初三+圆难题压轴题答案解析之欧阳光明创编

合集下载

人教版九年级数学上册第二十四章 圆 综合压轴题练习(含详解)

人教版九年级数学上册第二十四章 圆 综合压轴题练习(含详解)

人教版九年级数学上册第二十四章《圆》综合压轴题17道【答案及详解】1.如图,△ABC内接于⊙O,∠B=60°,CD是⊙O的直径,点P是CD延长线上的一点且AP=AC.(1)求证:P A是⊙O的切线;(2)若AB=2+,BC=4,求⊙O的半径.2.如图,△ABC是⊙O的内接三角形,BC是⊙O的直径,过点O作OF⊥BC,交AC于点E,连接AF,且AF是⊙O的切线.(1)求证:AF=EF.(2)若⊙O的半径为5,AB=,求AF的长.3.如图,AB为⊙O的直径,C,D为⊙O上的两点,∠BAC=∠DAC,过点C做直线EF ⊥AD,交AD的延长线于点E,连接BC.(1)求证:EF是⊙O的切线;(2)若∠BAC=∠DAC=30°,BC=2,求劣弧的长l.4.如图所示,AB是⊙O的直径,AD和BC分别切⊙O于A,B两点,CD与⊙O有公共点E,且AD=DE.(1)求证:CD是⊙O的切线;(2)若AB=12,BC=4,求AD的长.5.如图,直线l与⊙O相离,OA⊥l于点A,与⊙O相交于点P,OA=10.C是直线l上一点,连结CP并延长交⊙O于另一点B,且AB=AC.(1)求证:AB是⊙O的切线;(2)若⊙O的半径为6,求线段BP的长.6.如图,点E是△ABC的内心,AE的延长线和△ABC的外接圆相交于点D,交BC于F.(1)若∠ABC=40°,∠C=80°,求∠CBD的度数;(2)求证:DB=DE;(3)若AB=6,AC=4,BC=5,求DE的长.7.如图①,AB为⊙O的直径,点C在⊙O上,AD平分∠CAB,AD与BC交于点F,过点D作DE⊥AB于点E.(1)求证:BC=2DE;(2)如图②,连接OF,若∠AFO=45°,半径为2时,求AC的长.8.如图,在△ABC中,∠C=90°,∠BAC的平分线交BC于点D,点O在AB上,以点O 为圆心,OA为半径的圆恰好经过点D,分别交AC、AB于点E.F.(1)试判断直线BC与⊙O的位置关系,并说明理由;(2)若BD=2,BF=2,求⊙O的半径.9.如图,在四边形ABCD中,AD∥BC,AD⊥CD,AC=AB,⊙O为△ABC的外接圆.(1)如图1,求证:AD是⊙O的切线;(2)如图2,CD交⊙O于点E,过点A作AG⊥BE,垂足为F,交BC于点G.若AD =2,CD=3,求GF的长.10.如图,已知点A、C、D在⊙O上,⊙O的半径为2,CD为⊙O的直径,直线AB∥CD 且∠ADC=60°,将线段AD绕点A逆时针旋转得到线段AF,点D的对应点为点F,且点F在射线AB上,连接FC;(1)求线段AF的长;(2)若点E是上的一点,连接EF,DE,过点F作FH⊥DE于H,延长FH交⊙O 于G,若EF=2,求FG的长.11.如图,D为⊙O上一点,点C在直径BA的延长线上,∠CDA=∠CBD.(1)求证:CD是⊙O的切线;(2)若∠CBD=30°,BC=3,求⊙O半径.12.如图,在△ABC中,AB=CB,AB是⊙O的直径,D为⊙O上一点,且弧AD=弧BD,直线l经过点C、D,连接AD,交BC于点E,若∠CAD=∠CBA.(1)求证:直线l是⊙O的切线;(2)求的值.13.如图,AB为⊙O的直径,C、D为圆上的两点,OC∥BD,弦AD与BC,OC分别交于E、F.(1)求证:=;(2)若CE=1,EB=3,求⊙O的半径.14.如图,已知⊙O是等边三角形ABC的外接圆,点D在圆上,在CD的延长线上有一点F,使DF=DA,AE∥BC交CF于E.(1)求证:EA是⊙O的切线;(2)判断BD与CF的数量关系?说明理由.15.如图,CD为⊙O的直径,弦AB⊥CD,垂足为H,P是CD延长线上一点,DE⊥AP,垂足为E,∠EAD=∠HAD.(1)求证:AE为⊙O的切线;(2)已知P A=2,PD=1,求⊙O的半径和DE的长.16.如图,在△ABC中,AB=AC,AE是BC边上的高,BM平分∠ABC交AE于点M,经过B,M两点的⊙O交BC于点G,交AB于点F,FB为⊙O的直径.(1)求证:AM是⊙O的切线;(2)当BC=10,AE=12时,求AM的长度.17.如图,在△ABC中,AC=BC,以BC为直径作⊙O,交AC于点M,作CD⊥AC交AB 延长线于点D,E为CD上一点,且BE=DE.(1)证明:BE为⊙O的切线;(2)若AM=8,AB=8,求BE的长.参考答案1.如图,△ABC内接于⊙O,∠B=60°,CD是⊙O的直径,点P是CD延长线上的一点且AP=AC.(1)求证:P A是⊙O的切线;(2)若AB=2+,BC=4,求⊙O的半径.【解答】(1)证明:连接OA,∵∠B=60°,∴∠AOC=2∠B=120°,又∵OA=OC,∴∠OAC=∠OCA=30°,又∵AP=AC,∴∠P=∠ACP=30°,∴∠OAP=∠AOC﹣∠P=90°,∴OA⊥P A,∴P A是⊙O的切线;(2)解:过点C作CE⊥AB于点E.在Rt△BCE中,∠B=60°,BC=4,∴BE=BC=2,CE=2,∵AB=2+,∴AE=AB﹣BE=,在Rt△ACE中,AC==3,。

初三圆专题训练之欧阳物创编

初三圆专题训练之欧阳物创编

圆专题训练时间:2021.02.07命题人:欧阳物一、河南省近4年中招圆专题1.河南省2010年中招11.如图,AB 切⊙O 于点A ,BO 交⊙O 于点C ,点D 是⌒CmA 上异于点C 、A 的一点,若∠ABO=32°,则∠ADC 的度数是______________.14.如图矩形ABCD 中,AD=1,AD=,以AD 的长为半径的⊙A 交BC 于点E ,则图中阴影部分的面积为______________________.2.河南省2011年中招10. 如图,CB 切⊙O 于点B ,CA D 且AB 为⊙O 的直径,点E 是A 、D 的一点.若∠C=40°,则∠E 的度数为.3.河南省2012年中招 8.如图,已知AB 为⊙O 的直径,AD 切⊙O 于点A,EC CB ,则下列结论不一定正确的是【 】D(第11题) AA .BA⊥DA B.OC∥AE C.∠COE=2∠CAE D.OD⊥AC4.河南省2013年中招7. 如图,CD 是⊙O 的直径,弦AB⊥CD 于点G ,直线EF 与⊙O 相切于点D ,则下列结论中不一定正确的是A. AG=BGB. AB//EFC. AD//BCD. ∠ABC=∠ADC一、 圆中线段的最值专题1. (2012浙江宁波3分)如图,△ABC 中,∠BAC=60°,∠ABC=45°,AB=22,D 是线段BC 上的一个动点,以AD 为直径画⊙O 分别交AB ,AC 于E ,F ,连接EF ,则线段EF 长度的最小值为.2. (2013湖北省咸宁市,1,3分)如图,在Rt△AOB 中,OA=OB=3,⊙O 的半径为1,点P 是AB 边上的动点,过点P 作⊙O 的一条切线PQ (点Q 为切点),则切线PQ 的最小值为.3.(2011浙江台州,10,4分)如图,⊙O的半径为2,点O 到直线l 的距离为3,点P 是直线l 上的一个动点,PB 切⊙O 于点B ,OFC DB G A 第7题则PB的最小值是()A.13B.5C. 3D.24. (2007•常州)如图,在△ABC中,AB=10,AC=8,BC=6,经过点C且与边AB相切的动圆与CA、CB分别相交于点P、Q,则线段PQ长度的最小值是()A.24 B.4.75 C.5 D.4.8二、圆中阴影面积计算专题1.(2012广东汕头4分)如图,在□ABCD中,AD=2,AB=4,∠A=30°,以点A为圆心,AD的长为半径画弧交AB于点E,连接CE,则阴影部分的面积是(结果保留π).2. (宁夏回族自治区)如图,在两个半圆中,大圆的弦MN与小圆相切,D为切点,且MN∥AB,MN=a,ON、CD分别为两圆的半径,求阴影部分的面积.3.(河南省)如图,⊙A、⊙B、⊙C、⊙D、⊙E相互外离,它们的半径都是1,顺次连结五个圆心得到五边形ABCDE,则图中五个扇形(阴影部分)的面积之和是()(A )π (B )1.5π (C )2π (D )2.5π4.(2012山东枣庄4分)如图,在以O 为圆心的两个同心圆中,大圆的弦AB 与小圆相切于点C ,若AB 的长为8cm ,则图中阴影部分的面积为cm2.5.如图,圆心角都是90°的扇形OAB 与扇形OCD 叠放在一起,连AC 、BD 。

九年级下册圆形拔高习题(较难及难题)(含解析)(2)(2021年整理)

九年级下册圆形拔高习题(较难及难题)(含解析)(2)(2021年整理)

(完整)九年级下册圆形拔高习题(较难及难题)(含解析)(2)(word版可编辑修改) 编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望((完整)九年级下册圆形拔高习题(较难及难题)(含解析)(2)(word版可编辑修改))的内容能够给您的工作和学习带来便利。

同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。

本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为(完整)九年级下册圆形拔高习题(较难及难题)(含解析)(2)(word版可编辑修改)的全部内容。

九年级下册圆形拔高习题(中等及较难)一、选择题1、如图,Rt△ABC中,AB⊥BC,AB=6,BC=4,P是△ABC内部的一个动点,且满足∠PAB=∠PBC,则线段CP长的最小值为()A .B 。

2C .D 。

2、如图,⊙O是△ABC的外接圆,∠BOC=3∠AOB,若∠ACB=20°,则∠BAC的度数是( )A .120°B .80°C 。

60°D .30°3、如图,AB为⊙O的直径,点C在⊙O上,若∠OCA=50°,AB=4,则的长为( )A .πB 。

πC 。

πD .π4、如图所示,AB是⊙O的直径,点C为⊙O外一点,CA,CD是⊙O的切线,A,D为切点,连接BD,AD.若∠ACD=30°,则∠DBA的大小是()A 。

15°B .30°C 。

60°D .75°5、如图,圆O是Rt△ABC的外接圆,∠ACB=90°,∠A=25°,过点C作圆O的切线,交AB的延长线于点D,则∠D的度数是( )A .25°B .40°C .50°D .65°6、如图,在⊙O中,AB是直径,点D是⊙O上一点,点C是弧AD的中点,弦CE⊥AB于点E,过点D的切线交EC的延长线于点G,连接AD,分别交CE、CB于点P、Q,连接AC.给出下列结论:①∠BAD=∠ABC;②AD=CB;③点P是△ACQ的外心;④GP=GD;⑤CB∥GD.其中正确结论的序号是( )A.①②④B.②③⑤C.③④D.②⑤7、一个直角三角形的斜边长为8,内切圆半径为1,则这个三角形的周长等于( )A 。

中考压轴题~~圆含答案解析

中考压轴题~~圆含答案解析

中考压轴题(一)--------与圆有关压轴题1.如图,在M 中,AB 所对的圆心角为120,已知圆的半径为2cm ,并建立如图所示的直角坐标系. (1)求圆心M 的坐标;(2)求经过A B C ,,三点的抛物线的解析式;(3)点D 是弦AB 所对的优弧上一动点,求四边形ACBD 的最大面积; (4)在(2)中的抛物线上是否存在一点P ,使PAB △若存在,求出点P 的坐标;若不存在,请说明理由. [解] (1)如图(1),连结MA MB ,.则120AMB ∠=60CMB ∴∠=,30OBM ∠=.112OM MB ∴==,(01)M ∴,. (2)由A B C ,,三点的特殊性与对称性,知经过A B C ,,三点的抛物线的解析式为2y ax c =+. 1OC MC MO =-=,OB =(01)C B ∴-,,.113c a ∴=-=,2113y x ∴=-.(3)ABC ABD ACBD S S S =+△△四边形,又ABC S △与AB 均为定值,∴当ABD △边AB 上的高最大时,ABD S △最大,此时点D 为M 与y 轴的交点,如图1.2111222ABC ABD ACBD S S S AB OC AB OD AB CD ∴=+=+==△△四边形···. (4)方法1:如图2,ABC △为等腰三角形,30ABABC BC∠=,yxBAM POxABC PAB ∴△∽△等价于306PAB PB AB PA ∠=====,.设()P x y ,且0x >,则cos30x PAAO =-==·sin303y PA ==·. 又(233)P ,的坐标满足2113y x =-,∴在抛物线2113y x =-上,存在点P ,使ABC PAB △∽△.由抛物线的对称性,知点(-也符合题意.∴存在点P,它的坐标为或(-. 方法2:如图(3),当ABC PAB △∽△时,30PAB BAC ∠=∠=,又由(1)知30MAB ∠=, ∴点P 在直线AM 上.设直线AM 的解析式为y kx b =+,将((01)A M ,代入,解得 1.k b ⎧=⎪⎨⎪=⎩∴直线AM的解析式为1y x =+.解方程组21113y x y x ⎧=+⎪⎪⎨⎪=-⎪⎩,得P .又tan PBx ∠=,60PBx ∴∠=.30P ∴∠=,ABC PAB ∴△∽△.∴在抛物线2113y x =-上,存在点P ,使ABCPAB △∽△.由抛物线的对称性,知点(-也符合题意.∴存在点P,它的坐标为或(-. 方法3:如图3,ABC △为等腰三角形,且ABBC,设()P x y ,则 图3 ABC PAB △∽△等价于PB AB ==6PA ==.当0x >时,得 6.=解得P .又P 的坐标满足2113y x =-,∴在抛物线2113y x =-上,存在点P ,使ABC PAB △∽△.由抛物线的对称性,知点(-也符合题意.∴存在点P,它的坐标为或(-. [点评]本题是一道综合性很强也是传统型的压轴题,涉及了函数、方程、相似、圆等大量初中数学的重点知识,解这类问题要求学生必须稳固的掌握各个领域的数学知识,须注意的是在第4小问中涉及了相似三角形的问题,很有可能会有多解的情况出现,此时就要求学生拥有较强的数形结合思想去探索结论的存在性。

2021年中考压轴题--圆含答案

2021年中考压轴题--圆含答案

中考压轴题(一)--------与圆有关压轴题欧阳光明(2021.03.07)1.如图,在M中,AB 所对的圆心角为120,已知圆的半径为2cm ,并建立如图所示的直角坐标系. (1)求圆心M 的坐标;(2)求经过A B C ,,三点的抛物线的解析式;(3)点D 是弦AB 所对的优弧上一动点,求四边形ACBD 的最大面积;(4)在(2)中的抛物线上是否存在一点P ,使PAB △和ABC △相似?若存在,求出点P 的坐标;若不存在,请说明理由.[解](1)如图(1),连结MA MB ,. 则120AMB ∠=60CMB ∴∠=,30OBM ∠=.112OM MB ∴==,(01)M ∴,. (2)由A B C ,,三点的特殊性与对称性,知经过A B C ,,三点的抛物线的解析式为2y ax c =+.1OC MC MO =-=,OB(01)C B ∴-,,.113c a ∴=-=,2113y x ∴=-.xx(3)ABC ABD ACBD S S S =+△△四边形,又ABC S △与AB 均为定值,∴当ABD △边AB 上的高最大时,ABD S △最大,此时点D 为M与y 轴的交点,如图1.211143cm 222ABC ABD ACBD S S S AB OC AB OD AB CD ∴=+=+==△△四边形···. (4)方法1:如图2,ABC △为等腰三角形,303ABABC BC∠==,,ABC PAB∴△∽△等价于302336PAB PB AB PA PB ∠=====,,. 设()P x y ,且x >,则cos3033323x PA AO =-=-=·,sin303y PA ==·.又(233)P ,的坐标满足2113y x =-,∴在抛物线2113y x =-上,存在点(233)P ,,使ABC PAB △∽△.由抛物线的对称性,知点(233)-,也符合题意.∴存在点P ,它的坐标为(233),或(233)-,. 方法2:如图(3),当ABC PAB △∽△时,30PAB BAC ∠=∠=,又由(1)知30MAB ∠=,∴点P 在直线AM 上.设直线AM 的解析式为y kx b =+,将(30)(01)A M -,,,代入,解得31.k b ⎧=⎪⎨⎪=⎩,∴直线AM 的解析式yxBCAMP图2O为1y =+.解方程组21113y x y x ⎧=+⎪⎪⎨⎪=-⎪⎩,得P .又tan PBx ∠=,60PBx ∴∠=.30P ∴∠=,ABC PAB ∴△∽△.∴在抛物线2113y x =-上,存在点P ,使ABC PAB △∽△.由抛物线的对称性,知点(-也符合题意.∴存在点P ,它的坐标为或(-. 方法3: 如图3,ABC △为等腰三角形,且ABBC=()P x y ,则 图3ABC PAB △∽△等价于PB AB ==6PA ==.当0x >时,得 6.解得P .又P 的坐标满足2113y x =-,∴在抛物线2113y x =-上,存在点P ,使ABC PAB △∽△.由抛物线的对称性,知点(-也符合题意.∴存在点P ,它的坐标为或(-. [点评]本题是一道综合性很强也是传统型的压轴题,涉及了函数、方程、相似、圆等大量初中数学的重点知识,解这类问题要求学生必须稳固的掌握各个领域的数学知识,须注意的是在第4小问中涉及了相似三角形的问题,很有可能会有多解的情况出现,此时就要求学生拥有较强的数形结合思想去探索结论的存在性。

2021年中考数学压轴题汇编

2021年中考数学压轴题汇编

压欧阳光明(2021.03.07)轴题选讲中考倒数第三题1. 如图,已知直线PA交⊙0于A、B两点,AE是⊙0的直径.点C为⊙0上一点,且AC平分∠PAE,过C作CD⊥PA,垂足为D。

(1)求证:CD为⊙0的切线;(2)若DC+DA=6,⊙0的直径为l0,求AB的长度.2、在△ABC中,AB=AC,点O是△ABC的外心,连接AO并延长交BC于D,交△ABC的外接圆于E,过点B作⊙O的切线交AO的延长线于Q,设OQ=,BQ=3.(1)求⊙O的半径;(2)若DE=,求四边形ACEB的周长.3、如图,在Rt△ABC中,∠C=90°,点D是AC的中点,且∠A+∠CDB=90°,过点A,D作⊙O,使圆心O在AB上,⊙O与AB交于点E.(1)求证:直线BD与⊙O相切;(2)若AD:AE=4:5,BC=6,求⊙O的直径.4、己知:如图.△ABC内接于⊙O,AB为直径,∠CBA的平分线交AC干点F,交⊙O于点D,DF⊥AB于点E,且交AC于点P,连接AD.(1)求证:∠DAC=∠DBA(2)求证:P处线段AF的中点(3)若⊙O的半径为5,AF=,求tan∠ABF的值.5、已知:如图,锐角△ABC内接于⊙O,∠ABC=45°;点D是⌒BC上一点,过点D的切线DE交AC的延长线于点E,且DE∥BC;连结AD、BD、BE,AD的垂线AF与DC的延长线交于点F .(1)求证:△ABD ∽△ADE ;(2)记△DAF 、△BAE 的面积分别为S △DAF 、S △BAE , 求证:S △DAF >S △BAE .6、如图,在△ABC 中,AB =AC ,以AB 为直径的⊙O 交BC 于点D ,过点D 作EF ⊥AC 于点E ,交AB 的延长线于点F .(1)求证:EF 是⊙O 的切线;(2)当∠BAC =60º时,DE 与DF 有何数量关系?请说明理由;(3)当AB =5,BC =6时,求tan ∠BAC 的值.7、如图,已知CD 是⊙O 的直径,AC ⊥CD ,垂足为C ,弦DE ∥OA ,直线AE 、CD 相交于点B .(1)求证:直线AB 是⊙O 的切线. (2)当AC =1,BE =2,求tan ∠OAC 的值.9、如图,AB 是⊙O 的直径,CD 是⊙O 的切线,切点为C .延长AB 交CD 于点E .连接AC ,作∠DAC=∠ACD ,作AF ⊥ED 于点F ,交⊙O 于点G .(1) 求证:AD 是⊙O 的切线;(2) 如果⊙O 的半径是6cm ,EC=8cm ,求GF 的长. 中考倒数第二题 1、某企业为重庆计算机产业基地提供电脑配件,受美元走低的影响,从去年1至9月,该配件的原材料价格一路攀升,每件配件的原材料价格y1(元)与月份x月份x1 2 3 4 5 6 7 8 9 价格y1(元/件) 560 580 600 620 640 660 680 700 720 随着国家调控措施的出台,原材料价格的涨势趋缓,10至12月每件配件的原材料价格y2(元)与月份x (10≤x≤12,且x 取整数)A EB D O CABC E OFA O BG之间存在如图所示的变化趋势:(1)请观察题中的表格,用所学过的一次函数、反比例函数或二次函数的有关知识,直接写出y1与x之间的函数关系式,根据如图所示的变化趋势,直接写出y2与x之间满足的一次函数关系式;(2)若去年该配件每件的售价为1000元,生产每件配件的人力成本为50元,其它成本30元,该配件在1至9月的销售量p1(万件)与月份x满足函数关系式p1=0.1x+1.1(1≤x≤9,且x取整数)10至12月的销售量p2(万件)与月份x满足函数关系式p2=﹣0.1x+2.9(10≤x≤12,且x取整数).求去年哪个月销售该配件的利润最大,并求出这个最大利润;(3)今年1至5月,每件配件的原材料价格均比去年12月上涨60元,人力成本比去年增加20%,其它成本没有变化,该企业将每件配件的售价在去年的基础上提高a%,与此同时每月销售量均在去年12月的基础上减少0.1a%.这样,在保证每月上万件配件销量的前提下,完成了1至5月的总利润1700万元的任务,请你参考以下数据,估算出a的整数值.(参考数据:992=9901,982=9604,972=9409,962=9216,952=9025)2、如图,已知抛物线与x轴相交于A、B两点,其对称轴为直线,且与x轴交于点D,AO=1.(1) 填空:b=_______。

初三圆难题压轴题答案解析(终审稿)

初三圆难题压轴题答案解析(终审稿)

初三圆难题压轴题答案解析公司内部档案编码:[OPPTR-OPPT28-OPPTL98-OPPNN08]圆难题压轴题答案解析1. 解:(1)如图1,设⊙O的半径为r,当点A在⊙C上时,点E和点A重合,过点A作AH⊥BC于H,∴BH=AB?cosB=4,∴AH=3,CH=4,∴AC==5,∴此时CP=r=5;(2)如图2,若AP∥CE,APCE为平行四边形,∵CE=CP,∴四边形APCE是菱形,连接AC、EP,则AC⊥EP,∴AM=CM=,由(1)知,AB=AC,则∠ACB=∠B,∴CP=CE==,∴EF=2=;(3)如图3:过点C作CN⊥AD于点N,∵cosB=45,∴∠B<45°,∵∠BCG<90°,∴∠BGC>45°,∵∠AEG=∠BCG≥∠ACB=∠B,∴当∠AEG=∠B时,A、E 、G 重合,∴只能∠AGE=∠AEG,∵AD∥BC,∴△GAE∽△GBC,∴=,即=,解得:AE=3,EN=AN﹣AE=1,∴CE===.2.解:(1)①若圆P与直线l和l2都相切,当点P在第四象限时,过点P作PH⊥x轴,垂足为H,连接OP,如图1所示.设y=x的图象与x轴的夹角为α.当x=1时,y=.∴tanα=.∴α=60°.∴由切线长定理得:∠POH=(180°﹣60°)=60°.∵PH=1,∴tan∠POH===.∴OH=.∴点P的坐标为(,﹣1).同理可得:当点P在第二象限时,点P的坐标为(﹣,1);当点P在第三象限时,点P的坐标为(﹣,﹣1);②若圆P与直线l和l1都相切,如图2所示.同理可得:当点P在第一象限时,点P的坐标为(,1);当点P在第二象限时,点P的坐标为(﹣,1);当点P在第三象限时,点P的坐标为(﹣,﹣1);当点P在第四象限时,点P的坐标为(,﹣1).③若圆P与直线l1和l2都相切,如图3所示.同理可得:当点P在x轴的正半轴上时,点P的坐标为(,0);当点P在x轴的负半轴上时,点P的坐标为(﹣,0);当点P在y轴的正半轴上时,点P的坐标为(0,2);当点P在y轴的负半轴上时,点P的坐标为(0,﹣2).综上所述:其余满足条件的圆P的圆心坐标有:(,﹣1)、(﹣,1)、(﹣,﹣1)、(,1)、(﹣,1)、(﹣,﹣1)、(,﹣1)、(,0)、(﹣,0)、(0,2)、(0,﹣2).(2)用线段依次连接各圆心,所得几何图形,如图4所示.由图可知:该几何图形既轴对称图形,又是中心对称图形,由对称性可得:该几何图形的所有的边都相等.∴该图形的周长=12×(﹣)=8.3.(1)解:连接OB,OD,∵∠DAB=120°,∴所对圆心角的度数为240°,∴∠BOD=120°,∵⊙O的半径为3,∴劣弧的长为:×π×3=2π;(2)证明:连接AC,∵AB=BE,∴点B为AE的中点,∵F是EC的中点,∴BF为△EAC的中位线,∴BF=AC,∵=,∴+=+,∴=,∴BD=AC,∴BF=BD;(3)解:过点B作AE的垂线,与⊙O的交点即为所求的点P,∵BF为△EAC的中位线,∴BF∥AC,∴∠FBE=∠CAE , ∵=,∴∠CAB=∠DBA ,∵由作法可知BP ⊥AE , ∴∠GBP=∠FBP , ∵G 为BD 的中点, ∴BG=BD ,∴BG=BF ,在△PBG 和△PBF 中,,∴△PBG ≌△PBF (SAS ), ∴PG=PF .4.解:(1)∵l 1⊥l 2,⊙O 与l 1,l 2都相切, ∴∠OAD=45°,∵AB=4cm ,AD=4cm , ∴CD=4cm ,AD=4cm , ∴tan ∠DAC===,∴∠DAC=60°,∴∠OAC 的度数为:∠OAD+∠DAC=105°, 故答案为:105;(2)如图位置二,当O 1,A 1,C 1恰好在同一直线上时,设⊙O 1与l 1的切点为E ,连接O 1E ,可得O 1E=2,O 1E ⊥l 1,在Rt △A 1D 1C 1中,∵A 1D 1=4,C 1D 1=4, ∴tan ∠C 1A 1D 1=,∴∠C 1A 1D 1=60°, 在Rt △A 1O 1E 中,∠O 1A 1E=∠C 1A 1D 1=60°, ∴A 1E==,∵A 1E=AA 1﹣OO 1﹣2=t ﹣2,∴t ﹣2=, ∴t=+2,∴OO 1=3t=2+6;(3)①当直线AC 与⊙O 第一次相切时,设移动时间为t 1,如图,此时⊙O 移动到⊙O 2的位置,矩形ABCD 移动到A 2B 2C 2D 2的位置,设⊙O 2与直线l 1,A 2C 2分别相切于点F ,G ,连接O 2F ,O 2G ,O 2A 2, ∴O 2F ⊥l 1,O 2G ⊥A 2G 2,由(2)得,∠C 2A 2D 2=60°,∴∠GA 2F=120°, ∴∠O 2A 2F=60°,在Rt △A 2O 2F 中,O 2F=2,∴A 2F=,∵OO 2=3t ,AF=AA 2+A 2F=4t 1+,∴4t 1+﹣3t 1=2, ∴t 1=2﹣,②当直线AC 与⊙O 第二次相切时,设移动时间为t 2,记第一次相切时为位置一,点O 1,A 1,C 1共线时位置二,第二次相切时为位置三,由题意知,从位置一到位置二所用时间与位置二到位置三所用时间相等, ∴+2﹣(2﹣)=t 2﹣(+2),解得:t 2=2+2,综上所述,当d <2时,t 的取值范围是:2﹣<t <2+2.5.解:(1)证明:如图1, ∵CE 为⊙O 的直径, ∴∠CFE=∠CGE=90∵EG⊥EF, ∴∠FEG=90°.∴∠CFE=∠CGE=∠FEG=90°. ∴四边形EFCG 是矩形. (2)①存在. 连接OD ,如图2①, ∵四边形ABCD 是矩形, ∴∠A=∠ADC=90°. ∵点O 是CE 的中点, ∴OD=OC.∴点D 在⊙O 上.∵∠FCE=∠FDE,∠A=∠CFE=90°, ∴△CFE∽△DAB. ∴=()2.∵AD=4,AB=3, ∴BD=5, S △CFE =()2S △DAB=××3×4 =.∴S 矩形ABCD =2S △CFE =.∵四边形EFCG 是矩形,∴FC∥EG.∴∠FCE=∠CEG.∵∠GDC=∠CEG,∠FCE=∠FDE,∴∠GDC=∠FDE.∵∠FDE+∠CDB=90°,∴∠GDC+∠CDB=90°.∴∠GDB=90°Ⅰ.当点E在点A(E′)处时,点F在点B(F′)处,点G在点D(G′处,如图2①所示.此时,CF=CB=4.Ⅱ.当点F在点D(F″)处时,直径F″G″⊥BD,如图2②所示,此时⊙O与射线BD相切,CF=CD=3.Ⅲ.当CF⊥BD时,CF最小,此时点F到达F″′,如图2③所示.S=BC?CD=BD?CF″′.△BCD∴4×3=5×CF″′∴CF″′=.∴≤CF≤4.=,∵S矩形ABCD∴×()2≤S≤×42.矩形ABCD≤12.∴≤S矩形ABCD∴矩形EFCG的面积最大值为12,最小值为.②∵∠GDC=∠FDE=定值,点G的起点为D,终点为G″,∴点G的移动路线是线段DG″.∵∠GDC=∠FDE,∠DCG″=∠A=90°,∴△DCG″∽△DAB.∴=.∴=.∴DG″=.∴点G移动路线的长为.[来6.解:(1)以AB为边,在第一象限内作等边三角形ABC,以点C为圆心,AC为半径作⊙C,交y轴于点P1、P2.在优弧AP1B上任取一点P,如图1,则∠APB=∠ACB=×60°=30°.∴使∠APB=30°的点P有无数个.故答案为:无数.(2)①当点P在y轴的正半轴上时,过点C作CG⊥AB,垂足为G,如图1.∵点A(1,0),点B(5,0),∴OA=1,OB=5.∴AB=4.∵点C为圆心,CG⊥AB,∴AG=BG=AB=2.∴OG=OA+AG=3.∵△ABC是等边三角形,∴AC=BC=AB=4.∴CG===2.∴点C的坐标为(3,2).过点C作CD⊥y轴,垂足为D,连接CP2,如图1,∵点C的坐标为(3,2),∴CD=3,OD=2.∵P 1、P 2是⊙C 与y 轴的交点,∴∠AP 1B=∠AP 2B=30°.∵CP 2=CA=4,CD=3,∴DP 2==.∵点C 为圆心,CD⊥P 1P 2,∴P 1D=P 2D=.∴P 2(0,2﹣).P 1(0,2+).②当点P 在y 轴的负半轴上时,同理可得:P 3(0,﹣2﹣).P 4(0,﹣2+).综上所述:满足条件的点P 的坐标有:(0,2﹣)、(0,2+)、(0,﹣2﹣)、(0,﹣2+).(3)当过点A 、B 的⊙E 与y 轴相切于点P 时,∠APB 最大. ①当点P 在y 轴的正半轴上时,连接EA ,作EH⊥x 轴,垂足为H ,如图2.∵⊙E 与y 轴相切于点P ,∴PE⊥OP∵EH⊥AB,OP⊥OH,∴∠EPO=∠POH=∠EHO=90°.∴四边形OPEH 是矩形.∴OP=EH,PE=OH=3∴EA=3.∵∠EHA=90°,AH=2,EA=3,∴EH===∴OP=∴P(0,).②当点P在y轴的负半轴上时,同理可得:P(0,﹣).理由:①若点P在y轴的正半轴上,在y轴的正半轴上任取一点M(不与点P重合),连接MA,MB,交⊙E于点N,连接NA,如图2所示.∵∠ANB是△AMN的外角,∴∠ANB>∠AMB.∵∠APB=∠ANB,∴∠APB>∠AMB.②若点P在y轴的负半轴上,同理可证得:∠APB>∠AMB.综上所述:当点P在y轴上移动时,∠APB有最大值,此时点P的坐标为(0,)和(0,﹣).7.解答:证明:(1)如图,连接PM,PN,∵⊙P与x轴,y轴分别相切于点M和点N,∴PM⊥MF,PN⊥ON且PM=PN,∴∠PMF=∠PNE=90°且∠NPM=90°,∵PE⊥PF,∠NPE=∠MPF=90°﹣∠MPE,在△PMF和△PNE中,,∴△PMF≌△PNE (ASA),∴PE=PF,(2)解:①当t>1时,点E在y轴的负半轴上,如图,由(1)得△PMF≌△PNE,∴NE=MF=t,PM=PN=1,∴b=OF=OM+MF=1+t,a=NE﹣ON=t﹣1,∴b﹣a=1+t﹣(t﹣1)=2,∴b=2+a,②0<t≤1时,如图2,点E在y轴的正半轴或原点上,同理可证△PMF≌△PNE,∴b=OF=OM+MF=1+t,a=ON﹣NE=1﹣t,∴b+a=1+t+1﹣t=2,∴b=2﹣a,(3)如图3,(Ⅰ)当1<t<2时,∵F(1+t,0),F和F′关于点M对称,∴F′(1﹣t,0)∵经过M、E和F′三点的抛物线的对称轴交x轴于点Q,∴Q(1﹣t,0)∴OQ=1﹣t,由(1)得△PMF≌△PNE∴NE=MF=t,∴OE=t﹣1当△OEQ∽△MPF∴=∴=,解得,t=,当△OEQ∽△MFP时,∴=,=,解得,t=,(Ⅱ)如图4,当t>2时,∵F(1+t,0),F和F′关于点M对称,∴F′(1﹣t,0)∵经过M、E和F′三点的抛物线的对称轴交x轴于点Q,∴Q(1﹣t,0)∴OQ =t﹣1,由(1)得△PMF≌△PNE∴NE=MF=t,∴OE=t﹣1当△OEQ∽△MPF ∴=∴=,无解,当△OEQ∽△MFP 时,∴=,=,解得,t =2±,所以当t =,t =,t =2±时,使得以点Q、O、E为顶点的三角形与以点P、M、F为顶点的三角形相似.8.答::(1)∵DF⊥AB,EF⊥AC,∴∠BDF=∠CEF=90°.∵△ABC为等边三角形,∴∠B=∠C=60°.∵∠BDF=∠CEF,∠B=∠C,∴△BDF∽△CEF.(2)∵∠BDF=90°,∠B=60°,∴sin60°==,cos60°==.∵BF=m,∴DF=m,BD=.∵AB=4,∴AD=4﹣.∴S△ADF=ADDF=×(4﹣)×m=﹣m2+m.同理:S△AEF=AEEF=×(4﹣)×(4﹣m)=﹣m2+2.∴S=S△ADF+S△AEF=﹣m2+m+2=﹣(m2﹣4m﹣8)=﹣(m﹣2)2+3.其中0<m<4.∵﹣<0,0<2<4,∴当m=2时,S取最大值,最大值为3.∴S与m之间的函数关系为:S═﹣(m﹣2)2+3(其中0<m<4).当m=2时,S取到最大值,最大值为3.(3)如图2,∵A、D、F、E四点共圆,∴∠EDF=∠EAF.∵∠ADF=∠AEF=90°,∴AF是此圆的直径.∵tan∠EDF=,∴tan∠EAF=.∴=.∵∠C=60°,∴=tan60°=.设EC=x,则EF=x,EA=2x.∵AC=a,∴2x+x=A.∴x=.∴EF=,AE=.∵∠AEF=90°,∴AF==.∴此圆直径长为.9.解答:解:(1)连接OA,过点B作BH⊥AC,垂足为H,如图1所示.∵AB与⊙O相切于点A,∴OA⊥AB.∴∠OAB=90°.∵OQ=QB=1,∴OA=1.∴AB===.∵△ABC是等边三角形,∴AC=AB=,∠CAB=60°.∵sin∠HAB=,∴HB=AB?sin∠HAB=×=.∴S△ABC=AC?BH=××=.∴△ABC的面积为.(2)①当点A与点Q重合时,线段AB与圆O只有一个公共点,此时α=0°;②当线段A1B所在的直线与圆O相切时,如图2所示,线段A1B与圆O只有一个公共点,此时OA1⊥BA1,OA1=1,OB=2,∴cos∠A1OB==.∴∠A1OB=60°.∴当线段AB与圆O只有一个公共点(即A点)时,α的范围为:0°≤α≤60°.(3)连接MQ,如图3所示.∵PQ是⊙O的直径,∴∠PMQ=90°.∵OA⊥PM,∴∠PDO=90°.∴∠PDO=∠PMQ.∴△PDO∽△PMQ.∴==∵PO=OQ=PQ.∴PD=PM,OD=MQ.同理:MQ=AO,BM=AB.∵AO=1,∴MQ=.∴OD=.∵∠PDO=90°,PO=1,OD=,∴PD=.∴PM=.∴DM=.∵∠ADM=90°,AD=A0﹣OD=,∴AM===.∵△ABC是等边三角形,∴AC=AB=BC,∠CAB=60°.∵BM=AB,∴AM=BM.∴CM⊥AB.∵AM=,∴BM=,AB=.∴AC=.∴CM===.∴CM的长度为.10.解答:(1)证明:∵CD是⊙O的直径,∴∠DFC=90°,∵四边形ABCD是平行四边形,∴∠A=∠C,AD∥BC,∴∠ADF=∠DFC=90°,∵DE为⊙O的切线,∴DE⊥DC,∴∠EDC=90°,∴∠ADF=∠EDC=90°,∴∠ADE=∠CDF,∵∠A=∠C,∴△ADE∽△CDE;(2)解:∵CF:FB=1:2,∴设CF=x,FB=2x,则BC=3x,∵AE=3EB,∴设EB=y,则AE=3y,AB=4y,∵四边形ABCD是平行四边形,∴AD=BC=3x,AB=DC=4y,∵△ADE∽△CDF,∴=,∴=,∵x、y均为正数,∴x=2y,∴BC=6y,CF=2y,在Rt△DFC中,∠DFC=90°,由勾股定理得:DF===2y,∴⊙O的面积为π(DC)2=πDC2=π(4y)2=4πy2,四边形ABCD的面积为BCDF=6y2y=12y2,∴⊙O与四边形ABCD的面积之比为4πy2:12y2=π:3.11.(1)证明:∵,∴∠DPF=180°﹣∠APD=180°﹣所对的圆周角=180°﹣所对的圆周角=所对的圆周角=∠APC.在△PAC和△PDF中,,∴△PAC∽△PDF.(2)解:如图1,连接PO,则由,有PO⊥AB,且∠PAB=45°,△APO、△AEF都为等腰直角三角形.在Rt△ABC中,∵AC=2BC,∴AB2=BC2+AC2=5BC2,∵AB=5,∴BC=,∴AC=2,∴CE=ACsin∠BAC=AC=2=2,AE=ACcos∠BAC=AC=2=4,∵△AEF为等腰直角三角形,∴EF=AE=4,∴FD=FC+CD=(EF﹣CE)+2CE=EF+CE=4+2=6.∵△APO为等腰直角三角形,AO=?AB=,∴AP=.∵△PDF∽△PAC,∴,∴,∴PD=.(3)解:如图2,过点G作GH⊥AB,交AC于H,连接HB,以HB为直径作圆,连接CG并延长交⊙O于Q,∵HC⊥CB,GH⊥GB,∴C、G都在以HB为直径的圆上,∴∠HBG=∠ACQ,∵C、D关于AB对称,G在AB上,∴Q、P关于AB对称,∴,∴∠PCA=∠ACQ,∴∠HBG=∠PCA.∵△PAC∽△PDF,∴∠PCA=∠PFD=∠AFD,∴y=tan∠AFD=tan∠PCA=tan∠HBG=.∵HG=tan∠HAGAG=tan∠BACAG==,∴y==x.12. 解答:解:(1)证明:连接OH,如图①所示.∵四边形ABCD是矩形,∴∠ADC=∠BAD=90°,BC=AD,AB=CD.∵HP∥AB,∴∠ANH+∠BAD=180°.∴∠ANH=90°.∴HN=PN=HP=.∵OH=OA=,∴sin∠HON==.∴∠HON=60°∵BD与⊙O相切于点H,∴OH⊥BD.∴∠HDO=30°.∴OD=2.∴AD=3.∴BC=3.∵∠BAD=90°,∠BDA=30°.∴tan∠BDA===.∴AB=3.∵HP=3,∴AB=HP.∵AB∥HP,∴四边形ABHP是平行四边形.∵∠BAD=90°,AM是⊙O的直径,∴BA与⊙O相切于点A.∵BD与⊙O相切于点H,∴BA=BH.∴平行四边形ABHP是菱形.(2)△EFG的直角顶点G能落在⊙O上.如图②所示,点G落到AD上.∵EF∥BD,∴∠FEC=∠CDB.∵∠CDB=90°﹣30°=60°,∴∠CEF=60°.由折叠可得:∠GEF=∠CEF=60°.∴∠GED=60°.∵CE=x,∴GE=CE=x.ED=DC﹣CE=3﹣x.∴cos∠GED===.∴x=2.∴GE=2,ED=1.∴GD=.∴OG=AD﹣AO﹣GD=3﹣﹣=.∴OG=OM.∴点G与点M重合.此时△EFG的直角顶点G落在⊙O上,对应的x的值为2.∴当△EFG的直角顶点G落在⊙O上时,对应的x的值为2.(3)①如图①,在Rt△EGF中,tan∠FEG===.∴FG=x.∴S=GEFG=x x=x2.②如图③,ED=3﹣x,RE=2ED=6﹣2x,GR=GE﹣ER=x﹣(6﹣2x)=3x﹣6.∵tan∠SRG===,∴SG=(x﹣2).∴S△SGR=SGRG=(x﹣2)(3x﹣6).=(x﹣2)2.∵S△GEF=x2,∴S=S△GEF ﹣S△SGR=x2﹣(x﹣2)2.=﹣x2+6x﹣6.综上所述:当0≤x≤2时,S=x2;当2<x≤3时,S=﹣x2+6x﹣6.当FG与⊙O相切于点T时,延长FG交AD于点Q,过点F作FK⊥AD,垂足为K,如图④所示.∵四边形ABCD是矩形,∴BC∥AD,∠ABC=∠BAD=90°∴∠AQF=∠CFG=60°.∵OT=,∴OQ=2.∴AQ=+2.∵∠FKA=∠ABC=∠BAD=90°,∴四边形ABFK是矩形.∴FK=AB=3,AK=BF=3﹣x.∴KQ=AQ﹣AK=(+2)﹣(3﹣x)=2﹣2+x.在Rt△FKQ中,tan∠FQK==.∴FK=QK.∴3=(2﹣2+x).解得:x=3﹣.∵0≤3﹣≤2,∴S=x2=×(3﹣)2=﹣6.∴FG与⊙O相切时,S的值为﹣6.13解答:(1)证明:连结OC、OE,OE交AB于H,如图1,∵E是弧AB的中点,∴OE⊥AB,∴∠EHF=90°,∴∠HEF+∠HFE=90°,而∠HFE=∠CFD,∴∠HEF+∠CFD=90°,∵DC=DF,∴∠CFD=∠DCF,而OC=OE,∴∠OCE=∠OEC,∴∠OCE+∠DCE=∠HEF+∠CFD=90°,∴OC⊥CD,∴直线DC与⊙O相切;(2)解:连结BC,∵E是弧AB的中点,∴弧AE=弧BE,∴∠ABE=∠BCE,而∠FEB=∠BEC,∴△EBF∽△ECB,∴EF:BE=BE:EC,∴EF?EC=BE2=(r)2=r2;(3)解:如图2,连结OA,∵弧AE=弧BE,∴AE=BE=r,设OH=x,则HE=r﹣x,在Rt△OAH中,AH2+OH2=OA2,即AH2+x2=r2,在Rt△EAH中,AH2+EH2=EA2,即AH2+(r﹣x)2=(r)2,∴x2﹣(r﹣x)2=r2﹣(r)2,即得x=r,∴HE=r﹣r=r,在Rt△OAH中,AH===,∵OE⊥AB,∴AH=BH,而F是AB的四等分点,∴HF=AH=,在Rt△EFH中,EF===r,∵EF?EC=r2,∴r?EC=r2,∴EC=r.14. 解:(1)连结O1A、O2B,如图,设⊙O1的半径为r,⊙O2的半径为R,∵⊙O1与⊙O2外切与点D,∴直线O1O2过点D,∴MO2=MD+O2D=4+R,∵直线l与两圆分别相切于点A、B,∴O1A⊥AB,O2B⊥AB,∵tan∠AM01=,∴∠AM01=30°,在Rt△MBO2中,MO2=O2B=2R,∴4+R=2R,解得R=4,即⊙O2的半径为4;(2)∵∠AM02=30°,∴∠MO2B=60°,而O2B=O2D,∴△O2BD为等边三角形,∴BD=O2B=4,∠DBO2=60°,∴∠ABD=30°,∵∠AM01=30°,∴∠MO1A=60°,而O1A=O1D,∴∠O1AD=∠O1DA,∴∠O1AD=∠MO1A=30°,∴∠DAB=60°,∴∠ADB=180°﹣30°﹣60°=90°,在Rt△ABD中,AD=BD=4,AB=2AD=8,∴△ADB内切圆的半径===2﹣2,∴△ADB内切圆的面积=π(2﹣2)2=(16﹣8)π;(3)存在.在Rt△MBO2中,MB=O2B=×4=12,当△MO2P∽△MDB时,=,即=,解得O2P=8;当△MO2P∽△MBD时,=,即=,解得O2P=8,综上所述,满足条件的O2P的长为8或8.15.解:(1)连接PA,如图1所示.∵PO⊥AD,∴AO=DO.∵AD=2,∴OA=.∵点P坐标为(﹣1,0),∴OP=1.∴PA==2.∴BP=CP=2.∴B(﹣3,0),C(1,0).(2)连接AP,延长AP交⊙P于点M,连接MB、MC.如图2所示,线段MB、MC即为所求作.四边形ACMB是矩形.理由如下:∵△MCB由△ABC绕点P旋转180°所得,∴四边形ACMB是平行四边形.∵BC是⊙P的直径,∴∠CAB=90°.∴平行四边形ACMB是矩形.过点M作MH⊥BC,垂足为H,如图2所示.在△MHP和△AOP中,∵∠MHP=∠AOP,∠HPM=∠OPA,MP=AP,∴△MHP≌△AOP.∴MH=OA=,PH=PO=1.∴OH=2.∴点M的坐标为(﹣2,).(3)在旋转过程中∠MQG的大小不变.∵四边形ACMB是矩形,∴∠BMC=90°.∵EG⊥BO,∴∠BGE=90°.∴∠BMC=∠BGE=90°.∵点Q是BE的中点,∴QM=QE=QB=QG.∴点E、M、B、G在以点Q为圆心,QB为半径的圆上,如图3所示.∴∠MQG=2∠MBG.∵∠COA=90°,OC=1,OA=,∴tan∠OCA==.∴∠OCA=60°.∴∠MBC=∠BCA=60°.∴∠MQG=120°.∴在旋转过程中∠MQG的大小不变,始终等于120°.16.解:(1)如图1,∵AB是⊙O的直径,∴∠AEB=90°.∴AE⊥BC.(2)如图1,∵BF与⊙O相切,∴∠ABF=90°.∴∠CBF=90°﹣∠ABE=∠BAE.∵∠BAF=2∠CBF.∴∠BAF=2∠BAE.∴∠BAE=∠CAE.∴∠CBF=∠CAE.∵CG⊥BF,AE⊥BC,∴∠CGB=∠AEC=90°.∵∠CBF=∠CAE,∠CGB=∠AEC,∴△BCG∽△ACE.(3)连接BD,如图2所示.∵∠DAE=∠DBE,∠DAE=∠CBF,∴∠DBE=∠CBF.∵AB是⊙O的直径,∴∠ADB=90°.∴BD⊥AF.∵∠DBC=∠CBF,BD⊥AF,CG⊥BF,∴CD=CG.∵∠F=60°,GF=1,∠CGF=90°,∴tan∠F==CG=tan60°=∵CG=,∴CD=.∵∠AFB=60°,∠ABF=90°,∴∠BAF=30°.∵∠ADB=90°,∠BAF=30°,∴AB=2BD.∵∠BAE=∠CAE,∠AEB=∠AEC,∴∠ABE=∠ACE.∴AB=AC.设⊙O的半径为r,则AC=AB=2r,BD=r.∵∠ADB=90°,∴AD=r.∴DC=AC﹣AD=2r﹣r=(2﹣)r=.∴r=2+3.∴⊙O的半径长为2+3.17.解答:解:(1)当k=1时,抛物线解析式为y=x 2﹣1,直线解析式为y=x+1.联立两个解析式,得:x 2﹣1=x+1,解得:x=﹣1或x=2,当x=﹣1时,y=x+1=0;当x=2时,y=x+1=3,∴A(﹣1,0),B (2,3).(2)设P (x ,x 2﹣1).如答图2所示,过点P 作PF∥y 轴,交直线AB 于点F ,则F (x ,x+1).∴PF=y F ﹣y P =(x+1)﹣(x 2﹣1)=﹣x 2+x+2.S △ABP =S △PFA +S △PFB =PF (xF ﹣xA )+PF (xB ﹣xF )=PF (xB ﹣xA )=PF ∴S△ABP=(﹣x 2+x+2)=﹣(x ﹣)2+当x=时,yP=x2﹣1=﹣.∴△ABP面积最大值为,此时点P坐标为(,﹣).(3)设直线AB:y=kx+1与x轴、y轴分别交于点E、F,则E(﹣,0),F(0,1),OE=,OF=1.在Rt△EOF中,由勾股定理得:EF==.令y=x2+(k﹣1)x﹣k=0,即(x+k)(x﹣1)=0,解得:x=﹣k或x=1.∴C(﹣k,0),OC=k.假设存在唯一一点Q,使得∠OQC=90°,如答图3所示,则以OC为直径的圆与直线AB相切于点Q,根据圆周角定理,此时∠OQC=90°.设点N为OC中点,连接NQ,则NQ⊥EF,NQ=CN=ON=.∴EN=OE﹣ON=﹣.∵∠NEQ=∠FEO,∠EQN=∠EOF=90°,∴△EQN∽△EOF,∴,即:,解得:k=±, ∵k>0, ∴k=.∴存在唯一一点Q ,使得∠OQC=90°,此时k=.18. 解:(1)设抛物线为y=a (x ﹣4)2﹣1,∵抛物线经过点A (0,3),∴3=a(0﹣4)2﹣1,; ∴抛物线为;(3分)(2)相交.证明:连接CE ,则CE⊥BD, 当时,x 1=2,x 2=6.A (0,3),B (2,0),C (6,0),对称轴x=4,∴OB=2,AB==,BC=4,∵AB⊥BD,∴∠OAB+∠OBA=90°,∠OBA+∠EBC=90°,∴△AOB∽△BEC, ∴=,即=,解得CE=, ∵>2, ∴抛物线的对称轴l 与⊙C 相交.(7分)(3)如图,过点P 作平行于y 轴的直线交AC 于点Q ;可求出AC 的解析式为;(8分)设P 点的坐标为(m ,), 则Q 点的坐标为(m ,);∴PQ=﹣m+3﹣(m 2﹣2m+3)=﹣m 2+m .∵S △PAC =S △PAQ +S △PCQ =×(﹣m 2+m )×6=﹣(m ﹣3)2+;∴当m=3时,△PAC 的面积最大为;此时,P点的坐标为(3,).(10分)19、【解】:(1)如图1,设⊙O与AB、BC、CA的切点分别为D、E、F,连接OD、OE、OF,则AD=AF,BD=BE,CE=CF.∵⊙O为△ABC的内切圆,∴OF⊥AC,OE⊥BC,即∠OFC=∠OEC=90°.∵∠C=90°,∴四边形CEOF是矩形,∵OE=OF,∴四边形CEOF是正方形.设⊙O的半径为rcm,则FC=EC=OE=rcm,在Rt△ABC中,∠ACB=90°,AC=4cm,BC=3cm,∴AB==5cm.∵AD=AF=AC﹣FC=4﹣r,BD=BE=BC﹣EC=3﹣r,∴4﹣r+3﹣r=5,解得r=1,即⊙O的半径为1cm.(2)如图2,过点P作PG⊥BC,垂直为G.∵∠PGB=∠C=90°,∴PG∥AC.∴△PBG∽△ABC,∴.∵BP=t,∴PG=,BG=.若⊙P与⊙O相切,则可分为两种情况,⊙P与⊙O外切,⊙P与⊙O内切.①当⊙P与⊙O外切时,如图3,连接OP,则OP=1+t,过点P作PH⊥OE,垂足为H.∵∠PHE=∠HEG=∠PGE=90°,∴四边形PHEG是矩形,∴HE=PG,PH=CE,∴OH=OE﹣HE=1﹣,PH=GE=BC﹣EC﹣BG=3﹣1﹣=2﹣.在Rt△OPH中,由勾股定理,,解得t=.②当⊙P与⊙O内切时,如图4,连接OP,则OP=t﹣1,过点O作OM⊥PG,垂足为M.∵∠MGE=∠OEG=∠OMG=90°,∴四边形OEGM是矩形,∴MG=OE,OM=EG,∴PM=PG﹣MG=,OM=EG=BC﹣EC﹣BG=3﹣1﹣=2﹣,在Rt△OPM中,由勾股定理,,解得t=2.综上所述,⊙P与⊙O相切时,t=s或t=2s.20.:(1)如图2,连接OA、OB、OC、OD.∵S=S△AOB+S△BOC+S△COD+S△AOD=+++=,∴r=.(2)如图3,过点D作DE⊥AB于E,∵梯形ABCD为等腰梯形,∴AE===5,∴EB=AB﹣AE=21﹣5=16.在Rt△AED中,∵AD=13,AE=5,∴DE=12,∴DB==20.∵S△ABD===126,S△CDB===66,∴===.。

初三数学圆经典例题之欧阳歌谷创作

初三数学圆经典例题之欧阳歌谷创作

一.圆的定义及相关概念欧阳歌谷(2021.02.01)【考点速览】考点1:圆的对称性:圆既是轴对称图形又是中心对称图形。

经过圆心的每一条直线都是它的对称轴。

圆心是它的对称中心。

考点2:确定圆的条件;圆心和半径①圆心确定圆的位置,半径确定圆的大小;②不在同一条直线上的三点确定一个圆;考点3:弦:连结圆上任意两点的线段叫做弦。

经过圆心的弦叫做直径。

直径是圆中最大的弦。

弦心距:圆心到弦的距离叫做弦心距。

弧:圆上任意两点间的部分叫做弧。

弧分为半圆,优弧、劣弧三种。

(请务必注意区分等弧,等弦,等圆的概念)弓形:弦与它所对应的弧所构成的封闭图形。

弓高:弓形中弦的中点与弧的中点的连线段。

(请务必注意在圆中一条弦将圆分割为两个弓形,对应两个弓高)固定的已经不能再固定的方法:求弦心距,弦长,弓高,半径时通常要做弦心距,并连接圆心和弦的一个端点,得到直角三角形。

如下图:考点4:三角形的外接圆:锐角三角形的外心在,直角三角形的外心在,钝角三角形的外心在。

考点5点和圆的位置关系设圆的半径为r,点到圆心的距离为d,则点与圆的位置关系有三种。

①点在圆外⇔d>r;②点在圆上⇔d=r;③点在圆内⇔d<r;【典型例题】例1 在⊿ABC 中,∠ACB=90°,AC=2,BC=4,CM是AB边上的中线,以点C为圆心,以5为半径作圆,试确定A,B,M三点分别与⊙C有怎样的位置关系,并说明你的理由。

于B,且AB=OC,求∠A例3 ⊙O平面内一点P和⊙O3cm ,最大为8cm ,则这圆的半径是_________cm 。

例4 在半径为5cm 的圆中,弦AB ∥CD ,AB=6cm ,CD=8cm ,则AB 和CD 的距离是多少?例5 如图,⊙O 的直径AB 和弦CD 相交于点E ,已知AE=6cm ,EB=2cm, 30=∠CEA ,求CD 的长.例6.已知:⊙O 的半径0A=1,弦AB 、AC 的长分别为3,2,求BAC ∠的度数. 例7.如图,已知在ABC ∆中,︒=∠90A ,AB=3cm ,AC=4cm ,以点A 为圆心,AC 长为半径画弧交CB 的延长线于点D ,求CD 的长.例8拱高CD =4cm ,那么拱形的半径是__.思考题 如图所示,已知⊙O 的半径为10cm ,P 是直径AB 上一点,弦CD 过点P,CD=16cm,过点A 和B 分别向CD 引垂线AE 和BF,求AE-BF 的值.二.垂径定理及其推论【考点速览】A BDC O · E · A B DCE PF O考点1垂径定理:垂直于弦的直径平分这条弦,并且平分弦所对的两条孤.推论1:①平分弦(不是直径)的直径重直于弦,并且平分弦所对的两条孤.②弦的垂直平分线经过圆心,并且平分弦所对的两条孤.③平分弦所对的一条孤的直径,垂直平分弦,并且平分弦所对的另一条孤.推论2.圆的两条平行弦所夹的孤相等.垂径定理及推论1中的三条可概括为:① 经过圆心;②垂直于弦;③平分弦(不是直径);④平分弦所对的优弧;⑤平分弦所对的劣弧.以上五点已知其中的任意两点,都可以推得其它两点【典型例题】例1 如图AB 、CD 是⊙O 的弦,M 、N 分别是AB 、CD 的中点,且CNM AMN ∠=∠.求证:AB=CD . 例2已知,不过圆心的直线l 交⊙O 于C 、D 两点,AB 是⊙O 的直径,AE ⊥l 于E ,BF ⊥l 于F 。

2023-2024学年数学九年级上册人教版圆压轴题经典题型(含答案)

2023-2024学年数学九年级上册人教版圆压轴题经典题型(含答案)

2023-2024学年数学九年级上册人教版圆压轴题经典题型1.如图,正方形ABCD内接于⊙O,E是BC的中点,连接AE,DE,CE.(1)求证:AE=DE;(2)若CE=1,求四边形AECD的面积.2.如图,已知⊙O的弦CD垂直于直径AB,点E在CD上,且EC = EB .(1)求证:△CEB∽△CBD ;(2)若CE = 3,CB=5 ,求DE的长.3.如图,已知AB为⊙O的直径,AD,BD是⊙O的弦,BC是⊙O的切线,切点为B,OC∥AD,BA ,CD 的延长线相交于点E .(1)求证:DC 是⊙O 的切线;(2)若AE =1,ED =3,求⊙O 的半径.4.如图1,△ABC 是⊙O 内接三角形将△ABC 绕点A 逆时针旋转至△AED ,其中点D 在圆上,点E 在线段AC 上.(1)求证:DE=DC ;(2)如图2,过点B 作BF ∥CD 分别交AC 、AD 于点M 、N ,交⊙O 于点F ,连结AF .求证:AN·DE=AF·BM :(3)在(2)的条件下,若AB AC =13时,求BF BC 的值.5. 如图1,C ,D 是半圆ACB 上的两点,若直径AB 上存在一点P ,确足∠APC =∠BPD ,则称∠CPD 是CD 的“美丽角”.(1)如图2,AB 是⊙O 的直径,弦CE ⊥AB ,D 是BC 上一点,连结ED 交AB 于点P ,连结CP ,∠CPD 是CD 的“美丽角”吗?请说明理由;(2)设CD 的度数为α,请用含α的式子表示CD 的“美丽角”度数;(3)如图3,在(1)的条件下,若直径AB =5,CD 的“美丽角”为90°,当DE =722时,求CE 的长.6.已知:如图,在半圆O 中,直径AB 的长为6,点C 是半圆上一点,过圆心O 作AB 的垂线交线段AC 的延长线于点D ,交弦BC 于点E.(1)求证:∠D =∠ABC ;(2)记OE =x ,OD =y ,求y 关于x 的函数表达式;(3)若OE =CE ,求图中阴影部分的面积.7.已知:⊙O的两条弦AB,CD相交于点M,且AB=CD.(1)如图1,连接AD.求证:AM=DM.(2)如图2,若AB⊥CD,点E为弧BD上一点,BE=BC=α°,AE交CD于点F,连接AD、DE.①求∠E的度数(用含α的代数式表示).②若DE=7,AM+MF=17,求△ADF的面积.8.如图1,在Rt△ABC中,∠ABC=90°,∠C=30°,BC=12,D是BC的中点.经过A,B,D的⊙O交AC于E点.(1)求AE的长.(2)当点P从点A匀速运动到点E时,点Q恰好从点C匀速运动点B.记AP=x,BQ=y.①求y关于x的表达式.②连结PQ,当△PQC的面积最大时,求x的值.(3)如图2,连结BE,BP,延长BP交⊙O于点F,连结FE.当EF与△BDE中的某一边相等时,求四边形BDEF的面积.9.如图,点A,B,C是⊙O上的三点,AB∥OC.(1)求证:AC平分∠OAB;(2)过点O作OE⊥AB于点E,交AC于点P.若AB=23,∠AOE=30°,求PE的长.10.已知△ABC内接于⊙O,点F是弧AC的中点,连接OF交AC于点H.(1)如图1,求证:OF⊥AC;(2)如图2,AD是△ABC的高,延长AD交⊙O于点K,若∠CAD=2∠BAD,求证:AK=AC;(3)如图3,在(2)的条件下,延长FO交BD于点E,连接EK,点M在CH上,连接OM.若∠OMH=3∠DKE,BE=OH,AM=247,求HF的长.511.在⊙O中,弦AB、CD交于点E,连接AD、AC、BC,∠ACB−∠ABC=2∠DAB,DH⊥AB于点H.(1)求证:∠BAC=2∠EDH;(2)M为弦BC中点,过点M作MF⊥DC,连接HF,并延长HF交AC于G,3AG=2BH,求证:FH=FG;(3)在(2 )的条件下,若BC=2CE,EF=2,求⊙O的直径。

中考数学圆的综合-经典压轴题含答案解析

中考数学圆的综合-经典压轴题含答案解析

中考数学圆的综合-经典压轴题含答案解析一、圆的综合1.如图,AB 为⊙O 的直径,AC 为⊙O 的弦,AD 平分∠BAC ,交⊙O 于点D ,DE ⊥AC ,交AC 的延长线于点E .(1)判断直线DE 与⊙O 的位置关系,并说明理由;(2)若AE =8,⊙O 的半径为5,求DE 的长.【答案】(1)直线DE 与⊙O 相切(2)4【解析】试题分析:(1)连接OD ,∵AD 平分∠BAC ,∴EAD OAD ∠∠=,∵OA OD =,∴ODA OAD ∠∠=,∴ODA EAD ∠∠=,∴EA ∥OD ,∵DE ⊥EA ,∴DE ⊥OD ,又∵点D 在⊙O 上,∴直线DE 与⊙O 相切(2)如图1,作DF ⊥AB ,垂足为F ,∴DFA DEA 90∠∠︒==,∵EAD FAD ∠∠=,AD AD =,∴△EAD ≌△FAD ,∴AF AE 8==,DF DE =,∵OA OD 5==,∴OF 3=,在Rt △DOF 中,22DF 4OD OF -==,∴AF AE 8== 考点:切线的证明,弦心距和半径、弦长的关系点评:本题难度不大,第一小题通过内错角相等相等证明两直线平行,再由两直线平行推出同旁内角相等.第二小题通过求出两个三角形全等,从而推出对应边相等,接着用弦心距和弦长、半径的计算公式,求出半弦长.2.如图,AB 为O e 的直径,弦//CD AB ,E 是AB 延长线上一点,CDB ADE ∠=∠. ()1DE 是O e 的切线吗?请说明理由;()2求证:2AC CD BE =⋅.【答案】(1)结论:DE 是O e 的切线,理由见解析;(2)证明见解析.【解析】【分析】(1)连接OD ,只要证明OD DE ⊥即可;(2)只要证明:AC BD =,CDB DBE V V ∽即可解决问题.【详解】()1解:结论:DE 是O e 的切线.理由:连接OD .CDB ADE ∠=∠Q ,ADC EDB ∴∠=∠,//CD AB Q ,CDA DAB ∴∠=∠,OA OD =Q ,OAD ODA ∴∠=∠,ADO EDB ∴∠=∠,AB Q 是直径,90ADB ∴∠=o ,90ADB ODE ∴∠=∠=o ,DE OD ∴⊥,DE ∴是O e 的切线.()2//CD AB Q ,ADC DAB ∴∠=∠,CDB DBE ∠=∠,AC BD ∴=n n, AC BD ∴=,DCB DAB ∠=∠Q ,EDB DAB ∠=∠,EDB DCB∴∠=∠,∴V∽DBECDBV,CD DB∴=,BD BE2∴=⋅,BD CD BE2∴=⋅.AC CD BE【点睛】本题考查相似三角形的判定和性质、圆周角定理、切线的判定等知识,解题的关键是学会添加常用辅助线,准确寻找相似三角形解决问题,属于中考常考题型.3.如图1,以边长为4的正方形纸片ABCD的边AB为直径作⊙O,交对角线AC于点E.(1)图1中,线段AE=;(2)如图2,在图1的基础上,以点A为端点作∠DAM=30°,交CD于点M,沿AM将四边形ABCM剪掉,使Rt△ADM绕点A逆时针旋转(如图3),设旋转角为α(0°<α<150°),在旋转过程中AD与⊙O交于点F.①当α=30°时,请求出线段AF的长;②当α=60°时,求出线段AF的长;判断此时DM与⊙O的位置关系,并说明理由;③当α=°时,DM与⊙O相切.【答案】(1)2(2)①2②2,相离③当α=90°时,DM与⊙O相切【解析】(1)连接BE,∵AC是正方形ABCD的对角线,∴∠BAC=45°,∴△AEB是等腰直角三角形,又∵AB=8,∴AE=4;(2)①连接OA、OF,由题意得,∠NAD=30°,∠DAM=30°,故可得∠OAM=30°,∠DAM=30°,则∠OAF=60°,又∵OA=OF,∴△OAF是等边三角形,∵OA=4,∴AF=OA=4;②连接B'F,此时∠NAD=60°,∵AB'=8,∠DAM=30°,∴AF=AB'cos∠DAM=8×=4;此时DM与⊙O的位置关系是相离;③∵AD=8,直径的长度相等,∴当DM与⊙O相切时,点D在⊙O上,故此时可得α=∠NAD=90°.点睛:此题属于圆的综合题,主要是仔细观察每一次旋转后的图形,根据含30°角的直角三角形进行计算,另外在解答最后一问时,关键是判断出点D的位置,有一定难度.4.如图,AB是⊙O的直径,PA是⊙O的切线,点C在⊙O上,CB∥PO.(1)判断PC与⊙O的位置关系,并说明理由;(2)若AB=6,CB=4,求PC的长.【答案】(1)PC是⊙O的切线,理由见解析;(2)35 2【解析】试题分析:(1)要证PC是⊙O的切线,只要连接OC,再证∠PCO=90°即可.(2)可以连接AC,根据已知先证明△ACB∽△PCO,再根据勾股定理和相似三角形的性质求出PC的长.试题解析:(1)结论:PC是⊙O的切线.证明:连接OC∵CB∥PO∴∠POA=∠B,∠POC=∠OCB∵OC=OB∴∠OCB=∠B∴∠POA=∠POC又∵OA=OC,OP=OP∴△APO≌△CPO∴∠OAP=∠OCP∵PA是⊙O的切线∴∠OAP=90°∴∠OCP=90°∴PC是⊙O的切线.(2)连接AC∵AB是⊙O的直径∴∠ACB=90°(6分)由(1)知∠PCO=90°,∠B=∠OCB=∠POC∵∠ACB=∠PCO∴△ACB∽△PCO∴∴.点睛:本题考查了切线的判定.要证某线是圆的切线,已知此线过圆上某点,连接圆心与这点(即为半径),再证垂直即可.同时考查了勾股定理和相似三角形的性质.5.已知,如图:O1为x轴上一点,以O1为圆心作⊙O1交x轴于C、D两点,交y轴于M、N两点,∠CMD的外角平分线交⊙O1于点E,AB是弦,且AB∥CD,直线DM的解析式为y=3x+3.(1)如图1,求⊙O1半径及点E的坐标.(2)如图2,过E作EF⊥BC于F,若A、B为弧CND上两动点且弦AB∥CD,试问:BF+CF 与AC之间是否存在某种等量关系?请写出你的结论,并证明.(3)在(2)的条件下,EF交⊙O1于点G,问弦BG的长度是否变化?若不变直接写出BG 的长(不写过程),若变化自画图说明理由.【答案】(1)r=5 E(4,5)(2)BF+CF=AC (3)弦BG的长度不变,等于2【解析】分析:(1)连接ED、EC、EO1、MO1,如图1,可以证到∠ECD=∠SME=∠EMC=∠EDC,从而可以证到∠EO1D=∠EO1C=90°.由直线DM的解析式为y=3x+3可得OD=1,OM=3.设⊙O1的半径为r.在Rt△MOO1中利用勾股定理就可解决问题.(2)过点O1作O1P⊥EG于P,过点O1作O1Q⊥BC于Q,连接EO1、DB,如图2.由AB∥DC可证到BD=AC,易证四边形O1PFQ是矩形,从而有O1P=FQ,∠PO1Q=90°,进而有∠EO1P=∠CO1Q,从而可以证到△EPO1≌△CQO1,则有PO1=QO1.根据三角形中位线定理可得FQ=12BD.从而可以得到BF+CF=2FQ=AC.(3)连接EO1,ED,EB,BG,如图3.易证EF∥BD,则有∠GEB=∠EBD,从而有¶BG=¶ED,也就有BG=DE.在Rt△EO1D中运用勾股定理求出ED,就可解决问题.详解:(1)连接ED、EC、EO1、MO1,如图1.∵ME平分∠SMC,∴∠SME=∠EMC.∵∠SME=∠ECD,∠EMC=∠EDC,∴∠ECD=∠EDC,∴∠EO1D=∠EO1C.∵∠EO1D+∠EO1C=180°,∴∠EO1D=∠EO1C=90°.∵直线DM的解析式为y=3x+3,∴点M的坐标为(0,3),点D的坐标为(﹣1,0),∴OD=1,OM=3.设⊙O1的半径为r,则MO1=DO1=r.在Rt△MOO1中,(r﹣1)2+32=r2.解得:r=5,∴OO1=4,EO1=5,∴⊙O1半径为5,点E的坐标为(4,5).(2)BF+CF=AC.理由如下:过点O1作O1P⊥EG于P,过点O1作O1Q⊥BC于Q,连接EO1、DB,如图2.∵AB∥DC,∴∠DCA=∠BAC,∴¶AD=¶¶BC BD∴,=¶AC,∴BD=AC.∵O1P⊥EG,O1Q⊥BC,EF⊥BF,∴∠O1PF=∠PFQ=∠O1QF=90°,∴四边形O1PFQ是矩形,∴O1P=FQ,∠PO1Q=90°,∴∠EO1P=90°﹣∠PO1C=∠CO1Q.在△EPO1和△CQO1中,111111EO P CO QEPO CQOO E O C∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△EPO1≌△CQO1,∴PO1=QO1,∴FQ=QO1.∵QO1⊥BC,∴BQ=CQ.∵CO1=DO1,∴O1Q=12 BD,∴FQ=12BD.∵BF+CF=FQ+BQ+CF=FQ+CQ+CF=2FQ,∴BF+CF=BD=AC.(3)连接EO1,ED,EB,BG,如图3.∵DC是⊙O1的直径,∴∠DBC=90°,∴∠DBC+∠EFB=180°,∴EF∥BD,∴∠GEB=∠EBD,∴¶BG=¶ED,∴BG=DE.∵DO1=EO1=5,EO1⊥DO1,∴DE=52,∴BG=52,∴弦BG的长度不变,等于52.点睛:本题考查了圆周角定理、圆内接四边形的性质、弧与弦的关系、垂径定理、全等三角形的判定与性质、矩形的判定与性质、三角形中位线定理、平行线的判定与性质、勾股定理等知识,综合性比较强,有一定的难度.而由AB∥DC证到AC=BD是解决第(2)小题的关键,由EG∥DB证到BG=DE是解决第(3)小题的关键.6.如图,△ABC中,∠A=45°,D是AC边上一点,⊙O经过D、A、B三点,OD∥BC.(1)求证:BC与⊙O相切;(2)若OD=15,AE=7,求BE的长.【答案】(1)见解析;(2)18.【解析】分析:(1)连接OB,求出∠DOB度数,根据平行线性质求出∠CBO=90°,根据切线判定得出即可;(2)延长BO交⊙O于点F,连接AF,求出∠ABF,解直角三角形求出BE.详解:(1)证明:连接OB.∵∠A=45°,∴∠DOB=90°.∵OD∥BC,∴∠DOB+∠CBO=180°.∴∠CBO=90°.∴直线BC是⊙O的切线.(2)解:连接BD.则△ODB是等腰直角三角形,∴∠ODB=45°,BD=OD=15,∵∠ODB=∠A,∠DBE=∠DBA,∴△DBE∽△ABD,∴BD2=BE•BA,∴(15)2=(7+BE)BE,∴BE=18或﹣25(舍弃),∴BE=18.点睛:本题考查了切线的判定,圆周角定理,解直角三角形等知识点,能综合运用定理进行推理和计算是解此题的关键,题目综合性比较强,难度偏大.7.已知:AB是⊙0直径,C是⊙0外一点,连接BC交⊙0于点D,BD=CD,连接AD、AC.(1)如图1,求证:∠BAD=∠CAD(2)如图2,过点C作CF⊥AB于点F,交⊙0于点E,延长CF交⊙0于点G.过点作EH⊥AG于点H,交AB于点K,求证AK=2OF;(3)如图3,在(2)的条件下,EH交AD于点L,若0K=1,AC=CG,求线段AL的长.图1 图2 图3【答案】(1)见解析(2)见解析(3)12105 【解析】试题分析:(1)由直径所对的圆周角等于90°,得到∠ADB =90°,再证明△ABD ≌△ACD 即可得到结论;(2)连接BE .由同弧所对的圆周角相等,得到∠GAB =∠BEG .再证△KFE ≌△BFE ,得到BF =KF =BK .由OF =OB -BF ,AK =AB -BK ,即可得到结论. (3)连接CO 并延长交AG 于点M ,连接BG .设∠GAB =α.先证CM 垂直平分AG ,得到AM =GM ,∠AGC +∠GCM =90°.再证∠GAF =∠GCM =α.通过证明△AGB ≌△CMG ,得到BG =GM =12AG .再证明∠BGC =∠MCG =α.设BF =KF =a , 可得GF =2a ,AF =4a . 由OK =1,得到OF =a +1,AK =2(a +1),AF = 3a +2,得到3a +2=4a ,解出a 的值,得到AF ,AB ,GF ,FC 的值.由tanα=tan ∠HAK =12HK AH =, AK =6,可以求出 AH 的长.再由1tan tan 3BAD BCF ∠=∠= ,利用公式tan ∠GAD =tan tan 1tan tan GAF BAD GAF BAD ∠+∠-∠⋅∠,得到∠GAD =45°,则AL =2AH ,即可得到结论.试题解析:解:(1)∵AB 为⊙O 的直径,∴∠ADB =90°,∴∠ADC =90°.∵BD =CD ,∠BDA =∠CDA ,AD =AD ,∴△ABD ≌△ACD ,∴∠BAD =∠CAD .(2)连接BE .∵BG =BG ,∴∠GAB =∠BEG .∵CF ⊥AB ,∴∠KFE =90°.∵EH ⊥AG ,∴∠AHE =∠KFE =90°,∠AKH =∠EKF ,∴∠HAK =∠KEF =∠BEF .∵FE =FE ,∠KFE =∠BFE =90°,∴△KFE ≌△BFE ,∴BF =KF =BK .∵ OF =OB -BF ,AK =AB -BK ,∴AK =2OF .(3)连接CO 并延长交AG 于点M ,连接BG .设∠GAB =α.∵AC =CG , ∴点C 在AG 的垂直平分线上.∵ OA =OG ,∴点O 在AG 的垂直平分线上, ∴CM 垂直平分AG ,∴AM =GM ,∠AGC +∠GCM =90°.∵AF ⊥CG ,∴∠AGC +∠GAF =90°,∴∠GAF =∠GCM =α.∵AB 为⊙O 的直径,∴∠AGB = 90°,∴∠AGB =∠CMG =90°.∵AB =AC =CG ,∴△AGB ≌△CMG ,∴BG =GM =12AG . 在Rt △AGB 中, 1tan tan 2GB GAB AG α∠=== . ∵∠AMC =∠AGB = 90°,∴BG ∥CM , ∴∠BGC =∠MCG =α.设BF =KF =a , 1tan tan 2BF BGF GF α∠===,∴GF =2a ,1tan tan 2GF GAF AF α∠=== ,AF =4a .∵OK =1,∴OF =a +1,AK =2OF =2(a +1),∴AF =AK +KF =a +2(a +1)=3a +2,∴3a +2=4a ,∴a =2, AK =6,∴AF =4a =8,AB =AC =CG =10,GF =2a =4,FC =CG -GF =6. ∵tanα=tan ∠HAK =12HK AH =,设KH =m ,则AH =2m ,∴AK 22(2)m m +=6,解得:m =655,∴AH =2m 125.在Rt △BFC 中,1tan 3BF BCF FC ∠== .∵∠BAD +∠ABD =90°, ∠FBC +∠BCF =90°,∴∠BCF =∠BAD ,1tan tan 3BAD BCF ∠=∠= ,∴tan ∠GAD =tan tan 1tan tan GAF BAD GAF BAD ∠+∠-∠⋅∠=1123111123+=-⨯,∴∠GAD =45°,∴HL=AH ,AL 2AH 12108.四边形ABCD内接于⊙O,点E为AD上一点,连接AC,CB,∠B=∠AEC.(1)如图1,求证:CE=CD;(2)如图2,若∠B+∠CAE=120°,∠ACD=2∠BAC,求∠BAD的度数;(3)如图3,在(2)的条件下,延长CE交⊙O于点G,若tan∠BAC= 5311,EG=2,求AE的长.【答案】(1)见解析;(2)60°;(3)7.【解析】试题分析:(1)利用圆的内接四边形定理得到∠CED=∠CDE.(2) 作CH⊥DE于H, 设∠ECH=α,由(1)CE=CD,用α表示∠CAE,∠BAC,而∠BAD=∠BAC+∠CAE.(3)连接AG,作GN⊥AC,AM⊥EG,先证明∠CAG=∠BAC,设NG=53m,可得AN=11m,利用直角n AGM,n AEM,勾股定理可以算出m的值并求出AE长.试题解析:(1)解:证明:∵四边形ABCD内接于⊙O.∴∠B+∠D=180°,∵∠B=∠AEC,∴∠AEC+∠D=180°,∵∠AEC+∠CED=180°,∴∠D=∠CED,∴CE=CD.(2)解:作CH⊥DE于H.设∠ECH=α,由(1)CE=CD,∴∠ECD=2α,∵∠B=∠AEC,∠B+∠CAE=120°,∴∠CAE+∠AEC=120°,∴∠ACE=180°﹣∠AEC﹣∠ACE=60°,∴∠CAE=90°﹣∠ACH=90°﹣(60°+α)=30°﹣α,∠ACD=∠ACH+∠HCD=60°+2α,∵∠ACD=2∠BAC,∴∠BAC=30°+α,∴∠BAD=∠BAC+∠CAE=30°+α+30°﹣α=60°.(3)解:连接AG,作GN⊥AC,AM⊥EG,∵∠CED=∠AEG,∠CDE=∠AGE,∠CED=∠CDE,∴AE =AG ,∴EM=MG =12EG =1, ∴∠EAG =∠ECD =2α,∴∠CAG =∠CAD +∠DAG =30°﹣α+2α=∠BAC ,∵tan ∠BAC =53, ∴设NG=53m ,可得AN =11m ,AG =22AG AM -=14m , ∵∠ACG =60°,∴CN=5m ,AM =83m ,MG =22AG AM -=2m =1, ∴m =12, ∴CE=CD =CG ﹣EG =10m ﹣2=3, ∴AE =22AM EM +=221+43()=7.9.如图,△ABC 是⊙O 的内接三角形,点D ,E 在⊙O 上,连接AE ,DE ,CD ,BE ,CE ,∠EAC+∠BAE=180°,»»AB CD =.(1)判断BE 与CE 之间的数量关系,并说明理由;(2)求证:△ABE ≌△DCE ;(3)若∠EAC=60°,BC=8,求⊙O 的半径.【答案】(1)BE=CE ,理由见解析;(2)证明见解析;(383. 【解析】 分析:(1)由A 、B 、C 、E 四点共圆的性质得:∠BCE+∠BAE=180°,则∠BCE=∠EAC ,所以»»BECE =,则弦相等;(2)根据SSS 证明△ABE ≌△DCE ; (3)作BC 和BE 两弦的弦心距,证明Rt △GBO ≌Rt △HBO (HL ),则∠OBH=30°,设OH=x ,则OB=2x ,根据勾股定理列方程求出x 的值,可得半径的长.本题解析:(1)解:BE=CE ,理由:∵∠EAC+∠BAE=180°,∠BCE+∠BAE=180°,∴»»BECE =, ∴BE=CE ;(2)证明:∵»»AB CD =,∴AB=CD ,∵»»BE CE =,»»AE ED=,∴AE=ED , 由(1)得:BE=CE ,在△ABE 和△DCE 中,∵AE DE AB CD BE CE =⎧⎪=⎨⎪=⎩, ∴△ABE ≌△DCE (SSS );(3)解:如图,∵过O 作OG ⊥BE 于G ,OH ⊥BC 于H ,∴BH=12BC=12×8=4,BG=12BE , ∵BE=CE ,∠EBC=∠EAC=60°, ∴△BEC 是等边三角形,∴BE=BC ,∴BH=BG ,∵OB=OB ,∴Rt △GBO ≌Rt △HBO (HL ),∴∠OBH=∠GBO=12∠EBC=30°, 设OH=x ,则OB=2x , 由勾股定理得:(2x )2=x 2+42,x=43, ∴OB=2x=833,∴⊙O 的半径为833.点睛:本题是圆的综合题,考查了四点共圆的性质、三角形全等的性质和判定、勾股定理、直角三角形30°的性质,难度适中,第一问还可以利用三角形全等得出对应边相等的结论;第三问作辅助线,利用勾股定理列方程是关键.10.对于平面直角坐标系xOy 中的线段MN 和点P ,给出如下定义:点A 是线段MN 上一个动点,过点A 作线段MN 的垂线l ,点P 是垂线l 上的另外一个动点.如果以点P 为旋转中心,将垂线l 沿逆时针方向旋转60°后与线段MN 有公共点,我们就称点P 是线段MN 的“关联点”.如图,M (1,2),N (4,2).(1) 在点P 1(1,3),P 2(4,0),P 3(3,2)中,线段MN 的“关联点”有 ; (2) 如果点P 在直线1y x =+上,且点P 是线段MN 的“关联点”,求点P 的横坐标x 的取值范围;(3) 如果点P 在以O (1,1-)为圆心,r 为半径的⊙O 上,且点P 是线段MN 的“关联点”,直接写出⊙O 半径r 的取值范围.【答案】(1)P 1和P 3;(2)3311x -≤≤;(3)333 3.r +≤≤ 【解析】【分析】 (1)先根据题意求出点P 的横坐标的范围,再求出P 点的纵坐标范围即可得出结果; (2)由直线y=x+1经过点M (1,2),得出x≥1,设直线y=x+1与P 4N 交于点A ,过点A 作AB ⊥MN 于B ,延长AB 交x 轴于C ,则在△AMN 中,MN=3,∠AMN=45°,∠ANM=30°,设AB=MB=a ,tan ∠ANM=AB BN ,即tan30°=3a a-,求出a 即可得出结果; (3)圆心O 到P 4的距离为r 的最大值,圆心O 到MP 5的距离为r 的最小值,分别求出两个距离即可得出结果.【详解】(1))如图1所示:∵点A 是线段MN 上一个动点,过点A 作线段MN 的垂线l ,点P 是垂线l 上的另外一个动点,M (1,2),N (4,2),∴点P 的横坐标1≤x≤4,∵以点P 为旋转中心,将垂线l 沿逆时针方向旋转60°后与线段MN 有公共点,当∠MPN=60°时,PM=60MN tan ︒=3=3, 同理P′N=3, ∴点P 的纵坐标为2-3或2+3,即纵坐标2-3≤y≤2+3,∴线段MN 的“关联点”有P 1和P 3;故答案为:P 1和P 3;(2)线段MN 的“关联点”P 的位置如图所示,∵ 直线1y x =+经过点M (1,2),∴ x ≥1.设直线1y x =+与P 4N 交于点A .过点A 作AB ⊥MN 于B ,延长AB 交x 轴于C .由题意易知,在△AMN 中,MN = 3,∠AMN = 45°,∠ANM = 30°.设AB = MB = a ,∴ tan AB ANM BN ∠=,即tan303a a ︒=-, 解得333a -= ∴ 点A 的横坐标为33333111x a --=+=+= ∴331x - 综上 3311x -≤≤(3)点P 在以O (1,-1)为圆心,r 为半径的⊙O 上,且点P 是线段MN 的“关联点”,如图3所示:连接P 4O 交x 轴于点D ,P 4、M 、D 、O 共线,则圆心O 到P 4的距离为r 的最大值,由(1)知:MP 4=NP 53即OD+DM+MP 433圆心O 到MP 5的距离为r 的最小值,作OE ⊥MP 5于E ,连接OP 5,则OE 为r 的最小值,MP 5225MN NP +223(3)+3OM=OD+DM=1+2=3, △OMP 5的面积=12OE•MP 5=12OM•MN ,即12312×3×3, 解得:33 ∴3323 【点睛】本题是圆的综合题,考查了旋转、直角三角形的性质、勾股定理、最值等知识,熟练掌握“关联点”的含义,作出关于MN 的“关联点”图是关键.11.如图1,已知⊙O 是ΔADB 的外接圆,∠ADB 的平分线DC 交AB 于点M ,交⊙O 于点C ,连接AC ,BC .(1)求证:AC=BC ;(2)如图2,在图1 的基础上做⊙O 的直径CF 交AB 于点E ,连接AF ,过点A 作⊙O 的切线AH ,若AH//BC ,求∠ACF 的度数;(3)在(2)的条件下,若ΔABD 的面积为63ΔABD 与ΔABC 的面积比为2:9,求CD 的长.【答案】(1)证明见解析;(2)30°;(3)233【解析】分析:(1)运用“在同圆或等圆中,弧相等,所对的弦相等”可求解;(2)连接AO并延长交BC于I交⊙O于J,由AH是⊙O的切线且AH∥BC得AI⊥BC,易证∠IAC=30°,故可得∠ABC=60°=∠F=∠ACB,由CF是直径可得∠ACF的度数;(3)过点D作DG⊥AB ,连接AO,知ABC为等边三角形,求出AB、AE的长,在RtΔAEO 中,求出AO的长,得CF的长,再求DG 的长,运用勾股定理易求CD的长.详解:(1)∵DC平分∠ADB,∴∠ADC=∠BDC,∴AC=BC.(2)如图,连接AO并延长交BC于I交⊙O于J∵AH是⊙O的切线且AH∥BC,∴AI⊥BC,∴BI=IC,∵AC=BC,∴IC=1AC,2∴∠IAC=30°,∴∠ABC=60°=∠F=∠ACB.∵FC是直径,∴∠FAC=90°,∴∠ACF=180°-90°-60°=30°.(3)过点D 作DG AB ⊥,连接AO由(1)(2)知ABC 为等边三角形∵∠ACF=30°,∴AB CF ⊥,∴AE=BE , ∴2ΔABC 33S AB == ∴AB=3 ∴33AE =在RtΔAEO 中,设EO=x ,则AO=2x ,∴222AO AE OE =+,∴()(222233x x =+,∴x =6,⊙O 的半径为6,∴CF=12. ∵ΔABD 11636322S AB DG DG =⨯⨯=⨯= ∴DG=2.如图,过点D 作DG CF '⊥,连接OD .∵AB CF ⊥,DG AB ⊥,∴CF//DG ,∴四边形G ′DGE 为矩形,∴2G E '=, 63211CG G E CE +=++'==',在RtΔOG D '中,5,6OG OD ='=, ∴11DG '= ∴2221111233CD DG CG =++=''点睛:本题是一道圆的综合题.考查了圆的基本概念,垂径定理,勾股定理,圆周角定理等相关知识.比较复杂,熟记相关概念是解题关键.12.如图,AB是圆O的直径,O为圆心,AD、BD是半圆的弦,且∠PDA=∠PBD.延长PD 交圆的切线BE于点E(1)判断直线PD是否为⊙O的切线,并说明理由;(2)如果∠BED=60°,PD=3,求PA的长;(3)将线段PD以直线AD为对称轴作对称线段DF,点F正好在圆O上,如图2,求证:四边形DFBE为菱形.【答案】(1)证明见解析;(2)1;(3)证明见解析.【解析】【分析】(1)连接OD,由AB是圆O的直径可得∠ADB=90°,进而求得∠ADO+∠PDA=90°,即可得出直线PD为⊙O的切线;(2)根据BE是⊙O的切线,则∠EBA=90°,即可求得∠P=30°,再由PD为⊙O的切线,得∠PDO=90°,根据三角函数的定义求得OD,由勾股定理得OP,即可得出PA;(3)根据题意可证得∠ADF=∠PDA=∠PBD=∠ABF,由AB是圆O的直径,得∠ADB=90°,设∠PBD=x°,则可表示出∠DAF=∠PAD=90°+x°,∠DBF=2x°,由圆内接四边形的性质得出x 的值,可得出△BDE是等边三角形.进而证出四边形DFBE为菱形.【详解】(1)直线PD为⊙O的切线,理由如下:如图1,连接OD,∵AB是圆O的直径,∴∠ADB=90°,∴∠ADO+∠BDO=90°,又∵DO=BO,∴∠BDO=∠PBD,∵∠PDA=∠PBD,∴∠BDO=∠PDA,∴∠ADO+∠PDA=90°,即PD⊥OD,∵点D在⊙O上,∴直线PD为⊙O的切线;(2)∵BE是⊙O的切线,∴∠EBA=90°,∵∠BED=60°,∴∠P=30°,∵PD为⊙O的切线,∴∠PDO=90°,在Rt△PDO中,∠P=30°,∴0 tan30ODPD=,解得OD=1,∴PO,∴PA=PO﹣AO=2﹣1=1;(3)如图2,依题意得:∠ADF=∠PDA,∠PAD=∠DAF,∵∠PDA=∠PBD∠ADF=∠ABF,∴∠ADF=∠PDA=∠PBD=∠ABF,∵AB是圆O的直径,∴∠ADB=90°,设∠PBD=x°,则∠DAF=∠PAD=90°+x°,∠DBF=2x°,∵四边形AFBD内接于⊙O,∴∠DAF+∠DBF=180°,即90°+x+2x=180°,解得x=30°,∴∠ADF=∠PDA=∠PBD=∠ABF=30°,∵BE、ED是⊙O的切线,∴DE=BE,∠EBA=90°,∴∠DBE=60°,∴△BDE是等边三角形,∴BD=DE=BE,又∵∠FDB=∠ADB﹣∠ADF=90°﹣30°=60°∠DBF=2x°=60°,∴△BDF是等边三角形,∴BD=DF=BF,∴DE=BE=DF=BF,∴四边形DFBE为菱形.【点睛】本题是一道综合性的题目,考查了切线的判定和性质,圆周角定理和菱形的性质,是中档题,难度较大.13.如图,已知AB 是⊙O 的直径,P 是BA 延长线上一点,PC 切⊙O 于点C ,CD ⊥AB ,垂足为D .(1)求证:∠PCA =∠ABC ;(2)过点A 作AE ∥PC 交⊙O 于点E ,交CD 于点F ,交BC 于点M ,若∠CAB =2∠B ,CF 3【答案】(1)详见解析;(2)6334π-. 【解析】【分析】(1)如图,连接OC ,利用圆的切线的性质和直径对应的圆周角是直角可得∠PCA=∠OCB ,利用等量代换可得∠PCA=∠ABC.(2)先求出△OCA 是等边三角形,在利用三角形的等边对等角定理求出FA=FC 和CF=FM,然后分别求出AM 、AC 、MO 、CD 的值,分别求出0A E S ∆、BOE S 扇形 、ABM S ∆ 的值,利用0A E ABM BOE S S S S ∆∆=+-阴影部分扇形,然后通过计算即可解答.【详解】解:(1)证明:连接OC ,如图,∵PC切⊙O于点C,∴OC⊥PC,∴∠PCA+∠ACO=90º,∵AB是⊙O的直径,∴∠ACB=∠ACO+OCB=90º∴∠PCA=∠OCB,∵OC=OB,∴∠OBC=∠OCB,∴∠PCA=∠ABC;(2)连接OE,如图,∵△ACB中,∠ACB=90º,∠CAB=2∠B,∴∠B=30º,∠CAB=60º,∴△OCA是等边三角形,∵CD⊥AB,∴∠ACD+∠CAD=∠CAD+∠ABC=90º,∴∠ACD=∠B=30º,∵PC∥AE,∴∠PCA=∠CAE=30º,∴FC=FA,同理,CF=FM,∴AM=2CF=23,Rt△ACM中,易得AC=23×32=3=OC,∵∠B=∠CAE=30º,∴∠AOC=∠COE=60º,∴∠EOB=60º,∴∠EAB=∠ABC=30º,∴MA=MB,连接OM,EG⊥AB交AB于G点,如图所示,∵OA=OB,∴MO⊥AB,∴MO=3∵△CDO≌△EDO(AAS),∴332∴1332ABM S AB MO ∆=⨯=, 同样,易求93AOE S ∆=, 260333602BOE S ππ⨯==扇形 ∴0A E ABM BOE S S S S ∆∆=+-阴影部分扇形=933633332ππ-+-=. 【点睛】本题考查了切线的性质、解直角三角形、扇形面积和识图的能力,综合性较强,有一定难度,熟练掌握定理并准确识图是解题的关键.14.如图1,等腰直角△ABC 中,∠ACB=90°,AC=BC ,过点A ,C 的圆交AB 于点D ,交BC 于点E ,连结DE(1)若AD=7,BD=1,分别求DE ,CE 的长(2)如图2,连结CD ,若CE=3,△ACD 的面积为10,求tan ∠BCD(3)如图3,在圆上取点P 使得∠PCD=∠BCD (点P 与点E 不重合),连结PD ,且点D 是△CPF 的内心①请你画出△CPF ,说明画图过程并求∠CDF 的度数②设PC=a ,PF=b ,PD=c ,若(a-2c )(b-2c )=8,求△CPF 的内切圆半径长.【答案】(1)DE=1,CE=322)tan ∠BCD=14;(3)①135°;②2. 【解析】【分析】 (1)由A 、C 、E 、D 四点共圆对角互补为突破口求解;(2)找∠BDF 与∠ODA 为对顶角,在⊙O 中,∠COD=2∠CAD ,证明△OCD 为等腰直角三角形,从而得到∠EDC+∠ODA=45°,即可证明∠CDF=135°;(3)过点D 做DH CB ⊥于点H ,以D 为圆心,DH 为半径画圆,过点P 做D e 切线PF 交CB 的延长线于点F ,结合圆周角定理得出∠CPD=∠CAD=45°,再根据圆的内心是三角形三个内角角平分线的交点,得出∠CPF=90°,然后根据角平分线性质得出114522DCF CFD PCF PFC ∠+∠=∠+∠=︒,最后再根据三角形内角和定理即可求解;证明∠DCF+∠CFD=45°,从而证明∠CPF是直角,再求证四边形PKDN是正方形,最后以△PCF面积不变性建立等量关系,结合已知(a-2c)(b-2c)=8,消去字母a,b求出c值,即求出△CPF的内切圆半径长为22c.【详解】(1)由图可知:设BC=x.在Rt△ABC中,AC=BC.由勾股定理得:AC2+BC2=AB2,∵AB=AD+BD,AD=7,BD=1,∴x2+x2=82,解得:x=42.∵⊙O内接四边形,∠ACD=90°,∴∠ADE=90°,∴∠EDB=90°,∵∠B=45°,∴△BDE是等腰直角三形.∴DE=DB,又∵DB=1,∴DE=1,又∵CE=BC-BE,∴CE=42232-=.(2)如图所示:在△DCB中过点D作DM⊥BE,设BE=y,则DM=12 y,又∵CE=3,∴BC=3+y,∵S △ACB =S ACD +S DCB , ∴()1114242103y y 222⨯⨯=+⨯+⨯, 解得:y=2或y=-11(舍去).∴EM=1,CM=CE+ME=1+3=4,又∵∠BCD=∠MCD ,∴tan ∠BCD=tan ∠MCD , 在Rt △DCM 中,tan ∠MCD=DM CM =14, ∴tan ∠BCD=14. (3)①如下图所示:过点D 做DH CB ⊥于点H ,以D 为圆心,DH 为半径画圆,过点P 做D e 切线PF 交CB 的延长线于点F .∵∠CAD=45°,∴∠CPD=∠CAD=45°,又∵点D 是CPF ∆的内心,∴PD 、CD 、DF 都是角平分线,∴∠FPD=∠CPD =45°,∠PCD=∠DCF ,∠PFD=∠CFD∴∠CPF=90°∴∠PCF+∠PFC=90°∴114522DCF CFD PCF PFC ∠+∠=∠+∠=︒ ∴∠CDF=180°-∠DCF-∠CFD F=90°+45°=135°,即∠CDF 的度数为135°.②如下图所示过点D 分别作DK ⊥PC ,DM ⊥CF ,DN ⊥PF 于直线PC ,CF 和PF 于点K ,M ,N 三点, 设△PCF 内切圆的半径为m ,则DN=m ,∵点D 是△PCF 的内心,∴DM=DN=DK ,又∵∠DCF+∠CFD+∠FDC=180°,∠FDC=45°,∴∠DCF+∠CFD=45°,又∵DC ,DF 分别是∠PCF 和∠PFC 的角平分线,∴∠PCF=2∠DCF ,∠PFC=2∠DFC ,∴∠PCF+∠PFC=90°,∴∠CPF=90°.在四边形PKDN 中,∠PND=∠NPK=∠PKD=90°,∴四边形PKDN 是矩形,又∵KD=ND ,∴四边形PKDN 是正方形.又∵∠MBD=∠BDM=45°,∠BDM=∠KDP ,∴∠KDP=45°.∵PC=a ,PF=b ,PD=c ,∴2, ∴NF=2b -,CK=2a -, 又∵CK=CM ,FM=FN ,CF=CM+FM ,∴CF=a b 2c +,又∵S △PCF =S △PDF +S △PDC +S △DCF , ∴112121ab a c b c (a b 2222222=⨯+⨯++-)×2c 2, 化简得:)22a b c c +-------(Ⅰ),又∵若(2c )(2c )=8 化简得:()2ab 2c a b 2c 8++=------(Ⅱ), 将(Ⅰ)代入(Ⅱ)得:c 2=8,解得:c 22=,或c 22=-(舍去),∴m=22c 22222=⨯=, 即△CPF 的内切圆半径长为2.【点睛】 本题考查圆的内接四边形性质,圆的内心,圆心角、圆周角,同弧(或等弧)之间的相互关系,同时也考查直角三角形,勾股定理,同角或等角的三角函数值相等和三角形的面积公式,正方形,对顶角和整式的运算等知识点;难点是作辅助线和利用等式求△CPF 的内切圆半径长.15.如图,AB 为⊙O 的直径,BC 为⊙O 的弦,过O 点作OD ⊥BC ,交⊙O 的切线CD 于点D ,交⊙O 于点E ,连接AC 、AE ,且AE 与BC 交于点F .(1)连接BD ,求证:BD 是⊙O 的切线;(2)若AF :EF=2:1,求tan ∠CAF 的值.【答案】(1)证明见解析;(2)33. 【解析】【分析】 (1)根据全等三角形的性质得到∠OBD=∠OCD=90°,根据切线的判定定理即可得到结论; (2)根据已知条件得到AC ∥DE ,设OD 与BC 交于G ,根据平行线分线段成比例定理得到AC :EG=2:1,EG=12AC ,根据三角形的中位线的性质得到OG=12AC 于是得到AC=OE ,求得∠ABC=30°,即可得到结论.【详解】证明:(1)∵OC=OB ,OD ⊥BC ,∴∠COD=∠BOD ,在△COD 与△BOD 中, OC OB COD BOD OD OD ===⎧⎪∠∠⎨⎪⎩,∴△COD≌△BOD,∴∠OBD=∠OCD=90°,∴BD是⊙O的切线;(2)解:∵AB为⊙O的直径,AC⊥BC,∵OD⊥CB,∴AC∥DE,设OD与BC交于G,∵OE∥AC,AF:EF=2:1,∴AC:EG=2:1,即EG=12AC,∵OG∥AC,OA=OB,∴OG=12AC,∵OG+GE=12AC+12AC=AC,∴AC=OE,∴AC=12AB,∴∠ABC=30°,∴∠CAB=60°,∵¼¼CE BE,∴∠CAF=∠EAB=12∠CAB=30°,∴tan∠CAF=tan30°3【点睛】本题考查了切线的判定和性质,垂径定理,全等三角形的判定与性质,三角形的中位线的性质,三角函数的定义,正确的识别图形是解题的关键.。

初三+圆难题压轴题答案解析+之欧阳科创编

初三+圆难题压轴题答案解析+之欧阳科创编

圆难题压轴题答案解析1.解:(1)如图1,设⊙O的半径为r,当点A在⊙C上时,点E和点A重合,过点A作AH⊥BC于H,∴BH=AB•cosB=4,∴AH=3,CH=4,∴AC==5,∴此时CP=r=5;(2)如图2,若AP∥CE,APCE为平行四边形,∵CE=CP,∴四边形APCE是菱形,连接AC、EP,则AC⊥EP,∴AM=CM=,由(1)知,AB=AC,则∠ACB=∠B,∴CP=CE==,∴EF=2=;(3)如图3:过点C作CN⊥AD于点N,∵cosB=45,∴∠B<45°,∵∠BCG<90°,∴∠BGC>45°,∵∠AEG=∠BCG≥∠ACB=∠B,∴当∠AEG=∠B时,A、E、G重合,∴只能∠AGE=∠AEG,∵AD∥BC,∴△GAE∽△GBC,∴=,即=,解得:AE=3,EN=AN﹣AE=1,∴CE===.2. 解:(1)①若圆P与直线l和l2都相切,当点P在第四象限时,过点P作PH⊥x轴,垂足为H,连接OP,如图1所示.设y=x的图象与x轴的夹角为α.当x=1时,y=.∴tanα=.∴α=60°.∴由切线长定理得:∠POH=(180°﹣60°)=60°.∵PH=1,∴tan∠POH===.∴OH=.∴点P的坐标为(,﹣1).同理可得:当点P在第二象限时,点P的坐标为(﹣,1);当点P在第三象限时,点P的坐标为(﹣,﹣1);②若圆P与直线l和l1都相切,如图2所示.同理可得:当点P在第一象限时,点P的坐标为(,1);当点P在第二象限时,点P的坐标为(﹣,1);当点P在第三象限时,点P的坐标为(﹣,﹣1);当点P在第四象限时,点P的坐标为(,﹣1).③若圆P与直线l1和l2都相切,如图3所示.同理可得:当点P在x轴的正半轴上时,点P的坐标为(,0);当点P在x轴的负半轴上时,点P的坐标为(﹣,0);当点P在y轴的正半轴上时,点P的坐标为(0,2);当点P在y轴的负半轴上时,点P的坐标为(0,﹣2).综上所述:其余满足条件的圆P的圆心坐标有:(,﹣1)、(﹣,1)、(﹣,﹣1)、(,1)、(﹣,1)、(﹣,﹣1)、(,﹣1)、(,0)、(﹣,0)、(0,2)、(0,﹣2).(2)用线段依次连接各圆心,所得几何图形,如图4所示.由图可知:该几何图形既轴对称图形,又是中心对称图形,由对称性可得:该几何图形的所有的边都相等.∴该图形的周长=12×(﹣)=8.3. (1)解:连接OB,OD,∵∠DAB=120°,∴所对圆心角的度数为240°,∴∠BOD=120°,∵⊙O的半径为3,∴劣弧的长为:×π×3=2π;(2)证明:连接AC,∵AB=BE,∴点B为AE的中点,∵F是EC的中点,∴BF为△EAC的中位线,∴BF=AC,∵=,∴+=+,∴=,∴BD=AC,∴BF=BD;(3)解:过点B作AE的垂线,与⊙O的交点即为所求的点P,∵BF为△EAC的中位线,∴BF∥AC,∴∠FBE=∠CAE,∵=,∴∠CAB=∠DBA,∵由作法可知BP⊥AE,∴∠GBP=∠FBP,∵G为BD的中点,∴BG=BD,∴BG=BF,在△PBG和△PBF中,,∴△PBG≌△PBF(SAS),∴PG=PF.4. 解:(1)∵l1⊥l2,⊙O与l1,l2都相切,∴∠OAD=45°,∵AB=4cm,AD=4cm,∴CD=4cm,AD=4cm,∴tan∠DAC===,∴∠DAC=60°,∴∠OAC的度数为:∠OAD+∠DAC=105°,故答案为:105;(2)如图位置二,当O1,A1,C1恰好在同一直线上时,设⊙O1与l1的切点为E,连接O1E,可得O1E=2,O1E⊥l1,在Rt△A1D1C1中,∵A1D1=4,C1D1=4,∴tan∠C1A1D1=,∴∠C1A1D1=60°,在Rt△A1O1E中,∠O1A1E=∠C1A1D1=60°,∴A1E==,∵A1E=AA1﹣OO1﹣2=t﹣2,∴t﹣2=,∴t=+2,∴OO1=3t=2+6;(3)①当直线AC与⊙O第一次相切时,设移动时间为t1,如图,此时⊙O移动到⊙O2的位置,矩形ABCD移动到A2B2C2D2的位置,设⊙O2与直线l1,A2C2分别相切于点F,G,连接O2F,O2G,O2A2,∴O2F⊥l1,O2G⊥A2G2,由(2)得,∠C2A2D2=60°,∴∠GA2F=120°,∴∠O2A2F=60°,在Rt△A2O2F中,O2F=2,∴A2F=,∵OO2=3t,AF=AA2+A2F=4t1+,∴4t1+﹣3t1=2,∴t1=2﹣,②当直线AC与⊙O第二次相切时,设移动时间为t2,记第一次相切时为位置一,点O1,A1,C1共线时位置二,第二次相切时为位置三,由题意知,从位置一到位置二所用时间与位置二到位置三所用时间相等,∴+2﹣(2﹣)=t2﹣(+2),解得:t2=2+2,综上所述,当d<2时,t的取值范围是:2﹣<t<2+2.5.解:(1)证明:如图1,∵CE为⊙O的直径,∴∠CFE=∠CGE=90∵EG⊥EF,∴∠FEG=90°.∴∠CFE=∠CGE=∠FEG=90°.∴四边形EFCG是矩形.(2)①存在.连接OD,如图2①,∵四边形ABCD是矩形,∴∠A=∠ADC=90°.∵点O是CE的中点,∴OD=OC.∴点D在⊙O上.∵∠FCE=∠FDE,∠A=∠CFE=90°,∴△CFE∽△DAB.∴=()2.∵AD=4,AB=3,∴BD=5,S△CFE=()2•S△DAB=××3×4=.∴S矩形ABCD=2S△CF E=.∵四边形EFCG是矩形,∴FC∥EG.∴∠FCE=∠CEG.∵∠GDC=∠CEG,∠FCE=∠FDE,∴∠GDC=∠FDE.∵∠FDE+∠CDB=90°,∴∠GDC+∠CDB=90°.∴∠GDB=90°Ⅰ.当点E在点A(E′)处时,点F在点B(F′)处,点G 在点D(G′处,如图2①所示.此时,CF=CB=4.Ⅱ.当点F在点D(F″)处时,直径F″G″⊥BD,如图2②所示,此时⊙O与射线BD相切,CF=CD=3.Ⅲ.当CF⊥BD时,CF最小,此时点F到达F″′,如图2③所示.S△BCD=BC•CD=BD•CF″′.∴4×3=5×CF″′∴CF″′=.∴≤CF≤4.∵S矩形ABCD=,∴×()2≤S矩形ABCD≤×42.∴≤S矩形ABCD≤12.∴矩形EFCG的面积最大值为12,最小值为.②∵∠GDC=∠FDE=定值,点G的起点为D,终点为G″,∴点G的移动路线是线段DG″.∵∠GDC=∠FDE,∠DCG″=∠A=90°,∴△DCG″∽△DAB.∴=.∴=.∴DG″=.∴点G移动路线的长为.[来6.解:(1)以AB为边,在第一象限内作等边三角形ABC,以点C为圆心,AC为半径作⊙C,交y轴于点P1、P2.在优弧AP1B上任取一点P,如图1,则∠APB=∠ACB=×60°=30°.∴使∠APB=30°的点P有无数个.故答案为:无数.(2)①当点P在y轴的正半轴上时,过点C作CG⊥AB,垂足为G,如图1.∵点A(1,0),点B(5,0),∴OA=1,OB=5.∴AB=4.∵点C为圆心,CG⊥AB,∴AG=BG=AB=2.∴OG=OA+AG=3.∵△ABC是等边三角形,∴AC=BC=AB=4.∴CG===2.∴点C的坐标为(3,2).过点C作CD⊥y轴,垂足为D,连接CP2,如图1,∵点C的坐标为(3,2),∴CD=3,OD=2.∵P1、P2是⊙C与y轴的交点,∴∠AP1B=∠AP2B=30°.∵CP2=CA=4,CD=3,∴DP 2==.∵点C为圆心,CD⊥P1P2,∴P 1D=P2D=.∴P 2(0,2﹣).P1(0,2+).②当点P在y轴的负半轴上时,同理可得:P 3(0,﹣2﹣).P4(0,﹣2+).综上所述:满足条件的点P的坐标有:(0,2﹣)、(0,2+)、(0,﹣2﹣)、(0,﹣2+).(3)当过点A、B的⊙E与y轴相切于点P时,∠APB最大.①当点P在y轴的正半轴上时,连接EA,作EH⊥x轴,垂足为H,如图2.∵⊙E与y轴相切于点P,∴PE⊥OP∵EH⊥AB,OP⊥OH,∴∠EPO=∠POH=∠EHO=90°.∴四边形OPEH是矩形.∴OP=EH,PE=OH=3∴EA=3.∵∠EHA=90°,AH=2,EA=3,∴EH===∴OP=∴P(0,).②当点P在y轴的负半轴上时,同理可得:P(0,﹣).理由:①若点P在y轴的正半轴上,在y轴的正半轴上任取一点M(不与点P重合),连接MA,MB,交⊙E于点N,连接NA,如图2所示.∵∠ANB是△AMN的外角,∴∠ANB>∠AMB.∵∠APB=∠ANB,∴∠APB>∠AMB.②若点P在y轴的负半轴上,同理可证得:∠APB>∠AMB.综上所述:当点P在y轴上移动时,∠APB有最大值,此时点P的坐标为(0,)和(0,﹣).7.解答:证明:(1)如图,连接PM,PN,∵⊙P与x轴,y轴分别相切于点M和点N,∴PM⊥MF,PN⊥ON且PM=PN,∴∠PMF=∠PNE=90°且∠NPM=90°,∵PE⊥PF,∠NPE=∠MPF=90°﹣∠MPE,在△PMF和△PNE中,,∴△PMF≌△PNE(ASA),∴PE=PF,(2)解:①当t>1时,点E在y轴的负半轴上,如图,由(1)得△PMF≌△PNE,∴NE=MF=t,PM=PN=1,∴b=OF=OM+MF=1+t,a=NE﹣ON=t﹣1,∴b﹣a=1+t﹣(t﹣1)=2,∴b=2+a,②0<t≤1时,如图2,点E在y轴的正半轴或原点上,同理可证△PMF≌△PNE,∴b=OF=OM+MF=1+t,a=ON﹣NE=1﹣t,∴b+a=1+t+1﹣t=2,∴b=2﹣a,(3)如图3,(Ⅰ)当1<t<2时,∵F(1+t,0),F和F′关于点M对称,∴F′(1﹣t,0)∵经过M、E和F′三点的抛物线的对称轴交x轴于点Q,∴Q(1﹣t,0)∴OQ=1﹣t,由(1)得△PMF≌△PNE∴NE=MF=t,∴OE=t﹣1当△OEQ∽△MPF∴=∴=,解得,t=,当△OEQ∽△MFP时,∴=,=,解得,t=,(Ⅱ)如图4,当t>2时,∵F(1+t,0),F和F′关于点M对称,∴F′(1﹣t,0)∵经过M、E和F′三点的抛物线的对称轴交x轴于点Q,∴Q(1﹣t,0)∴OQ=t﹣1,由(1)得△PMF≌△PNE∴NE=MF=t,∴OE=t﹣1当△OEQ∽△MPF∴=∴=,无解,当△OEQ∽△MFP时,∴=,=,解得,t=2±,所以当t=,t=,t=2±时,使得以点Q、O、E为顶点的三角形与以点P、M、F为顶点的三角形相似.8.答::(1)∵DF⊥AB,EF⊥AC,∴∠BDF=∠CEF=90°.∵△ABC为等边三角形,∴∠B=∠C=60°.∵∠BDF=∠CEF,∠B=∠C,∴△BDF∽△CEF.(2)∵∠BDF=90°,∠B=60°,∴sin60°==,cos60°==.∵BF=m,∴DF=m,BD=.∵AB=4,∴AD=4﹣.∴S△ADF=AD•DF=×(4﹣)×m=﹣m2+m.同理:S△AEF=AE•EF=×(4﹣)×(4﹣m)=﹣m2+2.∴S=S△ADF+S△AEF=﹣m2+m+2=﹣(m2﹣4m﹣8)=﹣(m﹣2)2+3.其中0<m<4.∵﹣<0,0<2<4,∴当m=2时,S取最大值,最大值为3.∴S与m之间的函数关系为:S═﹣(m﹣2)2+3(其中0<m<4).当m=2时,S取到最大值,最大值为3.(3)如图2,∵A、D、F、E四点共圆,∴∠EDF=∠EAF.∵∠ADF=∠AEF=90°,∴AF是此圆的直径.∵tan∠EDF=,∴tan∠EAF=.∴=.∵∠C=60°,∴=tan60°=.设EC=x,则EF=x,EA=2x.∵AC=a,∴2x+x=A.∴x=.∴EF=,AE=.∵∠AEF=90°,∴AF==.∴此圆直径长为.9.解答:解:(1)连接OA,过点B作BH⊥AC,垂足为H,如图1所示.∵AB与⊙O相切于点A,∴OA⊥AB.∴∠OAB=90°.∵OQ=QB=1,∴OA=1.∴AB===.∵△ABC是等边三角形,∴AC=AB=,∠CAB=60°.∵sin∠HAB=,∴HB=AB•sin∠HAB=×=.∴S△ABC=A C•BH=××=.∴△ABC的面积为.(2)①当点A与点Q重合时,线段AB与圆O只有一个公共点,此时α=0°;②当线段A1B所在的直线与圆O相切时,如图2所示,线段A1B与圆O只有一个公共点,此时OA1⊥BA1,OA1=1,OB=2,∴cos∠A1OB==.∴∠A1OB=60°.∴当线段AB与圆O只有一个公共点(即A点)时,α的范围为:0°≤α≤60°.(3)连接MQ,如图3所示.∵PQ是⊙O的直径,∴∠PMQ=90°.∵OA⊥PM,∴∠PDO=90°.∴∠PDO=∠PMQ.∴△PDO∽△PMQ.∴==∵PO=OQ=PQ.∴PD=PM,OD=MQ.同理:MQ=AO,BM=AB.∵AO=1,∴MQ=.∴OD=.∵∠PDO=90°,PO=1,OD=,∴PD=.∴PM=.∴DM=.∵∠ADM=90°,AD=A0﹣OD=,∴AM===.∵△ABC是等边三角形,∴AC=AB=BC,∠CAB=60°.∵BM=AB,∴AM=BM.∴CM⊥AB.∵AM=,∴BM=,AB=.∴AC=.∴CM===.∴CM的长度为.10.解答:(1)证明:∵CD是⊙O的直径,∴∠DFC=90°,∵四边形ABCD是平行四边形,∴∠A=∠C,AD∥BC,∴∠ADF=∠DFC=90°,∵DE为⊙O的切线,∴DE⊥DC,∴∠EDC=90°,∴∠ADF=∠EDC=90°,∴∠ADE=∠CDF,∵∠A=∠C,∴△ADE∽△CDE;(2)解:∵CF:FB=1:2,∴设CF=x,FB=2x,则BC=3x,∵AE=3EB,∴设EB=y,则AE=3y,AB=4y,∵四边形ABCD是平行四边形,∴AD=BC=3x,AB=DC=4y,∵△ADE∽△CDF,∴=,∴=,∵x、y均为正数,∴x=2y,∴BC=6y,CF=2y,在Rt△DFC中,∠DFC=90°,由勾股定理得:DF===2y,∴⊙O的面积为π•(DC)2=π•DC2=π(4y)2=4πy2,四边形ABCD的面积为BC•DF=6y•2y=12y2,11. (1)证明:∵,∴∠DPF=180°﹣∠APD=180°﹣所对的圆周角=180°﹣所对的圆周角=所对的圆周角=∠APC.在△PAC和△PDF中,,∴△PAC∽△PDF.(2)解:如图1,连接PO,则由,有PO⊥AB,且∠PAB=45°,△APO、△AEF都为等腰直角三角形.在Rt△ABC中,∵AC=2BC,∴AB2=BC2+AC2=5BC2,∵AB=5,∴BC=,∴AC=2,∴CE=AC•sin∠BAC=AC•=2•=2,AE=AC•cos∠BAC=AC•=2•=4,∵△AEF为等腰直角三角形,∴EF=AE=4,∴FD=FC+CD=(EF﹣CE)+2CE=EF+CE=4+2=6.∵△APO为等腰直角三角形,AO=•AB=,∴AP=.∵△PDF∽△PAC,∴,∴,∴PD=.(3)解:如图2,过点G作GH⊥AB,交AC于H,连接HB,以HB为直径作圆,连接CG并延长交⊙O于Q,∵HC⊥CB,GH⊥GB,∴C、G都在以HB为直径的圆上,∴∠HBG=∠ACQ,∵C、D关于AB对称,G在AB上,∴Q、P关于AB对称,∴,∴∠PCA=∠ACQ,∴∠HBG=∠PCA.∵△PAC∽△PD F,∴∠PCA=∠PFD=∠AFD,∴y=tan∠AFD=tan∠PCA=tan∠HBG=.∵HG=tan∠HAG•AG=tan∠BAC•AG==,∴y==x.12. 解答:解:(1)证明:连接OH,如图①所示.∵四边形ABCD是矩形,∴∠ADC=∠BAD=90°,BC=AD,AB=CD.∵HP∥AB,∴∠ANH+∠BAD=180°.∴∠ANH=90°.∴HN=PN=HP=.∵OH=OA=,∴sin∠HON==.∴∠HON=60°∵BD与⊙O相切于点H,∴OH⊥BD.∴∠HDO=30°.∴OD=2.∴AD=3.∴BC=3.∵∠BAD=90°,∠BDA=30°.∴tan∠BDA===.∴AB=3.∵HP=3,∴AB=HP.∵AB∥HP,∴四边形ABHP是平行四边形.∵∠BAD=90°,AM是⊙O的直径,∴BA与⊙O相切于点A.∵BD与⊙O相切于点H,∴BA=BH.∴平行四边形ABHP是菱形.(2)△EFG的直角顶点G能落在⊙O上.如图②所示,点G落到AD上.∵EF∥BD,∴∠FEC=∠CDB.∵∠CDB=90°﹣30°=60°,∴∠CEF=60°.由折叠可得:∠GEF=∠CEF=60°.∴∠GED=60°.∵CE=x,∴GE=CE=x.ED=DC﹣CE=3﹣x.∴cos∠GED===.∴x=2.∴GE=2,ED=1.∴GD=.∴OG=AD﹣AO﹣GD=3﹣﹣=.∴OG=OM.∴点G与点M重合.此时△EFG的直角顶点G落在⊙O上,对应的x的值为2.∴当△EFG的直角顶点G落在⊙O上时,对应的x的值为2.(3)①如图①,在Rt△EGF中,tan∠FEG===.∴FG=x.∴S=GE•FG=x•x=x2.②如图③,ED=3﹣x,RE=2ED=6﹣2x,GR=GE﹣ER=x﹣(6﹣2x)=3x﹣6.∵tan∠SRG===,∴SG=(x﹣2).∴S △SGR=SG•RG=•(x﹣2)•(3x﹣6).=(x﹣2)2.∵S△GEF=x2,∴S=S△GEF﹣S△SGR=x2﹣(x﹣2)2.=﹣x2+6x﹣6.综上所述:当0≤x≤2时,S=x2;当2<x≤3时,S=﹣x2+6x﹣6.当FG与⊙O相切于点T时,延长FG交AD于点Q,过点F 作FK⊥AD,垂足为K,如图④所示.∵四边形ABCD是矩形,∴BC∥AD,∠ABC=∠BAD=90°∴∠AQF=∠CFG=60°.∵OT=,∴OQ=2.∴AQ=+2.∵∠FKA=∠ABC=∠BAD=90°,∴四边形ABFK是矩形.∴FK=AB=3,AK=BF=3﹣x.∴KQ=AQ﹣AK=(+2)﹣(3﹣x)=2﹣2+x.在Rt△FKQ中,tan∠FQK==.∴FK=QK.∴3=(2﹣2+x).解得:x=3﹣.∵0≤3﹣≤2,∴S=x2=×(3﹣)2=﹣6.∴FG与⊙O相切时,S的值为﹣6.13解答:(1)证明:连结OC、OE,OE交AB于H,如图1,∵E是弧AB的中点,∴OE⊥AB,∴∠EHF=90°,∴∠HEF+∠HFE=90°,而∠HFE=∠CFD,∴∠HEF+∠CFD=90°,∵DC=DF,∴∠CFD=∠DCF,而OC=OE,∴∠OCE=∠OEC,∴∠OCE+∠DCE=∠HEF+∠CFD=90°,∴OC⊥CD,∴直线DC与⊙O相切;(2)解:连结BC,∵E是弧AB的中点,∴弧AE=弧BE,∴∠ABE=∠BCE,而∠FEB=∠BEC,∴△EBF∽△ECB,∴EF:BE=BE:EC,∴EF•EC=BE2=(r)2=r2;(3)解:如图2,连结OA,∵弧AE=弧BE,∴AE=BE=r,设OH=x,则HE=r﹣x,在Rt△OAH中,AH2+OH2=OA2,即AH2+x2=r2,在Rt△EAH中,AH2+EH2=EA2,即AH2+(r﹣x)2=(r)2,∴x2﹣(r﹣x)2=r2﹣(r)2,即得x=r,∴HE=r﹣r=r,在Rt△OAH中,AH===,∵OE⊥AB,∴AH=BH,而F是AB的四等分点,∴HF=AH=,在Rt△EFH中,EF===r,∵EF•EC=r2,∴r•EC=r2,∴EC=r.14. 解:(1)连结O1A、O2B,如图,设⊙O1的半径为r,⊙O2的半径为R,∵⊙O1与⊙O2外切与点D,∴直线O1O2过点D,∴MO2=MD+O2D=4+R,∵直线l与两圆分别相切于点A、B,∴O1A⊥AB,O2B⊥AB,∵tan∠AM01=,∴∠AM01=30°,在Rt△MBO2中,MO2=O2B=2R,∴4+R=2R,解得R=4,即⊙O2的半径为4;(2)∵∠AM02=30°,∴∠MO2B=60°,而O2B=O2D,∴△O2BD为等边三角形,∴BD=O2B=4,∠DBO2=60°,∴∠ABD=30°,∵∠AM01=30°,∴∠MO1A=60°,而O1A=O1D,∴∠O1AD=∠O1DA,∴∠O1AD=∠MO1A=30°,∴∠DAB=60°,∴∠ADB=180°﹣30°﹣60°=90°,在Rt△ABD中,AD=BD=4,AB=2AD=8,∴△ADB内切圆的半径===2﹣2,∴△ADB内切圆的面积=π•(2﹣2)2=(16﹣8)π;(3)存在.在Rt△MBO2中,MB=O2B=×4=12,当△MO2P∽△MDB时,=,即=,解得O2P=8;当△MO2P∽△MBD时,=,即=,解得O2P=8,综上所述,满足条件的O2P的长为8或8.15. 解:(1)连接PA,如图1所示.∵PO⊥AD,∴AO=DO.∵AD=2,∴OA=.∵点P坐标为(﹣1,0),∴OP=1.∴PA==2.∴BP=CP=2.∴B(﹣3,0),C(1,0).(2)连接AP,延长AP交⊙P于点M,连接MB、MC.如图2所示,线段MB、MC即为所求作.四边形ACMB是矩形.理由如下:∵△MCB由△ABC绕点P旋转180°所得,∴四边形ACMB是平行四边形.∵BC是⊙P的直径,∴∠CAB=90°.∴平行四边形ACMB是矩形.过点M作MH⊥BC,垂足为H,如图2所示.在△MHP和△AOP中,∵∠MHP=∠AOP,∠HPM=∠OPA,MP=AP,∴△MHP≌△AOP.∴MH=OA=,PH=PO=1.∴OH=2.∴点M的坐标为(﹣2,).(3)在旋转过程中∠MQG的大小不变.∵四边形ACMB是矩形,∴∠BMC=90°.∵EG⊥BO,∴∠BGE=90°.∴∠BMC=∠BGE=90°.∵点Q是BE的中点,∴QM=QE=QB=QG.∴点E、M、B、G在以点Q为圆心,QB为半径的圆上,如图3所示.∴∠MQG=2∠MBG.∵∠COA=90°,OC=1,OA=,∴tan∠OCA==.∴∠OCA=60°.∴∠MBC=∠BCA=60°.∴∠MQG=120°.∴在旋转过程中∠MQG的大小不变,始终等于120°.16.解:(1)如图1,∵AB是⊙O的直径,∴∠AEB=90°.∴AE⊥BC.(2)如图1,∵BF与⊙O相切,∴∠ABF=90°.∴∠CBF=90°﹣∠ABE=∠BAE.∵∠BAF=2∠CBF.∴∠BAF=2∠BAE.∴∠BAE=∠CAE.∴∠CBF=∠CAE.∵CG⊥BF,AE⊥BC,∴∠CGB=∠AEC=90°.∵∠CBF=∠CAE,∠CGB=∠AEC,∴△BCG∽△ACE.(3)连接BD,如图2所示.∵∠DAE=∠DBE,∠DAE=∠CBF,∴∠DBE=∠CBF.∵AB是⊙O的直径,∴∠ADB=90°.∴BD⊥AF.∵∠DBC=∠CBF,BD⊥AF,CG⊥BF,∴CD=CG.∵∠F=60°,GF=1,∠CGF=90°,∴tan∠F==CG=tan60°=∵CG=,∴CD=.∵∠AFB=60°,∠ABF=90°,∴∠BAF=30°.∵∠ADB=90°,∠BAF=30°,∴AB=2BD.∵∠BAE=∠CAE,∠AEB=∠AEC,∴∠ABE=∠ACE.∴AB=AC.设⊙O的半径为r,则AC=AB=2r,BD=r.∵∠ADB=90°,∴AD=r.∴DC=AC﹣AD=2r﹣r=(2﹣)r=.∴r=2+3.∴⊙O的半径长为2+3.17.解答:解:(1)当k=1时,抛物线解析式为y=x2﹣1,直线解析式为y=x+1.联立两个解析式,得:x2﹣1=x+1,解得:x=﹣1或x=2,当x=﹣1时,y=x+1=0;当x=2时,y=x+1=3,∴A(﹣1,0),B(2,3).(2)设P(x,x2﹣1).如答图2所示,过点P作PF∥y轴,交直线AB于点F,则F(x,x+1).∴PF=y F﹣y P=(x+1)﹣(x2﹣1)=﹣x2+x+2.S△ABP=S△PFA+S△PFB=PF(xF﹣xA)+PF(xB﹣xF)=PF(xB﹣xA)=PF∴S△ABP=(﹣x2+x+2)=﹣(x﹣)2+当x=时,yP=x2﹣1=﹣.∴△ABP面积最大值为,此时点P坐标为(,﹣).(3)设直线AB:y=kx+1与x轴、y轴分别交于点E、F,则E(﹣,0),F(0,1),OE=,OF=1.在Rt△EOF中,由勾股定理得:EF==.令y=x2+(k﹣1)x﹣k=0,即(x+k)(x﹣1)=0,解得:x=﹣k或x=1.∴C(﹣k,0),OC=k.假设存在唯一一点Q,使得∠OQC=90°,如答图3所示,则以OC为直径的圆与直线AB相切于点Q,根据圆周角定理,此时∠OQC=90°.设点N为OC中点,连接NQ,则NQ⊥EF,NQ=CN=ON=.∴EN=OE﹣ON=﹣.∵∠NEQ=∠FEO,∠EQN=∠EOF=90°,∴△EQN∽△EOF,∴,即:,解得:k=±,∵k>0,∴k=.∴存在唯一一点Q,使得∠OQC=90°,此时k=.18.解:(1)设抛物线为y=a(x﹣4)2﹣1,∵抛物线经过点A(0,3),∴3=a(0﹣4)2﹣1,;∴抛物线为;(3分)(2)相交.证明:连接CE,则CE⊥BD,当时,x1=2,x2=6.A(0,3),B(2,0),C(6,0),对称轴x=4,∴OB=2,AB==,BC=4,∵AB⊥BD,∴∠OAB+∠OBA=90°,∠OBA+∠EBC=90°,∴△AOB∽△BEC,∴=,即=,解得CE=,∵>2,∴抛物线的对称轴l与⊙C相交.(7分)(3)如图,过点P作平行于y轴的直线交AC于点Q;可求出AC的解析式为;(8分)设P点的坐标为(m,),则Q点的坐标为(m,);∴PQ=﹣m+3﹣(m2﹣2m+3)=﹣m2+m.∵S△PAC=S△PAQ+S△PCQ=×(﹣m2+m)×6=﹣(m﹣3)2+;∴当m=3时,△PAC的面积最大为;此时,P点的坐标为(3,).(10分)19、【解】:(1)如图1,设⊙O与AB、BC、CA的切点分别为D、E、F,连接OD、OE、OF,则AD=AF,BD=BE,CE=CF.∵⊙O为△ABC的内切圆,∴OF⊥AC,OE⊥BC,即∠OFC=∠OEC=90°.∵∠C=90°,∴四边形CEOF是矩形,∵OE=OF,∴四边形CEOF是正方形.设⊙O的半径为rcm,则FC=EC=OE=rcm,在Rt△ABC中,∠ACB=90°,AC=4cm,BC=3cm,∴AB==5cm.∵AD=AF=AC﹣FC=4﹣r,BD=BE=BC﹣EC=3﹣r,∴4﹣r+3﹣r=5,解得r=1,即⊙O的半径为1cm.(2)如图2,过点P作PG⊥BC,垂直为G.∵∠PGB=∠C=90°,∴PG∥AC.∴△PBG∽△ABC,∴.∵BP=t,∴PG=,BG=.若⊙P与⊙O相切,则可分为两种情况,⊙P与⊙O外切,⊙P与⊙O内切.①当⊙P与⊙O外切时,如图3,连接OP,则OP=1+t,过点P作PH⊥OE,垂足为H.∵∠PHE=∠HEG=∠PGE=90°,∴四边形PHEG是矩形,∴HE=PG,PH=CE,∴OH=OE﹣HE=1﹣,PH=GE=BC﹣EC﹣BG=3﹣1﹣=2﹣.在Rt△OPH中,由勾股定理,,解得t=.②当⊙P与⊙O内切时,如图4,连接OP,则OP=t﹣1,过点O作OM⊥PG,垂足为M.∵∠MGE=∠OEG=∠OMG=90°,∴四边形OEGM是矩形,∴MG=OE,OM=EG,∴PM=PG﹣MG=,OM=EG=BC﹣EC﹣BG=3﹣1﹣=2﹣,在Rt△OPM中,由勾股定理,,解得t=2.综上所述,⊙P与⊙O相切时,t=s或t=2s.20. :(1)如图2,连接OA、OB、OC、OD.∵S=S△AOB+S△BOC+S△COD+S△AOD=+++=,∴r=.(2)如图3,过点D作DE⊥AB于E,∵梯形ABCD为等腰梯形,∴AE===5,∴EB=AB﹣AE=21﹣5=16.在Rt△AED中,∵AD=13,AE=5,∴DE=12,∴DB==20.∵S△ABD===126,S△CDB===66,∴===.时间:2021.02.05 创作:欧阳科。

圆与二次函数难度题(含答案)之欧阳光明创编

圆与二次函数难度题(含答案)之欧阳光明创编

水尾中学中考专项训练(压轴题)答案欧阳光明(2021.03.07)1.(四川模拟)如图,Rt △ABC 内接于⊙O ,∠ACB =90°,AC =23,BC =1.以AC 为一边,在AC 的右侧作等边△ACD ,连接BD ,交⊙O 于点E ,连接AE ,求BD 和AE 的长.解:过D 作DF ⊥BC ,交BC 的延长线于F ∵△ACD 是等边三角形∴AD =CD =AC =23,∠ACD =60° ∵∠ACB =90°,∴∠ACF =90°∴∠DCF =30°,∴DF =12CD =3,CF =3DF =3∴BF =BC +CF =1+3=4∴BD =BF2+DF2=16+3=19∵AC =23,BC =1,∴AB =AC2+BC2=13∵BE +DE =BD ,∴AB2-AE2+AD2-AE2=BD 即13-AE2+12-AE2=19 ∴13-AE2=19-12-AE2两边平方得:13-AE 2=19+12-AE 2-219(12-AE2) 整理得:19(12-AE2)=9,解得AE =719572.(四川模拟)已知Rt △ABC 中,∠ACB =90°,∠B =60°,D 为△ABC 外接圆⊙O 上AC ︵的中点.(1)如图1,P 为ABC ︵的中点,求证:PA +PC =3PD ;(2)如图2,P 为ABC ︵上任意一点,(1)中的结论还成立吗?请说明理由.D(1)证明:连接AD∵D 为AC ︵的中点,P 为ABC ︵的中点 ∴PD 为⊙O 的直径,∴∠PAD =90° ∵∠B =60°,∴∠APC =60°∵D 为AC ︵的中点,∴∠APD =∠CPD =30° ∴PA =PD ·cos30°=32PD ∵P 为ABC ︵的中点,∴PA =PC ∴PA +PC =3PD (2)成立 理由如下:延长PA 到E ,使EA =PC ,连接DE 、AD 、DC 则∠EAD +∠PAD =180° ∵∠PCD +∠PAD =180° ∴∠EAD =∠PCD∵D 为AC ︵的中点,∴AD ︵=CD ︵∴AD =CD∴△EAD ≌△PCD ,∴ED =PD 过D 作DH ⊥PE 于H 由(1)知,∠APD =30°∴PH =PD ·cos30°=32PD ,PE =2PH =3PD ∵PA +EA =PE ,∴PA +PC =3PD3.(湖北模拟)如图,AB 是⊙O 的直径,PA 、PC 分别切⊙O 于A 、C ,CD ⊥AB 于D ,PB 交CD 于E . (1)求证:CE =DE ;P(2)若AB =6,∠APC =120°,求图中阴影部分的面积. (1)证明:连接OP 、OC 、BC ∵PA 、PC 是⊙O 的切线∴PA =PC ,∠PAO =∠PCO =90°又PO =PO ,∴Rt △PAO ≌Rt △PCO∴∠POA =∠POC ,∴∠AOC =2∠POA 又∠AOC =2∠ABC ,∴∠POA =∠ABC 又∠PAO =∠CDB =90°,∴△PAO ≌△CDB ∴PA CD =OA BD∵∠PAB =∠EDB =90°,∠PBA =∠EBD ∴△PAB ≌△EDB ,∴PA ED =BA BD ∵AB =2OA ,∴PA ED =2OA BD =2PACD ∴CD =2ED ,∴CE =DE(2)解:∵∠APC =120°,∠PAO =∠PCO =90° ∴∠AOC =60°,∴∠DCO =30° ∵AB =6,∴OA =OC =3∴OD =OC ·sin30°=32,CD =OC ·cos30°=332 ∴S 阴影=S 扇形AOC -S △DOC=60×π×32360-12×32×332=3π2-938B4.(上海模拟)如图,⊙O 的半径为6,线段AB 与⊙O 相交于点C 、D ,AC =4,∠BOD =∠A ,OB 与⊙O 相交于点E ,设OA =x ,CD =y .(1)求BD 的长;(2)求y 关于x 的函数关系式,并写出定义域; (3)当CE ⊥OD 时,求AO 的长.解:(1)∵OC =OD ,∴∠OCD =∠ODC ,∴∠OCA =∠ODB ∵∠BOD =∠A ,∴△OBD ∽△AOC ,∴BD OC =ODAC ∵OC =OD =6,AC =4,∴BD 6=64,∴BD =9 (2)∵△OBD ∽△AOC ,∴∠AOC =∠B又∵∠A =∠A ,∴△ACO ∽△AOB ,∴AB AO =AOAC ∵AB =AC +CD +BD =y +13,∴y +13x =x4 ∴y =14x 2-13∵0<y <8,∴0<14x 2-13<12,解得213<x <10 ∴定义域为213<x <10(3)∵OC =OE ,CE ⊥OD .∴∠COD =∠BOD =∠A∴∠AOD =180º-∠A -∠ODC =180º-∠COD -∠OCD =∠ADO ∴AD =AO ,∴y +4=x ,∴14x 2-13+4=x ∴x =2±210(舍去负值)ABDCEOABDCE O∴AO =2±2105.(北京模拟)如图,抛物线y =2m x 2-2x 与x 轴负半轴交于点A ,顶点为B ,且对称轴与x 轴交于点C . (1)求点B 的坐标(用含m 的代数式表示);(2)D 为BO 中点,直线AD 交y 轴于E ,若点E 的坐标为(0,2),求抛物线的解析式;(3)在(2)的条件下,点M 在直线BO 上,且使得△AMC 的周长最小,P 在抛物线上,Q 在直线 BC 上,若以A 、M 、P 、Q 为顶点的四边形是平行四边形,求点P 的坐标.解:(1)∵y =2m x 2-2x =2m (x -12m )2-12m∴抛物线的顶点B 的坐标为(12m ,-12m (2)令2m x 2-2x =0,解得x 1=0,x 2=m ∵抛物线y =2m x 2-2x 与x 轴负半轴交于点A ∴A (m ,0)且m <0. 过点D 作DFx 轴于F由D 为BO 中点,DF ∥BC ,可得CF =FO =12CO ∴D =12BC由抛物线的对称性得AC =OC ,∴AF AO =34A B C DOyx EA BC O yx 备用图 AB C DOyxEF∵DF ∥EO ,∴△ADF ∽△AEO ,∴DF EO =AFAO由E(0,2),B (12m ,-12m ),得OE =2,DF ∴-14m2=34,∴m =-6∴抛物线的解析式为y =-13x 2-2x(3)依题意,得A (-6,0),B (-3,3),C (-3,0) 可得直线OB 的解析式为y =-x ,直线BC 为x =-3作点C 关于直线BO 的对称点C 1(0,3),连接AC 1交BO 于M ,则M 即为所求由A (-6,0),C 1(0,3),可得直线AC 1的解析式为y =12x +3由⎩⎨⎧y =12x +3y =-x解得⎩⎪⎨⎪⎧x =-2y =2∴点M 的坐标为(-2,2)由点P 在抛物线y =-13x 2-2x 上,设P (t ,-13t 2①当AM 为平行四边形的一边时如右图,过M 作MG ⊥x 轴于G ,过P 作PH ⊥BC 则x G =x M =-2,x H =x B =-3可证△AMG ≌△PQH ,得PH =AG =4 ∴t -(-3)=4,∴t =1 ∴P 1(1,-73)如右图,同理可得PH =AG =4 ∴-3-t =4,∴t =-7 ∴P 2(-7,-73)②当AM 为平行四边形的对角线时如右图,过M 作MH ⊥BC 于H ,过P 作PG ⊥x 轴于G 则x H =x B =-3,x G =x P =t可证△APG ≌△MQH ,得AG =MH =1 ∴t -(-6)=1,∴t =-5 ∴P 3(-5,53)综上,点P 的坐标为P 1(1,-73),P 2(-753)6.(上海模拟)已知:如图,直线y =x -15与x 轴、y 轴分别相交于点A 和点B ,抛物线y =-13x 2+bx +c 经过A 、B 两点.(1)求该抛物线的解析式;(2)若该抛物线的顶点为点D ,与x 轴的另一个交点为点C ,对称轴与x 轴交于点H ,求△DAC 的面积;(3)若点E 是线段AD 的中点,CE 与DH 交于点G ,点P 在y 轴的正半轴上,△POH 是否能够与△CGH 相似?如果能,请求出点P 的坐标;如果不能,请说明理由.解:(1)由题意,得A (15,0),B (0,-15) ∵抛物线y =-13x 2+bx +c 经过A 、B 两点∴⎩⎨⎧-13×152+15b +c =0c =-15解得⎩⎪⎨⎪⎧b =6c =-15∴抛物线的解析式为y =-13x 2+6x -15 (2)∵y =-13x 2+6x -15=-13(x -9)2+12 ∴顶点D 的坐标为(9,12) 设y =0,则-13(x -9)2+12=0 ∴(x -9)2=36,∴x 1=3,x 2=15 ∴C (3,0),∴AC =15-3=12 ∴S △DAC =12AC ·DH =12×12×12=72(3)∵点E 是线段AD 的中点,点H 是线段AC 的中点 ∴点G 是△DAC 的重心.,∴GH =13DH =4 ①若PO GH =OHCH ,则△HPO ∽△CGH ∴PO 4=96,∴PO =6 ∴P 1(0,6)②若PO CH =OHGH ,则△PHO ∽△CGH∴PO 6=94,∴PO =272 ∴P 2(0,272)∴△POH 能够与△CGH 相似,此时点P 的坐标为P 1(0,6)或P 2(0,272)7.(四川成都)如图,在平面直角坐标系xOy 中,一次函数y =54x +m (m 为常数)的图象与x 轴交于点A (-3,0),与y 轴交于点C .以直线x =1为对称轴的抛物线y =ax 2+bx +c (a ,b ,c 为常数,且a ≠0)经过A ,C 两点,并与x 轴的正半轴交于点B . (1)求m 的值及抛物线的函数表达式;(2)设E 是y 轴右侧抛物线上一点,过点E 作直线AC 的平行线交x 轴于点F .是否存在这样的点E ,使得以A ,C ,E ,F 为顶点的四边形是平行四边形?若存在,求出点E 的坐标及相应的平行四边形的面积;若不存在,请说明理由;(3)若P 是抛物线对称轴上使△ACP 的周长取得最小值的点,过点P 任意作一条与y 轴不平行的直线交抛物线于M 1(x 1,y 1),M 2(x 2,y 2)两点,试探究M1P ·M2PM1M2是否为定值,并写出探究过程.解:(1)∵一次函数y =54x 3,0)∴54×(-3)+m =0,解得m∴点C 的坐标是(0,154)∵抛物线y =ax 2+bx +c 经过A ,C 两点,且对称轴为直线x =1 ∴⎩⎪⎨⎪⎧9a -3b +c =0c =154-b2a =1解得⎩⎪⎨⎪⎧a =-14b =12c =154∴抛物线的函数表达式为y =-14x 2+12x +154(2)假设存在点E ,使得以A ,C ,E ,F 为顶点的四边形是平行四边形(ⅰ)当CE ∥AF 时,点E 在x 轴上方,y E =y C =154 由-14x 2+12x +154=154,解得x 1=0(舍去),x 2=2 ∴E 1(2,154),此时S □ACE 1F 1=2×154=152(ⅱ)当AE ∥CF 时,点E 在x 轴下方,y E由-14x 2+12x +154=-154,解得x 1=1+31,x 2∴E 2(1+31,-154)过E 2作E 2H ⊥x 轴于H ,则△E 2HF 2≌△COA ∴HF 2=AO =3,AF 2=7+31∴S □ACF 2E 2=2S □ACF 2=AF 2·CO =15(7+31)4综上所述,存在符合条件的点E 1(2,154),E 2(1+31,-154),使得以A ,C ,E ,F 为顶点的四边形是平行四边形,相应的面积分别是152,15(7+31)4(3)方法一:∵A ,B 两点关于抛物线的对称轴x =1对称 ∴AP +CP =BP +CP ≥BC∴当C 、P 、B 三点在一条直线上时,△ACP此时点P 的坐标为(1,3)分别过点M 1,M 2作直线x =1在Rt △M 1PN 1中,由勾股定理得M 1P 2=M 1N 12+PN 12=(x 1-1)2+(y 1-3)2① ∵y 1=-14x 12+12x 1+154=-14(x 1-1)2+4即(x 1-1)2=4(4-y 1),将其代入①,得M 1P 2=(5-y 1)2 ∴M 1P =5-y 1(y 1<5) 同理M 2P =5-y 2由M 1N 1∥M 2N 2,得△M 1PN 1∽△M 2PN 2 ∴M1P M2P =N1PN2P ,即5-y15-y2=3-y1y2-3整理得y 1y 2=4(y 1+y 2)-15∴M1P ·M2P M1M2=(5-y1)(5-y2)(5-y1)+(5-y2)=y1y2-5(y1+y2)+2510-(y1+y2)=1故M1P ·M2PM1M2是定值,其值为1方法二:同方法一得点P 的坐标为(1,3) 设过点P 的直线表达式为y =kx +3-k联立⎩⎨⎧y =kx +3-ky =-14x 2+12x +154消去y ,整理得x 2+(4k -2)x -(4k +3)=0∴x 1+x 2=2-4k ,x 1x 2=-(4k +3)由y 1=kx 1+3-k ,y 2=kx 2+3-k ,得y 1-y 2=k (x 1-x 2) ∴M 1P 2·M 2P 2=[(x 1-1)2+(y 1-3)2][(x 2-1)2+(y 2-3)2]=[(x 1-1)2+k 2(x 1-1)2][(x 2-1)2+k 2(x 2-1)2] =(k 2+1)2(x 1-1)2(x 2-1)2 =(k 2+1)2(x 1x 2-x 1-x 2+1)2 =16(k 2+1)2M 1M 22=(x 1-x 2)2+(y 1-y 2)2=(k 2+1)(x 1-x 2)2=(k 2+1)[(x 1+x 2)2-4x 1x 2] =16(k 2+1)2∴M 1P 2·M 2P 2=M 1M 22,即M 1P ·M 2P =M 1M 2 故M1P ·M2PM1M2是定值,其值为18(四川雅安)在直角坐标系中,已知抛物线y =ax 2+bx +c 与x 轴交于点A (1,0)和点B ,顶点为P .(1)若点P 的坐标为(-1,4),求此时抛物线的解析式; (2)若点P 的坐标为(-1,k ),k <0,点Q 是y 轴上一个动点,当k 为何值时,QB +QP 取得最小值5; (3)试求满足(2)时动点Q 的坐标.解:(1)由题意,设抛物线的解析式为y =a (x +1)2+4 将A (1,0)代入上式,得a =-1 ∴抛物线的解析式为y =-(x +1)2+4(2)作点P (-1,k )关于y 轴的对称点P ′(∴QP =QP ′∵抛物线顶点为P (-1,k ∵抛物线与x 轴交于点A (1,0)和点B ,∴B 若QB +QP 最小,即QB +QP ′最小 则B 、Q 、P ′三点共线,即P ′B =5又AB =1+3=4,连接P ′A ,则P ′A ⊥AB ∴△P ′AB 是直角三角形,∴P ′A =52-42=3 ∴k =3(3)由(2)知,△BOQ ∽△BAP ′ ∴BO BA =OQ AP ′,即34=OQ 3,∴OQ =94∴动点Q 的坐标为(0,-94)10.(四川乐山)如图,在平面直角坐标系中,点A 的坐标为(m ,m ),点B 的坐标为(n ,-n ),抛物线经过A 、O 、B 三点,连接OA 、OB 、AB ,线段AB 交y 轴于点C .已知实数m 、n (m <n )分别是方程x 2-2x -3=0的两根. (1)求抛物线的解析式;(2)若点P 为线段OB 上的一个动点(不与点O 、B 重合),直线PC 与抛物线交于D 、E 两点(点D 在yBD .①当△OPC 为等腰三角形时,求点P ②求△BOD 解:(1)解方程x 2-2x -3=0,得x 1=-1,x 2=3 ∵m <n ,∴m =-1,n =3 ∴A (-1,-1),B (3,-3)∵抛物线过原点,设抛物线的解析式为y =ax 2+bx∴⎩⎪⎨⎪⎧-1=a -b -3=9a +3b 解得a =-12,b =12∴抛物线的解析式为y =-12x 2+12x (2)①设直线AB 的解析式为y =kx +b∴⎩⎪⎨⎪⎧-1=-k +b -3=3k +b解得k =-12,b =-32∴直线AB 的解析式为y =-12x -32 ∴C 点坐标为(0,-32)∵直线OB 过点O (0,0),B (3,-3) ∴直线OB 的解析式为y =-x∵△OPC 为等腰三角形,∴OC =OP 或OP =PC 或OC =PC 设P (x ,-x )(i )当OC =OP 时,x 2+(-x )2=94解得x 1=324,x 2=-324(舍去),∴P 1(324,-(ii )当OP =PC 时,点P 在线段OC 34)(iii )当OC =PC 时,x 2+(-x +32)2=94解得x 1=32,x 2=0(舍去),∴P 3(32,-32)∴P 点坐标为P 1(324,-324)或P 2(34,-34)或P 3(32,-32) ②过点D 作DG ⊥x 轴,垂足为G ,交OB 于Q ,过B 作BH ⊥x 轴,垂足为H设Q (x ,-x ),则D (x ,-12x 2+12x ) ∴DQ =-12x 2+12x +x =-12x 2+32x∴S △BOD =S △ODQ +S △BDQ =12DQ ·OG +12DQ ·GH =12DQ (OG +GH ) =12(-12x 2+32x )×3=-34(x -32)2+2716 ∵0<x <3∴当x =32时,S 取得最大值为2716,此时D (32,-38)11.(四川模拟)如图,抛物线y =ax 2+bx +c 与x 轴交于点A 、B ,与y 轴正半轴交于点C ,抛物线的对称轴与x 轴交于点D .已知A (-2,0),tan ∠ABC =34,S △ABC =9.(1)求抛物线的解析式;(2)若点P 是线段BC 上一点,且以B 、D 、P 为顶点的三角形与△ABC 相似,求点P 的坐标;(3)在(2)的条件下,请你选择一个P 点求出△BDP 外接圆圆心的坐标.解:(19 负值)∴B (4,0),C (0,3)∴设抛物线为y =a (x +2)(x -4),把C (0,3)代入,得 3=a (0+2)(0-4),解得:a =-38∴抛物线的解析式为y =-38(x +2)(x -4) 即y =-38x 2+34x +3 (2)存在∵y =-38x 2+34x +3=-38(x -1)2+278 ∴抛物线的对称轴是直线x =1 ∴D (1,0),∴OD =1∵OA =2,OB =4,OC =3,∴AB =6,BC =5,BD =3 当△BDP ∽△BAC 时,则∠BDP =∠BAC ∴DP ∥AC备用图∵D 为AB 中点,∴P 为CB 中点∵B (4,0),C (0,3),∴P 1(2,32) 当△BPD ∽△BAC 时,则BP BA =BDBC ∴BP 6=35,∴BP =185过点P 作PH ⊥OB 于H ,则△BPH ∽△BCO ∴BH BO =PH CO =BP BC ,∴BH 4=PH 3=1855 ∴BH =7225,PH =5425,∴P 2(2825,5425)∴满足条件的P 点有两个,P 1(2,32),P 2(2825,5425)(3)选择P (2,32),设E 为△BDP则点E 是线段BD 的中垂线和线段BP 易知线段BD 的中垂线为x =52,设点E 由ED =EP ,得(52-1)2+m 2=(52-2)2+(m -32)2 解得m =112,即E (52,112)∴当点P 坐标为(2,32)时,△BDP 外接圆圆心的坐标为(52,112)12.(四川模拟)已知圆⊙A 的半径为2,圆心A (t ,0)是抛物线y =-12x 2+bx 与x 轴的交点,点P 是x 轴上方抛物线上任意一点,点Q 是线段OP 的中点.(1)如图1,当t =4时,点P 在抛物线上运动,点Q 跟随点P 运动,其运动路径也是一段抛物线,直接写出点Q 运动路径的函数解析式,并指出自变量的取值范围;(2)如图2,当∠POA =45°且t >0时,过点Q 作OP 的垂线l ,证明直线l 与⊙A 相切;(3)当∠POA =45°时,使得直线l 与⊙A 相切于点M ,且四边形PAMQQ 四点构成以解:(1)y 提示:当t =4时,A (4,0),代入y =-12x 2+bx ,得b =2 ∴抛物线为y =-12x 2+2x设P (m ,-12m 2+2m ),则Q (12m ,-14m 2设Q (x ,y ),则x =12m ,y =-14m 2+m ∴m =2x ,∴y =-14(2x )2+2x =-x 2+2x ∵0<m <4,∴0<x <2∴点Q 运动路径的函数解析式为y =-x 2+2x (0<x <2)(2)∵y =-12x 2+bx ,∴A (2b ,0)∵∠POA =45°,∴直线OP 的解析式为y =x联立⎩⎨⎧y =x y =-12x 2+bx解得⎩⎪⎨⎪⎧x1=0y1=0(舍去)⎩⎪⎨⎪⎧x2y2∴P (2b -2,2b -2)设l 与x 轴交于点D ,连接PD 由题意,l 是线段OP 的垂直平分线 ∴OD =PD ,∴∠OPD =∠POD =45°∴∠ODP =90°,∴△OPD 是等腰直角三角形 ∴∠ODQ =45°,OD =2b -2 ∴AD =2b -(2b -2)=2过点A 作AM ⊥l 于M ,则∠ADM =45° ∴△ADM 是等腰直角三角形 ∴AM =22AD =2=⊙A 的半径 ∴直线l 与⊙A 相切(3)∵四边形PAMQ 为矩形,∴PQ =AM ∴OP =22,∴P (2,2),∴Q (1,1) ∴2b -2=2,∴b =2∴A (4,0),抛物线为y =-12x 2+2x 易得直线AQ 的解析式为y =-13x +43 ∵四边形ABPQ 是以AP 为对角线的梯形∴BP ∥AQ ,∴设直线BP 的解析式为y =-13x +n 把P (2,2)代入,得n =83,∴y =-13x +83联立⎩⎨⎧y =-13x +83y =-12x 2+2x 解得⎩⎪⎨⎪⎧x1=2y1=2(舍去)⎩⎨⎧x2=83y 2=169∴B (83,169)∴存在点B (83,169),使由A 、B 、P 、Q 四点构成以AP 为对角线的梯形13.(四川模拟)如图,抛物线y =12x 2+bx +c 与直线l :y =34x -1交于点A (4,2)、B (0,-1). (1)求抛物线的解析式;(2)点D 在直线l 下方的抛物线上,过点D 作DE ∥y 轴交l 于E 、作DF ⊥l 于F ,设点D 的横坐标为t ,△DEF 的周长为p ,求p 与t 的函数关系式,并求p 的最大值及此时点D 的坐标;(3)点M 在抛物线上,点N 在x 轴上,若△BMN 是以M 为直角顶点的等腰直角三角形,求点M解:(1)由题意知:⎩⎨⎧12×42+4b +c =2c =-1∴⎩⎨⎧b =-54c =-1∴抛物线的解析式为y =12x 2-54x -1(2)∵点D 在抛物线y =12x 2-54x -∴设D (t ,12t 2-54t -1),则E (t ∴DE =34t -1-(12t 2-54t -1)=-12t 2+在y =34x -1中,令y =0,得x =43∴直线AB 与x 轴交于点C (43,0)∴BC =12+(43)2=53 ∴△OBC 的周长为为1+43+53=∵DE ∥y 轴,DF ⊥l ,∴△∴p 4=-12t 2+2t 53∴p =-65t 2+245t =-65(t -2)2+245∴当t =2时,p 有最大值为245此时D (2,-32) (3)过点M 作MG ⊥x 轴于G ,过点B 作BH ⊥易证△MGN ≌△BHM ,∴MG =BH∴12x 2-54x -1=x 或12x 2-54x -1=-x解得x1=9+1134,x2=9-1134,x3=1+334,x4=1-334∴M1(9+1134,9+1134),M2(9-1134,9-1134)M3(1+334,-1+334),M4(1-334,-1-334)。

抛物线压轴题答案之欧阳光明创编

抛物线压轴题答案之欧阳光明创编

综合题答案欧阳光明(2021.03.07)1.如图,平面直角坐标系中,直线l分别交x轴、y轴于A、B两点(OA<OB)且OA、OB的长分别是一元二次方程的两个根,点C在x轴负半轴上,且AB:AC=1:2(1)求A、C两点的坐标;(2)若点M从C点出发,以每秒1个单位的速度沿射线CB运动,连接AM,设△ABM的面积为S,点M的运动时间为t,写出S关于t的函数关系式,并写出自变量的取值范围;(3)点P是y轴上的点,在坐标平面内是否存在点Q,使以 A、B、P、Q为顶点的四边形是菱形?若存在,请直接写出Q点的坐标;若不存在,请说明理由.1答案:2.如图,二次函数y=ax2+x+c的图象与x轴交于点A、B两点,且A点坐标为(-2,0),与y轴交于点C(0,3).(1)求出这个二次函数的解析式;(2)直接写出点B的坐标为______;(3)在x轴是否存在一点P,使△ACP是等腰三角形?若存在,求出满足条件的P点坐标;若不存在,请说明理由;(4)在第一象限中的抛物线上是否存在一点Q,使得四边形ABQC的面积最大?若存在,请求出Q点坐标及面积的最大值;若不存在,请说明理由.解答:解:(1)∵y=ax2+x+c的图象经过A(-2,0),C(0,3),∴c=3,a=-,∴所求解析式为:y=-x2+x+3;(2)(6,0);(3)在Rt△AOC中,∵AO=2,OC=3,∴AC=,①当P1A=AC时(P1在x轴的负半轴),P1(-2-,0);②当P2A=AC时(P2在x轴的正半轴),P2(-2,0);③当P3C=AC 时(P3在x轴的正半轴),P3(2,0);④当P4C=P4A时(P4在x 轴的正半轴),在Rt△P4OC中,设P4O=x,则(x+2)2=x2+32解得:x=,∴P4(,0);(4)解:如图,设Q点坐标为(x,y),因为点Q在y=-x2+x+3上,即:Q点坐标为(x,-x2+x+3),连接OQ,S四边形ABQC=S△AOC+S△OQC+S△OBQ=3+x+3(-x2+x+3)=-x2+x+12,∵a<0,∴S四边形ABQC最大值=,Q点坐标为(3,)。

九年级上圆综合练习与答案(苏科版)之欧阳术创编

九年级上圆综合练习与答案(苏科版)之欧阳术创编

第11练 圆综合一选择题:1、如图,⊙O 的直径AB =4,点C 在⊙O 上,∠ABC =30°,则AC 的长是( )A .1B .22、如图,已知□ABCD 的对角线BD =4cm ,将□ABCD 绕其对称中心O 旋转180°,则点D 所转过的路径长为( )A .4πcmB .3πcmC .2πcmD .πcm3、已知圆锥的底面半径为2cm ,母线长为5cm ,则圆锥的侧面积是( )A .220cm B .220cm πC .210cm π D .25cmπ4、已知两圆内切,它们的半径分别为3和6,则这两圆的圆心距d 的取值满足( )A .9d >B .9d =C .39d <<D .3d =5、外切两圆的半径分别为2cm 和3cm ,则两圆的圆心距是( )A .cm 1B .cm 2C .cm 3D .cm 56、如图,△ABC 是一个圆锥的左视图,其中5==AC AB ,8=BC ,则这个圆锥的侧面积是( )A .π12B .π16C .π20D .π367、若两圆的半径分别为2和3,圆心距为5,则两圆的位置关系为( ) A.外离 B.外切 C.相交 D.内切8、已知⊙O 1、⊙O 2的半径分别为5cm 、8cm ,且它们的圆心距为8cm ,则⊙O 1与⊙O 2的位置关系为( )A .外离B .相交C .相切D .内含 9、已知圆锥的母线长为4,底面半径为2,则圆锥的侧面积等于( )A .8πB .9πC .10πD .11π 二、填空题:1、如图,以O 为圆心的两个同心圆中,大圆的弦AB 是小圆的切线,C 为切点.若两圆的半径分别为3cm 和5cm ,则AB 的长为__________ cm . 1题图 2题图2、如图,点C 在⊙O 上,将圆心角∠AOB 绕点O 按逆时针方向旋转到∠A ’OB ’,旋转角为α(0°<α<180°).若∠AOB =30°,∠BCA ’=40°,则∠α=__________°.3、如图,在4×4的方格纸中(共有16个小方格),每个小方格都是边长为1的正方形.O 、A 、B 分别是小正方形的顶点,则扇形OAB 的弧长等于.(结果保留根号及π).(第1题)· O A BC(第2题)ABCDO(第6题)CB AA B O ·C 第6题4、已知圆锥的底面半径为3,侧面积为15π,则这个圆锥的高为.5、如图,AB 是⊙O 的直径,点D 在⊙O 上,∠AOD=130°,BC ∥OD 交⊙O 于C ,则∠A=.6、如图,点A 、B 、C 在⊙O 上,AB ∥CD ,∠B =22°,则∠A =________°7、已知扇形的圆心角为120°,半径为15cm ,则扇形的弧长为cm (结果保留π)8、如图,在以O 为圆心的两个同心圆中,大圆的弦AB 与小圆相切于点C ,若大圆的半径为5 cm ,小圆的半径为3 cm ,则弦AB 的长为_______cm .9、已知扇形的半径为3cm ,面积为3πcm 2,则扇形的圆心角是,扇形的弧长是cm (结果保留π)10、如图,AB 是⊙O 的直径,弦DC 与AB 相交于点E ,若∠ACD=60°,∠ADC=50°,则∠ABD=,∠CEB=。

最新全国各地中考数学分类-圆综合题(解析版)之欧阳法创编

最新全国各地中考数学分类-圆综合题(解析版)之欧阳法创编

2017年圆中考分类(4)参考答案与试题解析一.解答题(共30小题)1.(2017•恩施州)如图,AB、CD是⊙O的直径,BE是⊙O的弦,且BE∥CD,过点C的切线与EB 的延长线交于点P,连接BC.(1)求证:BC平分∠ABP;(2)求证:PC2=PB•PE;(3)若BE﹣BP=PC=4,求⊙O的半径.【考点】MC:切线的性质;KD:全等三角形的判定与性质;S9:相似三角形的判定与性质.【分析】(1)由BE∥CD知∠1=∠3,根据∠2=∠3即可得∠1=∠2;(2)连接EC、AC,由PC是⊙O的切线且BE∥DC,得∠1+∠4=90°,由∠A+∠2=90°且∠A=∠5知∠5+∠2=90°,根据∠1=∠2得∠4=∠5,从而证得△PBC∽△PCE即可;(3)由PC2=PB•PE、BE﹣BP=PC=4求得BP=2、BE=6,作EF⊥CD可得PC=FE=4、FC=PE=8,再Rt△DEF≌Rt△BCP得DF=BP=2,据此得出CD的长即可.【解答】解:(1)∵BE∥CD,∴∠1=∠3,又∵OB=OC,∴∠2=∠3,∴∠1=∠2,即BC平分∠ABP;(2)如图,连接EC、AC,∵PC是⊙O的切线,∴∠PCD=90°,又∵BE∥DC,∴∠P=90°,∴∠1+∠4=90°,∵AB为⊙O直径,∴∠A+∠2=90°,又∠A=∠5,∴∠5+∠2=90°,∵∠1=∠2,∴∠5=∠4,∵∠P=∠P,∴△PBC∽△PCE,∴=,即PC2=PB•PE;(3)∵BE﹣BP=PC=4,∴BE=4+BP,∵PC2=PB•PE=PB•(PB+BE),∴42=PB•(PB+4+PB),即PB2+2PB﹣8=0,解得:PB=2,则BE=4+PB=6,∴PE=PB+BE=8,作EF⊥CD于点F,∵∠P=∠PCF=90°,∴四边形PCFE为矩形,∴PC=FE=4,FC=PE=8,∠EFD=∠P=90°,∵BE∥CD,∴=,∴DE=BC,在Rt△DEF和Rt△BCP中,∵,∴Rt△DEF≌Rt△BCP(HL),∴DF=BP=2,则CD=DF+CF=10,∴⊙O的半径为5.【点评】本题主要考查切线的性质、相似三角形的判定与性质、全等三角形的判定与性质,熟练掌握平行线的性质、切线的性质、圆周角定理、相似三角形的判定与性质及全等三角形的判定与性质等知识点是解题的关键.2.(2017•常德)如图,已知AB是⊙O的直径,CD 与⊙O相切于C,BE∥CO.(1)求证:BC是∠ABE的平分线;(2)若DC=8,⊙O的半径OA=6,求CE的长.【考点】MC:切线的性质.【分析】(1)由BE∥CO,推出∠OCB=∠CBE,由OC=OB,推出∠OCB=∠OBC,可得∠CBE=∠CBO;(2)在Rt△CDO中,求出OD,由OC∥BE,可得=,由此即可解决问题;【解答】(1)证明:∵DE是切线,∴OC⊥DE,∵BE∥CO,∴∠OCB=∠CBE,∵OC=OB,∴∠OCB=∠OBC,∴∠CBE=∠CBO,∴BC平分∠ABE.(2)在Rt△CDO中,∵DC=8,OC=0A=6,∴OD==10,∵OC∥BE,∴=,∴=,∴EC=4.8.【点评】本题考查切线的性质、平行线的性质、角平分线的定义、勾股定理等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.3.(2017•遵义)如图,PA、PB是⊙O的切线,A、B为切点,∠APB=60°,连接PO并延长与⊙O 交于C点,连接AC,BC.(1)求证:四边形ACBP是菱形;(2)若⊙O半径为1,求菱形ACBP的面积.【考点】MC:切线的性质;LA:菱形的判定与性质.【分析】(1)连接AO,BO,根据PA、PB是⊙O 的切线,得到∠OAP=∠OBP=90°,PA=PB,∠APO=∠BPO=∠APB=30°,由三角形的内角和得到∠AOP=60°,根据三角形外角的性质得到∠ACO=30°,得到AC=AP,同理BC=PB,于是得到结论;(2)连接AB交PC于D,根据菱形的性质得到AD ⊥PC,解直角三角形即可得到结论.【解答】解:(1)连接AO,BO,∵PA、PB是⊙O的切线,∴∠OAP=∠OBP=90°,PA=PB,∠APO=∠BPO=∠APB=30°,∴∠AOP=60°,∵OA=OC,∴∠OAC=∠OCA,∴∠AOP=∠CAO+∠ACO,∴∠ACO=30°,∴∠ACO=∠APO,∴AC=AP,同理BC=PB,∴AC=BC=BP=AP,∴四边形ACBP是菱形;(2)连接AB交PC于D,∴AD⊥PC,∴OA=1,∠AOP=60°,∴AD=OA=,∴PD=,∴PC=3,AB=,∴菱形ACBP的面积=AB•PC=.【点评】本题考查了切线的性质,菱形的判定和性质,解直角三角形,等腰三角形的判定,熟练掌握切线的性质是解题的关键.4.(2017•大连)如图,AB是⊙O直径,点C在⊙O上,AD平分∠CAB,BD是⊙O的切线,AD与BC相交于点E.(1)求证:BD=BE;(2)若DE=2,BD=,求CE的长.【考点】MC:切线的性质;KQ:勾股定理;T7:解直角三角形.【分析】(1))设∠BAD=α,由于AD平分∠BAC,所以∠CAD=∠BAD=α,进而求出∠D=∠BED=90°﹣α,从而可知BD=BE;(2)设CE=x,由于AB是⊙O的直径,∠AFB=90°,又因为BD=BE,DE=2,FE=FD=1,由于BD=,所以tanα=,从而可求出AB==2,利用勾股定理列出方程即可求出x 的值.【解答】解:(1)设∠BAD=α,∵AD平分∠BAC∴∠CAD=∠BAD=α,∵AB是⊙O的直径,∴∠ACB=90°,∴∠ABC=90°﹣2α,∵BD是⊙O的切线,∴BD⊥AB,∴∠DBE=2α,∠BED=∠BAD+∠ABC=90°﹣α,∴∠D=180°﹣∠DBE﹣∠BED=90°﹣α,∴∠D=∠BED,∴BD=BE(2)设AD交⊙O于点F,CE=x,连接BF,∵AB是⊙O的直径,∴∠AFB=90°,∵BD=BE,DE=2,∴FE=FD=1,∵BD=,∴tanα=,∴AC=2x∴AB==2在Rt△ABC中,由勾股定理可知:(2x)2+(x+)2=(2)2,∴解得:x=﹣或x=,∴CE=;【点评】本题考查圆的综合问题,涉及切线的性质,圆周角定理,勾股定理,解方程等知识,综合程度较高,属于中等题型.5.(2017•金华)如图,已知:AB是⊙O的直径,点C在⊙O上,CD是⊙O的切线,AD⊥CD于点D,E是AB延长线上一点,CE交⊙O于点F,连接OC、AC.(1)求证:AC平分∠DAO.(2)若∠DAO=105°,∠E=30°①求∠OCE的度数;②若⊙O的半径为2,求线段EF的长.【考点】MC:切线的性质.【分析】(1)由切线性质知OC⊥CD,结合AD⊥CD得AD∥OC,即可知∠DAC=∠OCA=∠OAC,从而得证;(2)①由AD∥OC知∠EOC=∠DAO=105°,结合∠E=30°可得答案;②作OG⊥CE,根据垂径定理及等腰直角三角形性质知CG=FG=OG,由OC=2得出CG=FG=OG=2,在Rt△OGE中,由∠E=30°可得答案.【解答】解:(1)∵CD是⊙O的切线,∴OC⊥CD,∵AD⊥CD,∴AD∥OC,∴∠DAC=∠OCA,∵OC=OA,∴∠OCA=∠OAC,∴∠OAC=∠DAC,∴AC平分∠DAO;(2)①∵AD∥OC,∴∠EOC=∠DAO=105°,∵∠E=30°,∴∠OCE=45°;②作OG⊥CE于点G,则CG=FG=OG,∵OC=2,∠OCE=45°,∴CG=OG=2,∴FG=2,在Rt△OGE中,∠E=30°,∴GE=2,∴.【点评】本题主要考查圆的切线的性质、平行线的判定与性质、垂径定理及等腰直角三角形性质,熟练掌握切线的性质、平行线的判定与性质、垂径定理及等腰直角三角形性质是解题的关键.6.(2017•东营)如图,在△ABC中,AB=AC,以AB为直径的⊙O交BC于点D,过点D作⊙O的切线DE,交AC于点E,AC的反向延长线交⊙O于点F.(1)求证:DE⊥AC;(2)若DE+EA=8,⊙O的半径为10,求AF的长度.【考点】MC:切线的性质;KH:等腰三角形的性质;KQ:勾股定理;LD:矩形的判定与性质.【分析】(1)欲证明DE⊥AC,只需推知OD∥AC 即可;(2)如图,过点O作OH⊥AF于点H,构建矩形ODEH,设AH=x.则由矩形的性质推知:AE=10﹣x,OH=DE=8﹣(10﹣x)=x﹣2.在Rt△AOH中,由勾股定理知:x2+(x﹣2)2=102,通过解方程得到AH的长度,结合OH⊥AF,得到AF=2AH=2×8=16.【解答】(1)证明:∵OB=OD,∴∠ABC=∠ODB,∵AB=AC,∴∠ABC=∠ACB ,∴∠ODB=∠ACB ,∴OD ∥AC .∵DE 是⊙O 的切线,OD 是半径,∴DE ⊥OD ,∴DE ⊥AC ;(2)如图,过点O 作OH ⊥AF 于点H ,则∠ODE=∠DEH=∠OHE=90°,∴四边形ODEH 是矩形,∴OD=EH ,OH=DE .设AH=x .∵DE+AE=8,OD=10,∴AE=10﹣x ,OH=DE=8﹣(10﹣x )=x ﹣2.在Rt △AOH 中,由勾股定理知:AH 2+OH 2=OA 2,即x 2+(x ﹣2)2=102,解得x 1=8,x 2=﹣6(不合题意,舍去).∴AH=8.∵OH ⊥AF ,∴AH=FH=AF ,∴AF=2AH=2×8=16.【点评】本题考查了切线的性质,勾股定理,矩形的判定与性质.解题时,利用了方程思想,属于中档题.7.(2017•湖州)如图,O为Rt△ABC的直角边AC 上一点,以OC为半径的⊙O与斜边AB相切于点D,交OA于点E.已知BC=,AC=3.(1)求AD的长;(2)求图中阴影部分的面积.【考点】MC:切线的性质;MO:扇形面积的计算.【分析】(1)首先利用勾股定理求出AB的长,再证明BD=BC,进而由AD=AB﹣BD可求出;(2)利用特殊角的锐角三角函数可求出∠A的度数,则圆心角∠DOA的度数可求出,在直角三角形ODA中求出OD的长,最后利用扇形的面积公式即可求出阴影部分的面积.【解答】解:(1)在Rt△ABC中,∵BC=,AC=3.∴AB==2,∵BC⊥OC,∴BC是圆的切线,∵⊙O与斜边AB相切于点D,∴BD=BC,∴AD=AB﹣BD=2﹣=;(2)在Rt△ABC中,∵sinA===,∴∠A=30°,∵⊙O与斜边AB相切于点D,∴OD⊥AB,∴∠AOD=90°﹣∠A=60°,∵=tanA=tan30°,∴=,∴OD=1,==.∴S阴影【点评】本题考查了切线的性质定理、切线长定理以及勾股定理的运用,熟记和圆有关的各种性质定理是解题的关键.8.(2017•邵阳)如图所示,直线DP和圆O相切于点C,交直径AE的延长线于点P.过点C作AE的垂线,交AE于点F,交圆O于点B.作平行四边形ABCD,连接BE,DO,CO.(1)求证:DA=DC;(2)求∠P及∠AEB的大小.【考点】MC:切线的性质;L5:平行四边形的性质.【分析】(1)欲证明DA=DC,只要证明Rt△DAO ≌△Rt△DCO即可;(2)想办法证明∠P=30°即可解决问题;【解答】(1)证明:在平行四边形ABCD中,AD ∥BC,∵CB⊥AE,∴AD⊥AE,∴∠DAO=90°,∵DP与⊙O相切于点C,∴DC⊥OC,∴∠DCO=90°,在Rt△DAO和Rt△DCO中,,∴Rt△DAO≌△Rt△DCO,∴DA=DC.(2)∵CB⊥AE,AE是直径,∴CF=FB=BC,∵四边形ABCD是平行四边形,∴AD=BC,∴CF=AD,∵CF∥DA,∴△PCF∽△PDA,∴==,∴PC=PD,DC=PD,∵DA=DC,∴DA=PD,在Rt△DAP中,∠P=30°,∵DP∥AB,∴∠FAB=∠P=30°,∵AE是⊙O的直径,∴∠ABE=90°,∴∠AEB=60°.【点评】本题考查切线的性质、平行四边形的性质、相似三角形的判定和性质、直角三角形中30度角的判定、全等三角形的判定和性质等知识,解题的关键是正确寻找全等三角形或相似三角形解决问题,属于中考常考题型.9.(2017•温州)如图,在△ABC中,AC=BC,∠ACB=90°,⊙O(圆心O在△ABC内部)经过B、C两点,交AB于点E,过点E作⊙O的切线交AC 于点F.延长CO交AB于点G,作ED∥AC交CG 于点D(1)求证:四边形CDEF是平行四边形;(2)若BC=3,tan∠DEF=2,求BG的值.【考点】MC:切线的性质;L7:平行四边形的判定与性质;T7:解直角三角形.【分析】(1)连接CE,根据等腰直角三角形的性质得到∠B=45°,根据切线的性质得到∠FEO=90°,得到EF∥OD,于是得到结论;(2)过G作GN⊥BC于N,得到△GMB是等腰直角三角形,得到MB=GM,根据平行四边形的性质得到∠FCD=∠FED,根据余角的性质得到∠CGM=∠ACD,等量代换得到∠CGM=∠DEF,根据三角函数的定义得到CM=2GM,于是得到结论.【解答】解:(1)连接CE,∵在△ABC中,AC=BC,∠ACB=90°,∴∠B=45°,∴∠COE=2∠B=90°,∵EF是⊙O的切线,∴∠FEO=90°,∴EF∥OC,∵DE∥CF,∴四边形CDEF是平行四边形;(2)过G作GN⊥BC于N,∴△GMB是等腰直角三角形,∴MB=GM,∵四边形CDEF是平行四边形,∴∠FCD=∠FED,∵∠ACD+∠GCB=∠GCB+∠CGM=90°,∴∠CGM=∠ACD,∴∠CGM=∠DEF,∵tan∠DEF=2,∴tan∠CGM==2,∴CM=2GM,∴CM+BM=2GM+GM=3,∴GM=1,∴BG=GM=.【点评】本题考查了切线的性质,平行四边形的判定和性质,等腰直角三角形的判定和性质,解直角三角形,正确的作出辅助线是解题的关键.10.(2017•随州)如图,在Rt△ABC中,∠C=90°,AC=BC,点O在AB上,经过点A的⊙O 与BC相切于点D,交AB于点E.(1)求证:AD平分∠BAC;(2)若CD=1,求图中阴影部分的面积(结果保留π).【考点】MC:切线的性质;KF:角平分线的性质;KW:等腰直角三角形;MO:扇形面积的计算.【分析】(1)连接DE,OD.利用弦切角定理,直径所对的圆周角是直角,等角的余角相等证明∠DAO=∠CAD,进而得出结论;(2)根据等腰三角形的性质得到∠B=∠BAC=45°,由BC相切⊙O于点D,得到∠ODB=90°,求得OD=BD,∠BOD=45°,设BD=x,则OD=OA=x,OB=x,根据勾股定理得到BD=OD=,于是得到结论.【解答】(1)证明:连接DE,OD.∵BC相切⊙O于点D,∴∠CDA=∠AED,∵AE为直径,∴∠ADE=90°,∵AC⊥BC,∴∠ACD=90°,∴∠DAO=∠CAD,∴AD平分∠BAC;(2)∵在Rt△ABC中,∠C=90°,AC=BC,∴∠B=∠BAC=45°,∵BC相切⊙O于点D,∴∠ODB=90°,∴OD=BD,∴∠BOD=45°,设BD=x,则OD=OA=x,OB=x,∴BC=AC=x+1,∵AC2+BC2=AB2,∴2(x+1)2=(x+x)2,∴x=,∴BD=OD=,∴图中阴影部分的面积=S△BOD ﹣S扇形DOE=﹣=1﹣.【点评】本题主要考查了切线的性质,角平分线的定义,扇形面积的计算和勾股定理.熟练掌握切线的性质是解题的关键.11.(2017•河北)如图,AB=16,O为AB中点,点C在线段OB上(不与点O,B重合),将OC绕点O逆时针旋转270°后得到扇形COD,AP,BQ分别切优弧于点P,Q,且点P,Q在AB异侧,连接OP.(1)求证:AP=BQ;(2)当BQ=4时,求的长(结果保留π);(3)若△APO的外心在扇形COD的内部,求OC 的取值范围.【考点】MC:切线的性质;MN:弧长的计算;R2:旋转的性质.【分析】(1)连接OQ.只要证明Rt△APO≌Rt△BQO即可解决问题;(2)求出优弧DQ的圆心角以及半径即可解决问题;(3)由△APO的外心是OA的中点,OA=8,推出△APO的外心在扇形COD的内部时,OC的取值范围为4<OC<8;【解答】(1)证明:连接OQ.∵AP、BQ是⊙O的切线,∴OP⊥AP,OQ⊥BQ,∴∠APO=∠BQO=90°,在Rt△APO和Rt△BQO中,,∴Rt△APO≌Rt△BQO,∴AP=BQ.(2)∵Rt△APO≌Rt△BQO,∴∠AOP=∠BOQ,∴P、O、Q三点共线,∵在Rt△BOQ中,cosB===,∴∠B=30°,∠BOQ=60°,∴OQ=OB=4,∵∠COD=90°,∴∠QOD=90°+60°=150°,∴优弧的长==π,(3)∵△APO的外心是OA的中点,OA=8,∴△APO的外心在扇形COD的内部时,OC的取值范围为4<OC<8.【点评】本题考查切线的性质、弧长公式、全等三角形的判定和性质、三角形的外心等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.12.(2017•天津)已知AB是⊙O的直径,AT是⊙O的切线,∠ABT=50°,BT交⊙O于点C,E是AB上一点,延长CE交⊙O于点D.(1)如图①,求∠T和∠CDB的大小;(2)如图②,当BE=BC时,求∠CDO的大小.【考点】MC:切线的性质.【分析】(1)根据切线的性质:圆的切线垂直于经过切点的半径,得∠TAB=90°,根据三角形内角和得∠T的度数,由直径所对的圆周角是直角和同弧所对的圆周角相等得∠CDB的度数;(2)如图②,连接AD,根据等边对等角得:∠BCE=∠BEC=65°,利用同圆的半径相等知:OA=OD,同理∠ODA=∠OAD=65°,由此可得结论.【解答】解:(1)如图①,连接AC,∵AT是⊙O切线,AB是⊙O的直径,∴AT⊥AB,即∠TAB=90°,∵∠ABT=50°,∴∠T=90°﹣∠ABT=40°,由AB是⊙O的直径,得∠ACB=90°,∴∠CAB=90°﹣∠ABC=40°,∴∠CDB=∠CAB=40°;(2)如图②,连接AD,在△BCE中,BE=BC,∠EBC=50°,∴∠BCE=∠BEC=65°,∴∠BAD=∠BCD=65°,∵OA=OD,∴∠ODA=∠OAD=65°,∵∠ADC=∠ABC=50°,∴∠CDO=∠ODA﹣∠ADC=65°﹣50°=15°.【点评】本题考查了圆的切线、圆周角定理、等腰三角形的性质、三角形的内角和,熟练掌握切线的性质是关键,注意运用同弧所对的圆周角相等.13.(2017•山西)如图,△ABC内接于⊙O,且AB 为⊙O的直径,OD⊥AB,与AC交于点E,与过点C的⊙O的切线交于点D.(1)若AC=4,BC=2,求OE的长.(2)试判断∠A与∠CDE的数量关系,并说明理由.【考点】MC:切线的性质;KQ:勾股定理;S9:相似三角形的判定与性质.【分析】(1)由圆周角定理得出∠ACB=90°,由勾股定理求出AB==2,得出OA=AB=,证明△AOE∽△ACB,得出对应边成比例即可得出答案;(2)连接OC,由等腰三角形的性质得出∠1=∠A,由切线的性质得出OC⊥CD,得出∠2+∠CDE=90°,证出∠3=∠CDE,再由三角形的外角性质即可得出结论.【解答】解:(1)∵AB为⊙O的直径,∴∠ACB=90°,在Rt△ABC中,由勾股定理得:AB===2,∴OA=AB=,∵OD⊥AB,∴∠AOE=∠ACB=90°,又∵∠A=∠A,∴△AOE∽△ACB,∴,即,解得:OE=;(2)∠CDE=2∠A,理由如下:连接OC,如图所示:∵OA=OC,∴∠1=∠A,∵CD是⊙O的切线,∴OC⊥CD,∴∠OCD=90°,∴∠2+∠CDE=90°,∵OD⊥AB,∴∠2+∠3=90°,∴∠3=∠CDE,∵∠3=∠A+∠1=2∠A,∴∠CDE=2∠A.【点评】本题考查了切线的性质、圆周角定理、勾股定理、相似三角形的判定与性质、等腰三角形的性质、直角三角形的性质、三角形的外角性质;熟练掌握圆周角定理和切线的性质是解决问题的关键.14.(2017•郴州)如图,AB是⊙O的弦,BC切⊙O 于点B,AD⊥BC,垂足为D,OA是⊙O的半径,且OA=3.(1)求证:AB平分∠OAD;(2)若点E是优弧上一点,且∠AEB=60°,求扇形OAB的面积.(计算结果保留π)【考点】MC:切线的性质;MO:扇形面积的计算.【分析】(1)连接OB,由切线的性质得出OB⊥BC,证出AD∥OB,由平行线的性质和等腰三角形的性质证出∠DAB=∠OAB,即可得出结论;(2)由圆周角定理得出∠AOB=120°,由扇形面积公式即可得出答案.【解答】(1)证明:连接OB,如图所示:∵BC切⊙O于点B,∴OB⊥BC,∵AD⊥BC,∴AD∥OB,∴∠DAB=∠OBA,∵OA=OB,∴∠OAB=∠OBA,∴∠DAB=∠OAB,∴AB平分∠OAD;(2)解:∵点E是优弧上一点,且∠AEB=60°,∴∠AOB=2∠AEB=120°,∴扇形OAB的面积==3π.【点评】本题考查了切线的性质、等腰三角形的性质、平行线的性质、圆周角定理、扇形面积公式等知识;熟练掌握切线的性质和圆周角定理是解决问题的关键.15.(2017•宜昌)已知,四边形ABCD中,E是对角线AC上一点,DE=EC,以AE为直径的⊙O与边CD相切于点D.B点在⊙O上,连接OB.(1)求证:DE=OE;(2)若CD∥AB,求证:四边形ABCD是菱形.【考点】MC:切线的性质;L9:菱形的判定.【分析】(1)先判断出∠2+∠3=90°,再判断出∠1=∠2即可得出结论;(2)先判断出△ABO≌△CDE得出AB=CD,即可判断出四边形ABCD是平行四边形,最后判断出CD=AD即可.【解答】解:(1)如图,连接OD,∵CD是⊙O的切线,∴OD⊥CD,∴∠2+∠3=∠1+∠COD=90°,∵DE=EC,∴∠1=∠2,∴∠3=∠COD,∴DE=OE;(2)∵OD=OE,∴OD=DE=OE,∴∠3=∠COD=∠DEO=60°,∴∠2=∠1=30°,∵OA=OB=OE,OE=DE=EC,∴OA=OB=DE=EC,∵AB∥CD,∴∠4=∠1,∴∠1=∠2=∠4=∠OBA=30°,∴△ABO≌△CDE,∴AB=CD,∴四边形ABCD是平行四边形,∴∠DAE=∠DOE=30°,∴∠1=∠DAE,∴CD=AD,∴▱ABCD是菱形.【点评】此题是切线的性质,主要考查了同角的余角相等,等腰三角形的性质,平行四边形的判定和性质,菱形的判定,判断出△ABO≌△CDE是解本题的关键.16.(2017•鄂州)如图,已知BF是⊙O的直径,A 为⊙O上(异于B、F)一点,⊙O的切线MA与FB 的延长线交于点M;P为AM上一点,PB的延长线交⊙O于点C,D为BC上一点且PA=PD,AD的延长线交⊙O于点E.(1)求证:=;(2)若ED、EA的长是一元二次方程x2﹣5x+5=0的两根,求BE的长;(3)若MA=6,sin∠AMF=,求AB的长.【考点】MC:切线的性质;AB:根与系数的关系;T7:解直角三角形.【分析】(1)连接OA、OE交BC于T.想办法证明OE⊥BC即可;(2)由ED、EA的长是一元二次方程x2﹣5x+5=0的两根,可得ED•EA=5,由△BED∽△AEB,可得=,推出BE2=DE•EA=5,即可解决问题;(3)作AH⊥OM于H.求出AH、BH即可解决问题;【解答】(1)证明:连接OA、OE交BC于T.∵AM是切线,∴∠OAM=90°,∴∠PAD+∠OAE=90°,∵PA=PD,∴∠PAD=∠PDA=∠EDT,∵OA=OE,∴∠OAE=∠OEA,∴∠EDT+∠OEA=90°,∴∠DTE=90°,∴OE⊥BC,∴=.(2)∵ED、EA的长是一元二次方程x2﹣5x+5=0的两根,∴ED•EA=5,∵=,∴∠BAE=∠EBD,∵∠BED=∠AEB,∴△BED∽△AEB,∴=,∴BE2=DE•EA=5,∴BE=.(3)作AH⊥OM于H.在Rt△AMO中,∵AM=6,sin∠M==,设OA=m,OM=3m,∴9m2﹣m2=72,∴m=3,∴OA=3,OM=9,易知∠OAH=∠M,∴tan∠OAD==,∴OH=1,AH=2.BH=2,∴AB===2.【点评】本题考查切线的性质、解直角三角形、勾股定理、相似三角形的判定和性质、锐角三角函数等知识,解题的关键是学会添加常用辅助线,灵活运用所学知识解决问题,属于中考压轴题.17.(2017•贺州)如图,⊙O是△ABC的外接圆,AB为直径,∠BAC的平分线交⊙O于点D,过点D 的切线分别交AB,AC的延长线于E,F,连接BD.(1)求证:AF⊥EF;(2)若AC=6,CF=2,求⊙O的半径.【考点】MC:切线的性质;M5:圆周角定理.【分析】(1)连接OD,由切线的性质和已知条件可证得OD∥EF,则可证得结论;(2)过D作DG⊥AE于点G,连接CD,则可证得△ADF≌△ADG、△CDF≌△BDG,则可求得AB 的长,可求得圆的半径.【解答】(1)证明:如图1,连接OD,∵EF是⊙O的切线,且点D在⊙O上,∴OD⊥EF,∵OA=OD,∴∠DAB=∠ADO,∵AD平分∠BAC,∴∠DAB=∠DAC,∴∠ADO=∠DAC,∴AF∥OD,∴AF⊥EF;(2)解:如图2,过D作DG⊥AE于点G,连接CD,∵∠BAD=∠DAF,AF⊥EF,DG⊥AE,∴BD=CD,DG=DF,在Rt△ADF和Rt△ADG中∴Rt△ADF≌Rt△ADG(HL),同理可得Rt△CDF≌Rt△BDG,∴BG=CF=2,AG=AF=AC+CF=6+2=8,∴AB=AG+BG=8+2=10,∴⊙O的半径OA=AB=5.【点评】本题主要考查切线的性质及圆周角定理,掌握过切点的半径与切线垂直是解题的关键,注意全等三角形的应用.18.(2017•威海)已知:AB为⊙O的直径,AB=2,弦DE=1,直线AD与BE相交于点C,弦DE在⊙O上运动且保持长度不变,⊙O的切线DF 交BC于点F.(1)如图1,若DE∥AB,求证:CF=EF;(2)如图2,当点E运动至与点B重合时,试判断CF与BF是否相等,并说明理由.【考点】MC:切线的性质;KM:等边三角形的判定与性质.【分析】(1)如图1,连接OD、OE,证得△OAD、△ODE、△OEB、△CDE是等边三角形,进一步证得DF⊥CE即可证得结论;(2)根据切线的性质以及等腰三角形的性质即可证得结论.【解答】证明:如图1,连接OD、OE,∵AB=2,∴OA=OD=OE=OB=1,∵DE=1,∴OD=OE=DE,∴△ODE是等边三角形,∴∠ODE=∠OED=60°,∵DE∥AB,∴∠AOD=∠ODE=60°,∠EOB=∠OED=60°,∴△AOD和△BOE是等边三角形,∴∠OAD=∠OBE=60°,∴∠CDE=∠OAD=60°,∠CED=∠OBE=60°,∴△CDE是等边三角形,∵DF是⊙O的切线,∴OD⊥DF,∴∠EDF=90°﹣60°=30°,∴∠DFE=90°,∴DF⊥CE,∴CF=EF;(2)相等;如图2,点E运动至与点B重合时,BC是⊙O的切线,∵⊙O的切线DF交BC于点F,∴BF=DF,∴∠BDF=∠DBF,∵AB是直径,∴∠ADB=∠BDC=90°,∴∠FDC=∠C,∴DF=CF,∴BF=CF.【点评】本题考查了切线的性质、平行线的性质、等边三角形的判定、等腰三角形的判定和性质,作出辅助线构建等边三角形是解题的关键.19.(2017•南通)如图,Rt△ABC中,∠C=90°,BC=3,点O在AB上,OB=2,以OB为半径的⊙O 与AC相切于点D,交BC于点E,求弦BE的长.【考点】MC:切线的性质;KQ:勾股定理.【分析】连接OD,首先证明四边形OFCD是矩形,从而得到BF的长,然后利用垂径定理求得BE的长即可.【解答】解:连接OD,作OF⊥BE于点F.∴BF=BE,∵AC是圆的切线,∴OD⊥AC,∴∠ODC=∠C=∠OFC=90°,∴四边形ODCF是矩形,∵OD=OB=FC=2,BC=3,∴BF=BC﹣FC=BC﹣OD=3﹣2=1,∴BE=2BF=2.【点评】本题考查了切线的性质、勾股定理及垂径定理的知识,解题的关键是能够利用切线的性质构造矩形形,难度不大.20.(2017•河南)如图,在△ABC中,AB=AC,以AB为直径的⊙O交AC边于点D,过点C作CF∥AB,与过点B的切线交于点F,连接BD.(1)求证:BD=BF;(2)若AB=10,CD=4,求BC的长.【考点】MC:切线的性质;KH:等腰三角形的性质.【分析】(1)根据圆周角定理求出BD⊥AC,∠BDC=90°,根据切线的性质得出AB⊥BF,求出∠ACB=∠FCB,根据角平分线性质得出即可;(2)求出AC=10,AD=6,根据勾股定理求出BD,再根据勾股定理求出BC即可.【解答】(1)证明:∵AB是⊙O的直径,∴∠BDA=90°,∴BD⊥AC,∠BDC=90°,∵BF切⊙O于B,∴AB⊥BF,∵CF∥AB,∴CF⊥BF,∠FCB=∠ABC,∵AB=AC,∴∠ACB=∠ABC,∴∠ACB=∠FCB,∵BD⊥AC,BF⊥CF,∴BD=BF;(2)解:∵AB=10,AB=AC,∴AC=10,∵CD=4,∴AD=10﹣4=6,在Rt△ADB中,由勾股定理得:BD==8,在Rt△BDC中,由勾股定理得:BC==4.【点评】本题考查了切线的性质,勾股定理,角平分线性质,等腰三角形的判定等知识点,能综合运用定理进行推理是解此题的关键.21.(2017•北京)如图,AB是⊙O的一条弦,E是AB的中点,过点E作EC⊥OA于点C,过点B作⊙O的切线交CE的延长线于点D.(1)求证:DB=DE;(2)若AB=12,BD=5,求⊙O的半径.【考点】MC:切线的性质;KQ:勾股定理;M2:垂径定理.【分析】(1)欲证明DB=DE,只要证明∠DEB=∠DBE;(2)作DF⊥AB于F,连接OE.只要证明∠AOE=∠DEF,可得sin∠DEF=sin∠AOE==,由此求出AE即可解决问题.【解答】(1)证明:∵AO=OB,∴∠OAB=∠OBA,∵BD是切线,∴OB⊥BD,∴∠OBD=90°,∴∠OBE+∠EBD=90°,∵EC⊥OA,∴∠CAE+∠CEA=90°,∵∠CEA=∠DEB,∴∠EBD=∠BED,∴DB=DE.(2)作DF⊥AB于F,连接OE.∵DB=DE,AE=EB=6,∴EF=BE=3,OE⊥AB,在Rt△EDF中,DE=BD=5,EF=3,∴DF==4,∵∠AOE+∠A=90°,∠DEF+∠A=90°,∴∠AOE=∠DEF,∴sin∠DEF=sin∠AOE==,∵AE=6,∴AO=.∴⊙O的半径为.【点评】本题考查切线的性质、勾股定理、垂径定理、锐角三角函数、等腰三角形的性质等知识,解题的关键是学会添加常用辅助线,灵活运用所学知识解决问题,属于中考常考题型.22.(2017•乌鲁木齐)如图,AB是⊙O的直径,CD与⊙O相切于点C,与AB的延长线交于D.(1)求证:△ADC∽△CDB;(2)若AC=2,AB=CD,求⊙O半径.【考点】MC:切线的性质.【分析】(1)首先连接CO,根据CD与⊙O相切于点C,可得:∠OCD=90°;然后根据AB是圆O 的直径,可得:∠ACB=90°,据此判断出∠CAD=∠BCD,即可推得△ADC∽△CDB.(2)首先设CD为x,则AB=x,OC=OB=x,用x表示出OD、BD;然后根据△ADC∽△CDB,可得:=,据此求出CB的值是多少,即可求出⊙O半径是多少.【解答】(1)证明:如图,连接CO,,∵CD与⊙O相切于点C,∴∠OCD=90°,∵AB是圆O的直径,∴∠ACB=90°,∴∠ACO=∠BCD,∵∠ACO=∠CAD,∴∠CAD=∠BCD,在△ADC和△CDB中,∴△ADC∽△CDB.(2)解:设CD为x,则AB=x,OC=OB=x,∵∠OCD=90°,∴OD===x,∴BD=OD﹣OB=x﹣x=x,由(1)知,△ADC∽△CDB,∴=,即,解得CB=1,∴AB==,∴⊙O半径是.【点评】此题主要考查了切线的性质和应用,以及勾股定理的应用,要熟练掌握.23.(2017•白银)如图,AN是⊙M的直径,NB∥x 轴,AB交⊙M于点C.(1)若点A(0,6),N(0,2),∠ABN=30°,求点B的坐标;(2)若D为线段NB的中点,求证:直线CD是⊙M的切线.【考点】MD:切线的判定;D5:坐标与图形性质.【分析】(1)在Rt△ABN中,求出AN、AB即可解决问题;(2)连接MC,NC.只要证明∠MCD=90°即可;【解答】解:(1)∵A的坐标为(0,6),N(0,2),∴AN=4,∵∠ABN=30°,∠ANB=90°,∴AB=2AN=8,∴由勾股定理可知:NB==,∴B(,2).(2)连接MC,NC∵AN是⊙M的直径,∴∠ACN=90°,∴∠NCB=90°,在Rt△NCB中,D为NB的中点,∴CD=NB=ND,∴∠CND=∠NCD,∵MC=MN,∴∠MCN=∠MNC,∵∠MNC+∠CND=90°,∴∠MCN+∠NCD=90°,即MC⊥CD.∴直线CD是⊙M的切线.【点评】本题考查圆的切线的判定、坐标与图形的性质、勾股定理等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.24.(2017•天水)如图,△ABD是⊙O的内接三角形,E是弦BD的中点,点C是⊙O外一点且∠DBC=∠A,连接OE延长与圆相交于点F,与BC相交于点C.(1)求证:BC是⊙O的切线;(2)若⊙O的半径为6,BC=8,求弦BD的长.【考点】MD:切线的判定.【分析】(1)连接OB,由垂径定理的推论得出BE=DE,OE⊥BD,=,由圆周角定理得出∠BOE=∠A,证出∠OBE+∠DBC=90°,得出∠OBC=90°即可;(2)由勾股定理求出OC,由△OBC的面积求出BE,即可得出弦BD的长.【解答】(1)证明:连接OB,如图所示:∵E是弦BD的中点,∴BE=DE,OE⊥BD,=,∴∠BOE=∠A,∠OBE+∠BOE=90°,∵∠DBC=∠A,∴∠BOE=∠DBC,∴∠OBE+∠DBC=90°,∴∠OBC=90°,即BC⊥OB,∴BC是⊙O的切线;(2)解:∵OB=6,BC=8,BC⊥OB,∴OC==10,∵△OBC的面积=OC•BE=OB•BC,∴BE===4.8,∴BD=2BE=9.6,即弦BD的长为9.6.【点评】本题考查了切线的判定、垂径定理的推论、圆周角定理、勾股定理、三角形面积的计算;熟练掌握垂径定理的推论和圆周角定理是解决问题的关键.25.(2017•福建)如图,四边形ABCD内接于⊙O,AB是⊙O的直径,点P在CA的延长线上,∠CAD=45°.(Ⅰ)若AB=4,求的长;(Ⅱ)若=,AD=AP,求证:PD是⊙O的切线.【考点】MD:切线的判定;M6:圆内接四边形的性质;MN:弧长的计算.【分析】(Ⅰ)连接OC,OD,由圆周角定理得到∠COD=2∠CAD,∠CAD=45°,于是得到∠COD=90°,根据弧长公式即可得到结论;(Ⅱ)由已知条件得到∠BOC=∠AOD,由圆周角定理得到∠AOD=45°,根据等腰三角形的性质得到∠ODA=∠OAD,求得∠ADP=CAD=22.5°,得到∠ODP=∠ODA+∠ADP=90°,于是得到结论.【解答】解:(Ⅰ)连接OC,OD,∵∠COD=2∠CAD,∠CAD=45°,∴∠COD=90°,∵AB=4,∴OC=AB=2,∴的长=×π×2=π;(Ⅱ)∵=,∴∠BOC=∠AOD,∵∠COD=90°,∴∠AOD=45°,∵OA=OD,∴∠ODA=∠OAD,∵∠AOD+∠ODA=∠OAD=180°,∴∠ODA=67.5°,∵AD=AP,∴∠ADP=∠APD,∵∠CAD=∠ADP+∠APD,∠CAD=45°,∴∠ADP=CAD=22.5°,∴∠ODP=∠ODA+∠ADP=90°,∴PD是⊙O的切线.【点评】本题考查了切线的判定,圆内接四边形的性质,弧长的计算,正确的作出辅助线是解题的关键.26.(2017•黄石二模)已知:如图,在△ABC中,AB=AC,以AB为直径的⊙O交BC于点D,过点D 作DE⊥AC于点E.(1)请说明DE是⊙O的切线;(2)若∠B=30°,AB=8,求DE的长.【考点】MD:切线的判定;T7:解直角三角形.【分析】(1)要想证DE是⊙O的切线,只要连接OD,求证∠ODE=90°即可.(2)利用直角三角形和等边三角形的特点来求DE 的长.【解答】解:(1)连接OD,则OD=OB,∴∠B=∠ODB.(1分)∵AB=AC,∴∠B=∠C.(1分)∴∠ODB=∠C.。

中考圆有关的动点几何压轴题之欧阳音创编

中考圆有关的动点几何压轴题之欧阳音创编

北辰教育学科老师辅导讲义定圆结合直角三角形,考察三角形相似,线段与三角形周长的函数关系2(2010•上海)如图,在Rt△ABC中,∠ACB=90°.半径为1的圆A与边AB相交于点D,与边AC相交于点E,连接DE并延长,与线段BC的延长线交于点P.(1)当∠B=30°时,连接AP,若△AEP与△BDP相似,求CE的长;(2)若CE=2,BD=BC,求∠BPD的正切值;(3)若tan∠BPD=,设CE=x,△ABC的周长为y,求y关于x的函数关系式.定圆结合直角三角形,考察两线段函数关系,圆心距,存在性问题3.如图,在半径为5的⊙O中,点A、B在⊙O上,∠AOB=90°,点C是弧AB上的一个动点,AC与OB的延长线相交于点D,设AC=x,BD=y.(1)求y关于x的函数解析式,并写出它的定义域;(2)如果⊙O1与⊙O相交于点A、C,且⊙O1与⊙O的圆心距为2,当BD=OB时,求⊙O1的半径;(3)是否存在点C,使得△DCB∽△DOC?如果存在,请证明;如果不存在,请简要说明理由.动圆结合直角梯形,考察圆相切和相似5(14分)(2014•金山区二模)如图,已知在梯形ABCD中,AD∥BC,AB⊥BC,AB=4,AD=3,sin∠DCB=,P是边CD上一点(点P与点C、D不重合),以PC为半径的⊙P与边BC相交于点C和点Q.(1)如果BP⊥CD,求CP的长;(2)如果PA=PB,试判断以AB为直径的⊙O与⊙P的位置关系;(3)联结PQ,如果△ADP和△BQP相似,求CP的长.动圆结合内切直角三角形,考察相似,两线段函数关系6. 2005中考(本题满分12分,每小题满分各为4分)2Q过点P、在直线AP上(如图),设AP x=,并写出函数的定义域;P动圆结合三角形,考察相似,线段比,圆位置关系9.2006中考25.(本题满分14分,第(1)小题满分4分,第(2)小题满分7分,第(3)小题满分3分)已知点P在线段AB上,点O在线段AB的延长线上。

中考圆压轴题训练精选之欧阳法创编

中考圆压轴题训练精选之欧阳法创编

成都中考圆压轴题训练时间:2021.03.09 创作:欧阳法一.选择题(共15小题)1.如图1,⊙O的直径为AB,过半径OA的中点G 作弦CE⊥AB,在上取一点D,分别作直线CD,ED,交直线AB于点F、M.(1)求∠COA和∠FDM的度数;(2)求证:△FDM∽△COM;(3)如图2,若将垂足G改取为半径OB上任意一点,点D改取在上,仍作直线CD、ED,分别交直线AB于点F、M.试判断:此时是否仍有△FDM ∽△COM?证明你的结论.2.已知:如图,BC为半圆的直径,O为圆心,D是弧AC的中点,四边形ABCD的对角线AC、BD交于点E.(1)求证:△ABE∽△DBC;(2)已知BC=,CD=,求sin∠AEB的值;(3)在(2)的条件下,求弦AB的长.3.如图,在半径为2的扇形AOB中,∠AOB=90°,点C是弧AB上的一个动点(不与点A、B重合)OD⊥BC,OE⊥AC,垂足分别为D、E.(1)当BC=1时,求线段OD的长;(2)在△DOE中是否存在长度保持不变的边?如果存在,请指出并求其长度,如果不存在,请说明理由;(3)设BD=x,△DOE的面积为y,求y关于x的函数关系式,并写出它的定义域.4.如图,⊙M交x轴于B、C两点,交y轴于A,点M的纵坐标为2.B(﹣3,O),C(,O).(1)求⊙M的半径;(2)若CE⊥AB于H,交y轴于F,求证:EH=FH.(3)在(2)的条件下求AF的长.5.已知:如图,△ABC内接于⊙O,BC为直径,AD⊥BC于点D,点E为DA延长线上一点,连接BE,交⊙O于点F,连接CF,交AB、AD于M、N 两点.(1)若线段AM、AN的长是关于x的一元二次方程x2﹣2mx+n2﹣mn+m2=0的两个实数根,求证:AM=AN;(2)若AN=,DN=,求DE的长;(3)若在(1)的条件下,S△AMN :S△ABE=9:64,且线段BF与EF的长是关于y的一元二次方程5y2﹣16ky+10k2+5=0的两个实数根,求直径BC的长.6.如图,以⊙O两条互相垂直的直径所在直线为轴建立平面直角坐标系,两坐标轴交⊙O于A,B,C,D四点,点P在弧CD上,连PA交y轴于点E,连CP并延长交y轴于点F.(1)求∠FPE的度数;(2)求证:OB2=OE•OF;(3)若⊙O的半径为,以线段OE,OF的长为根的一元二次方程为x2﹣x+m=0,求直线CF的解析式;(4)在(3)的条件下,过点P作⊙O的切线PM与x轴交于点M,求△PCM的面积.7.如图,AB为⊙O直径,且弦CD⊥AB于,过点的切线与AD的延长线交于点.(1)若M是AD的中点,连接ME并延长ME交BC于N.求证:MN⊥BC.(2)若cos∠C=,DF=3,求⊙O的半径.(3)猜测线段AE、BE、CN、CB之间有怎样的数量关系?证明你的猜想.8.已知:AB是⊙O的直径,DA、DC分别是⊙O 的切线,点A、C是切点,连接DO交弧AC于点E,连接AE、CE.(1)如图1,求证:EA=EC;(2)如图2,延长DO交⊙O于点F,连接CF、BE 交于点G,求证:∠CGE=2∠F;(3)如图3,在(2)的条件下,DE=AD,EF=2,求线段CG的长.9.已知:如图,△ABC内接于⊙O,直径CD⊥AB,垂足为E,弦BF交CD于点M,交AC于点N,且BF=AC,连结AD.(1)求证:AD•BE=DE•BC;(2)请判断线段BM、MN、MF之间有怎样的等量关系,并给予证明;(3)当∠ACB=30°,⊙O半径为4时,求的值.10.如图,在△ABC中,以AC为直径作⊙O交BC 于点D,交AB于点G,且D是BC中点,DE⊥AB,垂足为E,交AC的延长线于点F.(1)求证:直线EF是⊙O的切线;(2)若CF=3,cosA=,求出⊙O的半径和BE的长;(3)连接CG,在(2)的条件下,求的值.11.如图,在⊙S中,AB是直径,AC、BC是弦,D 是⊙S外一点,且DC与⊙S相切于点C,连接DS,DB,其中DS交BC于E,交⊙S于F,F为弧BC的中点.(1)求证:DB=DC;(2)若AB=10,AC=6,P是线段DS上的动点,设DP长为x,四边形ACDP面积为y.①求y与x的函数关系式;②求△PAC周长的最小值,并确定这时x的值.12.如图,AB是⊙0的直径,AC切⊙0于点A,AD 是⊙0的弦,OC⊥AD于F交⊙0于E,连接DE,BE,BD.AE.(1)求证:∠C=∠BED;(2)如果AB=10,tan∠BAD=,求AC的长;(3)如果DE∥AB,AB=10,求四边形AEDB的面积.13.如图,在锐角△ABC中,AC是最短边;以AC 中点O为圆心,AC长为半径作⊙O,交BC于E,过O作OD∥BC交⊙O于D,连接AE、AD、DC.(1)求证:D是的中点;(2)求证:∠DAO=∠B+∠BAD;(3)若,且AC=4,求CF的长.14.己知:如图.△ABC内接于⊙O,AB为直径,∠CBA的平分线交AC于点F,交⊙O于点D,DE ⊥AB于点E,且交AC于点P,连接AD.(1)求证:∠DAC=∠DBA;(2)求证:P是线段AF的中点;(3)若⊙O的半径为5,AF=,求tan∠ABF的值.15.在△ABC中,∠ABC=90°,AB=4,BC=3,O 是边AC上的一个动点,以点O为圆心作半圆,与边AB相切于点D,交线段OC于点E,作EP⊥ED,交射线AB于点P,交射线CB于点F.(1)如图,求证:△ADE∽△AEP;(2)设OA=x,AP=y,求y关于x的函数解析式,并写出它的定义域;(3)当BF=1时,求线段AP的长.二.解答题(共15小题)16.如图1,在平面直角坐标系xOy中,点M在x 轴的正半轴上,⊙M交x轴于A、B两点,交y轴于C、D两点,且C为的中点,AE交y轴于G点,若点A的坐标为(﹣2,0),AE=8.(1)求点C的坐标;(2)连接MG、BC,求证:MG∥BC;(3)如图2,过点D作⊙M的切线,交x轴于点P.动点F在⊙M的圆周上运动时,的比值是否发生变化?若不变,求出比值;若变化,说明变化规律.17.如图1,以△ABC的边AB为直径的⊙O交边BC于点E,过点E作⊙O的切线交AC于点D,且ED⊥AC.(1)试判断△ABC的形状,并说明理由;(2)如图2,若线段AB、DE的延长线交于点F,∠C=75°,CD=2﹣,求⊙O的半径和BF的长.18.如图,AB、AC分别是⊙O的直径和弦,点D 为劣弧AC上一点,弦DE⊥AB分别交⊙O于E,交AB于H,交AC于F.P是ED延长线上一点且PC=PF.(1)求证:PC是⊙O的切线;(2)点D在劣弧AC什么位置时,才能使AD2=DE•DF,为什么?(3)在(2)的条件下,若OH=1,AH=2,求弦AC 的长.19.如图所示,P是⊙O外一点,PA是⊙O的切线,A是切点,B是⊙O 上一点,且PA=PB,连接AO、BO、AB,并延长BO与切线PA相交于点Q.(1)求证:PB是⊙O的切线;(2)求证:AQ•PQ=OQ•BQ;(3)设∠AOQ=α,若,OQ=15,求AB的长.20.如图,已知点C是以AB为直径的⊙O上一点,CH⊥AB于点H,过点B作⊙O的切线交直线AC于点D,点E为CH的中点,连接AE并延长交BD于点F,直线CF交AB的延长线于G.(1)求证:AE•FD=AF•EC;(2)求证:FC=FB;(3)若FB=FE=2,求⊙O的半径r的长.21.如图,PB为⊙O的切线,B为切点,直线PO 交⊙于点E、F,过点B作PO的垂线BA,垂足为点D,交⊙O于点A,延长AO与⊙O交于点C,连接BC,AF.(1)求证:直线PA为⊙O的切线;(2)试探究线段EF、OD、OP之间的等量关系,并加以证明;(3)若BC=6,tan∠F=,求cos∠ACB的值和线段PE的长.22.已知:如图,在半径为4的⊙O中,AB,CD是两条直径,M为OB的中点,CM的延长线交⊙O于点E,且EM>MC.连接DE,DE=.(1)求证:AM•MB=EM•MC;(2)求sin∠EOB的值;(3)若P是直径AB延长线上的点,且BP=12,求证:直线PE是⊙O的切线.23.如图所示,AB是⊙O的直径,AE是弦,C是劣弧AE的中点,过C作CD⊥AB于点D,CD交AE 于点F,过C作CG∥AE交BA的延长线于点G.(1)求证:CG是⊙O的切线.(2)求证:AF=CF.(3)若∠EAB=30°,CF=2,求GA的长.24.如图,在△ABC中,∠BAC=90°,AB=AC,AB是⊙O的直径,⊙O交BC于点D,DE⊥AC于点E,BE交⊙O于点F,连接AF,AF的延长线交DE于点P.(1)求证:DE是⊙O的切线;(2)求tan∠ABE的值;(3)若OA=2,求线段AP的长.25.如图,△ABC内接于⊙O,且AB为⊙O的直径.∠ACB的平分线交⊙O于点D,过点D作⊙O 的切线PD交CA的延长线于点P,过点A作AE⊥CD于点E,过点B作BF⊥CD于点F.(1)求证:DP∥AB;(2)试猜想线段AE,EF,BF之间有何数量关系,并加以证明;(3)若AC=6,BC=8,求线段PD的长.26.如图,已知AB是⊙O直径,BC是⊙O的弦,弦ED⊥AB于点F,交BC于点G,过点C作⊙O的切线与ED的延长线交于点P.(1)求证:PC=PG;(2)点C在劣弧AD上运动时,其他条件不变,若点G是BC的中点,试探究CG、BF、BO三者之间的数量关系,并写出证明过程;(3)在满足(2)的条件下,已知⊙O的半径为5,若点O到BC的距离为时,求弦ED的长.27.如图,AB,AC分别是半⊙O的直径和弦,OD ⊥AC于点D,过点A作半⊙O的切线AP,AP与OD的延长线交于点P.连接PC并延长与AB的延长线交于点F.(1)求证:PC是半⊙O的切线;(2)若∠CAB=30°,AB=10,求线段BF的长.28.如图1,AB为⊙O的直径,直线CD切⊙O于点C,AD⊥CD于点D,交⊙O于点E.(1)求证:AC平分∠DAB;(2)若4AB=5AD,求证:AE=3DE;(3)如图2,在(2)的条件下,CF交⊙O于点F,若AB=10,∠ACF=45°,求CF的长.29.已知四边形ABCD内接于⊙O,∠ADC=90°,∠DCB<90°,对角线AC平分∠DCB,延长DA,CB相交于点E.(1)如图1,EB=AD,求证:△ABE是等腰直角三角形;(2)如图2,连接OE,过点E作直线EF,使得∠OEF=30°,当∠ACE≥30°时,判断直线EF与⊙O 的位置关系,并说明理由.30.如图,AB为⊙O的直径,P是BA延长线上一点,PC切⊙O于点C,CG是⊙O的弦,CG⊥AB,垂足为D.(1)求证:∠PCA=∠ABC;(2)过点A作AE∥PC,交⊙O于点E,交CD于点F,连接BE.若sin∠P=,CF=5,求BE的长.成都中考圆压轴题训练参考答案一.选择题(共15小题)1.;2.;3.;4.;5.;6.;7.;8.;9.;10.;11.;12.;13.;14.;15.;二.解答题(共15小题)16.;17.;18.;19.;20.;21.;22.;23.;24.;25.;26.;27.;28.;29.;30.;时间:2021.03.09 创作:欧阳法。

上海中考专题训练25题专题训练及答案之欧阳治创编

上海中考专题训练25题专题训练及答案之欧阳治创编

1.(本题满分14分,第(1)小题满分4分,第(2)小题满分6分,第(3)小题满分4分)在Rt △ABC 中,︒=∠90C ,2=BC ,Rt △ABC 绕着点B 按顺时针方向旋转,使点C 落在斜边AB 上的点D,设点A点E 重合,联结AE ,过点E 作直线EM 与射线CB 垂直,交点为M .(1)若点M 与点B 重合如图10,求BAE ∠cot 的值; (2)若点M 在边BC 上如图11,设边长x AC =,y BM =,点M与点B 不重合,求y 与x 的函数关系式,并写出自变量x 的取值范围; (3)若EBM BAE ∠=∠,求斜边AB 的长.2分,其中第(15分)ABCD 中,AD .M 、N 分别是边AD 、DN .点E 、F DN 上,且ME // DN ,MF // AN ,联结EF .(1)如图1,如果EF // BC ,求EF 的长;(M )图10图11(2)如果四边形MENF 的面积是△ADN 的面积的38,求AM 的长;(3)如果BC = 10,试探索△ABN 、△AND 、△DNC 能否两两相似?如果能,求AN 的长;如果不能,请说明理由.3.(本题满分14分)如图,已知矩形ABCD ,AB =12 cm ,AD =10cm ,⊙O 与AD 、AB 、BC 三边都相切,与DC交于点E 、F 。

已知点P 、Q 、R 分别从D、A 、B 三点同时出发,沿矩形ABCD 的边逆时针方向匀速运动,点P 、Q 、R 的运动速度分别是1cm/s 、x cm/s 、1.5cm/s ,当点Q 到达点B 时停止运动,P 、R 两点同时停止运动.设运动时间为t (单位:s ). (1)求证:DE =CF ;(2)设x = 3,当△PAQ 与△QBR 相似时,求出t 的值;(3)设△PAQ 关于直线PQ 对称的图形是△PA'Q ,当t 和x 分别为何值时,点A'好重合,求出符合条件的t 、x 的值.4.(本题满分14分,第(1)小题4 A B CD MN EF(图A B C DMN EF (第25题图)小题5分,第(3)小题5分)如图,已知在直角梯形ABCD 中,AD ∥BC ,∠ABC =90º,AB =4,AD=3,552sin =∠BCD ,点P是对角线BD 上一动点,过点P 作PH ⊥CD ,垂足为H .(1)求证:∠BCD =∠BDC ;(2)如图1,若以P 为圆心、PB 为半径的圆和以H 为圆心、HD 为半径的圆外切时,求DP 的长;(3)如图2,点E 在BC 延长线上,且满足DP =CE ,PE 交DC 于点F ,若△ADH 和△ECF 相似,求DP 的长.、5.6、(本题满分14分,其中第(1)小题5分,第(2)小题5分,第(3)小题4分)已知:⊙O 的半径为3,OC ⊥弦AB ,垂足为D ,点E 在⊙O 上,ECO BOC ∠=∠,射线CE CE 与射线OB 相交于点F .设,AB x =CE y =(1)求y 与x 之间的函数解析式,并写出函数定义域;(2)当OEF ∆(3)如果1BF =,求EF 的长.AB CHPD (第25题图1) ABC HPD EF (第25题图2) (备用图7.(本题满分14分,第(1)小题4分,第(2)小题5分,第(3)小题5分)已知:如图七,在梯形ABCD 中,AD∥BC,∠A=90°,AD =6,AB =8,sinC =54,点P 在射线DC 上,点Q 在射线AB 上,且PQ⊥CD,设DP =x ,BQ =y .(1)求证:点D 在线段BC 的垂直平分线上;(2)如图八,当点P 在线段DC 上,且点Q 在线段AB 上时,求y 关于x 的函数解析式,并写出定义域;(3)若以点B 为圆心、BQ 为半径的⊙B 与以点C为圆心、CP 为半径的⊙C 相切,求线段DP 的长.1.解:(1)当点M 与点B 重合,由旋2==BD BC ,ED AC =,EBD CBA ∠=∠,︒=∠=∠90C EDB ∵CB EM ⊥∴∠∴︒=∠=∠45EBD CBA …………1分∴︒=∠=∠45CBA CAB ∴2==CB AC(图八)BPACD Q(图七)ABCD(备用)∴22=AB …………………………………1分 ∴2==DB DE ∴222-=AD (1)分∴12cot -==∠DE ADBAE (1)分 (2)设EM 与边AB 交点为G由题意可知:︒=∠+∠9021,︒=∠+∠903CBA 又32∠=∠,∴CBA ∠=∠1∵CBA EBD ∠=∠,∴EBD ∠=∠1,∵BDE EDG ∠=∠,∴△EDG ∽△BDE∴ED DGBD ED = (1)分∵2==BD BC ,x ED AC ==∴x DGx =2,∴22x DG =…………………………1分由题意可知:AB BC BG MB ABC ==∠cos42+=x AB ,242x GB -=∴422422+=-x x y ……………………1分 ∴444222++-=x x x y (1)分定义域为20<<x …………………………1分(3)当点M 在边BC 上时,由旋转可知:EB AB =,∴BAE AEB ∠=∠设︒=∠x CBA ,则︒=∠x ABE ,∵EBM BAE ∠=∠,分别延长EA 、BC 交于点H∴︒=∠=∠=∠x EMB BAE AEB 2,∵︒=∠+∠+∠180AEB BAE ABE ∴36=x易得:︒=∠=∠=∠36ABE ABH H ,︒=∠=∠=∠72AEB BAE HBE∴BE AB AH ==,HE HB =,∵︒=∠90ACB ,∴2==BC HC∴4==HE HB ,∴△BAE ∽△HBE ,∴BE AEHB AB =,又AB BE =ABHA HE AE -=-=4,∴ABABAB -=44,∴522±-=AB (负值舍去)∴522+-=AB …………………………2分当点M 在边CB 的延长线上时,∵BAE AEB ∠=∠,EBM BAE ∠=∠∴EBM AEB ∠=∠∴AE ∥MC ∴CBA BAE ∠=∠∵EBA CBA ∠=∠∴EBA CBA EBM ∠=∠=∠ ∴︒=∠60CBA ,∵AB BCCBA =∠cos ,2=BC∴4=AB …………………………2分综上所述:522+-=AB 或4.2.解:(1)∵AD // BC ,EF // BC ,∴EF //AD .……………………………(1分)又∵ME // DN ,∴ 四边形EFDM 是平行四边形.∴EF =DM .…………………………………………………………(1分)同理可证,EF=AM .…………………………………………………(1分)∴AM = DM . ∵AD = 4,∴122EF AM AD ===.……………………………(1分)(2)∵38ADN MENF S S ∆=四边形,∴58AME DMF ADNS S S ∆∆∆+=.即得58AME DMF ADN ADN S S S S ∆∆∆∆+=.……………………………………………(1分)∵ME // DN ,∴△AME ∽△AND . ∴22AME ADN S AM S AD ∆∆=.……………………………………………………(1分)同理可证,△DMF ∽△DNA .即得22DMF ADN S DM S AD ∆∆=.……………(1分)设 AM = x ,则 4DM AD AM x =-=-. ∴22(4)516168x x -+=.………………………………………………(1分)即得 2430x x -+=.解得 11x =,23x =.∴AM 的长为1或3.………………………………………………(1分)(3)△ABN 、△AND 、△DNC 能两两相似. ……………………………(1分)∵AD // BC ,AB = DC ,∴∠B =∠C .由 AD // BC ,得 ∠DAN =∠ANB ,∠ADN =∠DNC .∴ 当 △ABN 、△AND 、△DNC 两两相似时,只有 ∠AND =∠B 一种情况.……………………………………………………………………(1分)于是,由 ∠ANC =∠B +∠BAN ,∠ANC =∠AND +∠DNC ,得 ∠DNC =∠BAN .∴△ABN ∽△DNC .又∵∠ADN =∠DNC ,∴△AND ∽△DNC .∴△ABN ∽△AND ∽△DNC . ∴AB BNNC CD=,AN ADBN AN =.………………………………………(1分)设 BN = x ,则 NC = 10 –x .∴5105xx =-. 即得210250x x -+=.解得5x =.……………………………(1分)经检验:x = 5是原方程的根,且符合题意.∴5BN CN ==. ∴45AN AN=.即得AN =.……………………………………………………(1分)∴当△ABN、△AND、△DNC两两相的长为似时,AN3.(本题满分14分)(1)证:作OH⊥DC于点H,设⊙O与BC边切于点G,联结OG.(1分)∴∠OHC=90°Array∵⊙O与BC边切于点G∴OG=6,OG∴∠OGC=90°∵矩形ABCD∴∠C=90°第25题图(1) ∴四边形OGCH是矩形∴CH=OG∵OG=6∴CH=6(1分)∵矩形ABCD∴AB=CD∵AB=12∴CD=12∴DH=CD﹣CH=6∴DH= CH∴O是圆心且OH⊥DC∴EH=FH (2分)∴DE=CF.(1分)(2)据题意,设DP=t,PA=10-t,AQ=3t,QB=12-3t,BR=1.5t(0 < t < 4).(1分)∵矩形ABCD∴∠A=∠B=90°若△PAQ 与△QBR 相似,则有①BR AQ QB AP =tt t t 5.133-12-10=514=t (2分)②QB AQ BR AP =t t t t 31235.1-10-=146921-=t 或14692-2-=t (舍)(2分)(3)设⊙O 与AD 、AB 都相切点M 、N ,联结OM 、ON 、OA .∴OM ⊥ADON ⊥AB 且OM =ON =6 又∵矩形ABCD ∴∠A =90° ∴四边形OMAN 是矩形又∵OM =ON ∴四边形OMAN 是正方形 (1∴MN 垂直平分OA∵△PAQ 与△PA'Q 关于直线PQ 对称 ∴PQ 垂直平分OA ∴MN 与PQ 重合 (1分)∴MA = PA = 10-t = 6∴t = 4(1分)∴AN = AQ = x t = 6∴x =23(1分)∴当t = 4 和x =23时点A'与圆心O 恰好重合.4第25题图(2)(P )56.解:(1)过点O 作OH⊥CE,垂足为H ∵在圆O 中,OC⊥弦AB ,OH⊥弦CE ,AB =x ,CE =y ∴1122BD AB x ==,1122EH EC y ==………………………………1分∵在Rt△ODB 中,222OD BD BO +=,OB=3 ∴OD=2362x -………1分∵OC=OE ∴∠ECO=∠CEO∵∠ECO =∠BOC∴∠CEO=∠BOC 又∵∠ODB=∠OHE=90°,OE=OB∴△ODB≌△EHO∴EH=OD …………………………1分 ∴23622x y -= ∴236y x =-……………………………………………………………………1分函数定义域为(0<x <6)………………………………………………………1分(2)当△OEF 为直角三角形时,存在以下两种情况:①若∠OFE =90º,则∠COF =∠OCF =45º∵∠ODB=90°,∴∠ABO=45°又∵OA=OB ∴∠OAB= ∠AB O=45°, ∴∠AOB=90°∴△OAB 是等腰直角三角形 ∴232=⋅=OB AB …………………………………………………2分②若∠EOF =90º , 则∠OEF =∠COF =∠OCF =30º……………………1分∵∠ODB=90°,∴∠ABO=60°又∵OA=OB∴△OAB 是等边三角形∴AB=OB=3…………………………………………………………………2分(3)①当CF =OF =OB –BF =2时,可得:△CFO ∽△COE ,CE =292=CF OC ,∴EF=CE –CF =25229=-. ……………………………………………2分②当CF =OF =OB +BF =4时,可得:△CFO ∽△COE ,CE =492=CF OC , ∴EF =CF –CE =47494=-. ……………………………………………2分7、(本题满分14分,第(1)小题4分,第(2)小题5分,第(3)小题5分)解:(1)作DH⊥BC 于H (见图①)…………(1分)在梯形ABCD 中,AD∥BC,∠A=90°, ∴∠B =90°,∠BHD=90°∴四边形ABHD 是矩形∴DH =AB ,BH=AD …………(1分)又∵AD=6,AB =8∴DH =8,BH=6在Rt △DHC 中,sinC =54,可设DH=4k,DC=5k∴DC=10, HC=681022=-,∴B H=HC=6 …………(1分) 又∵DH⊥BC∴点D 在线段BC 的垂直平分线上…………(1分)(2)延长BA 、CD 相交于点S (见图②),…………(1分)∵AD∥BC 且BC =12∴AD=21BC ∴21===BC AD SC SD SB SA ∴SD=DC=10,SA=AB=8∵DP=x ,BQ =y,SP=x+10由△SPQ~△SAD 得45==SA SD SP SQ ………(1分) ∴)10(45+=x SQ …………(1分) ∴所求解析式为2745+-=x y , …………(1分) 定义域是0≤x ≤514…………(1分)(说明:若用勾股定理列出:222222PC BC QB DP AQ AD -+=-+亦可,方法多样.)(3)由图形分析,有三种情况:(ⅰ)当点P 在线段DC 上,且点Q 在线段AB 上时,只有可能两圆外切,由BQ+CP=BC ,12102745=-++-x x ,解得32=x (ⅱ)当点P 在线段DC 上,且点Q 在线段AB 的延长线上时,两圆不可能相切,…………(2分)(ⅲ)当点P 在线段DC 的延长线上,且点Q 在线段AB 的延长线上时,此时2745-=x BQ , CP = x-10 …………(1分)若两圆外切,BQ+CP=BC ,即12102745=-+-x x ,解得334=x …………(1分)若两圆内切,BCCP BQ =-,即12)10(2745=---x x 12)10(2745=---x x 解得22=x12)10(2745-=---x x 解得74-=x (不合题意舍去)…………(1分)综上所述,⊙B 与⊙C 相切时,线段DP 的长为32,334或22 .。

初三圆的经典练习题之欧阳学文创作

初三圆的经典练习题之欧阳学文创作

圆的概念和性质欧阳学文例2.已知,如图,CD是直径,︒∠84EOD,AE交⊙O于B,= Array且AB=OC,求∠A的度数。

例3 ⊙O平面内一点P和⊙O最大为8cm,则这圆的半径是例4 在半径为5cm的圆中,弦,则AB和CD的距离是多少?例6.已知:⊙O的半径0A=1,弦AB、AC的长分别为3,2,求BAC∠的度数.【考点速练】1.下列命题中,正确的是()A.三点确定一个圆B.任何一个三角形有且仅有一个外接圆C.任何一个四边形都有一个外接圆D.等腰三角形的外心一定在它的外部2.如果一个三角形的外心在它的一边上,那么这个三角形一定是()A.等腰三角形B.直角三角形C.等边三角形D.钝角三角形3.圆的内接三角形的个数为()A.1个B.2 C.3个D.无数个4.三角形的外接圆的个数为()A.1个B.2 C.3个D.无数个5.下列说法中,正确的个数为()①任意一点可以确定一个圆;②任意两点可以确定一个圆;③任意三点可以确定一个圆;④经过任一点可以作圆;⑤经过任意两点一定有圆.A.1个B.2个C.3个D.4个6.与圆心的距离不大于半径的点所组成的图形是( )A.圆的外部(包括边界);B.圆的内部(不包括边界);C.圆;D.圆的内部(包括边界)7.已知⊙O的半径为6cm,P为线段OA的中点,若点P在⊙O 上,则OA的长( )A.等于6cmB.等于12cm;C.小于6cmD.大于12cm8.如图,⊙O 的直径为10cm,弦AB 为8cm,P 是弦AB 上一点,若OP 的长为整数, 则满足条件的点P 有( ) A.2个 B.3个 C.4个 D.5个9.如图,A 是半径为5的⊙O 内一点,且OA=3,过点A 且长小于8的弦有( )A.0条B.1条C.2条11.如图,已知在ABC ∆中,∠A ,AC=4cm ,以点A 为圆心,AC 长为半径画弧交的延长线于点D ,求CD 的长.12、如图,有一圆弧开桥拱,拱的跨度AB =16cm ,拱高CD =4cm ,那么拱形的半径是__m 。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

圆难题压轴题答案解析欧阳光明(2021.03.07)1.解:(1)如图1,设⊙O的半径为r,当点A在⊙C上时,点E和点A重合,过点A作AH⊥BC于H,∴BH=AB•cosB=4,∴AH=3,CH=4,∴AC==5,∴此时CP=r=5;(2)如图2,若AP∥CE,APCE为平行四边形,∵CE=CP,∴四边形APCE是菱形,连接AC、EP,则AC⊥EP,∴AM=CM=,由(1)知,AB=AC,则∠ACB=∠B,∴CP=CE==,∴EF=2=;(3)如图3:过点C作CN⊥AD于点N,∵cosB=45,∴∠B<45°,∵∠BCG<90°,∴∠BGC>45°,∵∠AEG=∠BCG≥∠ACB=∠B,∴当∠AEG=∠B时,A、E、G重合,∴只能∠AGE=∠AEG,∵AD∥BC,∴△GAE∽△GBC,∴=,即=,解得:AE=3,EN=AN﹣AE=1,∴CE===.2. 解:(1)①若圆P与直线l和l2都相切,当点P在第四象限时,过点P作PH⊥x轴,垂足为H,连接OP,如图1所示.设y=x的图象与x轴的夹角为α.当x=1时,y=.∴tanα=.∴α=60°.∴由切线长定理得:∠POH=(180°﹣60°)=60°.∵PH=1,∴tan∠POH===.∴OH=.∴点P的坐标为(,﹣1).同理可得:当点P在第二象限时,点P的坐标为(﹣,1);当点P在第三象限时,点P的坐标为(﹣,﹣1);②若圆P与直线l和l1都相切,如图2所示.同理可得:当点P在第一象限时,点P的坐标为(,1);当点P在第二象限时,点P的坐标为(﹣,1);当点P在第三象限时,点P的坐标为(﹣,﹣1);当点P在第四象限时,点P的坐标为(,﹣1).③若圆P与直线l1和l2都相切,如图3所示.同理可得:当点P在x轴的正半轴上时,点P的坐标为(,0);当点P在x轴的负半轴上时,点P的坐标为(﹣,0);当点P在y轴的正半轴上时,点P的坐标为(0,2);当点P在y轴的负半轴上时,点P的坐标为(0,﹣2).综上所述:其余满足条件的圆P的圆心坐标有:(,﹣1)、(﹣,1)、(﹣,﹣1)、(,1)、(﹣,1)、(﹣,﹣1)、(,﹣1)、(,0)、(﹣,0)、(0,2)、(0,﹣2).(2)用线段依次连接各圆心,所得几何图形,如图4所示.由图可知:该几何图形既轴对称图形,又是中心对称图形,由对称性可得:该几何图形的所有的边都相等.∴该图形的周长=12×(﹣)=8.3. (1)解:连接OB,OD,∵∠DAB=120°,∴所对圆心角的度数为240°,∴∠BOD=120°,∵⊙O的半径为3,∴劣弧的长为:×π×3=2π;(2)证明:连接AC,∵AB=BE,∴点B为AE的中点,∵F是EC的中点,∴BF为△EAC的中位线,∴BF=AC,∵=,∴+=+,∴=,∴BD=AC,∴BF=BD;(3)解:过点B作AE的垂线,与⊙O的交点即为所求的点P,∵BF为△EAC的中位线,∴BF∥AC,∴∠FBE=∠CAE,∵=,∴∠CAB=∠DBA,∵由作法可知BP⊥AE,∴∠GBP=∠FBP,∵G为BD的中点,∴BG=BD,∴BG=BF,在△PBG和△PBF中,,∴△PBG≌△PBF(SAS),∴PG=PF.4. 解:(1)∵l1⊥l2,⊙O与l1,l2都相切,∴∠OAD=45°,∵AB=4cm,AD=4cm,∴CD=4cm,AD=4cm,∴tan∠DAC===,∴∠DAC=60°,∴∠OAC的度数为:∠OAD+∠DAC=105°,故答案为:105;(2)如图位置二,当O1,A1,C1恰好在同一直线上时,设⊙O1与l1的切点为E,连接O1E,可得O1E=2,O1E⊥l1,在Rt△A1D1C1中,∵A1D1=4,C1D1=4,∴tan∠C1A1D1=,∴∠C1A1D1=60°,在Rt△A1O1E中,∠O1A1E=∠C1A1D1=60°,∴A1E==,∵A1E=AA1﹣OO1﹣2=t﹣2,∴t﹣2=,∴t=+2,∴OO1=3t=2+6;(3)①当直线AC与⊙O第一次相切时,设移动时间为t1,如图,此时⊙O移动到⊙O2的位置,矩形ABCD移动到A2B2C2D2的位置,设⊙O2与直线l1,A2C2分别相切于点F,G,连接O2F,O2G,O2A2,∴O2F⊥l1,O2G⊥A2G2,由(2)得,∠C2A2D2=60°,∴∠GA2F=120°,∴∠O2A2F=60°,在Rt△A2O2F中,O2F=2,∴A2F=,∵OO2=3t,AF=AA2+A2F=4t1+,∴4t1+﹣3t1=2,∴t1=2﹣,②当直线AC与⊙O第二次相切时,设移动时间为t2,记第一次相切时为位置一,点O1,A1,C1共线时位置二,第二次相切时为位置三,由题意知,从位置一到位置二所用时间与位置二到位置三所用时间相等,∴+2﹣(2﹣)=t2﹣(+2),解得:t2=2+2,综上所述,当d<2时,t的取值范围是:2﹣<t<2+2.5.解:(1)证明:如图1,∵CE为⊙O的直径,∴∠CFE=∠CGE=90∵EG⊥EF,∴∠FEG=90°.∴∠CFE=∠CGE=∠FEG=90°.∴四边形EFCG是矩形.(2)①存在.连接OD,如图2①,∵四边形ABCD是矩形,∴∠A=∠ADC=90°.∵点O是CE的中点,∴OD=OC.∴点D在⊙O上.∵∠FCE=∠FDE,∠A=∠CFE=90°,∴△CFE∽△DAB.∴=()2.∵AD=4,AB=3,∴BD=5,S△CFE=()2•S△DAB=××3×4=.∴S矩形ABCD=2S△CFE=.∵四边形EFCG是矩形,∴FC∥EG.∴∠FCE=∠CEG.∵∠GDC=∠CEG,∠FCE=∠FDE,∴∠GDC=∠FDE.∵∠FDE+∠CDB=90°,∴∠GDC+∠CDB=90°.∴∠GDB=90°Ⅰ.当点E在点A(E′)处时,点F在点B(F′)处,点G在点D (G′处,如图2①所示.此时,CF=CB=4.Ⅱ.当点F在点D(F″)处时,直径F″G″⊥BD,如图2②所示,此时⊙O与射线BD相切,CF=CD=3.Ⅲ.当CF⊥BD时,CF最小,此时点F到达F″′,如图2③所示.S△BCD=BC•CD=BD•CF″′.∴4×3=5×CF″′∴CF″′=.∴≤CF≤4.∵S矩形ABCD=,∴×()2≤S矩形ABCD≤×42.∴≤S矩形ABCD≤12.∴矩形EFCG的面积最大值为12,最小值为.②∵∠GDC=∠FDE=定值,点G的起点为D,终点为G″,∴点G的移动路线是线段DG″.∵∠GDC=∠FDE,∠DCG″=∠A=90°,∴△DCG″∽△DAB.∴=.∴=.∴DG″=.∴点G移动路线的长为.[来6.解:(1)以AB为边,在第一象限内作等边三角形ABC,以点C为圆心,AC为半径作⊙C,交y轴于点P1、P2.在优弧AP1B上任取一点P,如图1,则∠APB=∠ACB=×60°=30°.∴使∠APB=30°的点P有无数个.故答案为:无数.(2)①当点P在y轴的正半轴上时,过点C作CG⊥AB,垂足为G,如图1.∵点A(1,0),点B(5,0),∴OA=1,OB=5.∴AB=4.∵点C为圆心,CG⊥AB,∴AG=BG=AB=2.∴OG=OA+AG=3.∵△ABC是等边三角形,∴AC=BC=AB=4.∴CG===2.∴点C的坐标为(3,2).过点C作CD⊥y轴,垂足为D,连接CP2,如图1,∵点C的坐标为(3,2),∴CD=3,OD=2.∵P1、P2是⊙C与y轴的交点,∴∠AP1B=∠AP2B=30°.∵CP2=CA=4,CD=3,∴DP 2==.∵点C为圆心,CD⊥P1P2,∴P1D=P2D=.∴P 2(0,2﹣).P1(0,2+).②当点P在y轴的负半轴上时,同理可得:P3(0,﹣2﹣).P4(0,﹣2+).综上所述:满足条件的点P的坐标有:(0,2﹣)、(0,2+)、(0,﹣2﹣)、(0,﹣2+).(3)当过点A、B的⊙E与y轴相切于点P时,∠APB最大.①当点P在y轴的正半轴上时,连接EA,作EH⊥x轴,垂足为H,如图2.∵⊙E与y轴相切于点P,∴PE⊥OP∵EH⊥AB,OP⊥OH,∴∠EPO=∠POH=∠EHO=90°.∴四边形OPEH是矩形.∴OP=EH,PE=OH=3∴EA=3.∵∠EHA=90°,AH=2,EA=3,∴EH===∴OP=∴P(0,).②当点P在y轴的负半轴上时,同理可得:P(0,﹣).理由:①若点P在y轴的正半轴上,在y轴的正半轴上任取一点M(不与点P重合),连接MA,MB,交⊙E于点N,连接NA,如图2所示.∵∠ANB是△AMN的外角,∴∠ANB>∠AMB.∵∠APB=∠ANB,∴∠APB>∠AMB.②若点P在y轴的负半轴上,同理可证得:∠APB>∠AMB.综上所述:当点P在y轴上移动时,∠APB有最大值,此时点P的坐标为(0,)和(0,﹣).7.解答:证明:(1)如图,连接PM,PN,∵⊙P与x轴,y轴分别相切于点M和点N,∴PM⊥MF,PN⊥ON且PM=PN,∴∠PMF=∠PNE=90°且∠NPM=90°,∵PE⊥PF,∠NPE=∠MPF=90°﹣∠MPE,在△PMF和△PNE中,,∴△PMF≌△PNE(ASA),∴PE=PF,(2)解:①当t>1时,点E在y轴的负半轴上,如图,由(1)得△PMF≌△PNE,∴NE=MF=t,PM=PN=1,∴b=OF=OM+MF=1+t,a=NE﹣ON=t﹣1,∴b﹣a=1+t﹣(t﹣1)=2,∴b=2+a,②0<t≤1时,如图2,点E在y轴的正半轴或原点上,同理可证△PMF≌△PNE,∴b=OF=OM+MF=1+t,a=ON﹣NE=1﹣t,∴b+a=1+t+1﹣t=2,∴b=2﹣a,(3)如图3,(Ⅰ)当1<t<2时,∵F(1+t,0),F和F′关于点M对称,∴F′(1﹣t,0)∵经过M、E和F′三点的抛物线的对称轴交x轴于点Q,∴Q(1﹣t,0)∴OQ=1﹣t,由(1)得△PMF≌△PNE∴NE=MF=t,∴OE=t﹣1当△OEQ∽△MPF∴=∴=,解得,t=,当△OEQ∽△MFP时,∴=,=,解得,t=,(Ⅱ)如图4,当t>2时,∵F(1+t,0),F和F′关于点M对称,∴F′(1﹣t,0)∵经过M、E和F′三点的抛物线的对称轴交x轴于点Q,∴Q(1﹣t,0)∴OQ=t﹣1,由(1)得△PMF≌△PNE∴NE=MF=t,∴OE=t﹣1当△OEQ∽△MPF∴=∴=,无解,当△OEQ∽△MFP时,∴=,=,解得,t=2±,所以当t=,t=,t=2±时,使得以点Q、O、E为顶点的三角形与以点P、M、F为顶点的三角形相似.8.答::(1)∵DF⊥AB,EF⊥AC,∴∠BDF=∠CEF=90°.∵△ABC为等边三角形,∴∠B=∠C=60°.∵∠BDF=∠CEF,∠B=∠C,∴△BDF∽△CEF.(2)∵∠BDF=90°,∠B=60°,∴sin60°==,cos60°==.∵BF=m,∴DF=m,BD=.∴AD=4﹣.∴S△ADF=AD•DF=×(4﹣)×m=﹣m2+m.同理:S△AEF=AE•EF=×(4﹣)×(4﹣m)=﹣m2+2.∴S=S△ADF+S△AEF=﹣m2+m+2=﹣(m2﹣4m﹣8)=﹣(m﹣2)2+3.其中0<m<4.∵﹣<0,0<2<4,∴当m=2时,S取最大值,最大值为3.∴S与m之间的函数关系为:S═﹣(m﹣2)2+3(其中0<m<4).当m=2时,S取到最大值,最大值为3.(3)如图2,∵A、D、F、E四点共圆,∴∠EDF=∠EAF.∵∠ADF=∠AEF=90°,∴AF是此圆的直径.∵tan∠EDF=,∴tan∠EAF=.∴=.∴=tan60°=.设EC=x,则EF=x,EA=2x.∵AC=a,∴2x+x=A.∴x=.∴EF=,AE=.∵∠AEF=90°,∴AF==.∴此圆直径长为.9.解答:解:(1)连接OA,过点B作BH⊥AC,垂足为H,如图1所示.∵AB与⊙O相切于点A,∴OA⊥AB.∴∠OAB=90°.∵OQ=QB=1,∴OA=1.∴AB===.∵△ABC是等边三角形,∴AC=AB=,∠CAB=60°.∵sin∠HAB=,∴HB=AB•sin∠HAB=×=.∴S△ABC=AC•BH=××=.∴△ABC的面积为.(2)①当点A与点Q重合时,线段AB与圆O只有一个公共点,此时α=0°;②当线段A1B所在的直线与圆O相切时,如图2所示,线段A1B与圆O只有一个公共点,此时OA1⊥BA1,OA1=1,OB=2,∴cos∠A1OB==.∴∠A1OB=60°.∴当线段AB与圆O只有一个公共点(即A点)时,α的范围为:0°≤α≤60°.(3)连接MQ,如图3所示.∵PQ是⊙O的直径,∴∠PMQ=90°.∵OA⊥PM,∴∠PDO=90°.∴∠PDO=∠PMQ.∴△PDO∽△PMQ.∴==∵PO=OQ=PQ.∴PD=PM,OD=MQ.同理:MQ=AO,BM=AB.∵AO=1,∴MQ=.∴OD=.∵∠PDO=90°,PO=1,OD=,∴PD=.∴PM=.∴DM=.∵∠ADM=90°,AD=A0﹣OD=,∴AM===.∵△ABC是等边三角形,∴AC=AB=BC,∠CAB=60°.∵BM=AB,∴AM=BM.∴CM⊥AB.∵AM=,∴BM=,AB=.∴AC=.∴CM===.∴CM的长度为.10.解答:(1)证明:∵CD是⊙O的直径,∴∠DFC=90°,∵四边形ABCD是平行四边形,∴∠A=∠C,AD∥BC,∴∠ADF=∠DFC=90°,∵DE为⊙O的切线,∴DE⊥DC,∴∠EDC=90°,∴∠ADF=∠EDC=90°,∴∠ADE=∠CDF,∵∠A=∠C,∴△ADE∽△CDE;(2)解:∵CF:FB=1:2,∴设CF=x,FB=2x,则BC=3x,∵AE=3EB,∴设EB=y,则AE=3y,AB=4y,∵四边形ABCD是平行四边形,∴AD=BC=3x,AB=DC=4y,∵△ADE∽△CDF,∴=,∴=,∵x、y均为正数,∴x=2y,∴BC=6y,CF=2y,在Rt△DFC中,∠DFC=90°,由勾股定理得:DF===2y,∴⊙O的面积为π•(DC)2=π•DC2=π(4y)2=4πy2,四边形ABCD的面积为BC•DF=6y•2y=12y2,11. (1)证明:∵,∴∠DPF=180°﹣∠APD=180°﹣所对的圆周角=180°﹣所对的圆周角=所对的圆周角=∠APC.在△PAC和△PDF中,,∴△PAC∽△PDF.(2)解:如图1,连接PO,则由,有PO⊥AB,且∠PAB=45°,△APO、△AEF都为等腰直角三角形.在Rt△ABC中,∵AC=2BC,∴AB2=BC2+AC2=5BC2,∵AB=5,∴BC=,∴AC=2,∴CE=AC•sin∠BAC=AC•=2•=2,AE=AC•cos∠BAC=AC•=2•=4,∵△AEF为等腰直角三角形,∴EF=AE=4,∴FD=FC+CD=(EF﹣CE)+2CE=EF+CE=4+2=6.∵△APO为等腰直角三角形,AO=•AB=,∴AP=.∵△PDF∽△PAC,∴,∴,∴PD=.(3)解:如图2,过点G作GH⊥AB,交AC于H,连接HB,以HB为直径作圆,连接CG并延长交⊙O于Q,∵HC⊥CB,GH⊥GB,∴C、G都在以HB为直径的圆上,∴∠HBG=∠ACQ,∵C、D关于AB对称,G在AB上,∴Q、P关于AB对称,∴,∴∠PCA=∠ACQ,∴∠HBG=∠PCA.∵△PAC∽△PDF,∴∠PCA=∠PFD=∠AFD,∴y=tan∠AFD=tan∠PCA=tan∠HBG=.∵HG=tan∠HAG•AG=tan∠BAC•AG==,∴y==x.12. 解答:解:(1)证明:连接OH,如图①所示.∵四边形ABCD是矩形,∴∠ADC=∠BAD=90°,BC=AD,AB=CD.∵HP∥AB,∴∠ANH+∠BAD=180°.∴∠ANH=90°.∴HN=PN=HP=.∵OH=OA=,∴sin∠HON==.∴∠HON=60°∵BD与⊙O相切于点H,∴OH⊥BD.∴∠HDO=30°.∴OD=2.∴AD=3.∴BC=3.∵∠BAD=90°,∠BDA=30°.∴tan∠BDA===.∴AB=3.∵HP=3,∴AB=HP.∵AB∥HP,∴四边形ABHP是平行四边形.∵∠BAD=90°,AM是⊙O的直径,∴BA与⊙O相切于点A.∵BD与⊙O相切于点H,∴BA=BH.∴平行四边形ABHP是菱形.(2)△EFG的直角顶点G能落在⊙O上.如图②所示,点G落到AD上.∵EF∥BD,∴∠FEC=∠CDB.∵∠CDB=90°﹣30°=60°,∴∠CEF=60°.由折叠可得:∠GEF=∠CEF=60°.∴∠GED=60°.∵CE=x,∴GE=CE=x.ED=DC﹣CE=3﹣x.∴cos∠GED===.∴x=2.∴GE=2,ED=1.∴GD=.∴OG=AD﹣AO﹣GD=3﹣﹣=.∴OG=OM.∴点G与点M重合.此时△EFG的直角顶点G落在⊙O上,对应的x的值为2.∴当△EFG的直角顶点G落在⊙O上时,对应的x的值为2.(3)①如图①,在Rt△EGF中,tan∠FEG===.∴FG=x.∴S=GE•FG=x•x=x2.②如图③,ED=3﹣x,RE=2ED=6﹣2x,GR=GE﹣ER=x﹣(6﹣2x)=3x﹣6.∵tan∠SRG===,∴SG=(x﹣2).∴S △SGR=SG•RG=•(x﹣2)•(3x﹣6).=(x﹣2)2.∵S△GEF=x2,∴S=S△GEF﹣S△SGR=x2﹣(x﹣2)2.=﹣x2+6x﹣6.综上所述:当0≤x≤2时,S=x2;当2<x≤3时,S=﹣x2+6x﹣6.当FG与⊙O相切于点T时,延长FG交AD于点Q,过点F作FK⊥AD,垂足为K,如图④所示.∵四边形ABCD是矩形,∴BC∥AD,∠ABC=∠BAD=90°∴∠AQF=∠CFG=60°.∵OT=,∴OQ=2.∴AQ=+2.∵∠FKA=∠ABC=∠BAD=90°,∴四边形ABFK是矩形.∴FK=AB=3,AK=BF=3﹣x.∴KQ=AQ﹣AK=(+2)﹣(3﹣x)=2﹣2+x.在Rt△FKQ中,tan∠FQK==.∴FK=QK.∴3=(2﹣2+x).解得:x=3﹣.∵0≤3﹣≤2,∴S=x2=×(3﹣)2=﹣6.∴FG与⊙O相切时,S的值为﹣6.13解答:(1)证明:连结OC、OE,OE交AB于H,如图1,∵E是弧AB的中点,∴OE⊥AB,∴∠EHF=90°,∴∠HEF+∠HFE=90°,而∠HFE=∠CFD,∴∠HEF+∠CFD=90°,∵DC=DF,∴∠CFD=∠DCF,而OC=OE,∴∠OCE=∠OEC,∴∠OCE+∠DCE=∠HEF+∠CFD=90°,∴OC⊥CD,∴直线DC与⊙O相切;(2)解:连结BC,∵E是弧AB的中点,∴弧AE=弧BE,∴∠ABE=∠BCE,而∠FEB=∠BEC,∴△EBF∽△ECB,∴EF:BE=BE:EC,∴EF•EC=BE2=(r)2=r2;(3)解:如图2,连结OA,∵弧AE=弧BE,∴AE=BE=r,设OH=x,则HE=r﹣x,在Rt△OAH中,AH2+OH2=OA2,即AH2+x2=r2,在Rt△EAH中,AH2+EH2=EA2,即AH2+(r﹣x)2=(r)2,∴x2﹣(r﹣x)2=r2﹣(r)2,即得x=r,∴HE=r﹣r=r,在Rt△OAH中,AH===,∵OE⊥AB,∴AH=BH,而F是AB的四等分点,∴HF=AH=,在Rt△EFH中,EF===r,∵EF•EC=r2,∴r•EC=r2,∴EC=r.14. 解:(1)连结O1A、O2B,如图,设⊙O1的半径为r,⊙O2的半径为R,∵⊙O1与⊙O2外切与点D,∴直线O1O2过点D,∴MO2=MD+O2D=4+R,∵直线l与两圆分别相切于点A、B,∴O1A⊥AB,O2B⊥AB,∵tan∠AM01=,∴∠AM01=30°,在Rt△MBO2中,MO2=O2B=2R,∴4+R=2R,解得R=4,即⊙O2的半径为4;(2)∵∠AM02=30°,∴∠MO2B=60°,而O2B=O2D,∴△O2BD为等边三角形,∴BD=O2B=4,∠DBO2=60°,∴∠ABD=30°,∵∠AM01=30°,∴∠MO1A=60°,而O1A=O1D,∴∠O1AD=∠O1DA,∴∠O1AD=∠MO1A=30°,∴∠DAB=60°,∴∠ADB=180°﹣30°﹣60°=90°,在Rt△ABD中,AD=BD=4,AB=2AD=8,∴△ADB内切圆的半径===2﹣2,∴△ADB内切圆的面积=π•(2﹣2)2=(16﹣8)π;(3)存在.在Rt△MBO2中,MB=O2B=×4=12,当△MO2P∽△MDB时,=,即=,解得O2P=8;当△MO2P∽△MBD时,=,即=,解得O2P=8,综上所述,满足条件的O2P的长为8或8.15. 解:(1)连接PA,如图1所示.∵PO⊥AD,∴AO=DO.∵AD=2,∴OA=.∵点P坐标为(﹣1,0),∴OP=1.∴PA==2.∴BP=CP=2.∴B(﹣3,0),C(1,0).(2)连接AP,延长AP交⊙P于点M,连接MB、MC.如图2所示,线段MB、MC即为所求作.四边形ACMB是矩形.理由如下:∵△MCB由△ABC绕点P旋转180°所得,∴四边形ACMB是平行四边形.∵BC是⊙P的直径,∴∠CAB=90°.∴平行四边形ACMB是矩形.过点M作MH⊥BC,垂足为H,如图2所示.在△MHP和△AOP中,∵∠MHP=∠AOP,∠HPM=∠OPA,MP=AP,∴△MHP≌△AOP.∴MH=OA=,PH=PO=1.∴OH=2.∴点M的坐标为(﹣2,).(3)在旋转过程中∠MQG的大小不变.∵四边形ACMB是矩形,∴∠BMC=90°.∵EG⊥BO,∴∠BGE=90°.∴∠BMC=∠BGE=90°.∵点Q是BE的中点,∴QM=QE=QB=QG.∴点E、M、B、G在以点Q为圆心,QB为半径的圆上,如图3所示.∴∠MQG=2∠MBG.∵∠COA=90°,OC=1,OA=,∴tan∠OCA==.∴∠OCA=60°.∴∠MBC=∠BCA=60°.∴∠MQG=120°.∴在旋转过程中∠MQG的大小不变,始终等于120°.16.解:(1)如图1,∵AB是⊙O的直径,∴∠AEB=90°.∴AE⊥BC.(2)如图1,∵BF与⊙O相切,∴∠ABF=90°.∴∠CBF=90°﹣∠ABE=∠BAE.∵∠BAF=2∠CBF.∴∠BAF=2∠BAE.∴∠BAE=∠CAE.∴∠CBF=∠CAE.∵CG⊥BF,AE⊥BC,∴∠CGB=∠AEC=90°.∵∠CBF=∠CAE,∠CGB=∠AEC,∴△BCG∽△ACE.(3)连接BD,如图2所示.∵∠DAE=∠DBE,∠DAE=∠CBF,∴∠DBE=∠CBF.∵AB是⊙O的直径,∴∠ADB=90°.∴BD⊥AF.∵∠DBC=∠CBF,BD⊥AF,CG⊥BF,∴CD=CG.∵∠F=60°,GF=1,∠CGF=90°,∴tan∠F==CG=tan60°=∵CG=,∴CD=.∵∠AFB=60°,∠ABF=90°,∴∠BAF=30°.∵∠ADB=90°,∠BAF=30°,∴AB=2BD.∵∠BAE=∠CAE,∠AEB=∠AEC,∴∠ABE=∠ACE.∴AB=AC.设⊙O的半径为r,则AC=AB=2r,BD=r.∵∠ADB=90°,∴AD=r.∴DC=AC﹣AD=2r﹣r=(2﹣)r=.∴r=2+3.∴⊙O的半径长为2+3.17.解答:解:(1)当k=1时,抛物线解析式为y=x2﹣1,直线解析式为y=x+1.联立两个解析式,得:x2﹣1=x+1,解得:x=﹣1或x=2,当x=﹣1时,y=x+1=0;当x=2时,y=x+1=3,∴A(﹣1,0),B(2,3).(2)设P(x,x2﹣1).如答图2所示,过点P作PF∥y轴,交直线AB于点F,则F(x,x+1).∴PF=y F﹣y P=(x+1)﹣(x2﹣1)=﹣x2+x+2.S△ABP=S△PFA+S△PFB=PF(xF﹣xA)+PF(xB﹣xF)=PF(xB﹣xA)=PF∴S△ABP=(﹣x2+x+2)=﹣(x﹣)2+当x=时,yP=x2﹣1=﹣.∴△ABP面积最大值为,此时点P坐标为(,﹣).(3)设直线AB:y=kx+1与x轴、y轴分别交于点E、F,则E(﹣,0),F(0,1),OE=,OF=1.在Rt△EOF中,由勾股定理得:EF==.令y=x2+(k﹣1)x﹣k=0,即(x+k)(x﹣1)=0,解得:x=﹣k或x=1.∴C(﹣k,0),OC=k.假设存在唯一一点Q,使得∠OQC=90°,如答图3所示,则以OC为直径的圆与直线AB相切于点Q,根据圆周角定理,此时∠OQC=90°.设点N为OC中点,连接NQ,则NQ⊥EF,NQ=CN=ON=.∴EN=OE﹣ON=﹣.∵∠NEQ=∠FEO,∠EQN=∠EOF=90°,∴△EQN∽△EOF,∴,即:,解得:k=±,∵k>0,∴k=.∴存在唯一一点Q,使得∠OQC=90°,此时k=.18.解:(1)设抛物线为y=a(x﹣4)2﹣1,∵抛物线经过点A(0,3),∴3=a(0﹣4)2﹣1,;∴抛物线为;(3分)(2)相交.证明:连接CE,则CE⊥BD,当时,x1=2,x2=6.A(0,3),B(2,0),C(6,0),对称轴x=4,∴OB=2,AB==,BC=4,∵AB⊥BD,∴∠OAB+∠OBA=90°,∠OBA+∠EBC=90°,∴△AOB∽△BEC,∴=,即=,解得CE=,∵>2,∴抛物线的对称轴l与⊙C相交.(7分)(3)如图,过点P作平行于y轴的直线交AC于点Q;可求出AC的解析式为;(8分)设P点的坐标为(m,),则Q点的坐标为(m,);∴PQ=﹣m+3﹣(m2﹣2m+3)=﹣m2+m.∵S△PAC=S△PAQ+S△PCQ=×(﹣m2+m)×6=﹣(m﹣3)2+;∴当m=3时,△PAC的面积最大为;此时,P点的坐标为(3,).(10分)19、【解】:(1)如图1,设⊙O与AB、BC、CA的切点分别为D、E、F,连接OD、OE、OF,则AD=AF,BD=BE,CE=CF.∵⊙O为△ABC的内切圆,∴OF⊥AC,OE⊥BC,即∠OFC=∠OEC=90°.∵∠C=90°,∴四边形CEOF是矩形,∵OE=OF,∴四边形CEOF是正方形.设⊙O的半径为rcm,则FC=EC=OE=rcm,在Rt△ABC中,∠ACB=90°,AC=4cm,BC=3cm,∴AB==5cm.∵AD=AF=AC﹣FC=4﹣r,BD=BE=BC﹣EC=3﹣r,∴4﹣r+3﹣r=5,解得r=1,即⊙O的半径为1cm.(2)如图2,过点P作PG⊥BC,垂直为G.∵∠PGB=∠C=90°,∴PG∥AC.∴△PBG∽△ABC,∴.∵BP=t,∴PG=,BG=.若⊙P与⊙O相切,则可分为两种情况,⊙P与⊙O外切,⊙P与⊙O内切.①当⊙P与⊙O外切时,如图3,连接OP,则OP=1+t,过点P作PH⊥OE,垂足为H.∵∠PHE=∠HEG=∠PGE=90°,∴四边形PHEG是矩形,∴HE=PG,PH=CE,∴OH=OE﹣HE=1﹣,PH=GE=BC﹣EC﹣BG=3﹣1﹣=2﹣.在Rt△OPH中,由勾股定理,,解得t=.②当⊙P与⊙O内切时,如图4,连接OP,则OP=t﹣1,过点O作OM⊥PG,垂足为M.∵∠MGE=∠OEG=∠OMG=90°,∴四边形OEGM是矩形,∴MG=OE,OM=EG,∴PM=PG﹣MG=,OM=EG=BC﹣EC﹣BG=3﹣1﹣=2﹣,在Rt△OPM中,由勾股定理,,解得t=2.综上所述,⊙P与⊙O相切时,t=s或t=2s.20. :(1)如图2,连接OA、OB、OC、OD.∵S=S△AOB+S△BOC+S△COD+S△AOD=+++=,∴r=.(2)如图3,过点D作DE⊥AB于E,∵梯形ABCD为等腰梯形,∴AE===5,∴EB=AB﹣AE=21﹣5=16.在Rt△AED中,∵AD=13,AE=5,∴DE=12,∴DB==20.∵S△ABD===126,S△CDB===66,∴===.。

相关文档
最新文档