。
04
集合的应用
集合在数学中的应用
01
02
03
描述数学对象
集合论是数学的基础,用 于描述各种数学对象及其 性质,如数、点、线、面 等。
偏序集的概念
偏序集的定义
偏序集是一种具有部分顺序关系的集合,其中元素之间的比较不是完全的,而是部分的。 偏序关系通常表示为≤。
偏序集的性质
偏序集具有一些重要的性质,如自反性、反对称性和传递性。此外,偏序集还可以有最大 元、最小元、上界和下界等概念。
偏序集的应用
偏序集在数学、计算机科学、经济学等领域有着广泛的应用,如用于描述数据结构中的排 序问题、经济学中的偏好关系等。
THANKS FOR WATCHING
感谢您的观看
似,但要考虑隶属度的影响。
幂集的概念
幂集的定义
给定集合A,由A的所有 子集(包括空集和A本 身)组成的集合称为A 的幂集,记作P(A)。
幂集的性质

高中数学集合的概念课件人教版必修一【实用课件】29页PPT

高中数学集合的概念课件人教版必修一【实用课件】29页PPT


29、在一切能够接受法律支配的人类 的状态 中,哪 里没有 法律, 那里就 没有自 由。— —洛克

30、风俗可以造就法律,也可以废除 法律。 ——塞·约翰逊
一【实用课件】
21、要知道对好事的称颂过于夸大,也会招来人们的反感轻蔑和嫉妒。——培根 22、业精于勤,荒于嬉;行成于思,毁于随。——韩愈
23、一切节省,归根到底都归结为时间的节省。——马克思 24、意志命运往往背道而驰,决心到最后会全部推倒。——莎士比亚
25、学习是劳动,是充满思想的劳动。——乌申斯基
谢谢!高中数学集合的概念课件人Fra bibliotek版必修•
26、我们像鹰一样,生来就是自由的 ,但是 为了生 存,我 们不得 不为自 己编织 一个笼 子,然 后把自 己关在 里面。 ——博 莱索

27、法律如果不讲道理,即使延续时 间再长 ,也还 是没有 制约力 的。— —爱·科 克

28、好法律是由坏风俗创造出来的。 ——马 克罗维 乌斯

人教版高中数学必修一《集合的概念》教学课件

人教版高中数学必修一《集合的概念》教学课件
(3)由数字1,2,3组成的所有三位数构成的集合. {123,132,213,231,312,321}.
人教版高中数学必修一《集合的概念 》》 教教 学学课课件件(共22张PPT)
人教版高中数学必修一《集合的概念 》》 教教 学学课课件件(共22张PPT)
拓展延伸
思考1:a与{ a }的含义是否相同?
思考2:集合{1,2}与集合{(1,2)}相同吗?
思考3:集合{y | y x2, x R}与集合 {y x2}相同吗? 思考4:集合 {(x, y) | y x2, x R}的几何意义如何?
y
y x2
人教版高中数学必修一《集合的概念 》》 教教 学学课课件件(共22张PPT)
x o
人教版高中数学必修一《集合的概念 》》 教教 学学课课件件(共22张PPT)
人教版高中数学必修一《集合的概念 》》 教教 学学课课件件(共22张PPT)
人教版高中数学必修一《集合的概念 》》 教教 学学课课件件(共22张PPT)
例1 用列举法表示下列集合:
(1)小于10的所有自然数组成的集合; (2)方程 x2=x 的所有实数根组成的集合.
解: (1)设小于10的所有自然数组成的集合为A,那么 A={0,1,2,3,4,5,6,7,8,9}.
知识探究(五)
思考:我们可以用自然语言描述一个集合,除此之 外还可以用什么方式表示集合呢?
人教版高中数学必修一《集合的概念 》》 教教 学学课课件件(共22张PPT)
人教版高中数学必修一《集合的概念 》》 教教 学学课课件件(共22张PPT)
考察下列集合: (1)小于5的所有自然数组成的集合; (2)方程 x3 x的所有实数根组成的集合. 思考1:这两个集合分别有哪些元素?

人教 高中数学必修第一册第一章《1.1集合的概念》课件(共17张ppt)

人教 高中数学必修第一册第一章《1.1集合的概念》课件(共17张ppt)
如:(1)小于5的答自案然:数{1组,成-的1}集合可表示为____. (2)方程x2-1=0的解集可表示为_{_x_∈__R_|_x_2-.1=0}
(4). Venn图
我们常常画一条封闭的曲线,用 它的内部表示一个集合.
例如,图1-1表示一个集合AA 图1-1
元素,称为空集,记为;
(4) 两个集合的元素若一样,则称它们相等。
4.几个常用数集:
(1) N: 自然数集(含0) 即非负整数集
(2) N+* : 正整数集(不含0) (3) Z:整数集 (4) Q:有理数集 (5) R:实数集
5.集合的几种表示法
(1).自然语言法
(2).列举法:适用对象:有限、有规律
取值范围.a≠-2 (互异性应用)
知识点2 元素与集合的关系
1. 用符号“∈”或“ ”填空
(1) 3.14 Q (2)
Q
(3) 0 N+ (4) (-2)0 N+ (5) 2 3 Q (6) 2 3 R
书本P5:1
温馨提示:分类讨论+检验
3.已知x2∈{1, 0,x},求实数x的值.
(3)无序性:集合中的元素是无
先后顺序的.
3.集合与元素的关系:
(1) 如果a是集合A的元素,就说a属于集 合A,记作a ∈ A;
如果a不是集合A的元素,就说a不属
于集合A,记作a A.
(2) 集合中的元素可以是数,点,式, 图,人,物……;
(3) 集合中的元素个数如果有限,称为有 限集;如果个数无限,称为无限集;如果没有
(5)小于10的所有自然数组成的集合; (6)1~20以内的所有素数组成的集合;
2、用描述法表示下列集合: (1)正偶数集; (2)被3除余2的正整数集合; (3)直角坐标平面内坐标轴上的点集.

人教版高中数学必修一课件:1.1《集合》 (共23张PPT)

人教版高中数学必修一课件:1.1《集合》 (共23张PPT)

(2)互异性:
一个给定集合中的元素是互不相同的.即集合 中的元素是不重复出现的。
(3)无序性:
元素完全相同的两个集合相仅当构成
这两个集合的元素是完全一样的.
三、元素与集合的关系
常见数集:
1. 自然数集(非负整数集): N
2. 正整数集: N*或N+
1. 已知集合S中有三个元素 a , b, c 是△ABC的三边,则△ABC一定不是 ( ) A. 钝角三角形; B. 直角三角形;
C. 锐角三角形; D. 等腰三角形
2、若x∈R,则数集{1,x,x2}中元素应 满足什么条件?
x y 9 3. 方程组 的解集用列举 x y 3 法或描述法表示为 。
一、集合的含义
看下面的几个例子: (1)1~20以内的所有素数; (2)高一(4)班的所有学生; (3)所有的正方形; (4)方程x2+3x-2=0的所有实数根。
一般地,我们把研究对象统称为元素,把一 些元素组成的总体叫做集合(简称为集),
二、集合的特性
(1)确定性:
集合中的元素必须是确定的。即给定一个集合, 任何一个元素在不在这个集合中就确定了。
4、已知x2∈ {1, x, 0}, 求实数x的值.
5 、 2 ) 补充 : 含有三个实数的集合可
b 表示为{ a , , 1 }, 也可表示为 a 2 2010 2006 2010 2006 {a , a 00 }, 求 aa bb . . a b b,, }, 求
6、已知集合A={x∈R|mx2-2x+3=0,
m∈R}且A中只有一个元素,求m的值.
课堂练习 P5 练习1、2

1. 集合的概念;

高中数学集合的概念1.1.1课件人教版必修一(共25张PPT)

高中数学集合的概念1.1.1课件人教版必修一(共25张PPT)

回顾交流
今天我们学习了哪些内容?
集合的含义 集合元素的性质:确定性,互异性,无序性
元素与集合的关系: ∊, ∉ 常用数集及其表示 集合的表示法:列举法、描述法
第11页 习题1.1 A组 第1、2、3、4题
集合的含义与表示
德国数学家,集合论的 创始者。1845年3月3 日生于圣彼得堡(今苏 联列宁格勒),1918 年1月6日病逝于哈雷。
初中学习了哪些集合的实例
数集 自然数的集合,有理数的集合,不等式x-7<3 的解的集合…
点集 圆(到一个定点的距离等于定长的点的集合) 线段的垂直平分线(到一条线段的两个端点的距离 相等的点的集合),等等.
“请我们班所有的女生起立!”,咱们班所有的 女生能不能构成一个集合?
“请我们班身高在1.70米的男生起立!”,他们 能不能构成一个集合?
判断以下元素的全体是否组成集合,并说明理由:
(1) 大于3小于11的偶数;
(2) 我国的小河流.
集合相等:只要构成这两个集合的元素 是一样的,则这个集合是相等的。
例:{两边相等的三角形}和{等腰三角形}
问题
如果用A表示高一(3)班学生组成的集合,a表示高 一(3)班的一位同学,b表示高一(4)班的一位同 学,那么a、b与集合A分别有什么关系?由此看出元 素与集合之间有什么关系?
他的著作有:《G.康托尔全集》1卷及《康托尔-戴德金通信集》等。
康托尔是德国数学家,集合论的创始者。1845年3月3日生于圣彼得堡,1918年1 月6日病逝于哈雷。
康托尔11岁时移居德国,在德国读中学。1862年17岁时入瑞士苏黎世大学,翌年 入柏林大学,主修数学,1866年曾去格丁根学习一学期。1867年以数论方面的论文获 博士学位。1869年在哈雷大学通过讲师资格考试,后在该大学任讲师,1872年任副教 授,1879年任教授。

集合的概念ppt课件

集合的概念ppt课件

(2) 设x B, 则x是整数,则x Z,且10 x 20. 因此, 用描述法表示为: B { x Z | 10 x 20}
因此,用列举法表示为 B {11, 12, 13, 14, 15, 16, 17, 18, 19}.
学习新知
我们约定, 如果从上下文的关系看, x R, x Z 是明确的, 那么, x R, x Z 可以省略, 只写其元素x.
学习新知
在初中,我们已经接触过一些集合,你能举出一些集合的例子吗?如:
自然数的集合
有理数的集合
不等式的解的集合
到一个定点的距离 等于定长的点的集合
到一条线段的两个端点 距离相等的点的集合
......
学习新知
观察下列实例:
1 1~10以内的所有奇数 2 方程x2-9=0的实数根 3 小于8的素数
集合
设A是一个集合,我们把集合A中,所有具有共同特征P(x)的元素x所组成的
集合表示为:
x A P(x)
我们称这种方法为描述法。
x为该集合的代表元素
P(x)表示该集合中的元素x所具有的性质
学习新知
例如,实数集R 中,有限小数和无限循环小数都具有 q ( p, q Z, p 0) 的 p
形式,这些数组成有理数集,我们将它表示为:
{0}.
(4) b
{a,b,c}.
【总结提升】求解此类问题必须要做到以下两点: ①熟记常见的数集的符号; ②正确理解元素与集合之间的“属于”关系。
总结新知 判断元素与集合关系的两种方法
直接法:
如果集合中的元素是直接给出的,只要判断该元素在已知集合中是否 出现即可,此时应先明确集合是由哪些元素构成的。
总结新知 思考:除字母表示法和自然语言之外,还能用什么方法表示集合?

高中数学集合的概念课件人教版必修一.ppt1.1.1

高中数学集合的概念课件人教版必修一.ppt1.1.1

如果a是集A的元素,记作: a ∈ A 如果a不是集A的元素,记作: a ∉A
例如,用A表示“ 1~20以内所有的整数”组成的集合,则有
4.常见的数集有哪些?分别要怎样来表示?
数集 自然数集(非负整数集) 正整数集 符号
N N* 或N+ Z Q R
整数集
有理数集 实数集
知识探究(一)集合的表示方法 问题1:通过我们对课本的预习,我们知道,课本为我们提供了 哪几种集合表示方法?
B={ x Z 10 x 20 }
用列举法表示为 B= { 11,12,13,14,15,16,17,18,19}
课堂练习 用适当的方法表示下列集合: (1)绝对值小于3的所有整数组成的集合;
(2)在平面直角坐标系中以原点为圆心,横坐标上的点 组成的集合;
(3)所有奇数组成的集合; (4)由数字1,2,3组成的所有三位数构成的集合.
知识探究(三)
思考1:a 与{a }的含义是否相同? 思考2:集合{1,2}与集合{(1,2)}相同吗? 思考3:集合{ y | y x 2 , x R} 与集合 { y x 2 } 相同吗? 思考4:集合 {( x, y) | y x 2 , x R}11,13,17,19}.
2.互异性
3.无序性
问题4:考察下列集合: (1)不等式2 x 7 3 的解组成的集合; (2)绝对值小于2的实数组成的集合.
思考1:这两个集合能不能用列举法表示? 思考2:如何用数学式子描述上述两个集合的元素特征? 思考3:上述两个集合还可以怎么表示? 思考4:这种表示集合的方法叫什么? 描述法 思考5:描述法表示集合的基本模式是什么? 用集合所含元素的共同特征表示集合的方法.
他的著作有:《G.康托尔全集》1卷及《康托尔-戴德金通信集》等。 康托尔是德国数学家,集合论的创始者。1845年3月3日生于圣彼得堡,1918年1 月6日病逝于哈雷。 康托尔11岁时移居德国,在德国读中学。1862年17岁时入瑞士苏黎世大学,翌年 入柏林大学,主修数学,1866年曾去格丁根学习一学期。1867年以数论方面的论文获 博士学位。1869年在哈雷大学通过讲师资格考试,后在该大学任讲师,1872年任副教 授,1879年任教授。 集合论是现代数学的基础,康托尔在研究函数论时产生了探索无穷集和超穷数的 兴趣。康托尔肯定了无穷数的存在,并对无穷问题进行了哲学的讨论,最终建立了较 完善的集合理论,为现代数学的发展打下了坚实的基础。

集合的概念课件-人教A版高中数学必修第一册

集合的概念课件-人教A版高中数学必修第一册

解题方法 (根据集合中元素的特性求解字母取值(范围)的3个步骤)
求解
根据集合中元素的确定性,解出字母的所有取值
检验 作答
根据集合中元素的互异性,对解出的值进行检验 写出所有符合题意的字母的取值
自主预习,回答问题
阅读课本3-5页,思考并完成以下问题
1.集合有哪两种表示方法?它们如何定义? 2.它们各自有什么特点? 3.它们使用什么符号表示?
(3)不能出现未被说明的字母.
[小试身手]
1.判断(正确的打“ √ ”,错误的打“×”)
(1)由1,1,2,3组成的集合可用列举法表示为{1,1,2,3}. ( × )
(2)集合{(1,2)}中的元素是1和2.
(×)
(3)集合A={xlx—1=0} 与集合B={1} 表示同一个集合.( √ )
答案: C
_个元素.
答案:2
所有解组成的集合中共有
题型分析 举一反三
题型一集合的含义
[例1] 考查下列每组对象,能构成一个集合的是(B ) ①某校高一年级成绩优秀的学生;
②直角坐标系中横、纵坐标相等的点;
③不小于3的自然数;
④202X年第23届冬季奥运会金牌获得者.
A.③④
B.②③④
C.②③
D.②④
解 题 方 法(判断一组对象能否组成集合的标准)
· 解题方法(描述法表示集合的2个步骤)
写代表元素
明确元素 的特征
分清楚集合中的元素是点还是数或是其 他的元素
将集合中元素所具有的公共特征,写在竖 线的后面
[跟踪训练二]
3. 用符号“∈”或“中”填空:
(1)A={xlx²—x=0}, 则1
A,—1
A;
(2)(1,2)

人教版高中数学必修一1.1.1_集合的含义与表示ppt课件

人教版高中数学必修一1.1.1_集合的含义与表示ppt课件
a∉A.
A,记作属于 . A,记不作属于
高一(1)班的学生组成集合A,a是高一(1)班的学生,b不是高一(1)班的学生 a与A,b与A之间有何关系? 提示:a∈A b∉A
Hale Waihona Puke 3.几种常用的数集及记法N
N*或N+
Z
Q
用“∈”或“∉”填空. 2________N; 2________Q;12________R; -3________Z;0________N*;5________Z. 提示:∈ ∉ ∈ ∈ ∉ ∈
[解] ∵1∈A,∴a+2,(a+1)2,a2+3a+3都可能等于1. ①若a+2=1,则a=-1,此时A中的元素为1,0,1与集合中元素的互异性矛盾 故舍去; ②若(a+1)2=1,则a=0或a=-2, 当a=0时,A={2,1,3}适合题意, 当a=-2时,A中的元素为0,1,1与集合中元素的互异性矛盾,舍去, ③若a2+3a+3=1,则a=-1或a=-2,由①②知都不合题意,舍去. 综上所述,a=0.
的、 确定 的.互不相同
(1)“高一(2)班1.78米以上的同学”、“16岁的少年”、 “大于1的数”能构成一个集合吗? 提示:能构成集合.
(2)“高一(2)班的高个子同学”、“年轻人”、“帅哥”、 “接近0的数”能构成集合吗? 提示:不能构成集合.
2.元素与集合的关系 (1)如果a是集合A中的元素,就说a (2)如果a不是集合A中的元素,就说a
• 一、释疑难 • 对课堂上老师讲到的内容自己想不通卡壳的问题,应该在课堂上标出来,下课时,在老师还未离开教室的时候,要主动请老师讲解清楚。如果老师已
经离开教室,也可以向同学请教,及时消除疑难问题。做到当堂知识,当堂解决。 • 二、补笔记 • 上课时,如果有些东西没有记下来,不要因为惦记着漏了的笔记而影响记下面的内容,可以在笔记本上留下一定的空间。下课后,再从头到尾阅读一

数学人教A版(2019)必修第一册1.1集合的概念(共26张ppt)

数学人教A版(2019)必修第一册1.1集合的概念(共26张ppt)
(2) π _______ Q
(3) 0_______N
(4) 0_______N+
(5) (-0.5)0_______Z (6) 2_______R
练习4.若a是R的元素,但不是Q的元素,则a一定是( C ) A、整数 B、分数 C、无理数 D、质数
问题5
• 集合是为了简洁、准确地表述数 学对象及研究范围的语言和工具, 那这个数学语言该如何规范呢?
探究5
(1)1~10之间的所有偶数; (2)海南中学今年入学的全体高一学生; (3)所有的正方形; (4)到直线l的距离等于定长d的所有点;
(5)方程 x2 3x 2 0 的所有实数根;
(6)地球上的四大洋.
• 我们可以用自然语言描述一个集合
探究5
• “1~10之间的所有偶数”组成的集合,里面的元素是确 定的,即2、4、6、8、10五个,我们可不可以用这几个 元素来表示这个集合呢?
只有两种状态:在或不在这个集合中。
• 如果a是集合A的元素,就说a属于集合A, 记作a∈A; 如果a不是集合A的元素,就说a不属于集 合A,记作a∉A.
问题4
• 为了方便描述,数学中一些常用的术语经常用一些符号 表示,如"<"、"≌"、"△"等.那么一些常用的数集能不能用 一些大家约定俗成,全部人都认可的符号表示呢?
问题6
• (1)你能用自然语言描述集合 {0,3,6,9}吗?
• (2)你能用列举法表示不等式x-7<3 的解集吗?
• 不等式x-7<3的解为x<10,因为满足这个条件的实数由 无数个,所以无法用列举法表示。但我们可以用解集中 元素的共同特征表示。如:x为实数,且x<10 • {x∈R|x<10}
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
具体方法是:在花括号内先写上表示这个集合元素的一般符号及取值(或变化) 范围,再划一条竖线,在竖线后写出这个集合中元素的共同特征.
例 不等式x-7<3的解集。
集合的表示
(1)自然语言表示法
1~20以内的质数组成的集合。 (2)列举法
把集合中的元素一一列举出来,以逗号隔开,并用花括号“{ }”括起来的表示 集合的方法叫做列举法.
先思考以下两个问题:
① 高一级身高较高的同学,能否构成集合?

② 高一级身高160cm以上的同学,能否构成集合?

③ 2, 4, 2 这三个数能否组成一个集合?

2、互异性:集合中的元素是互异的。即集合元素是没有重复现象的。 (互不相同)
集合中元素的特性(判定是否是集合的依据)
先思考以下两个问题:
解:(1) A {3, 3}
(2)B {2, 3,5,7}
y x3
(3)C

{(
x
,
y)
|

y

2x 6
} {(1, 4)}
(4)D { x | x 2}
例3
(1)所有偶数组成的集合:
{x | x 2k,k Z }
数集
(2)不等式2 x 3 0的解集: { x | 2 x-3<0}
解: (1)设小于10的所有自然数组成的集合为A, 则 A={0,1,2,3,4,5,6,7,8,9}
(2)设方程 x2=x 的所有实数根组成的集合为B, 则 B={0,1}
(3)设所求集合为C, 则 C={6,12,18}
集合的表示
你能用列举法表示不等式 x -7< 3 的解集吗? 无限集
(3)描述法: 用集合所含元素的共同特征表示集合的方法称为描述法。
或B={11,12,13,14,15,16,17,18,19 } (3)由所有非负偶数组成的集合
C={x | x=2n,n N }
集合的表示
(3)描述法: 用集合所含元素的共同特征表示集合的方法称为描述法。
A={x R | x<10 } B={x R | x2 -2=0 } C={x Z | 10<x<20 }
元素与集合的关系
练习1.若集合M 是由1和3两个数构成的集合, 则下列
表示方法正确的是( ).
A. 3 M
B.1 M
C. 1 M
D.1 M且3 M
元素与集合的关系
练习2.设A为1 20以内的质数组成的集合,则
1 ____ A, 2 ____ A 9 ____ A, 13 ____ A
所有描述的内容 都写在集合符号

写清楚元素的 一般符号
写清楚元素的 性质
集合的表示
描述法
列举法
A={x R | x2 2=0 }
A { 2, 2}
B={x Z | 10<x<20 } B={11,12,13,14,15,16,17,18,19 } C={x | x=2n,n N }
(4)若C { x N | 1 x 10}, 8 ____ C, 9.1____C
1、用、 填空
(1)设A为所有亚洲国家组成的集合,则
中国____A, 美国____A 印度____A, 英国____A
(2)若A Leabharlann x | x2 x}, 则 1 ____ A
集合中元素的特性(判定是否是集合的依据)
集合相等: 只要构成两个集合的元素是一样的,我们就称这两个集合相等.
下面两组集合分别是否相等?
集合一:不超过5的自然数组成的集合 集合二:0,1,2,3,4,5组成的集合
集合三:不超过5的奇数组成的集合

集合四:1,3, 5组成的集合
元素与集合的关系
高一级所有的同学组成的集合记为A, a是高一(7)班的同学,b是高二(7)班的同 学,那么a与A,b与A之间各自有什么关系?
1、集合中元素的三个特性: 确定性、互异性、无序性
2、元素与集合的关系
元素与集合的关系是个体与总体的关系 和
3、集合的表示方法:
(1)自然语言表示法
(2)字母法 (3)列举法 (4)描述法
4、集合的分类:有限集,无限集
(5)图示法——Venn图
如:2, 4, 2 这三个数不能组成一个集合,但2,4可组成集合. 无序性: 集合中的元素是不讲顺序的。即元素完全相同的两个集合,不论元素顺序
如何,都表示同一个集合。(不考虑顺序) 如:集合A:大西洋,太平洋,印度洋组成的集合
集合B:印度洋,大西洋,太平洋组成的集合
集合中元素的特性(判定是否是集合的依据)
集合的表示
(1)自然语言表示法
1~20以内的质数组成的集合。 (2)列举法
把集合中的元素一一列举出来,以逗号隔开,并用花括号“{}”括起来 的表示集合的方法叫做列举法.
{ } 2,3,5,7,11,13,17,19
例:地球上四大洋组成的集合: {太平洋,大西洋,印度洋,北冰洋}
集合的表示
例1、用列举法表示下列集合: (1) 小于10的所有自然数组成的集合; (2) 方程 x2=x 的所有实数根组成的集合; (3) 由1~20以内既能被2整除,又能被3整除的所有自然数组成的集合.
2,3,5,7,11,13,17,19 (3)描述法:
用集合所含元素的共同特征表示集合的方法称为描述法。
集合的表示
例2 用描述法和列举法描述下列集合
(1)方程 x2 -2=0 的所有实数根组成的集合 A={x R | x2 2=0 } (2)由大于10小于20的所有整数组成的集合
B={x Z | 10<x<20 }
∴-3,-1,1,3 满足题意.
例5 10.已知集合 A={x|ax2-3x+2=0}. (1)若 A 是单元素集合,求集合 A; [解析] (1)因为集合 A 是方程 ax2-3x+2=0 的解集, 则当 a=0 时,A={23},符合题意; 当 a≠0 时,方程 ax2-3x+2=0 应有两个相等的实数根, 则 Δ=9-8a=0,解得 a=98,此时 A={43},符合题意. 综上所述,当 a=0 时,A={23},当 a=98时,A={43}.
有限集通常用列举法来表示
无限集通常用描述法来表示
1、用、 填空
(1)设A为所有亚洲国家组成的集合,则
中国____A, 美国____A 印度____A, 英国____A
(2)若A { x | x2 x}, 则 1 ____ A
(3)若B { x | x2 x 6 0}, 3 ____ B
不满足集合中元素的互异性,∴a=-1 舍去.
当 a=-32时,经检验,符合题意.故 a=-32.
例4
6

(2015·湖





)








{
3 3-x

Z|x

Z}

________.
[解析] ∵3-3 x∈Z,x∈Z,
∴3-x=±1,或 3-x=±3.
∴3-3 x=±3,或3-3 x=±1.
跟踪训练1 (1)下列给出的对象中,能构成集合的是( ) A.著名数学家 B.很大的数 C.聪明的人 D.小于3的实数
解析 只有选项D有明确的标准,能构成一个集合.
集合中元素的特性(判定是否是集合的依据)
(2)下列各组对象可以组成集合的是( ) A.数学必修1课本中所有的难题 B.小于8的所有素数 C.直角坐标平面内第一象限的一些点 D.所有小的正数
那么这两个集合的元素一样吗?
一样
集合中元素的特性(判定是否是集合的依据)
确定性: 集合中的元素必须是确定的。即确定了一个集合,任何一个元素是不是这 个集合的元素也就确定了。 (具有某种属性)
如:高一级身高160cm以上的同学组成的集合. 互异性: 集合中的元素是互异的。即集合元素是没有重复现象的。 (互不相同)
点集
(6)函数y x 1与y 1的图象交点组成的集合:
{(x,y) | y x+1,y 1,x、y R} 或{(0,1)}
例3 9.已知集合 A 含有 a-2,2a2+5a,12 三个元素,且-3∈A,求 a 的值. [解析] ∵-3∈A,则-3=a-2 或-3=2a2+5a, ∴a=-1 或 a=-32. 当 a=-1 时,a-2=-3,2a2+5a=-3,
(3)若B { x | x2 x 6 0}, 3 ____ B
(4)若C { x N | 1 x 10}, 8 ____ C, 9.1____C
2、试选用适当的方法表示下列集合 (1)方程x2 9 0的所有实数组成的集合; (2)由小于8的所有素数组成的集合; (3)y x 3与y 2x 6的图象的交点组成的集合; (4)不等式4 x 5 3的解集
① 高一级身高较高的同学,能否构成集合?

② 高一级身高160cm以上的同学,能否构成集合?

③ 2, 4, 2 这三个数能否组成一个集合?

④ 玩斗地主时,3、4、5、6、7是一个顺子,那如果出牌时摆成5、6、3、4、7,还
是一个顺子吗?

⑤ 集合1中元素是: 3、4、5、6、7
集合2中元素是: 5、6、3、4、7
不等式的解集
(3)函数y x 1的自变量的值组成的集合:
{ x | y x+1}
函数自变量构成的集合
(4)函数y x 1的因变量的值组成的集合:
{ y | y x+1}
相关文档
最新文档