(完整)重点高中提前招生数学试卷.doc
重点高中提前招生(数学)
综合素质测试科学素养答题卷(数学) 共 8 页 第 1 页重点高中提前招生(数学部分)参考公式:二次函数y=ax 2+bx+c 的顶点坐标是(-ab 2,ab ac 442)一、选择题(本题有6小题,每小题4分,共24分.请选出各题中一个符合题意的正确选项,不选、多选、错选,均不给分)1.如图,数轴上表示1,2的对应点分别为A ,B ,点B 关于点A 的对称点为C ,则点C 所表示的数是 (A )2-2(B )2-2(C )1-2(D )2-12.数学老师布置10道选择题作为课堂练习,课代表将全班同学的答题情况绘制成条形统计图(如图),根据此图可知,每位同学答对的题数所组成样本的中位数和众数分别为 (A )8,8 (B )8,9 (C )9,9(D )9,83.小华和小明到同一早餐店买馒头和豆浆.已知小华买了5个馒头和6杯豆浆;小明买了7个馒头和3杯豆浆,且小华花的钱比小明少1元.关于馒头与豆浆的价钱,下列叙述正确的是 (A )4个馒头比6杯豆浆少2元 (B )4个馒头比6杯豆浆多2元 (C )12个馒头比9杯豆浆少1元(D )12个馒头比9杯豆浆多1元4.如图,C 为线段AE 上一动点(不与点A ,E 重合),在AE 同侧分别作正三角形ABC 和正三角形CDE ,AD 与BE 交于点O ,AD 与BC 交于点P ,BE 与CD 交于点Q ,连结PQ .现有五个结论:①AD =BE ;②PQ ∥AE ;③AP =BQ ;④DE =DP ;⑤∠AOE =120°. 其中一定成立的结论有 (A )2个 (B )3个(C )4个(D )5个5.如图,在矩形ABCD 中,AB =8,BC =4,将矩形沿AC 折叠,使点D与点D'重合,则重叠部分ΔAFC 的面积为 (A )6(B )8(第4题图)(第5题图)C(第1题图)(第2题图)综合素质测试科学素养答题卷(数学) 共 8 页 第 2 页(C )10 (D )126.如图,正方形ABCD 的边长是3cm ,一个边长为1cm 的小正方形沿着正方形ABCD的边AB →BC →CD →DA →AB 连续地翻转,那么这个小正方形第一次回到起始位置时,它的方向是二、填空题(本题有4小题,每小题4分,共16分) 7.如图,D ,E ,F 分别是等边三角形ΔABC 三边的中点,且ΔDEF 的面积为93,则ΔABC 的周长为 ▲ .8.下表为2008年北京奥运会官方票务网站公布的几种球类比赛的门票价格:小明准备用8000元预订10张表中比赛项目的门票,其中男篮门票数与足球门票数相同,且乒乓球门票的费用不超过男篮门票的费用,则他能预订足球门票 ▲ 张.9.如图,已知一次函数y =3x +b 和y =ax -3的 图象交于点P (-2,-5),则根据图象可得不 等式3x +b >ax -3的解集是 ▲ .10.如图,在平面直角坐标系中,⊙A 的圆心在x 轴上,半径为1,直线l 的解析式为y =x -2.若⊙A 沿x 轴向右运动,在运动过程中,⊙A 与直线l 会有两个切点,则这两个切点之间的距离是 ▲ .(第6题图)(A) (B) (C)(D)A BCDE F(第7题图)(第10题图)(第9题图)综合素质测试科学素养答题卷(数学) 共 8 页 第 3 页三、解答题(本题有4小题,第11小题6分,第12小题7分,第13题11分,第14小题11分,共35分)11.(1)已知a ,b 为实数,且1=ab ,设11+++=b b a a M ,1111+++=b a N ,请比较M ,N 的大小,并说明理由;(2)一天,小明爸爸的同事来家做客,已知爸爸的年龄比小明年龄的平方大5岁,爸爸同事的年龄是小明年龄的4倍,请你计算一下:小明爸爸与他的同事,谁的年龄大?12.如图,已知在直角坐标系中的正方形ABCD 的边长为4.现做如下实验:转盘被划分成4个相同的小扇形,并分别标上数字1,2,3,4. 分别转动两次转盘,转盘停止后,指针所指向的数字作为直角坐标系中M 点的坐标(第一次作横坐标,第二次作纵坐标),指针如果指向分界线上,则重新转动转盘.(1)请你用树状图或列表的方法,求点M 落在正方形ABCD 内(包含边线)的概率; (2)将正方形ABCD 平移整数个单位,则是否存在某种平移,使点M 落在正方形ABCD面上的概率为43?若存在,指出一种具体的平移过程;若不存在,请说明理由.13.已知抛物线32++-=mx x y 与x 轴的一个交点A (3,0),另一个交点为B ,与y 轴的交点为C ,顶点为D .(1)请分别求出点B ,C ,D 的坐标;(第12题图)综合素质测试科学素养答题卷(数学) 共 8 页 第 4 页(2)请在图中画出抛物线的草图. 若点E (-2,n )在直线BC 上,试判断点E 是否在经过点D 的反比例函数的图象上,把你的判断过程写出来;(3)若过点A 的直线L 与x 轴所夹锐角α的正切值满足tan α≤31,试求直线L 与抛物线另一个交点横坐标的取值范围.14.如图,在Rt △PQO 中,∠POQ =90°,∠Q =30°,OP =43.在菱形ABCD 中,点A在边PQ 上运动,B ,C 在边QO 上运动(点B 在点C 的左侧),且∠ABC =60°,设BQ 的长为x .(1)试用含x 的代数式表示菱形ABCD 的边长; (2)当点D 在线段OP 上时,求x 的值;(3)设菱形ABCD 与△OPQ 重合部分的面积为y ,求y 关于x 的函数关系式;(4)连结PD ,OD ,对于不同的x 值,请你比较线段OD 与PD 的大小关系,直接写出结论.(第14题图)(第13题图)综合素质测试科学素养答题卷(数学) 共 8 页 第 5 页综合素质测试科学素养答题卷数学部分一、选择题(本大题共有6小题,每小题4分,共24分)二、填空题(本大题共有4小题,每小题4分,共16分)7. ; 8. ; 9. ; 10. .三、解答题(本大题共有4小题,共35分)11.(本题6分) 解:学校: 姓名: 准考证号:解:(第12题图)综合素质测试科学素养答题卷(数学)共8 页第6 页13.(本题11分)Array解:(第13题图)综合素质测试科学素养答题卷(数学)共8 页第7 页综合素质测试科学素养答题卷(数学) 共 8 页 第 8 页14.(本题11分) 解:(第14题图1)(第14题图3)QP(第14题图2)。
华师版07重点高中提早招生选拔数学试卷及答案
a丙︒72 乙甲︒5050︒caB (第4题图)DCBFEA EDCBA华师版07重点高中提早招生选拔数学试卷及答案一、选择题(本题有12小题,每小题3分,共36分,请选出各题中一个 符合题意的正确选项,不选、多选、错选,均不给分)1.下列计算正确的是 ( )A 、22a ·632a a =B 、6329)3(a a = C 、326a a a =÷ D 、(632)--=aa2.抛物线2)8(2+--=a y 的极点坐标是 ( )A 、(2,8)B 、(8,2)C 、(—8,2)D 、(—8,—2) 3.已知圆锥的底面半径为9㎝,母线长为30㎝,则圆锥的侧面积为( ) A 、270π2cm B 、360π2cm C 、450π2cm D 、540π2cm 4.如图,已知AB ∥CD ,AB=CD,AE=FD,则图中的全等三角形有 ( ) A 、1对 B 、2对 C 、3对 D 、4对 5.现有2008年奥运会福娃卡片20张,其 中贝贝6张,京京5张,欢欢4张,迎迎3张, 妮妮2张,每张卡片大小、质地均匀相同,将 画有福娃的一面朝下反扣在桌子上,从中随机抽取一张,抽到京京的概率是 ( ) A 、101 B 、103 C 、41 D 、516.若是一个定值电阻R 两头所加电压为5伏时,通过它的电流为1安培, 那么通过这一电阻的电流I 随它的两头电压U 转变的图像是 ( )7.如图是5×5的正方形网络,以点D 、E 为两个极点作位 置不同的格点三角形,使所作的格点三角形与△ABC 全等, 如此的格点三角形最多能够画出 ( ) A 、2个 B 、4个 C 、6个 D 、8个8.如图,已知△ABC 的六个元素,则下列甲、乙、丙三个三角形中和△ABC 全等的图形是( )(第9题图)OC BA(第11题图) HGFED CBA (第14题图)OCBAA 、甲乙B 、甲丙C 、乙丙D 、乙 9.如图,∠ACB =60○,半径为2的⊙0切BC 于点C ,若将⊙O 在CB 上向右转动,则当转动到⊙O 与CA 也相切时,圆心O 移动的水平距离为 ( ) A 、2π B 、4π C 、32 D 、4 10.如图,是用4个全等的直角三角形与1个小正方形镶嵌而成的正方形图案,已知大正方形面积为49,小正 方形面积为4,若用X 、Y 表示直角三角形的两直角边(X >Y ),请观看图案,指出以下关系式中不正确的是 ( ) A 、X 2+Y 2=49 B 、X -Y =2 C 、2XY +4=49 D 、X +Y =13 11.如图,正方形ABCD 边长为1,E 、F 、G 、H 别离为各边上的点,且AE=BF=CG=DH,设小正方形EFGH 的面积为Y ,AE为X ,则Y 关于X 的函数图象大致是 ( )12.先作半径为22的圆的内接正方形,接着作上述内接正方形的内切圆, 再作上述内切圆的内接正方形,…,则按以上规律作出的第7个圆的内接正方形的边长为 ( ) A 、(6)22 B 、(7)22 C 、(6)2 D 、7)2(二、填空题(第小题4分,共24分)13.咱们明白,1纳米=10—9米,一种花粉直径为35000纳米,那么这种花粉的直径用科学记数法可记为 米。
省重点中学高一提前招生考试数学试卷及答案(共4份)
省重点中学高一提前招生考试数学试卷满分:120分 时间:90分钟一、选择题(本题有10个小题,每小题3分,共30分)(1)如果一元一次不等式组⎩⎨⎧>>a x x 3的解集为x >3,则a 的取值范围是A .a >3B .a ≥3C .a <3D .a ≤3(2)若实数x 满足12223-=++x x x ,则9932x x x x ++++ =A .1-B .0C .1D .99(3)如果从一卷粗细均匀的电线上截取1米长的电线, 称得它的质量为a 克,再称得剩余电线的质量为b 克,那么原来这卷电线的总长度是A .a b 1+米B .(a b +1)米C .(a+b a +1)米D .(b a +1)米(4)若实数n 满足2)45()46(22=-+-n n ,则代数式)45)(46(n n --的值是A .1-B .21-C .21D .1(5)已知方程2(21)10x k x k +++-=的两个实数根12,x x 满足1241x x k -=-,则实数k 的值为 A .—3,0 B .1,43-C .1,13- D .1,0 (6)如图,矩形AOBC 的面积为16,反比例函数xky =的图象经过矩形的对角线的交点P ,则反比例函数的解析式是A .x y 1= B .x y 2=C .x y 4=D .x y 8= (7)设213a a +=,213b b +=,且a b ≠,则代数式3311ba +的值为A .24-B .18-C .18D .24(8)当x 分别取值201,191,181,…31,21,1,2,3,…,18,19,20时,计算代数式2211x x +-的值,将所得的结果相加,其和等于A .-20B .0C .1D .20(9)如图,∠ACB =60○,半径为2的⊙O 切BC 于点C ,若将⊙O 在CB 上向右滚动,则当滚动到⊙O 与CA 也相切时,圆心O 移动的水平距离为A .32B .4C .πD .2π(10)方程813222=++y xy x 的整数解(,)x y 的组数为A .7B . 6C .5D .4(第9题)二、填空(本题有7个小题,其中11题6分,其余每小题4分,共30分) (11)直接写出下列关于x 的方程的根:①015722=-+x x ; ②24)3)(2)(1(=+++x x x x ;③41122=+++x x xx ;④01)2(2=+--+a x a x ; (12)已知三个数a 、b 、c 的积为负数,和为正数,且x =a a +b b +c c +ab ab +ac ac +cb bc,则ax 3+bx 2+cx +1=_________.(13)若化简16812+---x x x 的结果为52-x ,则x 的取值范围是 . (14)如图,DE 是△ABC 的中位线,点P 是DE 的中点,CP 的延长线交AB 于点Q ,那么:DPQ ABC S S ∆∆=______________. (15)若实数a 、b 满足b >a >0,且ab b a 422=+,则ba b a +-= . (16)若实数b a ,满足0111=+--ba b a ,则=+ab b a 22. (17)桌面上有三颗球,相互靠在一起。
重点高中自主招生考试数学试卷集(大全集)
6.如图,点A 在函数=y x6-)0(<x 的图象上,过点A 作AE 垂直x 轴,垂足为E ,过点A 作AF 垂直y 轴,垂足为F ,则矩形AEOF 的面积是……( A.2 B.3C.6D.不能确定7.用大小和形状完全相同的小正方体木块搭成 一个几何体,使得它的正视图和俯视图如图所示,则搭成这样的一个几何体至少需要小 正方体木块的个数为………………( ) A.22个 B.19个C.16个D.13个8.用半径为cm 6、圆心角为︒120的扇形做成一个圆锥的侧面, 则这个圆锥的底面半径是……………………………………………………………………( ) A.2cm B.3cm C.4cm D.6cm 9.若n 为整数,则能使11-+n n 也为整数的n 的个数有 ……………………( ) A.1个 B.2个 C.3个 D.4个10.已知a 为实数,则代数式221227a a +-的最小值为………………( ) A.0 B.3 C.33 D.9 14.如图,正方形ABCD 的边长为4cm ,正方形AEFG 的边长为1cm .如果正方形AEFG 绕点A 旋转,那么C 、F 两点之间的最小距离为 cm .15.若规定:①{} m 表示大于m 的最小整数,例如:{}4 3 =,{}2 4.2-=-;②[] m 表示不大于m 的最大整数,例如:[]5 5 =,[]4 6.3-=-.则使等式{}[]4 2=-x x 成立的整数..=x . 16.如图,E 、F ABCD 的边AB 、CD 上 的点,AF 与DE 相交于点P ,BF 与CE 相交于 点Q ,若S △APD 15=2cm ,S △BQC 25=2cm , 则阴影部分的面积为 2cm . . (第6题图) (正视图) (俯视图) (第7题图)(第16题图)19.将背面相同,正面分别标有数字1、2、3、4的四张卡片洗匀后,背面朝上放在桌面上. (1)从中随机抽取一张卡片,求该卡片正面上的数字是偶数的概率; (2)先从中随机抽取一张卡片(不放回...),将该卡片正面上的数字作为十位上的数字;再随机抽取一张,将该卡片正面上的数字作为个位上的数字,则组成的两位数恰好是4的倍数的概率是多少?请用树状图或列表法加以说明.20.为配合我市“创卫”工作,某中学选派部分学生到若干处公共场所参加义务劳动.若每处安排10人,则还剩15人;若每处安排14人,则有一处的人数不足14人,但不少于10人.求这所学校选派学生的人数和学生所参加义务劳动的公共场所个数.21.如图,四边形ABCD 是正方形,点N 是CD 的中点,M 是AD 边上不同于点A 、D 的点,若1010sin =∠ABM ,求证:MBC NMB ∠=∠.(第21题图)N22.如图,抛物线的顶点坐标是⎪⎭⎫ ⎝⎛8925,-,且经过点) 14 , 8 (A .(1)求该抛物线的解析式;(2)设该抛物线与y 轴相交于点B ,与x 轴相交于C 、D 两点(点C 在点D 的左边), 试求点B 、C 、D 的坐标;(3)设点P 是x 轴上的任意一点,分别连结AC 、BC . 试判断:PB PA +与BC AC +的大小关系,并说明理由.23.如图,AB 是⊙O 的直径,过点B 作⊙O 的切线BM ,点P 在右半圆上移动点P 与点A 、B 不重合),过点P 作PC ⊥AB ,垂足为C ;点Q 在射线BM 上移动(点M 在点B 的右边),且在移动过程中保持OQ ∥AP .(1)若PC 、QO 的延长线相交于点E ,判断是否存在点P ,使得点E 恰好在⊙O 上? 若存在,求出APC ∠的大小;若不存在,请说明理由; (2)连结AQ 交PC 于点F ,设PC PFk =,试问:k 的值是否随点P 的移动而变化?证明你的结论.(第22题图) Q ABC EFPO(第23题图).1、若匀速行驶的汽车速度提高40%,则行车时间可节省( )%(精确至1%) A 、6 0 B 、40 C 、 29 D 、252、如图,一个正方形被5条平行于一组对边的直线和3条平行于另一组对边的直线分成24个(形状不一定相同的)长方形,如果这24个长方形的周长的和为24,则原正方形的面积为( ).A 、1B 、9/4C 、4D 、36/25 3、已知:2)3(3322=+-+x x xx ,x 2+3x 为( ) A 、1 B 、-3和1 C 、3 D 、-1或34、四边形ABCD 的对角线AC 、BD 交于点O ,且S △AOB =4,S △COD =9,则四边形A B CD 面积有( )A 、最小值12B 、最大值12C 、.最小值25D 、最大值255、二个天平的盘中,形状相同的物体质尊相等,如图(1)图(2)所示的两个天平处于平街状态,要使第三个天平也保持平衡,则需在它的右盘中放置( )A 、 3个球B 、4个球C 、5个球D 、6个球 5、9人分24张票,每人至少1张,则( )A 、至少有3人票数相等B 、至少有4人票数无异C 、不会有5人票数一致D 、不会有6人票数同样2、半径为10的圆0内有一点P ,OP=8,过点P 所有的弦中长是整数的弦有 条。
高中提前招生考试数学试卷(含答案)
市高中提前招生考试试卷一、选择题(每小题4分,共40分)2. 如果从一卷粗细均匀的电线上截取1米长的电线, 称得它的质量为a 克,再称得剩余电线的质量为b 克, 那么原来这卷电线的总长度是……………( ) A .b+1a 米; B .(b a +1)米; C .(a+b a +1)米; D .(a b+1)米3. 国家质检总局出台了国内销售的纤维制品甲醛含量标准, 从2003年1月1 日起正式实施.该标准规定:针织内衣. 床上用品等直接接触皮肤的制品,甲醛含量应在百万分之七十五以下. 百万分之七十五用科学记数法表示应写成………( ) A .75×10-7; B .75×10-6; C .7.5×10-6; D .7.5×10-54. 已知⊙O 1半径为3cm ,⊙O 2的半径为7cm, 若⊙O 1和⊙O 2的公共点不超过1 个, 则两圆的圆心距不可能为………………………( ) A .0cm ; B .4cm ; C .8cm ; D .12cm5. 如图所示的两个圆盘中,指针落在每一个数上的机会均等,那么两个指针同时落在偶数上的概率是……( ) A .1925 ; B .1025 ; C .625 ; D .5256. 在四边形ABCD 中,对角线AC 与BD 相交于点E ,若AC 平分∠DAB ,AB=AE , AC=AD. 那么在下列四个结论中:(1) AC ⊥BD ;(2)BC=DE ; (3)∠DBC=12 ∠DAB ;(4) △ABE 是正三角形,正确的是……………( )A .(1)和(2);B .(2)和(3);C .(3)和(4);D .(1)和(4) 7. 红星学校准备开办一些学生课外活动的兴趣班,结果反应热烈。
各种班的计划招生人若计划招生人数和报名人数的比值越大,表示学校开设该兴趣班相对学生需要的满足程度就越高,那么根据以上数据,满足程度最高的兴趣班是------( ) A .计算机班; B .奥数班;C .英语口语班;D .音乐艺术班8. 抛物线y=ax 2+2ax+a 2+2的一部分如图所示,那么该抛 物线在y 轴右侧与x 轴交点的坐标是……………( )A .(12 ,0);B .(1, 0);C .(2, 0);D .(3, 0)9. 如图是一张简易活动餐桌,现测得OA=OB=30cm , OC=OD=50cm ,现要求桌面离地面的高度为40cm ,那么 两条桌腿的张角∠COD 的大小应为…………………( ) A .100°;B .120°;C .135°;D .150°.10. 下列四个图形中,每个小正方形都标上了颜色. 若要求一个正方体两个相对面上的颜色都一样,那么不可能是这一个正方体的展开图的是-------( )二、填空题(每小题5分,共30分)11. 如图是2006年1月的日历,李钢该月每周都要参加1次足球赛,共参加5次.按照原定的安排,其中去1次的是星期日、星期一和星期六,去2次的是星期三.那么李钢参加比赛的日期数的总和是 .12. 若不等式组112x x a -≤≤⎧⎨<⎩有解,那么a 必须满足 .13. 已知A 、B 、C 、D 点的坐标如图所示, E 是图中两条虚线的交点, 若△ABC 和△ADE 相似, 则E 点的坐标是___________________.14. 等腰△ABC 的底边BC=8cm ,腰长AB=5cm ,一动点P 在底边上从点B 开始向点C 以0.25cm/秒的速度运动, 当点P 运动到PA 与腰垂直的位置时,点P 运动的时间应为 秒.15. 请你将一根细长的绳子,沿中间对折,再沿对折后的绳子中间再对折,这样连续对折5次,最后用剪刀沿对折5次后的绳子的中间将绳子剪断,此时绳子将被剪成 段.A .B .C .D .16. 假设一家旅馆一共有30个房间,分别编以1~30三十个号码,现在要在每个房间的钥匙上刻上数字,要求所刻的数字必须使服务员很容易辨认是哪一个房间的钥匙,而使局外人不容易猜到. 现在有一种编码的方法是:在每把钥匙上刻上两个数字,左边的一个数字是这把钥匙原来的房间号码除以5所得的余数,而右边的一个数字是这把钥匙原来的房间号码除以7所得的余数. 那么刻的数是36的钥匙所对应的原来房间应该是号.三、解答题19. 严先生能言善辨,他说,他能证明图中的直角等于钝角。
省重点高中高一新生提前招生考试数学试卷及答案(共5份)
18.解:按颜色把 8 个扇形分为红 1、绿 1、黄 1、红 2、绿 2、黄 2、绿 3、黄
3,所有可能结果的总数为 8。
( 1)指针指向红色可能结果为
21
2,∴ P(指针指向红色) =
。
84
( 2)指针指向黄色或绿色可能结果为
6,∴ P(指针指向黄色或绿色)
63
=
。
84
a2 4
1
a2a2 a3
19.解:
2
3 m2
=
4
x1
x 2 ቤተ መጻሕፍቲ ባይዱ即
9 m 4 = 3 m 2。解之得
16
4
此时
3m2 4
2
32 3
43
1 。 点 C 的坐标为
OC 1。
m 2 3。 3
0, 1 。
又 x2
2
x1
2
x1 x2
4 x1 x2
2
m4
3 m2 4
4 m 2,
m > 0 , x 2 x1
2m 4 3 ,即 AB 3
4 3。 3
1
∴ ∠PDF= ∠ DFA= ∠ DFP。∴ PD=PF。
∴ PA=PF。即 P 是线段 AF 的中点。
( 3)∵∠ DAF= ∠DBA ,∠ ADB= ∠ FDA ,∴△ FDA ∽△ ADB 。
AD AF
∴
。
DB AB
15
AD AF ∴在△ ADB 中, tan ABD
2
3 。
DB AB 10 4
D. 12 3
10.二次函教 y x2 2x 5 有
A .最大值 5 B.最小值 5 C.最大值 6 D .最小值 6
省重点高中高一提前招生考试语数英试卷及答案
省重点高中高一提前招生考试数学试题本次考试不能使用计算器,没有近似计算要求的保留准确值.一、选择题(本题有10小题,每小题4分,共40分。
每小题只有一个选项是正确的,不选,多选,错选,均不给分)1.“红灯停,绿灯行”是我们在日常生活中必须遵守的交通规则.小刚每天从家骑自行车上学都经过两个路口,且每个路口只安装了红灯和绿灯,假如每个路口红灯和绿灯亮的时间相同,那么小刚从家随时出发去学校,他遇到一次红灯一次绿灯的概率是( ▲ ) A .14 B .13 C .12 D .232.若关于x 的一元一次不等式组 ⎩⎨⎧>≤<m x x 21 有解,则m 的取值范围为( ▲ )A .2<mB .2m ≤C .1<mD .21<≤m 3.点M (2-,a ),N (4-,b )是所给函数图像上的点,则能使b a >成立的函数是 ( ▲ )A .32+-=x yB .4)3(22++-=x yC .1)2(32--=x y D .xy 2-= 4.据报道,日本福岛核电站发生泄漏事故后,在我市环境空气中检测出一种微量的放射性核素“碘-131”,含量为每立方米0.4毫贝克(这种元素的半衰期是8天,即每8天含量减少一半,如8天后减少到0.2毫贝克),那么要使含量降至每立方米0.0004毫贝克以下,下列天数中,能达到目标的最少的天数是( ▲ )A .64B .71C .82D .1045.十进制数2378,记作)10(2378,其实)10(2378=0123108107103102⨯+⨯+⨯+⨯, 二进制数1001)2(=012321202021⨯+⨯+⨯+⨯.有一个(010k <≤为整数)进制数()165k ,把它的三个数字顺序颠倒得到的k 进制数()561k 是原数的3倍,则k =( ▲ )A .10B .9C .8D .76.正方形ABCD 、正方形BEFG 和正方形PKRF 的位置如图所示,点G 在线段DK 上,正方形BEFG 的边长为2,则△DEK 的面积为( ▲ )A .4B .3C .2D 7.如图,在Rt △ABC 中,AC =3,BC =4,D 为斜边AB上一动点,DE ⊥BC ,DF ⊥AC ,垂足分别为E 、F 。
重点高中提前招生数学模拟试卷.docx
重点高中提前招生数学模拟试卷(一)班级 _____ 姓名 ____________一、选择题(每小题4分,共32分)1.己知:丁^需是整数,满足条件的最小正整数几为().2•如图所示,周长为68的矩形被分成了 7个全等的矩形,3. 如图,Rt/\ABC 中,ZACB=90。
,ZC4B=30。
,BC=2, O, H 分别为边 4B, AC 的中点,将△ABC 绕点B 顺时针旋转120。
到厶AjBC,的位置,则整个旋转过程屮线段所扫过部分 的面积(即阴影部分面积)为()A. -K--V3B. -K + -V3C. -K + V3 D ・ Ji3 8 3 8 34. 如图,在AABC 中,D 、E 在边BC 上,F 、G 分别在边AC 、AB 上,且四边形DEFG 为正方 形。
如果 S ACFE =S AAGF = 1,S ABDG =3,那么 S AABC 等于()•A. 6B. 7C. 8 D ・ 9ZA fD8的度数是( ) 6. 如图所示,AB 是的直径,AD=DE, AE 与BD 交于点C,则图屮与ZBCE 相等的角有()个.A. 2 个B. 3 个C. 4 个D. 57. 在平面直角坐标系中,抛物线y=dd-l )2+R 与x 轴交于A 、B 两点,顶点为C,点D 在抛物线的对称轴上,若四边形ACBD 是一个边长为2且有一个内角为60°的菱形,则该抛物线的 解析式有()A ・2 B. 3 C. 4 D. 5 )•A ・98B. 196C. 2805. 如图,将zMBC 沿着它的中位线DE 折叠后,点A 落在点A 处, 若ZC= 120°, ZA=26°,则 A. 112° B. 100° C. 120°D. 110° AD(第2题图) (第4题图) (第5题图) BA. 2个B. 3个C. 4个D. 5个8. 方程一肘+4加?+2”莎+2”+5 = 0的正整数解有(A 」B.2C.4D.无穷二、填空题(每小题5分,共40分)9. 如图,乐器上一根弦固定在乐器面板上4、B 两点,支撑点C 是靠近点B 的黄金分割点,若AB=80cm,则AC= ______________ cm.(结果保留根号)10. 如图,四边形ABCD 中,AB=4, BC = 7, CD=2, AD=x,则x 的取值范围是 ___________________11. 已知〃M 是关于兀的方程『_2血+。
重点中学提前招生数学试卷1
重点中学提前招生数学试卷(本卷考试时间80分钟,满分120分)一、填空题(把答案填在题中横线上,每小题7分,共70分)1、已知a 、b 满足a 2-2a -1=0,b 2-2b -1=0,且a ≠b ,则a b +ba +1= . 2、△ABC 的周长是24,M 是AB 的中点,MC =MA =5,则△ABC 的面积是 .3、要使关于x 的方程21++x x -1-x x =22-+x x m 的解为负数,则m 的取值范围是 . 4、已知:41(b -c )2=(a -b )(c -a ),且a ≠0,则ac b 4+= . 5、如图,E 、F 分别在AD 、BC 上,EFCD 是正方形,且矩形ABCD ∽矩形AEFB ,则AB ∶BC 的值是 .6、设x 、y 、z 满足关系式x -1=21+y=32-z ,则x 2+y 2+z 2的最小值为. 7、如图,在△ABC 中,D 、E 是BC 的三等分点,M 是AC 的中点,BM 交AD 、AE 于G 、H 则BG ∶GH ∶HM = . 8、如图3×3的正方形的每一条方格内的字母都代表某个数,已 知其每行、每列以及两条对角线上三角形个数之和都相等,若a =4,d =19,i =22,那么b = ,h =. 9、在矩形ABCD 中,AB =6cm ,BC =8cm ,若将矩形折叠,使B点与D 点重合,如图所示,则折痕EF 的长为 .10、如图,已知ABCD 是一个半径为R 的圆内接四边形,AB =12,CD =6,分别延长AB 和DC ,它们相交于点P ,且BP =8,∠APD =600,则R = . 二、解答题(本大题共4小题,共50分,解答应写出文字说明、证明过程或演算步骤)11、如图,在直角坐标系内有两个点A (-1,-1),B (2,3)-MA 最大,求M 点的坐标,并说明理由.(10分)第7题 第10题 第8题 第11题。
重点高中提前招生数学练习卷(有答案)
重点高中提前招生数学练习卷班级 姓名 成绩一、选择题(每小题4分,共32分)1.若0<x <1,则x -1,x ,x 2的大小关系是( C )A .x -1<x <x 2B . x <x 2<x -1C .x 2<x <x -1D .x 2<x -1<x 【解析】用特殊值法,例如,取x =12.2.匀速行驶的城际列车,若将速度提高25%,则相同距离的 行车时间可节省k %,那么k 的值是( D )A .35B .30C .25D .20【解析】设距离为s ,原速为v ,则(s v -s 1.25v )÷sv =20%,∴k =20.3.如图,将△ADE 绕正方形ABCD 的顶点A 顺时针旋转90°, 得△ABF ,连接EF 交AB 于H ,则下列结论错误的是( C )A .AE ⊥AFB .EF ∶AF =2∶1C .AF 2=FH •FED .FB ∶FC =HB ∶EC4.用0,l ,2,3,4,5,6,7,8这九个数字组成若干个一位数或两位数(每个数字都只用一次),然后把所得的数相加,它们的和不可能是( C ) A. 36 B. 117 C. 115 D. 153【解析】由于a +b +c +d +e +f +g +h +i =36,当组成的数中含有两位数时(如a 为十位数字),它们的和为10a +b +c +d +e +f +g +h +i =9a +(a +b +c +d +e +f +g +h +i) =36+9a 为9的倍数.同理,当多个数为十位数字时(如a ,b ,c 为十位数字),它们的和为10a +10b +10c +d +e +f +g +h +i =9a +9b +9c +(a +b +c +d +e +f +g +h +i)=36+9a +9b +9c 仍为9的倍数. ∵115不是9的倍数,∴C 答案不可能.5.如图,四边形ABMN ,BCPQ 是两个全等的矩形(AB ≤BC ),点R 在线段AC 上移动,则满足∠NRP =90°的点R 有( C )A. 1个B. 2个C. 1个或2个D. 无数多个 【解析】设AB =a ,BC =b ,AR =x. ∵∠A =∠C =∠NRP =90°,∴△ANR ∽△CRP , ∴AN RC =AR CP ,即b a +b -x =xa,∴x 2-(a +b)x +ab =0, 解得x 1=a ,x 2=b. ∴当a <b 时点R 有2个,当a =b 时点R 有1个,故选C.6. 实数a ,b ,c 满足a +b +c =0,且abc >0,则1a +1b +1c的值是( B )A. 正数B. 负数C. 零D. 不能确定【解析】将等式a +b +c =0两边平方,得a 2+b 2+c 2+2ab +2bc +2ca =0, ∴ab +bc +ca =-12(a 2+b 2+c 2)<0. ∵abc >0,∴1a +1b +1c =ab +bc +caabc<0.7.在△ABC 中,点D ,E 分别在AB ,AC 上,CD 与BE 相交于点F ,已知△BDF 的面积为10,△BCF 的面积为20,△CEF 的面积为16,则四边形ADFE 的面积等于( D ) A .22 B .24 C .36 D .44【解析】如图,由题意得x y +16=1020,y x +10=1620, ∴⎩⎨⎧2x =y +16,5y =4x +40,解得⎩⎨⎧x =20,y =24.∴四边形ADFE 的面积为44.8.某医院内科病房有护士15人,每2人一班,轮流值班,每8小时换班一次,某两人同值一班后,到下次两人再同班,最长需要( B )A .30天B .35天C .56天D .448天 【解析】15人每2人一班,轮流值班,有15×142=105种排法.每8小时换班一次,一天须排3班,某两人同值一班后,到下次两人再同班,最长需要105÷3=35(天). 二、填空题(每小题5分,共40分)9.已知∠A 为锐角,且4sin 2A -4sin A cos A +cos 2A =0,则tan A = . 【答案】12【解析】由题意得(2sin A -cos A )2=0,∴2sin A -cos A =0,∴sinA cosA =12. ∴tan A =sinA cosA =12.10.在某海防观测站的正东方向12海里处有A ,B 两艘船相遇,然后A 船以每小时12海里的速度往南航行,B 船以每小时3海 里的速度向北漂移.则经过 小时后,观测站及A ,B 两 船恰成一个直角三角形. 【答案】211.一个样本为l ,3,2,2,a ,b ,c .已知这个样本唯一的众数 为3,平均数为2,则这个样本的方差为 . 【答案】87【解析】这个样本为l ,3,2,2,3,3,0.∴方差为87.12.如图,直角坐标系中,沿着两条坐标轴摆着三个相同的长方 形,其长、宽分别为4,2,则通过A ,B ,C 三点的拋物线对应的 函数关系式是 . 【答案】y =-512x 2-12x +20313. 在一个木制的棱长为3的正方体的表面涂上颜色,将它的棱三等分,然后从等分点把正方体锯开,得到27个棱长为l 的小正方体,将这些小正方体充分混合后,装入口袋,从这个口袋中任意取出一个小正方体,则这个小正方体的表面恰好涂有两面颜色的概率是 . 【答案】4914. 如图,在边长为2的正方形ABCD 的四边上分别取点E ,F ,G ,H ,当四边形EFGH 各边的平方和EF 2+FG 2+GH 2+HE 2取得最小值时,四边形EFGH 的面积为 . 【答案】2【解析】设AE =a ,BF =b ,CG =c ,DH =d ,∴EF 2+FG 2+GH 2+HE 2=(2-a)2+b 2+(2-b)2+c 2+(2-c)2+d 2+(2-d)2+a 2 =2a 2+2b 2+2c 2+2d 2-4a -4b -4c -4d +16=2[(a -1)2+(b -1)2+(c -1)2+(d -1)2+4] 当a =b =c =d =1时,四边形EFGH 恰好是 正方形ABCD 的中点四边形, ∴四边形EFGH 的面积为2.15.点P ,Q 从点A (2,0)同时出发,沿正方形BCDE 的边匀速运动,点P 以每秒1个单位的速度按逆时针方向运动,点Q 以每秒2个单位的速度按顺时针方向运动,则P ,Q 两点第11次相遇时的坐标是 .【答案】(-43,-2)【解析】∵P ,Q 第一次相遇时,点P 所走的路程为周长的13,∴第3次相遇时点P 回到A 处.以此类推,第6次、第9次相遇时点P 均在A 处. 第11次相遇时,点P 从A 处出发,走了周长的23,其坐标为(-43,-2).16. 已知2,a ,b 分别为三角形三边,且a ,b 为方程(3x 2-4x -1)(3x 2-4x -5)=12的根,则三角形周长为 .【答案】163,203【解析】解方程(3x 2-4x -1)(3x 2-4x -5)=12,设3x 2-4x =y ,则(y -1)(y -5)=12, 解得y =-1或y =7.当y =-1时,3x 2-4x +1=0,解得x 1=1,x 2=13,当y =7时,3x 2-4x -7=0,解得x 3=-1,x 4=73.其中能与2组成三角形只有2种:(2,1,73),(2,73,73),∴周长为163或203.三、解答题(共58分)17.(10分)已知a =12+3, 求1-2a +a 2a -1-a 2-2a +1a 2-a 的值.【解】由已知得a =2- 3.原式=(1-a)2a -1-(a -1)2a(a -1). a =2-3<1,∴(a -1)2=1-a.∴原式=a -1+1a=2-3-1+2+3=3.18.(10分)在凸四边形ABCD 中,∠A -∠B =∠B -∠C =∠C -∠D >0,且四个内角中有一个角为84°,求其余各角的度数. 【解】设∠A -∠B =∠B -∠C =∠C -∠D =x , 则∠C =∠D +x ,∠B =∠D +2x ,A =∠D +3x , ∵∠A +∠B +∠C +∠D =6x +4∠D =360°,∴∠D +32x =90°.若∠D =84°,则x =4°,∴∠A =96°,∠B =92°,∠C =88°; 若∠C =84°,则2x +4∠C =360°,x =12°,∴∠A =108°,∠B =96°,∠D =72°. 若∠B =84°,则-2x +4∠B =360°,x =-12°(舍去). 若∠A =84°,则-6x +4∠A =360°,x =-4(舍去).. ∴各角的度数为∠A =96°,∠B =92°,∠C =88°,∠D =84°;或∠A =108°,∠B =96°,∠C =84°,∠D =72°.19.(12当比赛进行到12 (1)试判断甲队胜、平、负各几场?(2)若每一场每名参赛队员均得出场费500元,设甲队中一位参赛队员所得的奖金与出场费的和为W (元),试求W 的最大值.【解】(1)设甲队胜x 场,平y 场,负z 场,则⎩⎨⎧x +y +z =12,3x +y =19,∴⎩⎨⎧y =19-3x ,z =2x -7,依题意知x≥0,y≥0,z≥0,且x ,y ,z 均为整数,∴⎩⎪⎨⎪⎧x ≥019-3x ≥0,2x -7≥0,∴解得72≤x ≤193,∴甲队胜、平、负的场数有三种情况:当x =4时,y =7,z =1; 当x =5时,y =4,z =3; 当x =6时,y =1,z =5.(2)∵W =(1500+500)x +(700+500)y +500z =-600x +19300. 当x =4时,W 最大值=-600×4+19300=16900(元) ∴W 的最大值为16900元.20.(12分)对于平面直角坐标系 xOy 中的点P (a ,b ),若点P'的坐标为(a +bk ,ka +b )(k 为常数,k ≠0),则称点P'为点P 的“k 属派生点”.例如:P (1,4)的“2属派生点”为P'(1+42,2×1+4),即P'(3,6).(1)①点P (-1,-2)的“2属派生点”P'的坐标为___________. ②若点P 的“k 属派生点”为P'(3,3),请写出一个符合条件的点P 的坐标____________. (2)若点P 在x 轴的正半轴上,点P 的“k 属派生点”为P'点,且△OPP'为等腰直角三角形,则k 的值为 .(3)如图, 点Q 的坐标为(0,43),点A 在函数y =-43x(x <0)的图象上,且点A 是点B 的“-3属派生点”,当线段BQ 最短时,求B 点坐标.【解】(1)①(-2,-4);②答案不唯一,只需横、纵坐标之和为3即可,如(1,2).(2)±1. (3)设B (a ,b ),则A (a -b3,-3a +b ).∵点A 在反比例函数y =-43x的图象上, ∴(a -b3)(-3a +b)=-4 3.∴(3a -b)2=12.∴b =3a -23或b =3a +2 3.∴B 在直线y =3x -23或y =3x +23上.过Q 作y =3x +23的垂线Q B 1,垂足为B 1,求得B 1(32,723). ∵点Q 到直线y =3x -23的距离大于Q B 1, ∴B 1即为所求的B 点,∴B (32,723).21.(14分)已知:矩形ABCD (字母顺序如图)的边长AB =3,AD =2,将此矩形放在平面直角坐标系xOy 中,使AB 在x 轴的正半轴上,矩形的其它两个顶点在第一象限,且直线y =32x -1经过这两个顶点中的一个. (1)求矩形的各顶点的坐标.(2)以AB 为直径作⊙M ,经过A ,B 两点的抛物线y =ax 2+bx +c 的顶点是P 点. ①若点P 位于⊙M 外,且在矩形ABCD 内部,求a 的取值范围.②过点C 作⊙M 的切线交AD 于F 点,当PF ∥AB 时,试判断抛物线与y 轴的交点Q 是位于直线y =32x -1的上方?还是下方?还是正好落在此直线上?并说明理由.【解】(1)设A (m ,0)(m >0),则有B (m +3,0);C (m +3,2),D (m ,2); 若C 点过直线y =32x -1;则2=32( m +3)-1,解得m =-1(舍去);若点D 过直线y =32x -1,则2=32m -1,m =2(符合题意).∴A (2,0),B (5,0),C (5,2),D (2,2). (2)①∵⊙M 以AB 为直径,∴M (72,0),设抛物线y =a(x -2)( x -5)=ax 2-7ax +10a , ∴抛物线顶点P (72,-94a ).∵顶点同时在⊙M 内和在矩形ABCD 内部, ∴32<-94a <2,∴-89<a <-23. ②设切线CF 与⊙M 相切于Q ,交AD 于F (如图所示). 设AF =n ,由切线长定理得FQ =AF =n ,∴CF =n +2.由勾股定理得DF 2+DC 2=CF 2,∴32+(2-n)2=( n +2)2,解得n =98,∴F (2,98).当PF ∥AB 时,P 点纵坐标为98,∴-94a =98,∴a =-12.∴抛物线的解析式为y =-12x 2+72x -5,与y 轴的交点为Q (0,-5).∵直线y =32x -1与y 轴交点(0,-1),∴Q 在直线y =32x -1下方.。
重点高中高一提前招生选拔考试数学试卷及答案(共5份)
重点高中提前招生选拔考试数学试卷(本卷满分100分,时间120分钟)一、选择题(每题4分,共40分) 1.下列运算正确的是( )A.a 5.a 6= a 30B. (a 5)6= a 30C.a 5+a 6= a 11D.a 5÷a 6=65 2.抛物线2)8x (y 2+--=的顶点坐标是( )A .(2,8)B .(8,2)C .(—8,2)D .(—8,—2)3.在平面内有线段AB 和直线L,点A 、B 到直线L 的距离分别是4㎝、6㎝.则线段AB 的中点C到直线l 的距离是 ( )A .1或5B .3或5C .4D .54.已知:3223222⨯=+; 8338332⨯=+;154415442⨯=+;245524552⨯=+,……;809980992⨯=+,若ab10a b 102⨯=+(a,b 为正整数)则a+b 的值不可能是( ) A .109 B .218 C .326 D .4365.无论m 为何实数,直线y=2x+3m 与y=-x+5的交点不可能在( ) A.第一象限 B.第二象限 C.第三象限 D.第四象限6.已知a 、b 、c 为△ABC 的三条边,且满足a 2+ab -ac -bc=0,b 2+bc -ba -ca=0,则 △ABC 是( )A .等边三角形 B.直角三角形C.等腰三角形D.等腰三角形或直角三角形7.若关于x 的不等式组 x ≥3a -2 无解,则函数y=(a -3)x 2-x -41的图象与 x<a+4 x 轴的交点个数为( )A.0B.1C.2D.1或28.将任意一张凸四边形的纸片对折,使它的两个不相邻的顶点重合,然后剪去纸片 的不重合部分,展开纸片,再一次对折,使另外的两个顶点重合,再剪去不重合 的部分后展开,此时纸片的形状是( )A.正方形B.长方形C.菱形D.等腰梯形9.如图,点M 是正方形ABCD 的CD 边上的中点, 点P 按A →B →C →M 的顺序在正方形的边上运动, 设AB=1,点P 经过的路程为x ,△APM 的面积为y ,则y 关于x 的函数是( )CP10.为了迎接2010年亚运会的到来,某足球协会举办了一次足球联赛,其记分规则及奖励方案如下表:当比赛进行到12轮结束(每队均需比赛12场)时,A 队共积19分,若每 赛一场每名参赛队员均得出场费500元,设A 队其中一名参赛队员所得的奖金与 出场费的和为W (元),试求W 的最大值是( ) .16300 B. 16900 C. 15700 D. 17500二、填空题(每题5分,共30分)11.一盒子内放有3个红球、6个白球和5个黑球,它们除颜色外都相同,搅匀后任意摸出1个球是白球的概率为 .12.某校七年级2班的男生人数是女生人数的1.8倍,在一次数学测试中,全班成绩 的平均分是75分,其中女生的平均分比男生的平均分高20%,则女生的平均分是 ___________分。
省重点高中高一提前招生考试数学试卷及答案(共6份)
省重点高中高一提前招生考试数学试卷考试用时100分钟,满分为120分一、选择题(本大题5小题,每小题3分,共15分)在每小题列出的四个选项中,只有一个是正确的,请把答题卡上对应题目所选的选项涂黑. 1.-2的倒数是A .2B .-2C .12D .-122.据中新社北京2010年12月8日电,2010年中国粮食总产量达到546 400 000吨,用科学记数法表示为A .5.464×107吨B .5.464×108吨C .5.464×109吨D .5.464×1010吨 3.将左下图中的箭头缩小到原来的12,得到的图形是4.在一个不透明的口袋中,装有5个红球3个白球,它们除颜色外都相同,从中任意摸 出一个球,摸到红球的概率为 A .51 B .31 C .85 D .835.正八边形的每个内角为A .120ºB .135ºC .140ºD .144º二、填空题(本大题5小题,每小题4分,共20分)请将下列各题的正确答案填写在答题卡相应的位置上.6.已知反比例函数=ky x的图象经过(1,-2),则=k ______▲______. 7.使2-x 在实数范围内有意义的x 的取值范围是______▲______. 8.按下面程序计算:输入3=x ,则输出的答案是______▲______.9.如图,AB 与⊙O 相切于点B ,AO 的延长线交⊙O 于点C .若∠A=40º,A .B .D .则∠C=______▲______.10.如图(1),将一个正六边形各边延长,构成一个正六角星形AFBDCE ,它的面积为1;取△ABC 和△DEF 各边中点,连接成正六角星形A 1F 1B 1D 1C 1E 1,如图(2)中阴影部分;取△A 1B 1C 1和 △D 1E 1F 1各边中点,连接成正六角星形A 2F 2B 2D 2C 2E 2,如图(3)中阴影部分;如此下去…,则正六角星 形A 4F 4B 4D 4C 4E 4的面积为______▲______.三、解答题(一)(本大题5小题,每小题6分,共30分) 11.计算:20245sin 18)12011(-︒+-.12.解不等式组:213821x >x +-⎧⎨-≤-⎩ ①②,并把解集在数轴上表示出来.13.已知:如图,E ,F 在AC 上,AD//CB 且AD=CB ,∠D=∠B .求证:AE=CF .14.如图,在平面直角坐标系中,点P 的坐标为(-4,0),⊙P 的半径为2,将⊙P 沿x 轴向右平移4个单位长度得⊙P 1. (1)画出⊙P 1,并直接判断⊙P 与⊙P 1的位置关系; (2)设⊙P 1与x 轴正半轴,y 轴正半轴的交点分别为A ,B ,求劣弧AB 与弦AB 围成的图形的面积(结果保留π). 15.已知抛物线c x x y ++=221与x 轴没有交点. (1)求c 的取值范围;(2)试确定直线1+=cx y 经过的象限,并说明理由. 四、解答题(二)(本大题4小题,每小题7分,共28分)16.某品牌瓶装饮料每箱价格26元.某商店对该瓶装饮料进行“买一送三”促销活动,若BCDAFE(1)E(2)(3)整箱购买,则买一箱送三瓶,这相当于每瓶比原价便宜了0.6元.问该品牌饮料一箱有多少瓶? 17.如图,小明家在A 处,门前有一口池塘,隔着池塘有一条公路l ,AB 是A 到l 的小路. 现新修一条路AC 到公路l. 小明测量出∠ACD=30º,∠ABD=45º,BC=50m. 请你帮小明计算他家到公路l 的距离AD 的长度(精确到0.1m ;参考数据:414.12≈,732.13≈).18.李老师为了解班里学生的作息时间表,调查了班上50名学生上学路上花费的时间,他发现学生所花时间都少于50分钟,然后将调查数据整理,作出如下频数分布直方图的一部分(每组数据含最小值不含最大值).请根据该频数分布直方图,回答下列问题:(1)此次调查的总体是什么? (2)补全频数分布直方图;(3)该班学生上学路上花费时间在30分钟以上(含30分钟)的人数占全班人数的百分比是多少?19.如图,直角梯形纸片ABCD 中,AD//BC ,∠A=90º,∠C=30º.折叠纸片使BC 经过点D ,点C 落在点E 处,BF 是折痕,且BF=CF=8. (1)求∠BDF 的度数; (2)求AB 的长.五、解答题(三)(本大题3小题,每小题9分,共27分)20.如下数表是由从1开始的连续自然数组成,观察规律并完成各题的解答.1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36…………………………(1)表中第8行的最后一个数是______________,它是自然数_____________的平方,第8行共有____________个数;(2)用含n 的代数式表示:第n 行的第一个数是___________________,最后一个数是________________,第n 行共有_______________个数;(3)求第n 行各数之和.21.如图(1),△ABC 与△EFD 为等腰直角三角形,AC 与DE 重合,AB=AC=EF=9,∠BAC=∠DEF=90º,固定△ABC ,将△DEF 绕点A 顺时针旋转,当DF 边与AB 边重合时,旋转中止.现不考虑旋转开始和结束时重合的情况,设DE ,DF(或它们的延长线)分别交BC(或它的延长线) 于G ,H 点,如图(2) (1)问:始终与△AGC 相似的三角形有 及 ;(2)设CG=x ,BH=y ,求y 关于x 的函数关系式(只要求根据图(2)的情形说明理由) (3)问:当x 为何值时,△AGH 是等腰三角形.∴当x =9x =时,△AGH 是等腰三角形。
重点高中提前招生数学试卷
)bx重点高中提前招生数学试卷一、选择题(每小题5分)1、方程1116x y+=的正整数解的个数是()A 7个B 8个C 9 个D 10个2、如图,A,B的坐标为(2,0),(0,1)若将线段AB平移至11A B,则a b+的值为()A.2 B.3 C.4 D.53、解关于x的不等式⎩⎨⎧-<>axax,正确的结论是()A、无解B、解为全体实数C、当a>0时无解D、当a<0时无解4、某一天的不同时刻老板把信交给秘书打字,每次都将信放在秘书信堆的最上面,秘书有时间就将信堆最上面的那封信取来打。
假定共有5封信,且老板以1、2、3、4、5的顺序交来,在下列各顺序中,哪一顺序不可能是秘书打字的顺序?(A、12345B、54321C、23541D、235145、二次函数2y ax bx c=++的图象如图所示,)2,(nQ是图象上的一点,且BQAQ⊥,则a的值为().A.13- B.12- C.-1 D.-26、如图,以Rt△ABC的斜边BC为一边在△ABC的同侧作正方形BCEF,设正方形的中心为O,连结AO,如果AB=4,AO=26,那么AC的长等于()(A) 12(B) 16 (C) (D)7、函数y=(m2-1)x2-(3m-1)x+2的图象与x轴的交点情况是( )A、当m≠3时,有一个交点B、1±≠m时,有两个交点C、当1±=m时,有一个交点 D、不论m为何值,均无交点8、已知函数f(x)=x2+λx,p、q、r为⊿ABC的三边,且p﹤q﹤r,若对所有的正整数p、q、r都满足f(p)﹤f(q)﹤f(r),则λ的取值范围是()A、λ﹥-2B、λ﹥-3C、λ﹥-4D、λ﹥-5二、填空题(每小题5分)9、若关于x的分式方程3131+=-+xax在实数范围内无解,则实数=a_____.10、若222a b c bc=+-则的值是ABCEFOc ba b a c+++第13题图11、在Rt △ABC 中,∠C =900,AC =3,BC =4.若以C 点为圆心, r 为半径 所作的圆与斜边AB 只有一个公共点,则r 的取值范围是____________ .12、在平面直角坐标系中,横坐标与纵坐标都是整数的点(y x ,)称为整点,如果将二次函数43982-+-=x x y 的图像与x 轴所围成的封闭图形染成红色,则此红色区域内部及其边界上的整点个数有 个。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
数学试卷 (满分 100 分)一、选择题(每小题均给出了代号为 A 、B 、 C 、 D 的四个结论,其中只有一个是正确的,请将正确答案的代号填在题后的括号内,每题4 分,共 28 分,选择题的答案写在答卷上)1x 11是方程 mx 2m2 0的根,则 xm 的值为 ().若mA .0B . 1C .- 1D . 22.内角的度数为整数的正n 边形的个数是( )A .24B . 22C .20D . 183.某商场五一期间举行优惠销售活动,采取“满一百元送二十元,并且连环赠送”的酬宾方式,即顾客每消费满100 元( 100元可以是现金,也可以是购物券,或二者合计)就送20 元购物券,满 200 元就送40 元购物券,依次类推,现有一位顾客第一次就用了16000 元购物,并用所得购物券继续购物,那么他购回的商品大约相当于它们原价的( )A .90%B .85%C . 80%D . 75%4x 1是完全平方数,则它前面的一个完全平方数是 ().设 x 为正整数,若A . xB x 2 x 1C . x 2 x 1 1D . x 2 x 1 2.5.横坐标、 纵坐标都是整数的点叫做整点,6x 3( )函数 y的图象上整点的个数是2x 1A .3 个B . 4 个C . 6 个D . 8 个D6、如图,四边形BDCE 内接于以 BC 为直径的⊙ A ,已知:BC 10, cos BCD 3 ,BCE 30 ,则线段 DE 的长5B是 ()CAA 、 89B 、7 3C 、 4+3 3D 、 3+4 37、某学校共有 3125 名学生,一次活动中全体学生被排成E一个 n 排的等腰梯形阵,且这 n 排学生数按每排都比前一排多一人的规律排列,则当 n 取到最大值时,排在这等腰梯形阵最外面的一周的学生总人数是()A.296B.221C.225D.641数学答题卷一、 (每 4 分,共 28 分,每 4 分,共 28 分)1 2 3 4 5 6 7二、填空 (本 共 8 小 ,每小 4 分,共 32 分)8. 算: 1+ 2-3+ 4+ 5- 6+ 7+ 8- 9+⋯+ 97+ 98-99+ 100= .9.若抛物 y2x 2px 4 p 1 中不管 p 取何 都通 定点, 定点坐10.已知 数 x 足 ( x 2 x)24(x 2 x)120 , 代数式 x 2 x 1 的11.若方程5x 3 y 2 3kx a, 且 | k | <3, a b 的取 范 是3x y k 4的解b,y12、若 任意 数 x 不等式 axb 都成立,那么 a 、 b 的取 范13、 1x 2 , x2 1 x 2的最大 与最小 之差 x214.有八个球 号是①至⑧,其中有六个球一 重,另外两个球都 1 克, 了找出 两个 球, 用天平称了三次, 果如下:第一次①+②比③+④重, 第二次⑤ +⑥比⑦+⑧ ,第三次① +③+⑤和② +④ +⑧一 重.那么,两个 球的 号是__15.在 2× 3 的矩形方格 上,各个小正方形的 点 格点。
以格点 点的等腰直角三 角形有 _______ 个三、(本 共4 小 ,分 分布 10+10+10+10 ,合 40 分)16. (本 分 10 分)已知抛物 y=ax 2+(a+2)x+2a+1 与直 y=2- 3x 的交点均是整点 (直角坐 系中 , 横、 坐 均 整数的点 ), 确定整数 a 的 , 并求出相 的交点 (整点 )的坐 .17. (本题满分 10 分)如图,已知ABC 中, AB=a ,点 D 在 AB 边上移动(点 D 不与 A 、 B重合),DE//BC ,交 AC 于 E ,连结 CD .设 S ABC S , S DECS 1 .( 1)当 D 为 AB 中点时,求 S 1 : S 的值;( 2)若 AD x, S 1y ,求 y 关于 x 的函数关系式及自变量x 的S取值范围;1S 成立? 若存在,求出 D 点位置;( 3)是否存在点 D ,使得 S 1 若不存在,请说明理由 .418. (本题满分 10 分)如图,设ABC 是直角三角形,点 D 在斜边 BC 上, BD 4DC ,已知圆过点 C 且与 AC 相交于 F ,与 AB 相切于 AB 的中点 G ,求证: ADBF 。
A FGC DB19. (本题满分10 分)在有20 名歌手参加的比赛中,9 名裁判员分别给他们判定从1~20的名次。
已知每一名歌手得到的名次中,各名次之差不超过3。
若每名歌手所得到的c1 c2⋯⋯ C 20,则c1的最大值是多少名次的和排成递增序列:数学试卷参考答案一、 (每小 均 出了代号A 、B 、C 、D 的四个 ,其中只有一个是正确的, 将正确答案的代号填在 后的括号内,每4 分,共 28 分1.代入方程可解出, m=1,故 x=0C2.内角和 180 (n-2),180 (n 2)180360 为整数 ,且 n 3,分析 360 的正因数,nnB3.可以理解 (100-20)/100=80C4. 起 ,不妨假定x=3 , 它前面一个完全平方数1,只有 D 符合63 共有4 种情况B5. y 3,故 2x-1= 1,2x16.提示: C 作 CM DE ,垂足 M, 分 算出 DM 和 ME 即可D 7. 第一排有 a 名学生, 第 n 排有 a+n-1 ,求和:n(aa n 1) 31252∵a 与 n 正整数, n 取到最大 , ∴ a =38, n=50,∴排在 等腰梯形 最外面的一周的学生 人数是: a+a+n-1+2n-4=221 ,故 B .二、填空 (本 共8 小 ,每小4 分,共 32 分)8 .( 1 + 2 - 3 ) + ( 4 + 5 - 6 ) + ( 7 + 8 - 9 ) + ⋯ + ( 97 + 98 - 99 ) +100=0+3+6+9+ +96+100=16849. y(4 x) p1 2x2 , 取 x=4 即可,恒 (4, 33)10.因式分解: (x 2-x-6 )(x2-x+2)=0, 故 x 2-x=6, 于是 x 2-x+1=711.a-b=k+2,-3<k<3 a-b(-1,5)12.a=0,b<013. 原式可化 4-1|x|(-1x 2),max=4,min=3最大 - 最小 =1214④⑤15 以斜 准 数斜2 , 24 个2, 14 个2 2 , 8 个10 , 4合50 个三、(本 共 4 小 , 分40 分)16: 本 分10 分解:联立y ax 2 ( a 2 ) x 2a 1得 ax 2+(a+5)x+2a - 1=0(*)y 23x设 (*) 的两根为 x 12122a11 为整数, x, 则 x · x = a=2- a∴ a=± 1 当 a=1 时 , (*) 为 x 2+6x+1=0 无整数解当 a=- 1 时 , (*) 为 x 2- 4x+3=0, x 1=1, x 2=3对应地 y 1=- 1, y 2=- 7∴ a=- 1, 交点坐标为 (1, - 1)和 (3, -7)17: 本题满分 10 分解:( 1) DE / / BC , D 为 AB 的中点 ,ADAE 1.ADE ∽ ABC ,AC2ABSADEAD) 21SADEAE 1 ,S 1 1 .S(4S 1EC ∴4ABS( 2) ∵= ,S1= y ,∴S 1 = EC = DB = a x .AD xSS △ ADE AE AD xS △ ADEAD 2x 2又∵,S = AB= a 2∴S△ADE=x 2 · S∴S = a x x 2S ∴ S 1x 2 axa 21xa 2Sa 2121即 y =- a 2x + ax自变量 x 的取值范围是: 0< x < a .( 3)不存在点 D ,使得 S 11S 成立. 理由:假设存在点 D ,使得 S 11S 成立,那44么S11 ,即 y 1 S4 41 2 1 1∴- a 2 x+ a x > 4.,∴( 1 x -1 ) 2< 0 ∵( 1 x - 1) 2≥ ∴ x 不存在,a2a2即不存在点 D ,使得 S1S 成立.1418. 本题满分 10 分证:过 D 作 DE AC 于 EBAC = 90DE ∥ ABDE CD 1 ABCB5AE BD 4ACCB511AB 切圆于 GAG 2 = AF.AC 又 AG =AB AB 2 = AF.ACAB4 AC 5AE AE24Rt △AED ∽ Rt △ ABFAF AB 5DE DEEAD = ABF EAD +DAB = 90 0ABF + DAB = 90 0 即 AD BF19.24.若 9 名裁判都给某歌手判第一名,则c1=9若有两名歌手都得第一名,则其中 1 人得到不少于 5 个第一,而其余 4 个名次不高于第四名,故 c 5× 1+4 × 4=211若有三名歌手都得第一名,则他们所得的其余名次不高于第四名,他们的名次之和不大于1 9 3 9 4 9 72 ,故c1 24若有四名歌手都得第一名,则他们的名次之和不大于 1 9 2 9 3 9 4 9 90所以 c 124而 5 名或更多名选手得第一名的情况是不可能的。
构造裁判员给名次和为 c 1, c 2 , c 3 的三名歌手判的名次都是1, 1,1,3,3,3,4,4,4 ;给c4, c5, c6都是2,2,2,5,5,5,6,6,6,给其余选手为7~20 之间。