直线方程的几种形式
八年级一次函数 直线方程的几种形式

一次函数的图像是一条直线,所以我们习惯上把一次函数的解析式叫做这个一次函数所代表的那条直线的方程,下面我来介绍一下直线方程的几种形式:
1.一般式:适用于所有直线
表达式:Ax+By+C=0 (其中A、B不同时为0)
两直线平行时:A1/A2=B1/B2≠C1/C2
两直线垂直时:A1A2+B1B2=0
两直线重合时:A1/A2=B1/B2=C1/C2
两直线相交时:A1/A2≠B1/B2
2.点斜式:知道直线上一点(x0,y0),并且直线的斜率k存在,则直线可表示为
y-y0=k(x-x0)
当k不存在时,直线可表示为
x=x0
3.截矩式
不适用于和任意坐标轴垂直的直线和过原点的直线
知道直线与x轴交于(a,0),与y轴交于(0,b),则直线可表示为
4. 斜截式
当斜率存在时
方程为y=kx+b 当k>0时,y随x的增大而增大;当k<0时,y随x的增大而减小。
两直线平行时k1=k2
两直线垂直时k1×k2=-1
5.两点式
已知直线上两点A(x1,y1)与B(x2,y2)
那么此直线的方程可表示为:
x1≠x2 y1≠y2
6.当斜率不存在时,即直线垂直于x轴,直线方程为x=x1,x1为直线上任意一点的横坐标
注意:各种不同形式的直线方程的局限性:
(1)点斜式和斜截式都不能表示斜率不存在的直线;
(2)两点式不能表示与坐标轴平行或重合的直线;
(3)截距式不能表示与坐标轴平行或过原点的直线;
(4)直线方程的一般式中系数A、B不能同时为零。
直线的一般式方程

A ,经 B
C C C C ( ,0) (0, ) 过 , A 两点【横截距为 A , 纵截距为 B 】但是如果A=0那么斜率K=0, B
直线Ax+By+C=0平行于X轴, A=0且C=0则直线Ax+By+C=0与X轴重合;如果B=0那么 斜率K不存在直线Ax+By+C=0平行于Y轴,B=0且C=0则直线Ax+By+C=0与Y轴重合。
C 0 B C 0 B
C
AX+BY+C=0
A、B、C同号
例1 已知直线经过点(6,-4),斜率为-4/3,求直线的点斜式和一 般式方程。
Y
解:直线的点斜式方程: 4 y+4=- ( x 6) 3 直线的一般式方程: 4x+3y-12=0
(6,-4) .
o
X
变式1 求经过A(3,-2)B(5,-4)的直线方程,化为一般式。
1 解:直线的斜截式方程:y x 3 2 1 直线的斜率k= 2 直线在x轴上的截距为-6 直线在y轴上的截距为3
-6
x-2y+6=0 3
C 0 B C 0 B
B、C同号,A与之异号
④
直线L经过第二、三、四象限
直线AX+BY+C=0的斜率k= A
A 0 AB 0 B
B
C C 与x轴的交点 ( ,0) ,即横截距为 A , A
C 0 A C 0 A
与y轴的交点 (0, B ),即纵截距为 C B
经过 ( x1, y1 ),( x2 , y2 ) 两点
直线的截距式方程:a
x
空间直线方程的几种形式

空间直线方程的几种形式在空间解析几何中,直线是一个基本的几何要素。
直线是由两个不同的点所确定的,而其方向则由这两个点所连线的方向所决定。
在空间中,直线的方程有多种形式,本文将介绍其中的几种形式。
一、点向式点向式是指直线上的一点和直线的方向向量所构成的方程形式。
对于一条直线L,其上有一点P,而其方向向量为v,则该直线的点向式方程为:L: r = P + λv其中,r表示直线上的任意一点,λ为实数。
点向式方程的优点在于通过给定的点和方向向量,可以很容易地确定直线的方程。
同时,由于方向向量的存在,点向式方程也可以很方便地求出直线的参数方程和对称式方程。
二、参数式参数式是指直线上的任意一点可以表示为参数的函数形式。
对于一条直线L,其上有一点P,而其方向向量为v,则该直线的参数式方程为:x = x0 + tvxy = y0 + tvyz = z0 + tvz其中,t为参数,(x0,y0,z0)为直线上的一点,(vx,vy,vz)为方向向量。
参数式方程的优点在于可以方便地求出直线上的任意一点的坐标,同时也可以很容易地求出直线的对称式方程和点向式方程。
三、对称式对称式是指直线上的任意一点到直线上某一点的距离等于该点到直线上另一点的距离。
对于一条直线L,其上有两个不同的点P1和P2,则该直线的对称式方程为:(x - x1)/(x2 - x1) = (y - y1)/(y2 - y1) = (z - z1)/(z2 - z1)其中,(x1,y1,z1)和(x2,y2,z2)为直线上的两个不同的点。
对称式方程的优点在于可以方便地求出直线上的任意一点到直线上某一点的距离,同时也可以很容易地求出直线的参数式方程和点向式方程。
四、一般式一般式是指直线的方程可以表示为三个平面的交点形式。
对于一条直线L,其方程可以表示为:Ax + By + Cz + D = 0其中,(A,B,C)为直线的方向向量的分量,D为常数。
一般式方程的优点在于可以很容易地求出直线与其他平面的交点,同时也可以很方便地求出直线的参数式方程和点向式方程。
直线方程式的公式

直线方程式的公式直线方程是数学中的重要概念,它描述了平面上无限延伸的直线的性质和特征。
直线方程可以通过不同的方法和形式进行表示,其中最常见的形式是一般式、点斜式和斜截式。
在本文中,我们将详细介绍这些直线方程的公式,包括其特点、推导方法和实际应用。
一、一般式方程直线的一般式方程表示为Ax + By + C = 0,其中A、B和C是实数且A和B不同时为0。
一般式方程最大的特点是可以直观地表示直线的特征。
具体来说,A、B和C的值决定了直线的斜率和截距,从而确定了直线在平面上的位置和方向。
由于一般式方程包含了两个未知数x和y,因此我们可以方便地求解直线与其他几何图形的交点,例如与坐标轴的交点、与其他直线的交点等。
此外,一般式方程也可以很容易地转化为其他形式的直线方程,如下面将要介绍的点斜式和斜截式。
二、点斜式方程点斜式方程是用直线上一点的坐标和该直线的斜率来表示的。
具体形式为y-y1 = m(x-x1),其中(x1, y1)是直线上的一个已知点,m 是直线的斜率。
通过点斜式方程,我们可以通过给定一点和斜率来描述整个直线,更加方便地研究直线的性质和变化规律。
点斜式方程的优势在于,它直接给出了直线的斜率和一个点的坐标,从而能够快速得到直线的各种特征。
此外,通过与其他点斜式方程或一般式方程进行比较,我们可以判断两条直线是否平行或垂直。
三、斜截式方程斜截式方程是以直线在y轴上的截距和与y轴正方向夹角的正切值来表示的。
一般形式为y = mx + b,其中m是直线的斜率,b是直线与y轴的交点的纵坐标。
与点斜式方程相比,斜截式方程更直观地反映了直线与y轴的关系,能够清晰地描述直线的位置和方向。
斜截式方程的应用广泛,特别是在经济学和工程学等领域。
通过斜截式方程,我们可以快速计算出直线在不同点的函数值,进而得到与变量之间的关系。
例如,在销售量和广告花费之间建立直线模型时,斜截式方程可以帮助我们估计不同广告投入下的预期销售量。
高中数学-直线的方程的几种形式

返回
返回
学点一 直线的点斜式方程 求倾斜角为直线y= - 3 x+1的倾斜角的一半且分别满 足下列条件的直线方程: (1)经过点(-4,1); (2)在y轴上的截距为-10.
【分析】通过已知直线的斜率求出所求直线的斜率, 再分别由直线的点斜式方程和斜截式方程求解.
返回
【解析】直线y= - 3x+1的斜率为 3,可知此直线的 倾斜角为120°,由题意知所求直线的倾斜角为60°,故 所求直线的斜率k= 3 . (1)由于直线过(-4,1),由直线的点斜式方程得 y-1= 3(x+4),即 3x-y+1+4 3=0. (2)由于直线在y轴上的截距为-10,所以由直线的斜截 式方程得y= 3x-10,即 3 x-y-10=0.
返回
4.利用待定系数法求直线方程时,要能根据题中所给
已知条件选用最恰当的形式,并能根据问题的需要灵
活准确地进行互化.在研究无特殊限制的直线情况时,
常将直线化为一般形式,而当研究直线的斜率与倾斜
角时,又以直线的斜截式最为方便,也常将直线方程
的一般式化为斜截式:当B≠0时,直线方程为
y=- A x- C , 其中- A为直线的斜率,- C为直线在y
m2 -2m-3 (2)当斜率为-1时,有 - m2 -2m-3 1 ,但要注意
2m 2 m-1 2m2+m-1≠0.
返回
【解析】(1)由题意可得
m2-2m-3≠0 ① 2m-6 3 ②
m 2 -2m -3
由②解得m=3或m= 5 .
3
分别代入①检验可知m= 5 .
3
(2)由题意可得
2m2+m-1≠0 ③
返回
三角形的三个顶点分别是A(-5,0),B(3,-3),C(0,2), 如图2-4-1所示,求这个三角形三边所在直线的方程.
直线方程五种形式教师

1.直线的点斜式方程 1.点斜式方程设直线l 过点P 0(x 0,y 0),且斜率为k ,则直线的方程为y -y 0=k (x -x 0),由于此方程是由直线上一点P 0(x 0,y 0)和斜率k 所确定的直线方程,我们把这个方程叫做直线的点斜式方程.注意:利用点斜式求直线方程时,需要先判断斜率存在与否.(1)当直线l 的倾斜角α=90°时,斜率k 不存在,不能用点斜式方程表示,但这时直线l 恰与y 轴平行或重合,这时直线l 上每个点的横坐标都等于x 0,所以此时的方程为x =x 0.(2)当直线l 的倾斜角α=0°时,k =0,此时直线l 的方程为y =y 0,即y -y 0=0. (3)当直线l 的倾斜角不为0°或90°时,可以直接代入方程求解.2.斜截式方程:如果一条直线通过点(0,b )且斜率为k ,则直线的点斜式方程为y =kx + b 其中k 为斜率,b 叫做直线y =kx +b 在y 轴上的截距,简称直线的截距.注意:利用斜截式求直线方程时,需要先判断斜率存在与否.(1)并非所有直线在y 轴上都有截距,当直线的斜率不存在时,如直线x =2在y 轴上就没有截距,即只有不与y 轴平行的直线在y 轴上有截距,从而得斜截式方程不能表示与x 轴垂直的直线的方程.(2)直线的斜截式方程y =kx +b 是y 关于x 的函数,当k =0时,该函数为常量函数.x =b ;当k ≠0时,该函数为一次函数,且当k >0时,函数单调递增,当k <0时,函数单调递减.(3)直线的斜截式方程是直线的点斜式方程的特例。
要注意它们之间的区别和联系及其相互转化. 直线点斜式方程的理解1.由于点斜式方程是由斜率公式00y y k x x -=-推出的,因此00y y k x x -=- 表示的直线上缺少一个点P (x 0,y 0),y -y 0=k (x -x 0)才是整条直线;2.经过点P 0(x 0,y 0)的直线有无数条,这无数条直线可以分为两类:①斜率存在时,直线方程y -y 0=k (x -x 0); ②斜率不存在时,直线方程为x =x 0.3.直线的点斜式方程实际上就是我们熟知的一次函数的解析式;4.从函数的角度来看,当斜率k 存在时,直线方程可以看作是函数解析式,当斜率k 不存在时,直线方程为x =x 0,它不是函数解析式。
直线方程几种形式

2.直线的斜截式方程:
练习: 已知直线l的斜率是k,与 y 轴的交点
是 P(0 , b) ,求直线方程。
y.
代入点斜式方程,得l 的直线方程: (0,b)
y b k(x 0) 即 y kx b (2)
O
x
直线l 与 y 轴交点 (0 , b) 的纵坐标 b 叫做直线
l在 y轴上的截距。
方程(2)是由直线的斜率 k与它在 y轴上的截距 b确
P0(x0,y0)
O
x
可化为y y0 kx x0
• 可以验证: 直线l上的每个点(包括点P0)的坐标 都是这个方程的解;反过来,以这个方程的解为 坐标的点都在直线l上
• 由此,这个方程 y y0 kx x0 就是过点P0,
斜率为k的直线l的方程
(1)当直线 l与 x轴平行或重合时
已知直线经过两点P1(x1,y1),P2(x2,y2), (x1 x2 ,y1 y2),如何求出这两个点的直线方程 呢?
经过一点, 且已知斜率的直线, 可以写出它 的点斜式方程.
可以先求出斜率, 再选择一点, 得到点斜式 方程.
根据两点P1(x1,y1), P2(x2,y2),
斜率 k y2 y1
x a
y b
1
y lB
说明:(1)直线与x轴的交点(a,0)
的横坐标a叫做直线在x轴的截距,
此时直线在y轴的截距是b;
O
A
x
(2)这个方程由直线在x轴和y轴的
截距确定,所以叫做直线方程的截距 式方程;
(3)截距式适用于横、纵截距都存在且都不为0的直线.
例5. 说出下列直线的方程,并画出图形. ⑴倾斜角为450,在轴上的截距为0; ⑵在x轴上的截距为-5, 在y轴上的截距为6; ⑶在x轴上截距是-3,与y轴平行; ⑷在y轴上的截距是4,与x轴平行.
课件3:2.2.2 直线方程的几种形式

(3)直线过点P(4,2),且与y轴平行,故斜率不存在, 所以直线方程为x=4,一般式方程为x-4=0.
典型例题 类型1 求直线的点斜式方程 例1 写出下列直线的点斜式方程. (1)经过点(2,5),倾斜角为45°; (2)直线y=x+1绕着其上一点P(3,4)逆时针旋转90°后得 直线l,求直线l的点斜式方程; (3)经过点C(-1,-1),且与x轴平行; (4)经过点D(1,1),且与x轴垂直.
探究点 直线截距式方程的应用 探究1 已知直线l过点(2,0),(0,3),能否写出直线l的方程? 【答案】 能.直线 l 的截距式方程为2x+3y=1. 探究2 直线的截距式方程能否与其他形式相互转化? 【答案】 能.
典型例题
例4 设直线l的方程为(a+1)x+y+2-a=0(a∈R), (1)若l在两坐标轴上的截距相等,求l的方程; (2)若l不经过第二象限,求实数a的取值范围.
(3)直线方程2x+y-1=0可化为y=-2x+1,由直线的斜 截式方程知:直线的斜率k=-2,在y轴上的截距b=1, 直线与y轴交点的坐标为(0,1).
典型例题
类型3 直线的两点式方程 例3 在△ABC中,A(-3,2),B(5,-4),C(0,-2), (1)求BC所在直线的方程; (2)求BC边上的中线所在直线的方程.
【解析】 ∵方程可变形为y+2=-(x+1), ∴直线过点(-1,-2),斜率为-1. 【答案】 C
2.直线y=kx+b通过第一、三、四象限,则有( )
A.k>0,b>0
B.k>0,b<0
C.k<0,b>0
D.k<0,b<0
【解析】 ∵直线经过一、三、四象限,
由图知,k>0,b<0.
直线方程的几种形式(5种).ppt

练习1:
1.已知一直线经过点P(-1,2),斜率为0, 求这条直线的方程。
特殊情况:
(1)当直线的倾斜角为00时斜率k 0,
y
l
直线l的方程为y y1 (如图) P1
O
x
(2)当直线的倾斜角为900时斜率k不存在,
yl
直线l的方程为x x1 (如图)
P1
O
x
例1
求 下 列 直 线 的 方 程: (1)直 线l1 : 过 点(2,1),k 1, (2)直线l2 : 过点(2,1)和点(3,3).
y
A(-1,3) . . B(0,1)
O
分析:先找出特殊的 一点B(0,y),根据两点 的斜率公式可求出
x B(O,1)
探究新知
问题二: 若直线l过点A(-1,3),斜率为-2,点 P(x,y)在直线l上运动,那么点P的横坐标x和纵坐 标y之间满足什么关系?
分析:点P与定点A(-1,3)所确定的直
例3三角形的顶点是A(5,0), B(3,3), C(0,2)
求这个三角形三边所在的直线方程.
解: 把A,C代入两点式,得
y 0 x (5) 2 0 0 (5)
2x 5y 10 0
另解: 由A,C两点的坐标得直线AC在x, y轴
上的截距为a 5, b 2. 由截距式得
x y 1 5 2
求直线的点斜式和一般式方程. 3
解: 点斜式方程式为: y 4 4 ( x 6)
3
化成一般 3 y 6 0化成斜截式, 截距
式,求出它的斜率和它在x, y轴上的截距.
解: 斜截式为y 2 x 2.
3
截距式为 x y 1斜 . 率k 2 .
直线的方程

(1)当B 0时,方程可化为: y A x C ,为直线方程的斜截式 .
BB
(1)当B 0时,方程可化为: y A x C ,为直线方程的斜截式 .
BB
(2)当B 0时,由于A、B不同时为零, 必有A 0,方程可化为:x C ,
《步步高》
作业:
51-53面
; / 红包群 ;
么了?”每次有热闹看都是他值班,因为他是纯老外去了会添乱,命苦.而那群年轻人回来买单时说了一些,看他们一副不够尽兴の遗憾劲,说话多半有失偏颇,信不过.“好像说陆陆在外边抹黑她?”陆易望向柏少君.“嗯,她就是这么说の,”柏少君相当气愤,“自从在我们店订菜,陆陆几乎连 门都没出过,她向谁抹黑何玲?现在の人都不长脑子?问都不问就上门骂人打人实在太过分!”说得义愤填膺,柏少君瞪着陆易,“你们警察管不管の?管の话我报警.”一定要报,不然还有下次呢?按何玲の吨位与手劲,陆陆绝对挨不了一拳.陆易忙劝阻,“别别别,华夏是个人情社会,你这样 做让陆陆以后在老村长面前很难做人,想解决问题得找到源头.”“怎么找?”“可以问今晚到餐厅吃饭の人,”德力一边清洗杯碟一边留心听着,“坐窗边の那个小莲最先看见何玲去找陆陆,如果是寻常の来访,她干嘛那么兴奋?里边肯定有原因.”柏少君愣了愣,“你の意思是...有人从中 挑拔离间?!”卧槽,现实版の心计大戏?!而且主谋就在今晚那群人当中?“不对呀!陆陆跟他们不熟几乎没说过话,为什么欺负她?”德力望着单纯の男孩笑嘿嘿,“嘿嘿,欺负人の乐趣你难道不懂?还需要其他理由吗?”这话很真实,真实得让人难受.柏少君嘴巴动了动,说不出话 来.“好了,当事人不急,你们急什么?”一直旁听の柏少华终于开口,“少君,陪我走走.”说罢拿过拐杖起身.“哦.”尽管他心中忿忿不平,仍然跟随柏少华一同出了门.目送两人离开,陆易也来到铁板烧旁边清洗碗碟.“有人の地方就有江湖,”德力在另一边擦干杯子の水渍,啧啧叹道,“昌 叔那老家伙果然睿智.”不得不佩服,连个小山村都这么热闹.陆易笑了笑,专注洗碗不再谈论此事.人活一辈子哪能无是非?造谣张张嘴,辟谣跑断腿,一有风吹草动就顾着四处洗脱洗白,那么人生当中很多重要の事这辈子都只能搁置,来生再议了.下次再发生这种事便交给执法部门去查去处理, 他们普通小市民则继续生活,不能因为小人作祟耽误自己の计划与前程.君子坦荡荡,小人长戚戚,命运会优待认真生活の人.至于小人,他们饿不死也吃不饱,只能躲在黑暗中继续搞小动作,继续怨天尤人,一辈子就这么过了.下场如何,生活最终会明确地告诉大家,如果还记得他の话...夜幕下, 梅林村の路两旁依旧梅花盛开,花香浮动,街道上の小情侣或者三朋五友一起走着,格外の有情趣.身边の嬉笑声不断,热闹非常,余薇走在他们中间,抬头仰望,一轮不够圆满の明月高高挂在天上,像极了今晚那张望向自己の冷淡面孔,顿时一股难以描绘の孤独涌上心头.“哈哈哈,小薇,我一想 起今晚何玲那张脸就...哈哈哈...”身边の朋友们乐不可支,连一句正经话都说不全.余薇跟着笑了笑,内心の失落与苦涩旁人一无所知.不知道怎么回事,在这一刻,她突然好寂寞.第90部分今晚の一切如她所愿,可她一点都不开心.当他冲出来张开双臂の那一刻,往日青涩の面孔、不耐烦の性 情一扫而空,一贯轻松の神情瞬间变得冷酷异常,很有成熟男人の魅力,活像西方传说中威风凛凛の一尊战神降临在身旁,只为牢牢守护身后の小女人.那一刻,她の心像被扔进了绞肉机,一点一点地被绞碎成泥.“小薇,你去哪儿?不回家吗?”小伙伴们正聊得开心,却见余薇往另一个方向走, 纷纷扬声问.“我去姐姐那儿.”余薇头也不回.不管身后如何叫嚷,她开始一路小跑.家里早没人了,母亲常在厂里住,继父长住省城盯着公司の运营状况,他最关心の人是弟弟,因为儿子才是他の亲生骨肉.尽管平时表现得对两个继女一视同仁,但小孩子是非常敏感の,她们知道谁是真心待自己 好.家里只有爷奶在住,两个老东西动不动就说她俩这不好那不好,警告她们别把国外の坏习惯带回家败坏梅家声誉.梅家有个屁声誉!没有母亲,他们屁都不是.尽管如此,母亲依旧叮嘱姐妹俩要敬重长辈.可是这种长辈有什么好敬重の?这个家是母亲一个人撑起来の,她才是一家之主,搞不懂 凭啥要看他们の脸色.姐姐每次回来都住在小农场,说喜欢那里の清静.自己听不惯虫鸣声喜欢住在别墅里,心境不快才去小农场住几天.来到农场路口,余薇刷卡打开大门铁闸.“小薇?怎么这么晚?”门卫の大叔正在听收音机,闻声出来看个究竟,门卫室里咿咿呀呀の不知道在唱什么,年代很 老旧の歌.今天心境不好,余薇对门卫の话不加理睬,径自跑向姐姐居住の那一栋雅致木屋.农场里住着三户人家,只有姐姐家是她和未婚夫汤力搭建の.院里の一草一木一秋千,屋里一针一线一家具,全部是自己の手工.院里の花架、和篱笆边缘种满了玫瑰花直达屋门口,汤力种の,代表他对姐 姐那颗永远火热跳动の心.听着很肉麻,对当事人来说却很幸福.余岚对院里の花草一向精心培育,哪怕回校读书也要拜托别人花同样の心思照顾它们,千叮万嘱,惟恐出现一点纰漏.姐姐跟汤力在十八岁那年开始确定关系,至今四年了,两人感情一直很好.算算日期,这几天他也该来了.等他来了 以后姐姐将不再属于她,这小农场也不再是自己可以任性撒娇の地方.她一直羡慕姐姐,能遇到一位全心全意の男人.她希望自己有一天也能像姐姐那样拥有一份至真至纯の爱情,对方眼里只有她の存在,完全不受外界诱惑.可惜,她遇人不淑,碰上の男人要么整天想着法子哄她上.床, 要么整天想着花光她の钱,要么打赌撩拔看她春心荡漾,要么纯粹恶作剧想看她出尽洋相.东、西方の男人都一副贱样,唯一可以分高低の是衣着品味.余薇来到木屋の矮栏栅前,姐姐の屋里透出明亮の灯光,她睡眠浅,稍微有些心事就彻夜难眠.轻轻拉动门拴,吱丫地推开走了进去.院里很安静, 屋里の人听到声音,在余薇走进石子路时,紧闭の木门打开了,一道无比亲切又熟悉の身影出现在眼前.刚和男友通完电筒の余岚刚洗完澡,裸露在衫外の肌肤被水气蒸腾得异常白皙,宛若出水芙蓉般剔透美丽.她站在门口,对妹妹の到来感到意外:“小薇?怎么这么晚过来?来也不打个电筒万 一路上出...”话未说完,余薇往前一扑,双手搂住她の脖子然后开始浑身颤抖.“怎么了?出了什么事?是不是爷爷奶奶又说你了?”余岚轻拍她の后背,温声安慰,“实在受不了就回这儿住,别勉强自己.”“姐,”伏在肩膀上の余薇终于放开心扉,泣不成声,“我讨厌他,我很讨厌讨厌他,怎 么办啊姐...”余岚听罢,立马意识到妹妹这番没头没脑の话是什么意思,不禁闭了闭眼,轻拍项背给予安慰.很讨厌の背面就是很喜欢,是呀,怎么办呢?姐姐无言の安慰,让余薇哭得愈发伤心.“姐,我难过,真の好难过.我明明是为他好,他却那样看我,像从来不认识我,为什么要这样对我?为 什么要在我面前待她那么好?为什么...”一连串の为什么导致眼前一片模糊,止不住の眼泪像决堤の水挡也挡不住.为什么是他?一个高校没毕业の洋diao丝,也就一张脸能看得顺眼;为什么他保护の人是她?那个矫揉造作の女人,除了脸蛋身段妖娆之外一无是处.为什么自己总是眼瞎看上 不该爱の人?为什么她喜欢の人都眼瞎看上那种女人?甘心为她们挺身而出,肝脑涂地,哪怕最后受伤の总是他.那女人一巴掌将何玲打趴下,根本用不着他来充英雄平白无辜挨顿打.这是为什么?...夜半时分,余家姐妹坐在庭院の秋千里说着悄悄话,像小时候那样,围在四周の轻纱幔帐给她 们围出一方小世界.跟前有一张小圆桌,木头雕の,上面摆着装满果酒の酒壶和两个质地一样の小酒杯,整套の,余岚自己找瓷窑帮忙烧制而成,质朴雅致,与她本人一样.“何玲找陆陆麻烦?”余岚疑惑地看着妹妹,“为什么?”“我哪儿知道.”酣畅淋漓地哭了一场,余薇の心境稍有好转,但对 今晚发生の一切矢口否认,“反正她俩都不是好东西,狗咬狗是早晚の事.”妹妹の话让余岚の心境起伏很大,随着年龄の增长,小薇の思想跟以前大不相同.不再像小时候那样天真单纯,事事以姐姐马首是瞻,她真の很害怕妹妹为了情感失去理智.为了一个男人赔上自己一生,不值得.“小薇,你 老实说,”余岚紧盯着余薇追问,“这件事真の跟你无关?”“当然无关!”余薇惊讶地回瞪姐姐,“姐,你不信?你就这么看你妹妹?”“相处二十年我还不知道你?”妹妹故作无知,余岚疾言厉色,“小薇,你在国外那些小打小闹就算了,回到国内给我收起你の小脾气.这里是咱们の家,妈辛 辛苦苦扎稳の根,出了什么差池损失最大の是我们.”第91部分老调重弹了,余薇有些不耐烦.“能出什么差池?就凭一个小小の外来户?她谁呀?老爸是李刚吗?”余薇一贯の伶牙利齿给予反驳,“姐,你连个外来户都怕怎么帮妈打天下?我看你不如跟汤力回国好了,免得自寻烦恼.”她烦, 自己也烦.小小の外来户?余岚不敢相信地看着妹妹一脸の轻蔑,眼里含着一丝隐痛.“小薇,你忘了?我们也是外来户.”在这个村子,在这个家里,她姐妹俩一直是外来户.不管妈有多么努力始终无法改变这个事实,改变不了她俩与村民们格格不入处处受欺の尴尬处境.只好努力赚钱送她俩出 国读书,希望女儿们能在国外成家立室过上自在安稳の日子.要不是母亲遭受各方质疑与刁难,她不会回来.回来是为了帮妈保住心血,替弟弟保住家业,不是为了跟外来户斗气和炫耀财力权势の.打压一个外地来の女生,跟当年那些欺负她们の村霸有什么区别?一旦事发经有心人大肆渲染,母 亲在当地の威信将一落千丈,神仙来也救不了.道理谁都懂,可是...“可我受不了,他们天天在我眼前晃...”余薇再一次被触动伤心之处,“姐,要不你帮帮我,帮我把她撵走,我真の不想看到他俩在一起.”姓陆の走了,她一定能取而代之成为他身后の小女人.她将拼尽全力支持他,鼓励他,同 时享受他全心全意の守护.余岚头一次对妹妹板起脸,神色清冷,“我不可能帮你,小薇,他不是合适の对象.”在外边看得太多,知道嫁给一个在朋友家蹭吃蹭喝の无业游民有多累.哪怕是天仙下凡,也会在三十岁前熬成四五十岁の肥婆娘,或者骨瘦如柴受尽折磨被吸尽血汗の小可怜.她妹妹如 花似玉,不能落得那种下场.“你有两个选择,要么继续回校把高校读完,要么去京大和小弟作伴.明天开始我让妈停掉你所有の卡,直到你想清楚为止.”余岚起身,“汤力和他の朋友后天就到,我很忙,你在家好好布置一番别丢了我和妈の脸.”余岚深深看了妹妹一眼,只见她环抱双膝,两眼无 神.“多想想我学姐の下场,想想那些吸.毒躺在街头の无业游民,那
直线方程题型及解题方法

直线方程题型及解题方法一、直线方程的基本概念直线是平面上的一种基本几何图形,由无数个点组成,其中任意两点可以确定一条直线。
直线方程是用来描述直线的数学表达式,可以帮助我们研究直线的性质和特点。
二、直线方程的一般形式直线方程的一般形式可以表示为Ax + By + C = 0,其中A、B、C为常数,x和y为变量。
这种形式的直线方程被称为一般方程或标准方程。
三、直线方程的斜截式直线方程的斜截式可以表示为y = mx + b,其中m为直线的斜率,b为直线与y轴的截距。
斜截式是直线方程中最常用的形式之一,可以直观地描述直线在平面上的位置和倾斜程度。
四、直线方程的点斜式直线方程的点斜式可以表示为y - y1 = m(x - x1),其中m为直线的斜率,(x1,y1)为直线上的一点坐标。
点斜式可以通过已知直线上一点和斜率的信息,快速写出直线方程。
五、直线方程的截距式直线方程的截距式可以表示为x/a + y/b = 1,其中a和b分别为直线与x轴和y轴的截距。
截距式可以直观地描述直线与坐标轴的交点位置,便于分析直线的特点。
六、直线方程的解题方法解直线方程的问题通常包括以下几种情况:1. 已知直线上两点求直线方程解决该类问题的方法是使用点斜式或斜截式。
通过计算两点的坐标差,可以得到直线的斜率。
然后根据已知的一点坐标和斜率,可以写出直线方程。
2. 已知直线的斜率和截距求直线方程对于已知斜率和截距的情况,直接使用斜截式即可写出直线方程。
3. 已知直线的截距求直线方程已知直线的截距时,可以使用截距式来写出直线方程。
4. 已知直线与坐标轴的交点求直线方程对于已知直线与坐标轴的交点的情况,可以使用截距式来写出直线方程。
5. 已知直线的特殊性质求直线方程有些题目中可能给出直线经过某个点垂直于某条直线等特殊条件,根据这些条件可以推导出直线方程。
七、直线方程题型的解题步骤解直线方程题型的步骤如下:1.确定所给条件,包括已知点坐标、斜率、截距等信息。
2.2.2直线方程的几种形式

3、设直线l 的方程为 (m2-2m-3)x+(2m2+m-1)y=2m-6,分别根据下列 条件确定m的值: (1) l 在X轴上的截距是-3; (2)斜率是-1.
4、设直线 l 的方程为(a+1)x+y+2- a=0(a∈R). (1)若 l 在两坐标轴上的截距相等,求 l 的方程; (2)若 l 不经过第二象限,求实数a的 取值范围.
y
l
(2) B=0 , A≠0 , C≠0
o
x
二、二元一次方程的系数对直线的位置的影响:
在方程Ax+By+C=0中,A,B,C为何值时,
方程表示的直线:
(1)平行于x轴;(2)平行于y轴;(3)与x轴重合;
y
o
l
(3) A=0 , B≠0 ,C=0
x
二、二元一次方程的系数对直线的位置的影响:
在方程Ax+By+C=0中,A,B,C为何值时,
小结:
斜率和一点坐标 斜率k和截距b 点斜式 斜截式
y y0 k ( x x0 )
y kx b
y y1 x x1 y2 y1 x2 x1
两点坐标
两点式
点斜式
y y0 k ( x x0 )
x y 1 a b
两个截距 化成一般式
截距式
Ax+By+C=0
求直线的一般式方程 Ax By C 0(在A, B都不为零时)
的斜率和截距的方法:
A (1)直线的斜率 k=- B (2)直线在y轴上的截距b C C y 令x=0,解出 值,则 b B B (3) 直线与x轴的截距a 令y=0,解出 x C 值,则 a C A A
直线方程知识点归纳总结高中

直线方程知识点归纳总结高中直线方程是高中数学学科中重要的知识点之一,它在解析几何和代数中起着重要的作用。
本文将对高中直线方程的相关内容进行归纳总结,包括直线的一般方程、点斜式方程、两点式方程和截距式方程等几种常见形式。
同时,还将对直线的斜率和截距的概念进行解释,并提供相关的例题进行说明。
一、直线的一般方程直线的一般方程形式为Ax + By + C = 0,其中A、B、C为常数,且A和B不同时为0。
这种形式的直线方程比较通用,可以表示任意一条直线。
在求解问题时,可以通过已知条件将直线方程转化为一般方程的形式,然后进一步进行计算。
例如,已知直线过点P(2, 3)且斜率为2,我们可以先利用斜率公式求得直线的斜率k=2。
然后,代入点斜式方程y - y₁ = k(x - x₁)中的点P的坐标,得到直线的点斜式方程为y - 3 = 2(x - 2)。
最后,将该点斜式方程转化为一般方程的形式,得到2x - y - 1 = 0。
二、直线的点斜式方程点斜式方程形式为y - y₁ = k(x - x₁),其中(x₁, y₁)为直线上一点的坐标,k为直线的斜率。
点斜式方程主要用于确定直线上一点和直线的斜率,通过已知条件和该点斜率可以确定直线方程。
例如,已知直线过点A(-1, 4)且斜率为-3,我们可以直接利用点斜式方程得到直线的方程为y - 4 = -3(x - (-1)),简化后为y = -3x + 1。
三、直线的两点式方程两点式方程形式为(y - y₁)/(x - x₁) = (y₂ - y₁)/(x₂ - x₁),其中(x₁, y₁)和(x₂, y₂)为直线上的两个点的坐标。
两点式方程可以直接得到直线的方程,适用于已知直线上两个点的坐标的情况。
例如,已知直线上两点A(-2, 1)和B(3, 4),我们可以通过两点式方程求得直线的方程为(y - 1)/(x - (-2)) = (4 - 1)/(3 - (-2)),简化后为3x - y+ 5 = 0。
直线方程的几种形式

直线方程的几种形式直线方程是用来表示直线的数学表达式。
直线方程的形式有多种,例如一般式、截距式、点斜式和两点式等等。
下面将对各种形式的直线方程进行详细介绍。
1.一般式:一般式直线方程是直线方程中最一般的形式。
它可以表示任意斜率和截距的直线。
一般式方程一般写作Ax+By+C=0,其中A、B、C 是常数,且A和B不能同时为零。
这种形式的方程比较常见,可以方便地计算直线与坐标轴的交点。
此外,使用一般式方程可以判断两条直线是否平行或垂直。
2.截距式:截距式直线方程是通过直线与x轴和y轴的截距来表示直线的方程形式。
截距式方程一般写作x/a+y/b=1,其中a和b分别表示直线与x轴和y轴的截距。
这种形式的方程可以直观地表示直线在坐标平面上的位置。
3.点斜式:点斜式直线方程是通过直线上一点的坐标和直线的斜率来表示的。
点斜式方程一般写作(y-y1)=k(x-x1),其中(x1,y1)是直线上的一点的坐标,k是直线的斜率。
这种形式的方程适合用于已知直线的斜率和一点坐标的情况,可以方便地求出直线的方程。
4.两点式:两点式直线方程是通过直线上的两个点的坐标来表示的。
两点式方程一般写作(y-y1)/(x-x1)=(y2-y1)/(x2-x1),其中(x1,y1)和(x2,y2)是直线上的两个点的坐标。
这种形式的方程适合已知直线上两个点的坐标的情况,可以方便地求出直线的方程。
5. 斜截式:斜截式直线方程是通过直线的斜率和截距来表示的。
斜截式方程一般写作y = kx + b,其中k是直线的斜率,b是直线与y轴的截距。
这种形式的方程适合已知直线的斜率和截距的情况,可以直接得到直线的方程。
除了上述常见的形式外,还存在其他形式的直线方程,如极坐标方程和参数方程等。
极坐标方程是通过直线的极径和极角来表示的,适合极坐标系下的直线表示。
参数方程是将直线的x和y坐标分别用一个参数t表示的方程,适合描述直线的运动轨迹。
总结起来,直线方程的形式有一般式、截距式、点斜式、两点式、斜截式、极坐标方程和参数方程等等。
直线方程的五种形式

直线方程的五种形式直线方程的五种形式,从不同的侧面反映了直线的几何与数量特性.由于它们有各自不同的适用范畴和隐性约束,因此,我们在根据条件求直线方程时,要特别注意不同形式直线方程的适用性,千万不要漏掉了特殊情形.【直线方程的五种基本形式】①点斜式方程:y-y0=k(x-x0).适用于点P(x0,y0)和斜率k为已知.注意:此种形式不包含垂直于x轴的直线.当斜率不存在时,直线方程应为x=x0.②斜截式方程:y=kx+b.适用于点(0,b)和斜率k为已知.其中b叫做直线l在y轴上的截距.截距不是距离,它可以取任意实数.斜截式是点斜式过点(0,b)时的特例. 此种形式也不包含垂直于x轴的直线.③两点式:y−y1y2−y1=x−x1x2−x1(x1≠x2,y1≠y2).适用于两点(x1,y1),(x2,y2)的坐标为已知.注意:此种形式不包含垂直于x轴和y轴的直线.③截矩式:xa +yb=1.适用于直线l与x轴、y轴的交点(a,0)和(0,b)为已知.注意:此种形式不包含垂直于x轴和y轴及过原点的直线.③一般式:Ax+By+c=0 (A,B不全为0).例1(1)设直线ax+by+c=0的倾斜角为α,且sinα+cosα=0,则a、b满足( ).A.a+b=1.B.a-b=1.C.a+b=0.D.a-b=0.(2)已知ab<0,bc<0.则直线ax+by=c通过( ).A.第一,二,三象限.B.第一,二,四象限.C.第一,三,四象限.D.第二,三,四象限.(3)若方程(2m2+m-3)x+(m2-m)y-4m+1=0表示一条直线,则实数m满足( ).A.m≠0.B.m≠−32. C. m≠1. D. m≠1且m≠−32.解:(1)③ 直线ax+by+c=0的倾斜角为α,且sinα+cosα=0③ k=tanα=-1,又③直线ax+by+c=0的斜率为k= −ab,③ a-b=0. 故应选D.(2)将直线ax+by=c化为截距式y= −ab x+cb,③ ab<0,bc<0,③ 此直线的斜率k>0,在y轴上的截距为负,故应选C.(3)要方程(2m2+m-3)x+(m2-m)y-4m+1=0表示一条直线,则必须满足m2+m-3与m2-m不能同时为0. ③ m≠1. 故应选C.例2.(1)经过点A(1,2)并且在两个坐标轴上截距的绝对值相等的直线有几条?请求出这些直线的方程.(2)已知直线l在y轴上的截距为-4,且它与两坐标轴围成的三角形的面积为8,求l的方程.解:(1)当截距为0时,设y=kx,过点A(1,2),则得k=2,即y=2x;当截距不为0时,设x+y=a或x-y=a.将点A(1,2)代入所设方程中,得a=3,或a= -1,故这样的直线有3条:y=2x,x+y-3=0,或x-y+1=0.(2)由已知可设直线l的方程为xa +y−4=1.∵直线l与两坐标轴围成的三角形面积为8,③ 12|a ||−4|=8,解得a=±4,故x -y -4=0或x+y+4=0为所求.想一想①:1.过点(1,5)且在两轴上截距相等的直线有几条?分别是怎样的?2.求在x 轴上的截距为1,且倾斜角的正弦为45的直线方程.3.过点A(-5,-4)作一直线l ,使它与两坐标轴相交且与两轴所围成的三角形面积为5.说明:求满足一定条件的直线方程时,若条件中含有“在两坐标轴上的截距相等、互为相反数、绝对值相等或与两坐标轴围成的三角形面积有关”时,均可将直线方程设为截距式,且不要忽略了特例——过原点的直线y=kx.例3(1)已知两点A(3,0)、B(0,4),动点P 在线段AB 上运动,求xy 的最大值.(2)过点P(4,3)作直线l 与x 、y 的正半轴分别交于A 、B 两点,O 为原点,当|OA|+|OB|最小时,求直线l 的方程.解:(1)设线段AB 所对应的直线方程为x a +yb =1,∵ 点A 、B 在其上, ∴ x3+y4=1 (x>0,y>0).由均值不等式可得1≥2√xy 12,⇒xy ≤3.∴ (xy)max =3.(2)设直线l 的方程为xa +yb =1,∵ 直线l 过点P(4,3),∴ 4a +3b =1. 又∵ (a+b)(4a +3b)=7+4b a+3a b≥7+4√3,∴ (a+b)max =7+4√3.当且仅当{4b a=3ab,4a +3b=1,即{a =4+2√3,b =3+2√3.时|OA|+|OB|最小. 此时直线l 的方程为√3x +2y −6=0.例4.(1)若方程x 2-my 2+2x+2y=0表示两条直线,则m= . (2)方程(2x +3y -1)(x -3-1)=0表示的曲线是( ).A.两条直线.B.两条射线.C.两条线段.D.一条直线和一条射线. 解:(1)法1.③ 方程x 2-my 2+2x+2y=0表示两条直线,则关于x 的一元二次方程:x 2+2x+(-my 2+2y)=0根的判别式4842+-=∆y my 一定是完全平方式, ③ .1,06482=⇒=-=∆'m m法2.③ 方程x 2-my 2+2x+2y=0表示两条直线,③x 2-my 2+2x+2y ))((b my x a y x +++-≡.即x 2-my 2+2x+2y=x 2-my 2+(m -1)xy+(a+b)x+(am -b)y+ab=0,比较对应项的系数可得,m=1,a=2,b=0.(2)∵ (2x +3y -1)(x -3-1)=0,∴ {2x +3y −1=0,√x −3有意义,或√x −3−1=0.解得2x+3y -1=0(x≥3)或x=4,故应选D.想一想①:1.过点P(2,1)作直线l 与x 、y 的正半轴分别交于A 、B 两点,O 为原点,求当|PA||PB|最 小时直线l 的方程.2.方程x 2-xy -2y 2+x+y=0表示的两条直线方程分别是 .习题3.2.1.已知集合M={(x ,y)|123+=--a x y },N={(x ,y)|y -3=(a+1)(x -2)}.则有( ).A.M=N.B.M③N=M.C. M∩N=ND.M ⊆N. 2.若方程x+y -4√x +y +2m=0表示一条直线,则实数m 满足( ) . A.m=0. B.m=2. C.m=2或m <0.D.m≥2.3.直线l 与两直线y=1交于A ,B 两点,若线段AB 的中点为M(1,-1),则直线l 的斜率为( ).A.32. B. 23. C.− 32. D.−23.4.一直线过点M(-3,4),并且在两坐标轴上截距之和为12,这条直线方程是_ .5.已知关于x ,y 的方程x 2-4xy+my 2-x+(3m -10)y -2=0表示两条直线,则m= .6.当a 为何值时,直线(a -1)x+(3-a)y+a=0在两坐标轴上的截距相等.7.把函数y=f(x)在x=a 及x=b 之间的一段图象近似地看作直线,设a ≤c ≤b , 证明:f(c)≈f (a )+c−ab−a [f (b )−f(a)].8.求经过点A(-2,2) 被两坐标轴围成的三角形的面积是1的直线方程.【参考答案】想一想①:1.两条;5x-y=0,x+y-6=0.2.4x-3y-4=0或4x+3y-4=0.3.2x-5y-10=0或8x-5y+20=0.想一想①:1.x+y-3=0.如图D4.2—1.设∠BAO=θ,θ∈(0,π2).则|PA|=1sinθ,|PB|=2cos θ,⇒|PA||PB|=4sin2θ,当且仅当θ=π4,即k=-1时,|PA||PB|取得最小值4.2.x+y=0或x-2y+1=0.习题3.2.1.D.2.C.令√x+y=t,则问题转换为t2-4t+2m=0的两根相等且非负,或有一正根和一负根.3.A.4.4x-y+16=0或x+3y-9=0.5.3或4.6.若直线过原点,则a=0;直线不过原点,则a=2.7.A,B,C三点共线,∴k AC=k AB, 即y c−f(a)c−a =f(b)−f(a)b−a,∴y c−f(a)=c−ab−a [f(b)−f(a)], 即y c=f(a)+c−ab−a[f(b)−f(a)],∴f(c)≈f(a)+c−ab−a[f(b)−f(a)].8. x+3y-2=0或2x+y+2=0.x yO ABP(2.1)图D3.2—1。
直线方程的几种形式(5种)

即y kx b
y
方程y kx b叫做直线方程的斜截式 .方程
b叫做直线 l在y轴上的截距 .
b
l
斜---斜率 截---y轴上的截距
y y1 x x1 方程 叫做 直线的两 点式 y 2 y1 x 2 x 1
练习 已知直线经过两点 P1 (2,1), P2 (0,3)
则直线的方程为
y 1 x2 即2 x y 3 0 31 0 2
四.直线的截距式方程
已知直线 l与x轴的交点为 (a,0),与y轴的交点为 (0, b),其中a 0, b 0, 求直线 l的方程 .
求这个三角形三边所在 的直线方程 .
解: 把A, C代入两点式 ,得 y 0 x (5) 2 0 0 (5)
2 x 5 y 10 0
AC在x, y轴 另解: 由A, C两点的坐标得直线
上的截距为 a 5, b 2. 由 截 距 式 得
x y 1 5 2
化成一般式得 : 4 x 3 y 12 0
例5:
把直线方程 2 x 3 y 6 0化成斜截式 , 截距 式, 求出它的斜率和它在 x, y轴上的截距 .
2 y x 2. 解: 斜 截 式 为 3 x y 2 截距式为 1斜 . 率k . 3 2 3 x轴上的截距为 a 3, y轴上的截距为 b 2.
解: 把点 (a,0),(0, b)代入两点式方程 ,得
y0 xa b0 0a
x y 1 a b
第3讲直线方程范文

第3讲直线方程范文直线方程是解决直线几何问题的重要工具之一、直线方程可以用不同的表达形式表达,比如点斜式、一般式和截距式等。
在解决问题时,通常根据已知条件选择合适的直线方程进行求解。
一、点斜式点斜式是直线方程中最常用的一种形式。
它的一般形式为:y-y₁=k(x-x₁),其中(x₁,y₁)是直线上的一点,k是斜率。
根据已知条件,我们可以根据点斜式得到直线方程。
例如,已知直线上的一点为A(1,2),且斜率为2、根据点斜式,直线方程可表示为y-2=2(x-1)。
将其化简可得:y=2x。
二、一般式一般式是直线方程中的另一种表达形式。
它的一般形式为:Ax+By+C=0,其中A、B、C是实数且A和B不同时为0。
根据已知条件,我们可以根据一般式得到直线方程。
例如,已知直线过点A(1,2)和点B(3,4)。
根据一般式,直线方程可表示为:(2-4)x+(3-1)y+(4-2)=0。
化简可得:-2x+2y+2=0。
三、截距式截距式是直线方程中另一种常见形式。
它的一般形式为:x/a+y/b=1,其中a和b分别表示直线与x轴和y轴的截距。
根据已知条件,我们可以根据截距式得到直线方程。
例如,已知直线与x轴和y轴的截距分别为2和3、根据截距式,直线方程可表示为:x/2+y/3=1在解决直线方程问题时,我们可以根据不同的已知条件选择合适的直线方程形式。
用点斜式适合已知点和斜率的情况;一般式适合已知经过两点的情况;截距式适合已知直线在x轴和y轴上的截距的情况。
通过直线方程,我们能够计算出直线的一些性质,比如斜率、与坐标轴的交点等。
在解决几何问题时,直线方程是必不可少的工具之一综上所述,直线方程是解决直线几何问题的重要工具。
通过选择合适的表达形式,我们能够根据已知条件求解出直线方程,进而计算出直线的一些性质。
在解决问题时,我们可以根据不同的已知条件选择合适的直线方程形式。
使用直线方程,我们能够更加方便地解决直线几何问题。
直线的五种方程形式,适用条件,平行垂直的充要条件

直线的五种方程形式,适用条件,平行垂直的充要条件在数学中,直线是一种最基本的平行图形,它由两个点构成并连接在一起。
据统计,直线在日常生活和科学研究中都有广泛的应用。
直线可以用不同的方程式来表示,其中最基本的形式是一元一次方程形式。
这比较常见,可以解决许多基本的几何问题。
因此,识别并理解直线的不同方程式、适用条件以及直线平行和垂直的充要条件是非常重要的。
二、直线的五种方程形式1.一元一次方程形式:y=mx+b,其中m表示斜率,b表示y轴截距。
该方程描述的是一条斜率不等于0的直线。
2.斜截式:y-y1=m(x-x1),其中m表示斜率,(x1,y1)表示直线上一点。
该方程描述的是一条斜率不等于0的直线。
3.方程形式的优势在于可以以变换的斜率m来描述直线。
m=(y2-y1)/(x2-x1),其中(x1,y1)(x2,y2)是直线上两个不同的点。
4.点斜式:(y-y1)/(x-x1)=(y2-y1)/(x2-x1),其中(x1,y1)(x2,y2)是直线上两个不同的点。
该方程描述的是一条斜率不等于0的直线。
5.垂直方程形式:x=a,其中a是直线上的一点坐标。
该方程描述的是一条斜率等于0的直线。
三、适用条件1.一元一次方程形式及其变体适用于斜率不等于0的直线,即斜率存在时可以直接用一元一次方程形式或它的变体表示。
2.而对于斜率为0的直线,可以直接用垂直方程形式y=a来表示其斜率为0,其中a是直线上的一点坐标。
四、平行垂直的充要条件1.线平行:两条不同的直线平行的充要条件是它们的斜率相等,即m1=m2。
2.线垂直:两条不同的直线垂直的充要条件是它们的斜率的乘积等于-1,即m1*m2=-1。
五、结论以上介绍了直线的五种方程形式、适用条件以及直线平行和垂直的充要条件。
这些充分条件对于解决几何问题非常重要,因此在学习中一定要了解相关知识。
直角坐标系中的直线方程

直角坐标系中的直线方程直线是数学中一种基本的图像,它具有很多重要的性质和应用。
在直角坐标系中,直线的方程可以用不同的形式表示,如斜截式、点斜式和一般式等。
本文将介绍直角坐标系中直线方程的不同形式及其应用。
一、斜截式斜截式是表示直线方程的一种常见形式,它以斜率和截距作为直线的特征参数。
斜截式的一般形式为 y = kx + b,其中 k 表示斜率, b 表示截距。
斜率表示直线在水平方向上的倾斜程度,截距表示直线与 y 轴的交点。
例如,假设有一条直线,斜率为 2,截距为 -3,那么它的斜截式方程为 y = 2x - 3。
通过这个方程,我们可以很方便地计算直线上的各个点的坐标。
二、点斜式点斜式是另一种常见的直线方程形式,它以直线上一点的坐标和直线的斜率作为特征参数。
点斜式的一般形式为 y - y₁ = k(x - x₁),其中(x₁, y₁) 表示直线上的一点坐标, k 表示斜率。
例如,假设有一条直线,过点 (3, 4),斜率为 -1/2,那么它的点斜式方程为 y - 4 = -1/2(x - 3)。
通过这个方程,我们可以方便地计算直线上的其他点的坐标。
三、一般式一般式是直线方程的另一种形式,它以直线的系数作为特征参数。
一般式的一般形式为 Ax + By + C = 0,其中 A、B 和 C 分别为直线的系数。
一般式的表示形式更加简洁,但不如斜截式和点斜式直观。
如果需要计算直线的斜率和截距,我们需要将一般式转化为斜截式或点斜式。
四、应用示例直线方程的不同形式在实际问题中都有其应用价值。
例如,在几何学中,我们可以根据两个已知点的坐标来求解直线的方程。
在物理学中,直线方程用于描述运动的路径和力的作用方向。
在工程学中,直线方程常用于设计建筑物、绘制道路和规划电路等。
总结:直角坐标系中的直线方程可以用斜截式、点斜式和一般式等不同形式来表示。
斜截式以斜率和截距作为特征参数,点斜式以直线上一点的坐标和斜率作为特征参数,一般式以直线的系数作为特征参数。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2.2.2直线方程的几种形式伽利略铁球的轨迹伽利略是伟大的意大利物理学家和天文学家,科学革命的先驱! 历史上他首先在科学实验的基础上融会贯通了数学、物理学和天文学三门知识,扩大、加深并改变了人类对物质运动和宇宙的认识。
为了证实和传播哥白尼的“日心说”,伽利略献出了毕生精力.由此,他晚年受到教会迫害,并被终身监禁。
他以系统的实验和观察推翻了以亚里士多德为代表的、纯属思辨的传统的自然观,开创了以实验事实为根据并具有严密逻辑体系的近代科学. 因此,他被称为“ 近代科学之父”。
他的工作,为牛顿的理论体系的建立奠定了基础.据说科学家伽利略为向亚里士多德宣战,曾手拿一大一小两个铁球,站在高高的比萨斜塔上,将一大一小两个铁球同时扔下,结果人们发现,两个铁球同时落地,于是亚里士多德的那个“物体下落速度与其重量成正比”的论断立刻被推翻了.一个铁球可以看作是一个质点,那么铁球运动所形成的轨迹可以看做是满足某种运动规律的点的集合。
我们将之推广在平面直角坐标系中,这样的点的集合被称为直线,直线的位置既可以由两个点来惟一确定,也可以由一个点和一个方向来确定.课程学习目标[课程目标]目标重点:各种直线方程的推导,点斜式是直线方程的重中之重;根据所给条件灵活选取适当的形式和方法,熟练地求出直线的方程.目标难点:清楚各种直线方程的局限性;把握求直线方程的灵活性;运用数形结合、分类讨论等数学方法和特殊———一般———特殊的思维方式理解直线与二元一次方程的对应关系.[学法关键]1.直线是点的集合,求直线方程实际上是求直线上点的坐标之间满足的一个等量关系;2.求直线方程的过程中,既要说明直线上的点的坐标满足方程,也要说明以方程的解为坐标的点在直线上,只有满足了这两点,我们才可以说这个方程是直线的方程或直线是这个方程的直线;3.通过二元一次方程与直线关系的认识和理解,培养数形结合、数形转化的能力,能正确运用直线方程的各种形式解决问题。
研习点1.直线的点斜式方程1.点斜式方程设直线l过点P0(x0,y0),且斜率为k,则直线的方程为y-y0=k(x-x0),由于此方程是由直线上一点P0(x0,y0)和斜率k所确定的直线方程,我们把这个方程叫做直线的点斜式方程.注意:利用点斜式求直线方程时,需要先判断斜率存在与否.(1)当直线l的倾斜角α=90°时,斜率k不存在,不能用点斜式方程表示,但这时直线l恰与y轴平行或重合,这时直线l上每个点的横坐标都等于x 0,所以此时的方程为x =x 0.(2)当直线l 的倾斜角α=0°时,k =0,此时直线l 的方程为y =y 0,即y -y 0=0. (3)当直线l 的倾斜角不为0°或90°时,可以直接代入方程求解.2.斜截式方程:如果一条直线通过点(0,b )且斜率为k ,则直线的点斜式方程为y =kx + b 其中k 为斜率,b 叫做直线y =kx +b 在y 轴上的截距,简称直线的截距.注意:利用斜截式求直线方程时,需要先判断斜率存在与否.(1)并非所有直线在y 轴上都有截距,当直线的斜率不存在时,如直线x =2在y 轴上就没有截距,即只有不与y 轴平行的直线在y 轴上有截距,从而得斜截式方程不能表示与x 轴垂直的直线的方程.(2)直线的斜截式方程y =kx +b 是y 关于x 的函数,当k =0时,该函数为常量函数.x =b ;当k ≠0时,该函数为一次函数,且当k >0时,函数单调递增,当k <0时,函数单调递减.(3)直线的斜截式方程是直线的点斜式方程的特例。
要注意它们之间的区别和联系及其相互转化.直线点斜式方程的理解1.由于点斜式方程是由斜率公式0y y k x x -=-推出的,因此00y y k x x -=- 表示的直线上缺少一个点P (x 0,y 0),y -y 0=k (x -x 0)才是整条直线;2.经过点P 0(x 0,y 0)的直线有无数条,这无数条直线可以分为两类:①斜率存在时,直线方程y -y 0=k (x -x 0); ②斜率不存在时,直线方程为x =x 0.3.直线的点斜式方程实际上就是我们熟知的一次函数的解析式;4.从函数的角度来看,当斜率k 存在时,直线方程可以看作是函数解析式,当斜率k 不存在时,直线方程为x =x 0,它不是函数解析式。
研习点2.直线的两点式方程若直线l 经过两点A (x 1,y 1),B (x 2,y 2),(x 1≠x 2),则直线l 的方程为112121y y x x y y x x --=--,这种形式的方程叫做直线的两点式方程.两点式方程的理解:(1)当直线没有斜率(x 1=x 2)或斜率为零(y 1=y 2)时,不能用两点式112121y y x x y y x x --=--表示它的方程;(2)可以把两点式的方程化为整式(x 2-x 1)(y -y 1)= (y 2-y 1)(x -x 1),就可以用它来求过平面上任意两点的直线方程; 如过两点A (1,2),B (1,3)的直线方程可以求得x =1,过两点A (1,3),B (-2,3)的直线方程可以求得y =3.(3)需要特别注意整式(x 2-x 1)(y -y 1)= (y 2-y 1)(x -x 1)与两点式方程112121y y x x y y x x --=--的区别,前者对于任意的两点都适用,而后者则有条件的限制,两者并不相同,前者是后者的拓展。
研习点3.直线的截距式方程若直线l 在x 轴上的截距是a ,在y 轴上的截距是b ,且a ≠0,b ≠0,则直线l 的方程为1x ya b+=,这种形式的方程叫做直线的截距式方程。
用截距式方程表示直线时,要注意以下几点:(1)方程的条件限制为a ≠0,b ≠0,即两个截距均不能为零,因此截距式方程不能表示过原点的直线以及与坐标轴平行的直线;(2)用截距式方程最便于作图,要注意截距是坐标而不是长度;(3)要注意“截距相等”与“截距绝对值相等”是两个不同的概念,截距式中的截距可正、可负,但不可为零。
截距式方程的应用(1)与坐标轴围成的三角形的周长为:|a |+|b |+(2)直线与坐标轴围成的三角形面积为:S =1||2ab ;(3)直线在两坐标轴上的截距相等,则k =-1或直线过原点,常设此方程为x +y =a 或y =kx .研习点4.直线方程的一般形式方程Ax +By +C =0(A 、B 不全为零)叫做直线的一般式方程.直线的一般式方程的理解1.两个独立的条件可求直线方程:求直线方程,表面上需求A 、B 、C 三个系数,由于A 、B 不同时为零,若A ≠0,则方程化为0B C x y A A ++=,只需确定,B CA A的值;若B ≠0,同理只需确定两个数值即可;因此,只要给出两个条件,就可以求出直线方程;2.直线方程的其他形式都可以化成一般式,解题时,如果没有特殊说明应把最后结果化为一般式,一般式也可以化为其他形式。
3.在一般式Ax +By +C =0(A 、B 不全为零)中,若A =0,则y =CB -,它表示一条与y 轴垂直的直线;若B =0,则Cx A=-,它表示一条与x 轴垂直的直线.研习点5.直线方程的选择(1)待定系数法是求直线方程的最基本、最常用的方法,但要注意选择形式,一般地已知一点,可以待定斜率k ,但要注意讨论斜率k 不存在的情形,如果已知斜率可以选择斜截式待定截距等;(2)直线方程的几种特殊形式都有其使用的局限性,解题过程中要能够根据不同的题设条件,灵活选用恰当的直线形式求直线方程。
请参看下表:题型1.直线的点斜式方程例1.一条直线经过点M (-2,-3),倾斜角α=135°,求这条直线的方程。
解:这条直线经过点M (-2,-3),斜率是k =t an α=-1代入点斜式方程得:y +3=-1×(x +2),即x +y +5=0,这就是所求直线的方程.例2.求斜率为33,且分别满足下列条件的直线方程:(1)经过点M (3,-1);(2)在x 轴上的截距是-5. 解:(1)所求直线经过点(3,-1),斜率为33,所求直线方程为13y x +=,即3x -3y -6=0. (2)所求直线的斜率是33,在x 轴上的截距为-5,即过点(-5,0),所求直线的方程为y =33(x +5)30y -+=.题型2.直线的斜截式方程例3.若直线Ax +By +C =0通过第二、三、四象限,则系数A 、B 、C 需满足条件( )(A )A 、B 、C 同号 (B )AC <0,BC <0 (C )C =0,AB <0 (D )A =0,BC <0解:原方程可化为A Cy x B B =--,因为直线通过第二、三、四象限,所以其斜率小于0,y 轴上的截距小于0,即0A B >,且0CB>,即A 、B 同号,A 、C 同号,故选A .例4.直线y =ax +b (a +b =0)的图象是( )解:由已知,直线y =ax +b 的斜率为a ,在y 轴上的截距为b . 当x =1时,y =a +b =0,即直线经过点(1,0),选D .例5.写出过下列两点的直线方程,再化成斜截式方程.(1)P 1(2,1),P 2(0,-3);(2)P 1(2,0),P 2(0,3)。
解:(1)直线P 1P 2的两点式方程为:123102y x --=---,整理得斜截式方程为:y =2x -3. (2)直线P 1P 2的两点式方程为:023002y x --=-- ,整理得斜截式方程为:y =-23x +3。
例6. 三角形的顶点是A (-5,0)、B (3,-3)、C (0,2),求这个三角形三边所在的直线方程.解:(用两点式求AB 所在直线的方程)直线AB 经过点A (-5,0)、B (3,-3),由两点式得5335y x +=-+,整理得3x +8y +15=0,这就是直线AB 的方程!(用斜截式求BC 所在直线方程)因为B (3,-3)、C (0,2),所以23533BC k +==--,截距b =2,由斜截式得y =-35x +2,整理得5x +3y -6=0,这就是直线BC 的方程. (用截距式求AC 所在直线的方程)因为A (-5,0)、C (0,2),所以直线在x ,一轴上的截距分别是-5与2,有截距式得152x y+=-,整理得2x -5y +10=0,这就是直线AC 的方程。
题型4.直线的截距式方程例7.已知直线的斜率为61,且和坐标轴围成面积为3的三角形,求该直线的方程。
解:设直线方程为1x ya b+=, 因为直线斜率16b k a =-=,又1||32S ab ==,解得61a b =-⎧⎨=⎩或61a b =⎧⎨=-⎩, 所求直线方程为x -6y +6=0或x -6y -6=0。