贵州省遵义市第四中学2020-2021学年高一下学期期末考试数学试题 答案和解析
2020-2021学年必修二高一数学下学期期末第八章 立体几何初步(章节专练解析版)
第八章 立体几何初步(章节复习专项训练)一、选择题1.如图,在棱长为1正方体ABCD 中,点E ,F 分别为边BC ,AD 的中点,将ABF ∆沿BF 所在的直线进行翻折,将CDE ∆沿DE 所在直线进行翻折,在翻折的过程中,下列说法错误..的是A .无论旋转到什么位置,A 、C 两点都不可能重合B .存在某个位置,使得直线AF 与直线CE 所成的角为60︒C .存在某个位置,使得直线AF 与直线CE 所成的角为90︒D .存在某个位置,使得直线AB 与直线CD 所成的角为90︒【答案】D【详解】解:过A 点作AM⊥BF 于M ,过C 作CN⊥DE 于N 点在翻折过程中,AF 是以F 为顶点,AM 为底面半径的圆锥的母线,同理,AB ,EC ,DC 也可以看成圆锥的母线;在A 中,A 点轨迹为圆周,C 点轨迹为圆周,显然没有公共点,故A 正确;在B 中,能否使得直线AF 与直线CE 所成的角为60°,又AF ,EC 分别可看成是圆锥的母线,只需看以F 为顶点,AM 为底面半径的圆锥的轴截面的顶角是否大于等于60°即可,故B 正确;在C 中,能否使得直线AF 与直线CE 所成的角为90°,只需看以F 为顶点,AM 为底面半径的圆锥的轴截面的顶角是否大于等于90°即可,故C 正确;在D 中,能否使得直线AB 与直线CD 所成的角为90︒,只需看以B 为顶点,AM 为底面半径的圆锥的轴截面的顶角是否大于等于90°即可,故D 不成立;故选D .2.如图所示,多面体ABCDEF 中,已知平面ABCD 是边长为3的正方形,//EF AB ,32EF =,EF 到平面ABCD 的距离为2,则该多面体的体积V 为( )A .92B .5C .6D .152【答案】D【详解】解法一:如图,连接EB ,EC ,AC ,则213263E ABCD V -=⨯⨯=.2AB EF =,//EF AB2EAB BEF S S ∆∆∴=.12F EBC C EFB C ABE V V V ---=∴= 11132222E ABC E ABCD V V --==⨯=. E ABCDF EBC V V V --∴=+315622=+=. 解法二:如图,设G ,H 分别为AB ,DC 的中点,连接EG ,EH ,GH ,则//EG FB ,//EH FC ,//GH BC ,得三棱柱EGH FBC -,由题意得123E AGHD AGHD V S -=⨯ 1332332=⨯⨯⨯=, 133933332222GH FBC B EGH E BGH E GBCH E AGHD V V V V V -----===⨯==⨯=⨯, 915322E AGHD EGH FBC V V V --=+=+=∴. 解法三:如图,延长EF 至点M ,使3EM AB ==,连接BM ,CM ,AF ,DF ,则多面体BCM ADE -为斜三棱柱,其直截面面积3S =,则9BCM ADE V S AB -=⋅=.又平面BCM 与平面ADE 平行,F 为EM 的中点,F ADE F BCM V V --∴=,2F BCM F ABCD BCM ADE V V V ---∴+=, 即12933233F BCM V -=-⨯⨯⨯=, 32F BCM V -∴=,152BCM ADE F BCM V V V --=-=∴. 故选:D 3.下列命题中正确的是A .若a ,b 是两条直线,且a ⊥b ,那么a 平行于经过b 的任何平面B .若直线a 和平面α满足a ⊥α,那么a 与α内的任何直线平行C .平行于同一条直线的两个平面平行D .若直线a ,b 和平面α满足a ⊥b ,a ⊥α,b 不在平面α内,则b ⊥α【答案】D【详解】解:如果a ,b 是两条直线,且//a b ,那么a 平行于经过b 但不经过a 的任何平面,故A 错误; 如果直线a 和平面α满足//a α,那么a 与α内的任何直线平行或异面,故B 错误;如果两条直线都平行于同一个平面,那么这两条直线可能平行,也可能相交,也可能异面,故C 错误; D 选项:过直线a 作平面β,设⋂=c αβ,又//a α//a c ∴又//a b//b c ∴又b α⊂/且c α⊂//b α∴.因此D 正确.故选:D .4.如图,正方体ABCD -A 1B 1C 1D 1中,O 为底面ABCD 的中心,M 为棱BB 1的中点,则下列结论中错误的是( )A .D 1O⊥平面A 1BC 1B .MO⊥平面A 1BC 1C .二面角M -AC -B 等于90°D .异面直线BC 1与AC 所成的角等于60°【答案】C【详解】对于A ,连接11B D ,交11AC 于E ,则四边形1DOBE 为平行四边形 故1D O BE1D O ⊄平面11,A BC BE ⊂平面111,A BC DO ∴平面11A BC ,故正确对于B ,连接1B D ,因为O 为底面ABCD 的中心,M 为棱1BB 的中点,1MO B D ∴,易证1B D ⊥平面11A BC ,则MO ⊥平面11A BC ,故正确;对于C ,因为,BO AC MO AC ⊥⊥,则MOB ∠为二面角M AC B --的平面角,显然不等于90︒,故错误对于D ,1111,AC AC AC B ∴∠为异面直线1BC 与AC 所成的角,11AC B ∆为等边三角形,1160AC B ∴∠=︒,故正确故选C5.如图,在长方体1111ABCD A BC D -中,E 、F 分别是棱1AA 和1BB 的中点,过EF 的平面EFGH 分别交BC 和AD 于点G 、H ,则GH 与AB 的位置关系是A .平行B .相交C .异面D .平行或异面【答案】A【详解】 在长方体1111ABCD A BC D -中,11//AA BB ,E 、F 分别为1AA 、1BB 的中点,//AE BF ∴,∴四边形ABFE 为平行四边形,//EF AB ∴, EF ⊄平面ABCD ,AB 平面ABCD ,//EF ∴平面ABCD ,EF ⊂平面EFGH ,平面EFGH平面ABCD GH =,//EF GH ∴, 又//EF AB ,//GH AB ∴,故选A.6.如图所示,点S 在平面ABC 外,SB⊥AC ,SB=AC=2,E 、F 分别是SC 和AB 的中点,则EF 的长是A .1 BC .2D .12【答案】B【详解】取BC 的中点D ,连接ED 与FD⊥E 、F 分别是SC 和AB 的中点,点D 为BC 的中点⊥ED⊥SB ,FD⊥AC,而SB⊥AC ,SB=AC=2则三角形EDF 为等腰直角三角形,则ED=FD=1即故选B.7.如图,AB 是圆O 的直径,PA 垂直于圆O 所在的平面,C 是圆O 上一点(不同于A ,B 两点),且PA AC =,则二面角P BC A --的大小为A .60°B .30°C .45°D .15°【答案】C【详解】 解:由条件得,PA BC AC BC ⊥⊥.又PAAC A =,PA ⊂平面PAC ,AC ⊂平面PAC ,所以BC ⊥平面PAC .又因为PC ⊂平面PAC , 所以BC PC ⊥.所以PCA ∠为二面角P BC A --的平面角.在Rt PAC ∆中,由PA AC =得45PCA ︒∠=. 故选:C .8.在空间四边形ABCD 中,若AD BC BD AD ⊥⊥,,则有A .平面ABC ⊥平面ADCB .平面ABC ⊥平面ADBC .平面ABC ⊥平面DBCD .平面ADC ⊥平面DBC【答案】D【详解】 由题意,知AD BC BD AD ⊥⊥,,又由BC BD B =,可得AD ⊥平面DBC ,又由AD ⊂平面ADC ,根据面面垂直的判定定理,可得平面ADC ⊥平面DBC9.直三棱柱111ABC A B C -中,若90BAC ∠=︒,1AB AC AA ==,则异面直线1BA 与1AC 所成的角等于 A .30°B .45°C .60°D .90°【答案】C【详解】本试题主要考查异面直线所成的角问题,考查空间想象与计算能力.延长B 1A 1到E ,使A 1E =A 1B 1,连结AE ,EC 1,则AE ⊥A 1B ,⊥EAC 1或其补角即为所求,由已知条件可得⊥AEC 1为正三角形,⊥⊥EC 1B 为60,故选C .10.已知两个平面相互垂直,下列命题⊥一个平面内已知直线必垂直于另一个平面内的任意一条直线⊥一个平面内已知直线必垂直于另一个平面内的无数条直线⊥一个平面内任意一条直线必垂直于另一个平面⊥过一个平面内任意一点作交线的垂线,则此垂线必垂直于另一个平面其中正确命题个数是( )A .1B .2C .3D .4 【答案】A【详解】由题意,对于⊥,当两个平面垂直时,一个平面内的不垂直于交线的直线不垂直于另一个平面内的任意一条直线,故⊥错误;对于⊥,设平面α∩平面β=m ,n⊥α,l⊥β,⊥平面α⊥平面β, ⊥当l⊥m 时,必有l⊥α,而n⊥α, ⊥l⊥n ,而在平面β内与l 平行的直线有无数条,这些直线均与n 垂直,故一个平面内的已知直线必垂直于另一个平面内的无数条直线,即⊥正确;对于⊥,当两个平面垂直时,一个平面内的任一条直线不不一定垂直于另一个平面,故⊥错误;对于⊥,当两个平面垂直时,过一个平面内任意一点作交线的垂线,若该直线不在第一个平面内,则此直线不一定垂直于另一个平面,故⊥错误;故选A .11.在空间中,给出下列说法:⊥平行于同一个平面的两条直线是平行直线;⊥垂直于同一条直线的两个平面是平行平面;⊥若平面α内有不共线的三点到平面β的距离相等,则//αβ;⊥过平面α的一条斜线,有且只有一个平面与平面α垂直.其中正确的是( )A .⊥⊥B .⊥⊥C .⊥⊥D .⊥⊥ 【答案】B【详解】⊥平行于同一个平面的两条直线可能平行、相交或异面,不正确;易知⊥正确;⊥若平面α内有不共线的三点到平面β的距离相等,则α与β可能平行,也可能相交,不正确;易知⊥正确.故选B.12.下列结论正确的选项为( )A .梯形可以确定一个平面;B .若两条直线和第三条直线所成的角相等,则这两条直线平行;C .若l 上有无数个点不在平面α内,则l⊥αD .如果两个平面有三个公共点,则这两个平面重合.【答案】A【详解】因梯形的上下底边平行,根据公理3的推论可知A 正确.两条直线和第三条直线所成的角相等,这两条直线相交、平行或异面,故B 错.当直线和平面相交时,该直线上有无数个点不在平面内,故C 错.如果两个平面有三个公共点且它们共线,这两个平面可以相交,故D 错.综上,选A .13.已知圆柱的轴截面为正方形,且圆柱的体积为54π,则该圆柱的侧面积为A .27πB .36πC .54πD .81π 【答案】B【详解】设圆柱的底面半径为r .因为圆柱的轴截面为正方形,所以该圆柱的高为2r .因为该圆柱的体积为54π,23π2π54πr h r ==,解得3r =,所以该圆柱的侧面积为2π236r r ⨯=π.14.用与球心距离为1的平面去截球,所得截面圆的面积为π,则球的表面积为A .8π3B .32π3C .8πD 【答案】C【详解】设球的半径为R ,则截面圆的半径为,⊥截面圆的面积为S =π2=(R 2-1)π=π,⊥R 2=2,⊥球的表面积S =4πR 2=8π.故选C. 15.已知圆柱的侧面展开图是一个边长为2的正方形,那么这个圆柱的体积是A .2πB .1πC .22πD .21π【答案】A【详解】由题意可知,圆柱的高为2,底面周长为2,故半径为1π,所以底面积为1π,所以体积为2π,故选A . 16.用斜二测画法画水平放置的平面图形的直观图,对其中的线段说法不正确的是( )A .原来相交的仍相交B .原来垂直的仍垂直C .原来平行的仍平行D .原来共点的仍共点【答案】B【详解】解:根据斜二测画法作水平放置的平面图形的直观图的规则,与x 轴平行的线段长度不变,与y 轴平行的线段长度变为原来的一半,且倾斜45︒,故原来垂直线段不一定垂直了;故选:B .17.如图所示为一个水平放置的平面图形的直观图,它是底角为45︒,腰和上底长均为1的等腰梯形,则原平面图形为 ( )A .下底长为1B .下底长为1+C .下底长为1D .下底长为1+【答案】C【详解】45A B C '''∠=,1A B ''= 2cos451B C A B A D ''''''∴=+=∴原平面图形下底长为1由直观图还原平面图形如下图所示:可知原平面图形为下底长为1故选:C18.半径为R 的半圆卷成一个圆锥,则它的体积是( )A 3RB 3RC 3RD 3R 【答案】C【详解】设底面半径为r ,则2r R ππ=,所以2R r =.所以圆锥的高2h R ==.所以体积22311332R V r h R ππ⎛⎫=⨯== ⎪⎝⎭.故选:C .19.下列说法中正确的是A .圆锥的轴截面是等边三角形B .用一个平面去截棱锥,一定会得到一个棱锥和一个棱台C .将一个等腰梯形绕着它的较长的底边所在的直线旋转一周,所围成的几何体是由一个圆台和两个圆锥组合而成D .有两个面平行,其余各面都是四边形,并且每相邻两个四边形的公共边都互相平行的几何体叫棱柱【答案】D【详解】圆锥的轴截面是两腰等于母线长的等腰三角形,A 错误;只有用一个平行于底面的平面去截棱锥,才能得到一个棱锥和一个棱台,B 错误;等腰梯形绕着它的较长的底边所在的直线旋转一周的几何体,是由一个圆柱和两个圆锥组合而成,故C 错误;由棱柱的定义得,有两个面平行,其余各面都是四边形,并且每相邻两个四边形的公共边都互相平行的几何体叫棱柱,故D 正确.20.如图,将矩形纸片ABCD 折起一角落()EAF △得到EA F '△,记二面角A EF D '--的大小为π04θθ⎛⎫<< ⎪⎝⎭,直线A E ',A F '与平面BCD 所成角分别为α,β,则( ).A .αβθ+>B .αβθ+<C .π2αβ+>D .2αβθ+> 【答案】A【详解】如图,过A '作A H '⊥平面BCD ,垂足为H ,过A '作A G EF '⊥,垂足为G ,设,,A G d A H h A EG γ'''==∠=,因为A H '⊥平面BCD ,EF ⊂平面BCD ,故A H EF '⊥,而A G A H A '''⋂=,故EF ⊥平面A GH ',而GH ⊂平面A GH ',所以EF GH ⊥,故A GH θ'∠=,又A EH α'∠=,A FH β'∠=.在直角三角形A GE '中,sin d A E γ'=,同理cos d A F γ'=, 故sin sin sin sin sin h h d dαγθγγ===,同理sin sin cos βθγ=, 故222sin sin sin αβθ+=,故2cos 2cos 21sin 22αβθ--=, 整理得到2cos 2cos 2cos 22αβθ+=, 故()()2cos cos cos 22αβαβαβαβθ+--⎡⎤++-⎣⎦+=, 整理得到()()2cos cos cos αβαβθ+-=即()()cos cos cos cos αβθθαβ+=-, 若αβθ+≤,由04πθ<< 可得()cos cos αβθ+≥即()cos 1cos αβθ+≥, 但αβαβθ-<+≤,故cos cos αβθ->,即()cos 1cos θαβ<-,矛盾, 故αβθ+>.故A 正确,B 错误. 由222sin sin sin αβθ+=可得sin sin ,sin sin αθβθ<<,而,,αβθ均为锐角,故,αθβθ<<,22παβθ+<<,故CD 错误.故选:D.二、填空题 21.如图,已知六棱锥P ﹣ABCDEF 的底面是正六边形,P A ⊥平面ABC ,P A =AB ,则下列结论正确的是_____.(填序号)⊥PB ⊥AD ;⊥平面P AB ⊥平面PBC ;⊥直线BC ⊥平面P AE ;⊥sin⊥PDA =.【答案】⊥【详解】⊥P A ⊥平面ABC ,如果PB ⊥AD ,可得AD ⊥AB ,但是AD 与AB 成60°,⊥⊥不成立,过A 作AG ⊥PB 于G ,如果平面P AB ⊥平面PBC ,可得AG ⊥BC ,⊥P A ⊥BC ,⊥BC ⊥平面P AB ,⊥BC ⊥AB ,矛盾,所以⊥不正确;BC 与AE 是相交直线,所以BC 一定不与平面P AE 平行,所以⊥不正确;在R t⊥P AD 中,由于AD =2AB =2P A ,⊥sin⊥PDA =,所以⊥正确;故答案为: ⊥22.如图,已知边长为4的菱形ABCD 中,,60AC BD O ABC ⋂=∠=︒.将菱形ABCD 沿对角线AC 折起得到三棱锥D ABC -,二面角D AC B --的大小为60°,则直线BC 与平面DAB 所成角的正弦值为______.【详解】⊥四边形ABCD 是菱形,60ABC ∠=︒,,,AC OD AC OB OB OD ∴⊥⊥==,DOB ∴∠为二面角D AC B --的平面角,60DOB ∠=︒∴,OBD ∴△是等边三角形.取OB 的中点H ,连接DH ,则,3DH OB DH ⊥=.,,AC OD AC OB OD OB O ⊥⊥⋂=,AC ∴⊥平面,OBD AC DH ∴⊥,又,AC OB O AC ⋂=⊂平面ABC ,OB ⊂平面ABC ,DH ∴⊥平面ABC ,2114333D ABC ABC V S DH -∴=⋅=⨯=△4,AD AB BD OB ====ABD ∴∆的边BD 上的高h =1122ABD S BD h ∴=⋅=⨯=△设点C 到平面ABD 的距离为d ,则13C ABD ABD V S d -=⋅=△.D ABC C ABD V V --=,d ∴=∴=⊥直线BC 与平面DAB 所成角的正弦值为d BC = 23.球的一个内接圆锥满足:球心到该圆锥底面的距离是球半径的一半,则该圆锥的体积和此球体积的比值为_______. 【答案】932或332【解析】设圆锥的底面半径为r,高为h,球的半径为R .由立体几何知识可得,连接圆锥的顶点和底面的圆心,必垂直于底面,且球心在连线所成的直线上.分两种情况分析:(1)球心在连线成构成的线段内因为球心到该圆锥底面的距离是球半径的一半,所以,故圆锥的体积为.该圆锥的体积和此球体积的比值为(2)球心在连线成构成的线段以外因为球心到该圆锥底面的距离是球半径的一半,所以,故圆锥的体积为.该圆锥的体积和此球体积的比值为24.如图,四棱台''''ABCD A B C D -的底面为菱形,P 、Q 分别为''''B C C D ,的中点.若'AA ⊥平面BPQD ,则此棱台上下底面边长的比值为___________.【答案】2 3【详解】连接AC,A′C′,则AC⊥A′C′,即A,C,A′,C′四点共面,设平面ACA′C′与PQ和QB分别均于M,N点,连接MN,如图所示:若AA′⊥平面BPQD,则AA′⊥MN,则AA'NM为平行四边形,即A'M=AN,即31''42A C=AC,''23A BAB∴=,即棱台上下底面边长的比值为23.故答案为23.三、解答题25.如图,在直四棱柱ABCD–A1B1C1D1中,已知底面ABCD是菱形,点P是侧棱C1C的中点.(1)求证:AC 1⊥平面PBD ;(2)求证:BD ⊥A 1P .【答案】(1)见解析;(2)见解析【详解】(1)连接AC 交BD 于O 点,连接OP ,因为四边形ABCD 是正方形,对角线AC 交BD 于点O ,所以O 点是AC 的中点,所以AO =OC .又因为点P 是侧棱C 1C 的中点,所以CP =PC 1,在⊥ACC 1中,11C P AO OC PC==,所以AC 1⊥OP , 又因为OP ⊥面PBD ,AC 1⊥面PBD ,所以AC 1⊥平面PBD .(2)连接A 1C 1.因为ABCD –A 1B 1C 1D 1为直四棱柱,所以侧棱C 1C 垂直于底面ABCD ,又BD ⊥平面ABCD ,所以CC 1⊥BD ,因为底面ABCD 是菱形,所以AC ⊥BD ,又AC ∩CC 1=C ,AC ⊥面AC 1,CC 1⊥面AC 1,所以BD ⊥面AC 1,又因为P ⊥CC 1,CC 1⊥面ACC 1A 1,所以P ⊥面ACC 1A 1,因为A 1⊥面ACC 1A 1,所以A 1P ⊥面AC 1,所以BD ⊥A 1P .26.如图,在直三棱柱111ABC A B C -中,1BC BB =,12BAC BCA ABC ∠=∠=∠,点E 是1A B 与1AB 的交点,D 为AC 的中点.(1)求证:1BC 平面1A BD ;(2)求证:1AB ⊥平面1A BC .【答案】(1)见解析(2)见解析【解析】分析:(1)连结ED ,E 为1A B 与1AB 的交点,E 为1AB 中点,D 为AC 中点,根据三角形中位线定理可得1//ED B C ,由线面平行的判定定理可得结果;(2)由等腰三角形的性质可得AB BC ⊥,由菱形的性质可得11AB A B ⊥,1BB ⊥平面ABC ,可得1BC BB ⊥,可证明1BC AB ⊥,由线面垂直的判定定理可得结果.详解:(1)连结ED ,⊥直棱柱111ABC A B C -中,E 为1A B 与1AB 的交点,⊥E 为1AB 中点,D 为AC 中点,⊥1//ED B C又⊥ED ⊂平面1A BD ,1B C ⊄平面1A BD⊥1//B C 平面1A BD .(2)由12BAC BCA ABC ∠=∠=∠知,AB BC AB BC =⊥ ⊥1BB BC =,⊥四边形11ABB A 是菱形,⊥11AB A B ⊥. ⊥1BB ⊥平面ABC ,BC ⊂平面ABC⊥1BC BB ⊥⊥1AB BB B ⋂=,1,AB BB ⊂平面11ABB A ,⊥BC ⊥平面11ABB A⊥1AB ⊂平面11ABB A ,⊥1BC AB ⊥⊥1BC A B B ⋂=,1,BC A B ⊂平面1A BC ,⊥1AB ⊥平面1A BC27.如图,在四棱锥P ﹣ABCD 中,底面ABCD 是平行四边形,平面PBC ⊥平面ABCD ,⊥BCD 4π=,BC ⊥PD ,PE ⊥BC .(1)求证:PC =PD ;(2)若底面ABCD 是边长为2的菱形,四棱锥P ﹣ABCD 的体积为43,求点B 到平面PCD 的距离.【答案】(1)证明见解析 (2)3. 【详解】 (1)证明:由题意,BC ⊥PD ,BC ⊥PE ,⊥BC ⊥平面PDE ,⊥DE ⊥平面PDE ,⊥BC ⊥DE .⊥⊥BCD 4π=,⊥DEC 2π=,⊥ED =EC ,⊥Rt⊥PED ⊥Rt⊥PEC ,⊥PC =PD .(2)解:由题意,底面ABCD 是边长为2的菱形,则ED =EC =⊥平面PBC ⊥平面ABCD ,PE ⊥BC ,平面PBC ∩平面ABCD =BC ,⊥PE ⊥平面ABCD ,即PE 是四棱锥P ﹣ABCD 的高.⊥V P ﹣ABCD 13=⨯2PE 43=,解得PE = ⊥PC =PD =2.设点B 到平面PCD 的距离为h ,⊥V B ﹣PCD =V P ﹣BCD 12=V P ﹣ABCD 23=, ⊥1132⨯⨯2×2×sin60°×h 23=,⊥h 3=.⊥点B 到平面PCD 的距离是3. 28.如图,在以A 、B 、C 、D 、E 、F 为顶点的五面体中,面ABCD 是等腰梯形,//AB CD ,面ABFE 是矩形,平面ABFE ⊥平面ABCD ,BC CD AE a ===,60DAB ∠=.(1)求证:平面⊥BDF 平面ADE ;(2)若三棱锥B DCF -a 的值. 【答案】(1)证明见解析;(2)1.【详解】(1)因为四边形ABFE 是矩形,故EA AB ⊥,又平面ABFE ⊥平面ABCD ,平面ABFE 平面ABCD AB =,AE ⊂平面ABFE , 所以AE ⊥平面ABCD ,又BD ⊂面ABCD ,所以AE BD ⊥,在等腰梯形ABCD 中,60DAB ∠=,120ADC BCD ︒∴∠=∠=,因BC CD =,故30BDC ∠=,1203090ADB ∠=-=,即AD BD ⊥, 又AE AD A =,故BD ⊥平面ADE ,BD ⊂平面BDF ,所以平面⊥BDF 平面ADE ;(2)BCD 的面积为2213sin12024BCD S a ==, //AE FB ,AE ⊥平面ABCD ,所以,BF ⊥平面ABCD ,2313D BCF F BCD V V a --∴==⋅==,故1a =.。
贵州省遵义市2020-2021学年九年级上学期期末考试理科综合试题(B卷)含答案
遵义市2020-2021学年度第一学期学业水平监测九年级理科综合试卷(B卷)(本试卷分化学与物理两部分,满分150分。
考试时间150分钟)注意事项:1.答题时,务必将自己的姓名、学校、班级、考号填写在答题卡规定的位置上。
2.答选择题时,必须使用2B铅笔将答题卡上对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂。
3.答非选择题时,必须使用0.5毫米黑色签字笔,将答案书写在答题卡规定的位置上。
4.所有题目必须在答题卡上作答,在试卷上答题无效。
5.考试结束后,将试卷和答题卡一并交回。
化学部分(第1-17题为化学题,共60分)可能用到的相对原子质量:H:1 C:12 O:16 S:32 Fe:56 Cu:64 Zn:65一、选择题(本大题共12小题,每小题2分,共24分。
每个小题只有一个正确答案。
)1.远古时期,半坡人从事的下列生活、生产活动中,一定有化学变化的是A.夯筑土屋B.结绳记事C.磨制石器D.烧制彩陶2.甲醛(化学式为CH2O)是室内装潢可能产生的污染物之一,下列说法正确的是A.甲醛由碳、氢、氧三种元素组成B.甲醛由碳原子和水分子构成C.甲醛分子由碳原子、氢分子、氧原子构成D.甲醛由1个碳元素、2个氢元素、1个氧元素组成3.下列关于生铁和钢的叙述正确的是A.生铁和钢都是纯净物B.生铁是铁和碳的化合物C.生铁是炼钢的主要原料D.生铁和钢都是铁的单质4. 规范的实验操作是完成实验的基本保障。
下列操作正确的是A. 闻气味B.称量固体C. 点燃酒精灯D. 滴加液体5.2020年6月23日,我国北斗3号全国卫星导航系统星座部署完美收官。
该导航系统应用了星载氢原子钟和铷原子钟。
下列有关铷的说法正确的是A.属于非金属元素B. 表示核内有37个电子C. 相对原子质量是85.47gD.离子符号是Rb6. 对下列事实的解释合理的是A.活性炭净水---降低水中该镁离子的含量B.金刚石和石墨的性质存在明显差异---碳原子排列方式不同C.CO能燃烧,CO2不能燃烧---构成物质分子的原子种类不同D.6000L O2在加压的情况下装入容积为40L的钢瓶中---氧分子变小7.下列关于H2O2的认识,正确的是37 RbA.组成:由氢气和氧气组成B.性质:与水具有相同的性质C.用途:可用于消毒D.生产:可由氢气燃烧生成8.为探究物质的燃烧条件,某同学进行了如右图所示的实验,下列说法正确的是()A.现象①②说明物质燃烧需要达到一定温度B.现象②③说明物质燃烧需要氧气C.现象③说明红磷不是可燃物D.现象①③说明白磷的着火点比红磷的着火点低9.下列实验方法能达到实验目的的是选项实验目的实验方法A除去MnO2中少量KMnO4加热固体混合物B鉴别氮气和二氧化碳将燃着的木条分别伸入集气瓶中C探究蜡烛中是否含有碳元素点燃蜡烛,将内壁沾有澄清石灰水的烧杯罩在火焰上方D制取少量熟石灰将石灰石加入足量的水中10.将69g酒精(C2H5OH)点燃,酒精燃烧全部变为CO、CO2和H2O,恢复到室温,没得所得气体中氧元素的质量分数为64%,则燃烧所耗氧气的质量为A.136gB. 48gC.112g D . 64g11.碳及含碳物质有如下图所示的转化关系,下列说法不正确的是A.物质Y可以为稀硫酸B.X可以是酒精C.反应①一定是化合反应D.反应②可以是吸热反应12.向质量均为m的锌粉和铁粉中分别滴加100g相同质量分数的稀硫酸,反应过程中产生气体的质量分数关系如图所示,下列叙述正确的是A.反应后均得到无色溶液B.反应结束后两种金属均有剩余C.折线b表示的是铁和稀硫酸反应的情况D.反应结束后所得溶液的质量相等二、非选择题(本大题共5个小题,除特殊标注外,其余每空1分,共36分。
贵州省遵义市南白中学2021-2022学年高一上学期期末考试数学试题(解析版)
【7题答案】
【答案】B
【解析】
【分析】利用平均数和标准差的定义及意义即可求解.
【详解】对于A,因为一队每场比赛平均失球数是1.5,二队每场比赛平均失球数是2.1,
所以平均说来一队比二队防守技术好,故A正确;
对于B,因为二队每场比赛平均失球数是2.1,全年比赛失球个数的标准差为0.4,
【详解】解:对A: ,定义域为R,因为 ,所以函数 为偶函数,
而根据幂函数的性质有 在 上单调递增,所以 在 上单调递减,故选项A错误;
对B: ,定义域为 ,因为 ,所以函数 为奇函数,故选项B错误;
对C: 定义域为 ,因为 ,所以函数 为偶函数,
又 时,根据对数函数的性质有 在 上单调递减,所以 在 上单调递增,故选项C正确;
8.已知函数 的定义域与值域均为 ,则 ()
A. B. C. D. 1
【8题答案】
【答案】A
【解析】
【分析】根据函数的定义域可得 , , ,再根据函数的值域即可得出答案.
【详解】解:∵ 的解集为 ,
∴方程 的解为 或4,
则 , , ,
∴ ,
又因函数的值域为 ,
∴ ,∴ .
故选:A.
二、选择题:本题共4小题,毎小题5分,共20分.在毎小题给出的四个选项中,有多项项是符合题目要求.全部选对得5分,部分选对得2分,有选错的得0分.
所以二队经常失球,故B错误;
对于C,因为一队全年比赛失球个数的标准差为1.1,二队全年比赛失球个数的标准差为0.4,
所以一队有时表现很差,有时表现又非常好,故C正确;
对于D,因为一队全年比赛失球个数的标准差为1.1,二队全年比赛失球个数的标准差为0.4,
贵州省遵义市第四中学2024-2025学年高二上学期入学质量监测数学试题
贵州省遵义市第四中学2024-2025学年高二上学期入学质量监测数学试题一、单选题1.已知集合{}|1A x x =>-,{}|lg B x y x ==,则A B =U ( ) A .RB .()1,0-C .()0,∞+D .()1,-+∞2.若复数z 满足i 2i z +=(i 为虚数单位),则z 的虚部为( ) A .2i -B .2-C .2iD .23.若0.33a =,0.3log 3b =,30.3c =,则a ,b ,c 的大小关系为( ) A .b a c <<B .c b a <<C .c a b <<D .b c a <<4.“幸福指数”是某人对自己目前生活状态满意程度的自我评价指标,常用区间[]0,10内的一个数来表示,该数越接近10表示满意程度越高.现随机抽取10位市民,他们的幸福感指数分别为5,6,7,8,7,9,4,5,8,9,则下列说法错误的是( ) A .该组数据的中位数为7B .该组数据的平均数为7.5C .该组数据的第60百分位数为7.5D .该组数据的极差为55.已知一圆柱的底面半径为2,体积为8π,若该圆柱的底面圆周都在球O 的表面上,则球O 的表面积为( )A .16πB .20πC .32πD .64π6.已知空间中两个不重合的平面α和平面β,直线m ⊂平面α,则“//m β”是“//αβ”的( ) A .充分必要条件 B .充分不必要条件 C .必要不充分条件D .既不充分也不必要条件7.已知向量a r ,b r满足2a =r ,1b =r ,2a b +=r r ,则a b -r r 在b r 上的投影向量为( ) A .12b -rB .12b rC .32b -rD .32b r8.已知函数()f x 为定义在R 上的偶函数,()12,0,x x ∀∈+∞,12x x <,()()1221212x f x x f x x x -<-,且()12f =-,()00f =,则不等式()2f x >-的解集为( )A .[]1,1-B .()()1,00,1-UC .()()1,01,-⋃+∞D .()1,1-二、多选题9.下列函数中最小值为4的是( ) A .4ln ln y x x=+B .4sin sin y x x =+C .2y 22xx-=+ D.2y =10.已知函数()ln ,0e 12,e e x x f x x x ⎧<≤⎪=⎨-+>⎪⎩(其中e 为自然对数的底数),若存在实数123,,x x x 满足()()()123f x f x f x ==,且123x x x <<,则下列说法正确的有( )A .()f x 在()()0,1e,⋃+∞上单调递减B .()f x 的值域为RC .123x x x 的取值范围是()e,2eD .()()10,1f x ∈11.在正四棱台1111ABCD A B C D -中,112AB A B ==1AA =点P 在四边形ABCD 内,且正四棱台1111ABCD A B C D -的各个顶点均在球Q的表面上,1A P = )A .该正四棱台的高为3B .球的表面积为145πC .该正四棱台体积为56D .动点P的轨迹长度是三、填空题12.若 1,22x ⎡⎤∀∈⎢⎥⎣⎦,不等式 210x ax -+≤恒成立,则a 的取值范围为.13.已知D 为ABC V 所在平面内一点,且12AC AD =u u u r u u u r,连接BD ,点E 在线段BD 上且2BE ED =u u u r u u u r .若AC AB AE λμ=+u u u r u u u r u u u r ,则λμ+=.14.已知O 为ABC V 所在平面内一点,且点P 满足23AB AC OP OA AB AC⎛⎫⎪=++ ⎪⎝⎭u u u r u u u r u u u r u u u r u u u r u u u r ,AP AC AC ⋅=u u u r u u u r u u u r ,则BAC ∠=.四、解答题15.已知向量1232a e e =-r u r u u r ,124b e e =+r u r u u r,其中()11,0e =u r ,()20,1e =u r . (1)求a b ⋅r r,a b +r r ;(2)求a b +r r 与a b -r r的夹角θ的余弦值.16.某学校为提高学生对《红楼梦》的了解,举办了“我知红楼”知识竞赛,现从所有答卷卷面成绩中随机抽取100份作为样本,将样本数据(满分100分,成绩均为不低于40分的整数)分成六段: 40,50 , 50,60 ,…, 90,100 ,并作出如图所示的频率分布直方图.(1)求频率分布直方图中a 的值. (2)求样本数据的第62百分位数.(3)已知样本数据落在 50,60 的平均数是52,方差是6;落在 60,70 的平均数是64,方差是3.求这两组数据的总平均数x 和总方差2s .17.如图,已知四棱锥S ABCD -中,底面ABCD 是正方形,E 为侧棱SC 的中点.(1)求证:SA ∥平面EDB ;(2)已知F 为棱AB 上的点,若EF ∥平面SAD ,求证:F 是AB 的中点.18.在ABC V 中,内角,,A B C 所对的边分别是,,a b c ,sin sin sin c AC C B=,c(1)求角B ;(2)若ABC V 为锐角三角形,求ABC V 面积的取值范围;(3)如图,D 为平面上一点,且,,,A B C D 四点共圆,2BC BA =,求四边形ABCD 的周长的最大值.19.已知函数()12221x x f x +-=+.(1)若A 为ABC V 的一个内角,且()sin f A m >恒成立,求实数m 的取值范围;(2)若()()1,00,x ∃∈-∞+∞U ,对于22235log ,log 53x ⎡⎤∀∈⎢⎥⎣⎦,()()12log a f x f x =总成立,求实数a 的取值范围.。
2020-2021学年高一下学期数学(人教A版(2019)必修第二册)(含解析)
(1)求复数z;
(2)若复数z在复平面内所对应的点位于第一象限,且复数m满足 ,求 的最大值和最小值.
20.某中学为了解大数据提供的个性化作业质量情况,随机访问50名学生,根据这50名学生对个性化作业的评分,绘制频率分布直方图(如图所示),其中样本数据分组区间 、 、…、 、 .
【详解】
∵向量 ,
∴ ,又 ,
∴ ,
∴ .
故选:B.
6.D
【分析】
设出正六棱柱底面边长为 ,可知正六棱柱的高为 ,再通过正六棱锥与正六棱柱的侧面积之比为 可得正六棱锥的高,这样就可以得到答案.
【详解】
设正六棱柱底面边长为 ,由题意可知正六棱柱的高为 ,则可知正六棱柱的侧面积为 .
设正六棱锥的高为 ,可知正六棱锥侧面的一个三角形的边为 上的高为 ,
9.BD
【分析】
根据图表,对各项逐个分析判断即可得解.
【详解】
对A,在前四年有下降的过程,故A错误;
对B,六年的在校生总数为24037,平均值为4006以上,故B正确;
对C, ,未接受高中阶段教育的适龄青少年有468万人以上,故C错误;
对D, ,故D正确.
故选:BD
10.ABC
【分析】
对于A, ,可判断错误;对于B找出反例 不满足题意,判定错误;对于C若 ,则其不正确;对于D, ,则其虚部为0,故正确.故可得答案.
A.近六年,高中阶段在校生规模与毛入学率均持续增长
B.近六年,高中阶段在校生规模的平均值超过4000万人
C.2019年,未接受高中阶段教育的适龄青少年不足420万
D.2020年,普通高中的在校生超过2470万人
10.下列说法不正确的是()
2022-2023学年贵州省遵义市五校联考高一数学第一学期期末经典试题含解析
17、(1) ;(2)预测该商城8月份的销售额为126万元.
【解析】(1)根据表格中所给数据及平均数公式可求出 与 的值从而可得样本中心点的坐标,求可得公式 中所需数据,求出 ,再结合样本中心点的性质可得 ,进而可得 关于 的回归方程;(2)由(1)知, ,故前 个月该淘宝商城月销售量逐月增加,平均每月增加 万,将 ,代入(1)中的回归方程,可预测该商城 月份的销售额.
【详解】 是定义域为R的增函数,
:-x>0,则x<0.
结合选项只有B符合
故选:B
10、C
【解析】要判断函数 的零点位置,我们可以根据零点存在定理,依次判断区间的两个端点对应的函数值,然后根据连续函数在区间 上零点,则 与 异号进行判断
【详解】 , ,
故函数 的零点必落在区间
故选C
【点睛】本题考查的知识点是函数的零点,解答的关键是零点存在定理:即连续函数在区间 上 与 异号,则函数在区间 上有零点
(2)分析该淘宝商城2017年前7个月的销售额的变化情况,并预测该商城8月份的销售额.
附:回归直线的斜率和截距的最小二乘估计公式分别为:
, .
18.已知 , ,当k为何值时.
(1) 与 垂直?
(2) 与 平行?平行时它们是同向还是反向?
19.设n是不小于3的正整数,集合 ,对于集合Sn中任意两个元素 .定义 .若 ,则称A,B互为相反元素,记作 或
11、B
【解析】由题意利用两个向量加减法的几何意义,数形结合求得 的取值范围.
【详解】设 ,根据 作出如下图形,
则
当 时,则点 的轨迹是以点 为圆心, 为半径的圆,且
【数学】云南省巍山彝族回族自治县第二中学2022-2023学年高一下学期期末考试试题 (解析版)
秘密★启用前云南省巍山彝族回族自治县第二中学2020-2021学年高一下学期期末考试数学试题本试题分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.第Ⅰ卷第1页至第2页,第Ⅱ卷第3页至第4页.考试结束后,请将本试题和答题卡一并交回.满分150分,考试用时120分钟.第Ⅰ卷(选择题,共60分)注意事项:1.答题前,考生务必用黑色碳素笔将自己地姓名、准考证号、考场号、座位号在答题卡上填写清楚.2.每小题选出结果后,用2B 铅笔把答题卡上对应题目地结果标号涂黑.如需改动,用橡皮擦干净后,再选涂其他结果标号.在试题卷上作答无效.一、选择题(本大题共12小题,每小题5分,共60分.在每小题所给地四个选项中,只有一项是符合题目要求地)1.已知集合{}0,1A =,集合{}1,0,1,2,3B =-,则图中阴影部分表示地集合是()A.[]1,3B.(]1,3C.{}1,2,3-D.{}1,0,2,3-2.已知i 是虚数单位,a ∈R ,若复数i12i a --为纯虚数,则a =( )A.2- B.2C.12-D.123.函数()2f x x=-,则函数()f x ( )A.在R 上地增函数 B.在R 上地减函数C.在(),0-∞上是增函数D.在()0,+∞上是减函数4.总体由编号为01,02,03,,50 地50个个体组成,利用随机数表从中抽取5个个体,下面提供随机数表地第5行到第7行:931247795737891845503994557392296111609849657350984730309837377023104476914606792662206205229234若从表中第6行第5列开始向右依次读取,则抽取地第4个个体地编号是( )A.49B.30C.47D.505.已知,0x y >且1x y +=,则11p x y x y=+++地最小值为( )A.3B.4C.5D.66.已知函数()tan sin cos f x x x x =-,则( )A.()f x 地最小正周期为2πB.()f x 地图象有关y 轴对称C.()f x 地图象不有关π,02⎛⎫⎪⎝⎭对称 D.()f x 地图象有关()π,0对称7.已知,a b 为单位向量,且0a b ⋅= ,若3c a = ,则cos ,a c 〈〉= ( )8.已知函数()()ln sin ,03,3,3,x x x f x f x x ⎧-<⎪=⎨->⎪⎩…则()f x 在()0,10上地零点个数为( )A.6B.7C.8D.99.设样本数据122021,,,x x x 地平均数为x ,方差为2s ,若数据()()()12202121,21,,21x x x +++ 地平均数比方差大4,则22s x -地最大值为( )A.1-B.12C.2-D.110.古希腊数学家阿基米德在《论球和圆柱》中,运用穷竭法证明了与球地面积和体积相关地公式.其中包括他最得意地发现-“圆柱容球”,设圆柱地高为2,且圆柱以球地大圆(球大圆为过球心地平面和球面地交线)为底,以球地直径为高,则球地表面积与圆柱地体积之比为( )A.4:3B.3:2C.2:1D.8:311.ABC 地三个内角,,A B C 地对边分别为,,a b c ,若2cos ,cos cos c a B a B b A =+=,则ABC 地形状是( )A.等腰非直角三角形B.直角非等腰三角形C.等边三角形D.等腰直角三角形12.如图,点P 在正方体1111ABCD A B C D -地面对角线1BC 上运动,则下面结论正确地个数是()①三棱锥1A D PD -地体积不变。
天津市四校(四十七中,一百中学)2020-2021学年高一上学期期末联考数学试题解析高中数学
由 ,则 在 上单调递增.
所以函数 的零点所在的大致区间是
故选:B
5.已知扇形 的面积为8,且圆心角弧度数为2,则扇形 的周长为()
A.32B.24C. D.
【答案】D
【解析】
【分析】根据扇形面积和弧长公式即可求解.
【详解】圆心角 ,扇形面积 ,
即 ,得半径 ,
所以弧长 ,
故扇形 的周长 .
即实数m的取值范围为 .
故选:D.
二、填空题(5/30)
10.函数 的单调递减区间是___________.
【答案】
【解析】
【分析】根据复合函数单调性同增异减求得正确答案.
【详解】 ,
,
解得 或 .
函数 的开口向上,对称轴是 轴,
在 上递减,
根据复合函数单调性同增异减可知 的单调递减区间是 .
故答案为:
【详解】对于①,设 ,有 ,
故函数 是奇函数,且易知函数 在R上单调递增,故①正确;
对于②,当 时,不等式为 ,解集为R,
当 时,有 ,解得 ,
综上: ,②错误;
对于③, 中, ,解得 ,③错误;
对于④,若 为偶函数,则 , ,④错误.
综上:只有①正确.
故选:A
8.若 ,且 ,则 的最小值为()
A 8B.3C.2D.
故选:D
6.将函数 图象上各点的横坐标伸长到原来的2倍,再向左平移 个单位,纵坐标不变,所得函数图象的一条对称轴的方程是()
A. B. C. D.
【答案】B
【解析】
【分析】根据图像的伸缩和平移变换得到 ,再整体代入即可求得对称轴方程.
【详解】将函数 图象上各点的横坐标伸长到原来的2倍,
2020-2021学年广东省深圳市高一(下)期末数学模拟练习试卷(一)
2020-2021学年广东省深圳市高一(下)期末数学模拟练习试卷(一)试题数:22,总分:1501.(单选题,5分)设集合P={x∈Z|(x+1)(x-4)≤0},Q={x|y=lgx},则()A.P⊆QB.P∩Q=[-1,4]C.P∪Q=PD.P∩Q={1,2,3,4}2.(单选题,5分)复数z=-2+i,则它的共轭复数z在复平面内对应的点位于()A.第一象限B.第二象限C.第三象限D.第四象限3.(单选题,5分)已知某校高一、高二、高三年级的学生数分别为600,720,840,为调查学生对餐厅的满意度,拟采用分层抽样随机抽取一个容量为108的样本,则高二年级应抽取的学生数为()A.30B.36C.42D.484.(单选题,5分)设向量a⃗=(2,3),b⃗⃗=(4,−2),若(λa⃗+b⃗⃗)⊥b⃗⃗,则实数λ=()A.-10B.10C.-2D.25.(单选题,5分)已知点P(−1,√3)在角φ的终边上,若要得到函数y=sin(2x+φ)(0≤φ<2π)的图象,则需将函数y=sin2x的图象()个单位长度A.向左平移π3个单位长度B.向右平移π3个单位长度C.向左平移2π3D.向右平移2π个单位长度3=2,则tan2x=()6.(单选题,5分)若sinx−cosxsinx+cosxA. 43B. −43C. 34D. −347.(单选题,5分)设a>0,b>0,且a+b=1,则下列结论不一定成立的为()A.a b<1B.b a<1C.log a b+log b a≥2D.log a b-log b a≥28.(单选题,5分)已知球O在母线长为5,高为4的圆锥内部,则球O的表面积最大值为()A.12πB.9πC.8πD.6π9.(多选题,5分)下列说法正确的为()A.若x∈R,则“x2<1”是“x<1”充分不必要条件B.若x∈R,则“x<1”是“x2<1”充分不必要条件C.若命题p的否定为真命题,则命题p必为假命题D.命题“∃x0∈R,使得x02<2x0-1”的否定为“∀x∈R,x2>2x-1”10.(多选题,5分)如图,在边长为2的正方形ABCD中,E,F分别是BC,CD的中点.若分别以AE,AF,EF为折痕,将该正方形折成一个四面体Ω(使B,C,D三点重合),则下列结论正确的为()A.Ω的表面积为2B.Ω的体积为13C.Ω的外接球半径为√62D.Ω的外接球半径为√5211.(多选题,5分)若函数f(x)=Asin(ωx+φ)(A>0,ω>0,0<φ<π)的部分图象如图所示,则下列结论正确的为()A.实数ω有且仅有一个值B.实数φ可取两个不同的值C.f(x)的单调递增区间为(kπ−π3,kπ+π6)(k∈Z)D.若f(x1)=f(x2)(π6<x1<x2<π),则f(x1+x2)=√312.(多选题,5分)已知定义在R上的奇函数f(x),当x<0时,f(x)={ex+3,x<−1,e x−1,−1≤x<0,(其中常数e是自然对数的底数,e=2.71828⋅⋅⋅),函数g(x)=f(af(x)),则下列结论正确的为()A.∀x∈[-1,0],f(x)+f(x2)≤0恒成立B.当k∈N*时,方程f(x)+kx=0有唯一实数解C.当a=1时,函数g(x)的零点个数为7D.∃a∈R,使得函数g(x)恰有9个零点13.(填空题,5分)函数f(x)=ln(x+1)+√3x−1上的定义域为 ___ .14.(填空题,5分)某校从参加高一物理期末考试的学生中随机抽出60名,将其物理成绩(均为整数)分成六组:[40,50),[50,60),…,[90,100],并绘制成如下的频率分布直方图.由此估计此次高一物理期末考试成绩的第75百分位数为 ___ .)15.(填空题,5分)进行垃圾分类收集可减少垃圾处理量和处理设备,降低处理成本,减少土地资源的消耗,具有社会、经济、生态等多方面的效益.为普及垃圾分类知识,某校举行了垃圾分类知识考试,考试有且仅有两道试题.已知甲同学答对每道题的概率均为p ,乙同学答对每道题的概率均为q ,且在考试中每人各题的答题结果互不影响.若甲,乙同时答对第一题的概率为 12 ,且恰有一人答对第二题的概率为 512 ,则p+q=___ .16.(填空题,5分)设函数 f (x )=asin (x +π6)+√3bsin (x −π3) (a >0),若∀x∈R ,|f (x )|≤|f (0)|,则 1a −2b 的最小值为 ___ .17.(问答题,10分)已知i 为虚数单位,m∈R ,复数z 1=m+mi ,z 2=2m+2i ,z=z 1z 2. (1)若z 是纯虚数,求实数m 的值; (2)若|z|≤4,求|z 1-z 2|的取值范围.18.(问答题,12分)如图,在等腰梯形ABCD 中,AB || CD , |AB⃗⃗⃗⃗⃗⃗|=2|DC ⃗⃗⃗⃗⃗⃗|=2 , ∠BAD =π3,E 是BC 边的中点.(1)试用 AB ⃗⃗⃗⃗⃗⃗ , AD ⃗⃗⃗⃗⃗⃗ 表示 AC ⃗⃗⃗⃗⃗⃗ , AE ⃗⃗⃗⃗⃗⃗ ; (2)求 AE ⃗⃗⃗⃗⃗⃗•EC⃗⃗⃗⃗⃗⃗ 的值.19.(问答题,12分)随着电子产品的盛行,近年来青少年的眼睛健康不容忽视.某地欲举行中学生“用眼卫生健康知识竞赛”活动,规定每所学校均由3名学生组成代表队参加团体赛.某校为了选拔出代表队成员,共有120名学生参加了校内选拔赛,其竞赛成绩的频率分布表如下:竞赛成绩[50,60)[60,70)[70,80)[80,90)[90,100] 频数12 24 42 b a频率0.1 0.2 0.35 c 0.05 (1)求竞赛成绩的频率分布表中a,b,c的值,并计算这120名学生的竞赛成绩平均数及方差(同一组中的数据用该组区间的中点值作代表);(2)已知竞赛成绩不低于90分的学生中男、女人数之比为1:2,若从竞赛成绩不低于90分的学生中随机选取3人组成代表队,求代表队中女生人数多于男生人数的概率.20.(问答题,12分)设△ABC的内角A,B,C的对边分别为a,b,c,且a−ca+b +sinBsinA+sinC=0.(1)求C;(2)设点E,F是边AB(除端点外)上的动点,且AE<AF.若a=b=1,且∠ECF=π3,记∠ACE=θ,试用θ表示△CEF的面积S,并求S的最小值.21.(问答题,12分)如图,已知四边形ABCD为矩形,且AB=2AD,点E为AB的中点,将△ADE沿折痕DE折成△PDE.(1)若点M为PC的中点,证明:BM || 平面PDE;(2)若二面角D-PE-C为直二面角,求直线PC与平面DEC所成的角的正弦值.22.(问答题,12分)设函数g(x)的定义域为D,若x0∈D,且g(x0)=kx0(k∈Z),则称实数x0为g(x)的“k级好点”.已知函数f(x)=ln(e x+a).(其中常数e是自然对数的底数,e=2.71828⋅⋅⋅)(1)当a∈R时,讨论f(x)的“2级好点”个数;(2)若实数m为f(x)的“-1级好点”,证明:e2m+e−2m+m2>(a+1)m+1.22020-2021学年广东省深圳市高一(下)期末数学模拟练习试卷(一)参考答案与试题解析试题数:22,总分:1501.(单选题,5分)设集合P={x∈Z|(x+1)(x-4)≤0},Q={x|y=lgx},则()A.P⊆QB.P∩Q=[-1,4]C.P∪Q=PD.P∩Q={1,2,3,4}【正确答案】:D【解析】:由已知分别求出集合P,Q,对应各个选项即可求解.【解答】:解:由已知可得P={x∈Z|-1≤x≤4}={-1,0,1,2,3,4},Q={x|x>0},所以P∩Q={1,2,3,4},故选:D.【点评】:本题考查了集合间的包含关系,涉及到一元二次不等式的解法,属于基础题.2.(单选题,5分)复数z=-2+i,则它的共轭复数z在复平面内对应的点位于()A.第一象限B.第二象限C.第三象限D.第四象限【正确答案】:C【解析】:根据复数共轭的定义以及复数的几何意义,即可得到结论.【解答】:解:∵z=-2+i,∴它的共轭复数z =-2-i,对应的坐标为(-2,-1)位于第三象限,故选:C.【点评】:本题主要考查复数的几何意义,以及共轭复数的概念,比较基础.3.(单选题,5分)已知某校高一、高二、高三年级的学生数分别为600,720,840,为调查学生对餐厅的满意度,拟采用分层抽样随机抽取一个容量为108的样本,则高二年级应抽取的学生数为()A.30B.36C.42D.48【正确答案】:B【解析】:根据题意,先计算三个年级的学生总数,由分层抽样的定义分析可得答案.【解答】:解:根据题意,高一、高二、高三年级的学生数分别为600,720,840,共有600+720+840=2160人,拟采用分层抽样随机抽取一个容量为108的样本,×108=36,则高二年级应抽取的学生数为7202160故选:B.【点评】:本题考查分层抽样方法的应用,注意分层抽样的定义,属于基础题.4.(单选题,5分)设向量a⃗=(2,3),b⃗⃗=(4,−2),若(λa⃗+b⃗⃗)⊥b⃗⃗,则实数λ=()A.-10B.10C.-2D.2【正确答案】:A【解析】:根据题意,求出λ a⃗ + b⃗⃗的坐标,由数量积的计算公式可得(λa⃗+b⃗⃗)•b⃗⃗ =4(2λ+4)-2(3λ-2)=2λ+20=0,解可得λ的值,即可得答案.【解答】:解:根据题意,向量a⃗=(2,3),b⃗⃗=(4,−2),则λ a⃗ + b⃗⃗ =(2λ+4,3λ-2),若(λa⃗+b⃗⃗)⊥b⃗⃗,则(λa⃗+b⃗⃗)•b⃗⃗ =4(2λ+4)-2(3λ-2)=2λ+20=0,解可得λ=-10,故选:A.【点评】:本题考查向量数量积的计算,涉及向量的坐标计算,属于基础题.5.(单选题,5分)已知点P(−1,√3)在角φ的终边上,若要得到函数y=sin(2x+φ)(0≤φ<2π)的图象,则需将函数y=sin2x的图象()A.向左平移π3个单位长度B.向右平移π3个单位长度C.向左平移2π3个单位长度D.向右平移2π3个单位长度【正确答案】:A【解析】:由题意可得φ为第二象限角,利用任意角的三角函数的定义可求tanφ,结合范0≤φ<2π,可求φ的值,进而根据函数y=Asin(ωx+φ)的图象变换即可得解.【解答】:解:因为点P(−1,√3)在角φ的终边上,可得φ为第二象限角,所以tanφ=- √3,因为0≤φ<2π,所以φ= 2π3,所以若要得到函数y=sin(2x+ 2π3)=sin2(x+ π3)的图象,则需将函数y=sin2x的图象向左平移π3个单位长度即可得解.故选:A.【点评】:本题主要考查了任意角的三角函数的定义,函数y=Asin(ωx+φ)的图象变换的应用,考查了函数思想,属于基础题.6.(单选题,5分)若sinx−cosxsinx+cosx=2,则tan2x=()A. 43B. −43C. 34D. −34【正确答案】:C【解析】:由已知利用同角三角函数基本关系式可求tanx的值,进而根据二倍角的正切公式即可求解.【解答】:解:因为sinx−cosxsinx+cosx=2,所以tanx−1tanx+1=2,解得tanx=-3,则tan2x= 2tanx1−tan2x = 34.故选:C.【点评】:本题主要考查了同角三角函数基本关系式,二倍角的正切公式在三角函数求值中的应用,考查了计算能力和转化思想,属于基础题.7.(单选题,5分)设a>0,b>0,且a+b=1,则下列结论不一定成立的为()A.a b<1B.b a<1C.log a b+log b a≥2D.log a b-log b a≥2【正确答案】:D【解析】:由a>0,b>0,且a+b=1知0<a<1,0<b<1,又得log a b>0且log b a>0,根据函数单调性可判断AB;根据基本不等式可判断C,举例a=b= 12可判断D.【解答】:解:由a>0,b>0,且a+b=1知0<a<1,0<b<1,又得log a b>0且log b a>0,∴a b<a0=1,b a<b0=1,∴AB成立,不选AB;log a b+log b a=log a b+ 1log a b ≥2 √log a b•1log a b=2,当且仅当a=b= 12时,“=”成立,∴C对,不选C;当a=b= 12时,log a b-log b a=0,∴D错,选D.故选:D.【点评】:本题考查不等式与基本不等式,考查数学运算能力及推理能力,属于基础题.8.(单选题,5分)已知球O在母线长为5,高为4的圆锥内部,则球O的表面积最大值为()A.12πB.9πC.8πD.6π【正确答案】:B【解析】:由题意,可得当球O的轴截面是圆锥的轴截面的内切圆时,内切球等体积最大,求出轴截面的内切圆的半径,进而求出球O表面积的最大值.【解答】:解:设圆锥的轴截面为等腰△SAB,则球O的面积最大时,球O的轴截面是△SAB 的内切圆,所以S△SAB= 12AB•SO′= 12SA+SB+AB)•r,解得r= 32,所以球O的表面积的最大值为4πr2=4 π×94=9π.故选:B.【点评】:本题考查圆锥的内切球的半径的求法及球的体积公式,属于基础题.9.(多选题,5分)下列说法正确的为()A.若x∈R,则“x2<1”是“x<1”充分不必要条件B.若x∈R,则“x<1”是“x2<1”充分不必要条件C.若命题p的否定为真命题,则命题p必为假命题D.命题“∃x0∈R,使得x02<2x0-1”的否定为“∀x∈R,x2>2x-1”【正确答案】:AC【解析】:直接利用充分条件和必要条件,命题的否定,真值表的应用判断A、B、C、D的结论.【解答】:解:对于A:若“x2<1”整理出-1<x<1,故{x|-1<x<1}⊂{x|x<1},故“x2<1”是“x <1”充分不必要条件,故A正确;对于B:若“x2<1”整理出-1<x<1,故{x|-1<x<1}⊂{x|x<1},故“x2<1”是“x<1”充分不必要条件,则“x<1”是“x2<1”必要不充分条件,故B错误;对于C:若命题p的否定为真命题,则命题p必为假命题,故C正确;对于D:命题“∃x0∈R,使得x02<2x0-1”的否定为“∀x∈R,x2≥2x-1”故D错误.【点评】:本题考查的知识要点:充分条件和必要条件,命题的否定,真值表,主要考查学生的运算能力和数学思维能力,属于基础题.10.(多选题,5分)如图,在边长为2的正方形ABCD中,E,F分别是BC,CD的中点.若分别以AE,AF,EF为折痕,将该正方形折成一个四面体Ω(使B,C,D三点重合),则下列结论正确的为()A.Ω的表面积为2B.Ω的体积为13C.Ω的外接球半径为√62D.Ω的外接球半径为√52【正确答案】:BC【解析】:利用Ω的表面积即为正方形的面积,即可判断选项A,由翻折前后不变的量,得到翻折后的三棱锥,求解体积即可判断选项B,利用Ω的外接球即为以PA,PE,PF为长、宽、高的长方体的外接球,求解半径即可判断选项C,D.【解答】:解:对于A,由题意可知,Ω的表面积即为正方形的面积,所以Ω的表面积为2×2=4,故选项A错误;对于B,翻折前,AE=AF= √5,EF= √2,AB=AD=2,BE=EC=DF=1,翻折后,AP=2,EP=PF=1,AE=AF= √5,EF= √2,且AP⊥PF,AP⊥PE,PE⊥PF,则AP⊥平面PEF,所以Ω的体积为13×12×1×1×2 = 13,故选项B正确;Ω的外接球即为以PA,PE,PF为长、宽、高的长方体的外接球,则Ω的外接球的直径为2R= √12+12+22=√6,所以Ω的外接球半径为√62,故选项C正确,选项D错误.【点评】:本题考查了翻折问题,棱锥的体积公式的应用,表面积的求解以及外接球的理解,解题的关键是弄起翻折前后不变的量,考查了逻辑推理能力、空间想象能力、化简运算能力,属于中档题.11.(多选题,5分)若函数f(x)=Asin(ωx+φ)(A>0,ω>0,0<φ<π)的部分图象如图所示,则下列结论正确的为()A.实数ω有且仅有一个值B.实数φ可取两个不同的值C.f(x)的单调递增区间为(kπ−π3,kπ+π6)(k∈Z)D.若f(x1)=f(x2)(π6<x1<x2<π),则f(x1+x2)=√3【正确答案】:AD【解析】:先由图解函数f(x)解析式,再利用单调性、对称性等性质判断选项是否正确.【解答】:解:由图知,A=2,f(0)= √3,即2sinφ= √3,sinφ= √32,∴φ= π3+2kπ,k∈Z,又0<φ<π,∴φ= π3.ω与周期T有关,又π3−0 =2π32π•T = 13T,∴T=π,∴ω=2.∴f(x)=2sin(2x+ π3).A,因为周期一定,所以ω确定,且ω=2.故A对.B,∵(0,√3)是单调递增区间上的值,∴φ只能等于π3+2kπ,k∈Z,又0<φ<π,∴φ= π3.即只有一个值,故B错.C,∵f(x)=2sin(2x+ π3),∴满足2x+ π3∈[2kπ- π2,2kπ+ π2],k∈Z时,f(x)单调递增,解得x∈[kπ- 5π12,kπ+ π12],k∈Z,故C错;D,∵f(x1)=f(x2),且π6<x1<x2<π,∴x1,x2关于x= 7π12对称,∴x1+x2=2× 7π12= 7π6,∴f(x1+x2)=2sin(2× 7π6 + π3)=2sin 8π3=2sin 2π3= √3.故D对.故选:AD.【点评】:该题考查正弦函数的图象及单调性、对称性等性质,属于中等题型.12.(多选题,5分)已知定义在R上的奇函数f(x),当x<0时,f(x)={ex+3,x<−1,e x−1,−1≤x<0,(其中常数e是自然对数的底数,e=2.71828⋅⋅⋅),函数g(x)=f(af(x)),则下列结论正确的为()A.∀x∈[-1,0],f(x)+f(x2)≤0恒成立B.当k∈N*时,方程f(x)+kx=0有唯一实数解C.当a=1时,函数g(x)的零点个数为7D.∃a∈R,使得函数g(x)恰有9个零点【正确答案】:AD【解析】:根据题意作出f(x)的图象,结合图象,逐个判断每个选项,即可得出答案.【解答】:解:根据题意作出f(x)的图象:对于A :由图可知f (x )在(-1,1)上单调递增, 因为x∈[-1,0],则x 2∈[0,1], 又f (x )=-f (-x ),且-x∈[0,1], 且-x≥x 2,所以f (-x )≥f (x 2), 即-f (x )≥f (x 2),所以f (x )+f (x 2)≤0,故A 正确;对于B :当k∈N*时,方程f (x )+kx=0的根为f (x )=-kx 的根, 即y=f (x )与y=-kx 的交点的横坐标,结合图象可得交点可能有1个或三个,故B 错误; 对于C :a=1时,g (x )=f (f (x )),令g (x )=0,结合图象可得f (x )=0或f (x )=- 3e 或f (x )= 3e , 当f (x )=0时,x=0或- 3e 或 3e , 当f (x )=- 3e 时,x 有唯一的解, 当f (x )= 3e 时,x 有唯一的解,综上,当a=1时,g (x )的零点有5个,故C 错误; 对于D :令g (x )=f (af (x ))=0, 得af (x )=0或af (x )=- 3e 或af (x )= 3e , 当a≠0时,f (x )=0或f (x )=- 3ae或f (x )= 3ae, 当f (x )=0时,x=0或- 3e 或 3e ,若e-3<- 3ae <0时,f (x )=- 3ae 有3个解,f (x )= 3ae 有3个解, 综上,存在a∈R ,使得g (x )恰有9个交点,故D 正确. 故选:AD .【点评】:本题考查函数的零点,解题中注意转化思想的应用,属于中档题. 13.(填空题,5分)函数 f (x )=ln (x +1)+√3x−1 上的定义域为 ___ . 【正确答案】:[1](0,3]【解析】:根据题意,由函数的解析式可得 {x +1>03x −1≥0 ,解可得x 的取值范围,即可得答案.【解答】:解:根据题意,函数 f (x )=ln (x +1)+√3x−1 , 必有 {x +1>03x−1≥0,解可得0<x≤3,即函数的定义域为(0,3]; 故答案为:(0,3].【点评】:本题考查函数定义域的计算,涉及不等式的解法,属于基础题.14.(填空题,5分)某校从参加高一物理期末考试的学生中随机抽出60名,将其物理成绩(均为整数)分成六组:[40,50),[50,60),…,[90,100],并绘制成如下的频率分布直方图.由此估计此次高一物理期末考试成绩的第75百分位数为 ___ . )【正确答案】:[1]82【解析】:根据题意,高一物理期末考试成绩的第75百分位数,即成绩从低到高的第60×75%=45位同学,分别求出前4组小矩形对应的人数,前5组小矩形对应的人数,再按比例确定高一物理期末考试成绩的第75百分位数,即可求解.【解答】:解:高一物理期末考试成绩的第75百分位数,即成绩从低到高的第60×75%=45位同学,∵前4组的小矩形的面积和为0.01+0.15×2+0.03=0.07, 又∵样本的容量为60,∴前4组的小矩形对应的学生人数为60×0.07=42,∵前5组的小矩形的面积和为0.01+0.15×2+0.03+0.25=0.95, 又∵样本的容量为60,∴前5组的小矩形对应的学生人数为60×0.95=57, ∵分数在[80,90)的人数为0.025×10×60=15,∴此次高一物理期末考试成绩的第75百分位数为80+10×45−4215=82.故答案为:82.【点评】:本题考查由频数分布表、直方图求频数、频率,考查频率公式,以及百分位数的应用,属于基础题.15.(填空题,5分)进行垃圾分类收集可减少垃圾处理量和处理设备,降低处理成本,减少土地资源的消耗,具有社会、经济、生态等多方面的效益.为普及垃圾分类知识,某校举行了垃圾分类知识考试,考试有且仅有两道试题.已知甲同学答对每道题的概率均为p,乙同学答对每道题的概率均为q,且在考试中每人各题的答题结果互不影响.若甲,乙同时答对第一题的概率为12,且恰有一人答对第二题的概率为512,则p+q=___ .【正确答案】:[1] 1712【解析】:利用相互独立事件的概率乘法公式列出方程组即可求解.【解答】:解:由题意,得{pq=12p(1−q)+q(1−p)=512,解得p+q= 1712.故答案为:1712.【点评】:本题主要考查相互独立事件的概率乘法公式,属于基础题.16.(填空题,5分)设函数f(x)=asin(x+π6)+√3bsin(x−π3)(a>0),若∀x∈R,|f(x)|≤|f(0)|,则1a−2b的最小值为 ___ .【正确答案】:[1] 2√2【解析】:先利用诱导公式以及辅助角公式化简f(x)的解析式,然后由已知条件,得到f (0)为函数f(x)的最值,求出φ的值,由tanφ求出a与b的关系,然后由基本不等式求解最值即可.【解答】:解:函数f(x)=asin(x+π6)+√3bsin(x−π3)= asin(x+π6)−√3bcos(x+π6)= √a2+3b2sin(x+π6−φ),其中tanφ=√3ba,a>0,因为∀x∈R,|f(x)|≤|f(0)|,所以f(0)为函数f(x)的最值,则有0+π6−φ=π2+kπ,k∈Z,故φ=−π3−kπ,k∈Z,所以tanφ=tan(−π3−kπ)=tan(−π3)=−√3,故√3ba=−√3,所以b=-a,a>0,故1a −2b = 1a+2a≥2√1a•2a = 2√2,当且仅当1a =2a,即a= √22时取等号,所以1a−2b的最小值为2√2.故答案为:2√2.【点评】:本题考查了诱导公式以及辅助角公式的应用,三角函数最值的应用以及特殊角的三角函数值的运用,基本不等式求解最值的运用,考查了逻辑推理能力、化简运算能力与转化化归能力,属于中档题.17.(问答题,10分)已知i为虚数单位,m∈R,复数z1=m+mi,z2=2m+2i,z=z1z2.(1)若z是纯虚数,求实数m的值;(2)若|z|≤4,求|z1-z2|的取值范围.【正确答案】:【解析】:z=z1z2=(m+mi)(2m+2i)=2m2-2m+(2m2+2m)i.(1)由2m2-2m=0且2m2+2m≠0可解决此问题;(2)|z|≤4⇔|z|2≤42可求得m范围,然后可求得|z1-z2|的取值范围.【解答】:解:z=z1z2=(m+mi)(2m+2i)=2m2-2m+(2m2+2m)i.(1)∵z是纯虚数,∴2m2-2m=0且2m2+2m≠0,解得m=1;(2)|z|≤4⇔|z|2≤42,可得(2m2-2m)2+(2m2+2m)2≤16,解得-1≤m≤1.∴|z1-z2|=|-m+(m-2)i|= √(−m)2+(m−2)2 = √2m2−4m+4 = √2(m−1)2+2,∵-1≤m≤1,∴0≤(m-1)2≤4,∴0≤2(m-1)2≤8,∴2≤2(m-1)2+2≤10,∴ √2(m −1)2+2 ∈[ √2 , √10 ], ∴|z 1-z 2|∈[ √2 , √10 ].【点评】:本题考查复数代数形式、复数的模、不等式的解法,考查数学运算能力,属于中档题.18.(问答题,12分)如图,在等腰梯形ABCD 中,AB || CD , |AB⃗⃗⃗⃗⃗⃗|=2|DC ⃗⃗⃗⃗⃗⃗|=2 , ∠BAD =π3,E 是BC 边的中点.(1)试用 AB ⃗⃗⃗⃗⃗⃗ , AD ⃗⃗⃗⃗⃗⃗ 表示 AC ⃗⃗⃗⃗⃗⃗ , AE ⃗⃗⃗⃗⃗⃗ ; (2)求 AE ⃗⃗⃗⃗⃗⃗•EC⃗⃗⃗⃗⃗⃗ 的值.【正确答案】:【解析】:(1)根据向量的线性运算求解;(2)把 AE ⃗⃗⃗⃗⃗⃗ 和 AC ⃗⃗⃗⃗⃗⃗ 都用 AB ⃗⃗⃗⃗⃗⃗ , AD ⃗⃗⃗⃗⃗⃗ 表示,进而可求出 AE ⃗⃗⃗⃗⃗⃗•EC ⃗⃗⃗⃗⃗⃗ 的值.【解答】:解:(1)因为AB || CD ,且 |AB ⃗⃗⃗⃗⃗⃗|=2|DC ⃗⃗⃗⃗⃗⃗|=2 ,则 DC ⃗⃗⃗⃗⃗⃗=12AB ⃗⃗⃗⃗⃗⃗ , 所以 AC ⃗⃗⃗⃗⃗⃗=AD ⃗⃗⃗⃗⃗⃗+DC ⃗⃗⃗⃗⃗⃗=AD ⃗⃗⃗⃗⃗⃗+12AB ⃗⃗⃗⃗⃗⃗ ,因为E 是BC 边的中点,所以 AE ⃗⃗⃗⃗⃗⃗=AC ⃗⃗⃗⃗⃗⃗+CE ⃗⃗⃗⃗⃗⃗=AC ⃗⃗⃗⃗⃗⃗+12CB ⃗⃗⃗⃗⃗⃗=AC ⃗⃗⃗⃗⃗⃗+12(CD ⃗⃗⃗⃗⃗⃗+DA ⃗⃗⃗⃗⃗⃗+AB ⃗⃗⃗⃗⃗⃗) = AD ⃗⃗⃗⃗⃗⃗+12AB ⃗⃗⃗⃗⃗⃗+12(−12AB ⃗⃗⃗⃗⃗⃗−AD ⃗⃗⃗⃗⃗⃗+AB ⃗⃗⃗⃗⃗⃗)=12AD ⃗⃗⃗⃗⃗⃗+34AB ⃗⃗⃗⃗⃗⃗ .(2) EC ⃗⃗⃗⃗⃗⃗=AC ⃗⃗⃗⃗⃗⃗−AE ⃗⃗⃗⃗⃗⃗=(AD ⃗⃗⃗⃗⃗⃗+12AB ⃗⃗⃗⃗⃗⃗)−(12AD ⃗⃗⃗⃗⃗⃗+34AB ⃗⃗⃗⃗⃗⃗)=12AD ⃗⃗⃗⃗⃗⃗−14AB ⃗⃗⃗⃗⃗⃗ , 又因为 AD =AB−DC2cosπ3=1 ,所以 AE ⃗⃗⃗⃗⃗⃗⋅EC ⃗⃗⃗⃗⃗⃗=(12AD ⃗⃗⃗⃗⃗⃗+34AB ⃗⃗⃗⃗⃗⃗)⋅(12AD ⃗⃗⃗⃗⃗⃗−14AB ⃗⃗⃗⃗⃗⃗) = 14AD ⃗⃗⃗⃗⃗⃗2+14AB ⃗⃗⃗⃗⃗⃗⋅AD ⃗⃗⃗⃗⃗⃗−316AB ⃗⃗⃗⃗⃗⃗2= 14×12+12⋅1⋅2⋅cos60°−316×22=−14.【点评】:本题考查平面向量的线性运算和数量积运算,考查数学抽象和直观想象的核心素养,属于基础题.19.(问答题,12分)随着电子产品的盛行,近年来青少年的眼睛健康不容忽视.某地欲举行中学生“用眼卫生健康知识竞赛”活动,规定每所学校均由3名学生组成代表队参加团体赛.某校为了选拔出代表队成员,共有120名学生参加了校内选拔赛,其竞赛成绩的频率分布表如下:差(同一组中的数据用该组区间的中点值作代表);(2)已知竞赛成绩不低于90分的学生中男、女人数之比为1:2,若从竞赛成绩不低于90分的学生中随机选取3人组成代表队,求代表队中女生人数多于男生人数的概率.【正确答案】:【解析】:(1)利用频数的计算公式求a,b,由频率之和为1求b,利用平均数以及方差的计算公式求解平均数与方差即可;(2)先分别求出6人中,男生和女生的人数,然后用分类计数原理以及古典概型的概率公式求解即可.【解答】:解:(1)由题意可知,a=120×0.05=6,c=1-(0.1+0.2+0.35+0.05)=0.3,b=120×0.3=36,这120名学生的竞赛成绩平均数为55×0.1+65×0.2+75×0.35+85×0.3+0.05×95=75,方差为0.1×202+0.2×102+0.35×02+0.3×102+0.05×202=110;(2)竞赛成绩不低于90分的学生共有120×0.05=6人,因为竞赛成绩不低于90分的学生中男、女人数之比为1:2,故抽取的6人中有男生2人,女生4人,则抽取3人组成代表队,女生人数大于男生人数有2种抽法,① 女生2人,男生1人,则概率为P=C42C21C63 = 35;② 女生3人,则概率为P′=C43C62 = 15.故所求概率为35+15= 45.【点评】:本题考查了频率分布表的应用,频率之和为1的应用,频率、频数、样本容量之间关系的运用,古典概型概率公式的运用,考查了逻辑推理能力,属于基础题.20.(问答题,12分)设△ABC的内角A,B,C的对边分别为a,b,c,且a−ca+b +sinBsinA+sinC=0.(1)求C;(2)设点E,F是边AB(除端点外)上的动点,且AE<AF.若a=b=1,且∠ECF=π3,记∠ACE=θ,试用θ表示△CEF的面积S,并求S的最小值.【正确答案】:【解析】:(1)利用正弦定理将角化为边,由余弦定理的变形式求解即可得到答案;(2)利用正弦定理分别求出CE,CF,由三角形的面积公式表示出S,再利用三角恒等变换进行化简变形,然后由三角函数的性质求解最值即可.【解答】:解:(1)因为a−ca+b +sinBsinA+sinC=0,由正弦定理可得,a−ca+b +ba+c=0,化简整理可得a2+b2-c2=-ab,由余弦定理的变形式可得,cosC=a 2+b2−c22ab=−12,又0<C<π,故C=2π3;(2)因为a=b=1,所以△ABC为等腰三角形,则A=B=π−C2=π6,作出图象如图所示,因为∠ACE=θ,则∠AEC=π-A-∠ACE= 5π6−θ,由正弦定理可得,ACsin∠AEC =CEsinA=1sin(5π6−θ),所以CE=12sin(5π6−θ),因为∠FCB=C-∠ECF-∠ACE= π3−θ,则∠CFB= π2+θ,由正弦定理可得,BCsin∠CFB =CFsinB=1sin(π2+θ),所以CF=12sin(π2+θ),故△CEF的面积S= 12•CE•CF•sin∠ECF= √316×1cosθsin(π6+θ)= √316×112cos2θ+√32sinθcosθ,= √316×114(cos2θ+1)+√34sin2θ= √316×112sin(2θ+π6)+14= √38sin(2θ+π6)+4,所以当2θ+π6=π2,即θ=π6时,S取得最小值为√312.【点评】:本题考查了解三角形问题,主要考查了正弦定理和余弦定理的应用,三角恒等变换的应用,三角形面积公式的应用,考查了逻辑推理能力与化简运算能力,属于中档题.21.(问答题,12分)如图,已知四边形ABCD为矩形,且AB=2AD,点E为AB的中点,将△ADE沿折痕DE折成△PDE.(1)若点M为PC的中点,证明:BM || 平面PDE;(2)若二面角D-PE-C为直二面角,求直线PC与平面DEC所成的角的正弦值.【正确答案】:【解析】:(1)取PD中点N,证明四边形MNEB为平行四边形,证出NE || BM,利用线面平行判定即可;(2)没有平面DEC的垂线,所以等体积转化,求出点P到面DEC的距离h,求解.利用线面角的正弦值为ℎPC【解答】:解:(1)如图,取PD中点为N,连接NM,NE,∵M,N分别为PC,PD的中点,∴MN || DC,MN= 1DC,2AB,∵E为AB的中点,∴EB= 12∵四边形ABCD为矩形,∴AB || CD,AB=CD,∴MN || BE,MN=BE,∴四边形MNEB为平行四边形,∴NE || BM,∵NE⊂平面PED,BM⊄平面PED,∴BM || 平面PDE.(2)如图,由二面角D-PE-C为直二面角,可知平面DPE⊥平面CPE,∵平面DPE∩平面CPE=PE,DP⊥PE,DP⊂平面DPE,∴DP⊥平面CPE,∵PC⊂平面CPE,∴DP⊥PC,∵DC=2,PD=1,∴ PC=√22−12=√3,∵PE=1,EC= √12+12=√2,∴PC2=PE2+EC2,∴PE⊥EC,∵DE= √12+12=√2,EC= √12+12=√2,DC=2,∴DC2=DE2+EC2,∴DE⊥EC,设点P到平面DEC的距离为h,由题可知,V P-DCE=V D-PCE,即13•S DEC•ℎ=13•S PEC•DP,即13×12×DE×EC×ℎ=13×12×EC×PE×DP,即13×12×√2×√2×ℎ=13×12×√2×1×1,解得ℎ=√22,∴直线PC与平面DEC所成的角的正弦值为ℎPC =√22√3= √66.【点评】:本题考查线面平行的证明和线面成角,属于中档题.22.(问答题,12分)设函数g(x)的定义域为D,若x0∈D,且g(x0)=kx0(k∈Z),则称实数x0为g(x)的“k级好点”.已知函数f(x)=ln(e x+a).(其中常数e是自然对数的底数,e=2.71828⋅⋅⋅)(1)当a∈R时,讨论f(x)的“2级好点”个数;(2)若实数m为f(x)的“-1级好点”,证明:e2m+e−2m+m22>(a+1)m+1.【正确答案】:【解析】:(1)利用“k级好点”的概念,将问题转化为函数零点个数问题,然后根据零点的个数确定f(x)的“2级好点”个数即可;(2)根据条件,可知e2m+e−2m+m22>(a+1)m+1等价于证明a2+2+m22>(a+1)m+1成立,利用分析法和放缩法证明不等式即可.【解答】:解:(1)f(x)的“2级好点”个数等价于方程“f(x)=2x”的解的个数,即讨论方程ln(e x+a)=2x的解的个数.方程ln(e x+a)=2x等价于a=e2x-e x,令t=e x,等价于讨论方程a=t2-t在(0,+∞)上的解的个数.作出函数y=t2-t,t∈(0,+∞)的图象,}∪[0,+∞)时,有1个“2级好点”;根据图象,可知当a∈{−14时,没有“2级好点”;当a<−14当a∈(−1,0)时,有2个“2级好点”;4(2)由条件有f(m)=-m,即ln(e m+a)=-m,a=e-m-e m,所以e2m+e-2m=a2+2;>(a+1)m+1成立,等价于证明(a-m)2+a2-2m+2>0;故等价于证明a2+2+m22因为a2-2m+2=e2m+e-2m-2m,又由不等式e x>x,可得a2-2m+2>0;又(a-m)2≥0,所以(a-m)2+a2-2m+2>0成立,故原不等式成立.【点评】:本题以新概念为背景进行命题,重点考查函数零点、分析法证明不等式,属中档题.。
贵州省遵义市2023-2024学年高一下学期7月期末考试 数学含答案
遵义市2023~2024学年度第二学期期末质量监测高一数学(答案在最后)一、单项选择题:本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一个选项是正确的.请把正确的选项填涂在答题卡相应的位置上.1.已知集合{}1,2,3,4,5,6U =,{}1,2,3,4A =,{}3,4,5,6B =,则()U A B =ð()A.{}1,3,5 B.{}2,4,6 C.{}1,2,5,6 D.{}3,5,62.在ABC 中,角A 、B 、C 所对的边分别为a 、b 、c ,若10a =,14b =,23B π=,则sin A =()A. B.514C.514-D.143.如图,向量AB a =,BD b =,DC c = ,则AC 向量可以表示为()A.a b c++r r rB.a b c+-r r rC.a b c -+r r rD.a b c--4.已知3sin 4α=,且π0,2α⎛⎫∈ ⎪⎝⎭,则sin 2α=()A.8-B.378C.9714-D.97145.某中学高一年级甲、乙两班参加了物理科的调研考试,其中甲班40人,乙班35人,甲班的平均成绩为82分,乙班的平均成绩为85分,那么甲、乙两班全部75名学生的平均成绩是多少分()A.82.4B.82.7C.83.4D.83.56.已知()1,2A ,()2,3B ,()2,5C -,则三角形ABC 的面积为()A.3B.5C.7D.87.遵义市正安县被誉为“中国吉他之乡”,正安县地标性建筑“大吉他”位于正安县吉他广场的中心,现某中学数学兴趣小组准备在吉他广场上对正安“大吉他”建筑的高度进行测量,采用了如图所示的方式来进行测量:在地面选取相距30米的C 、D 两观测点,且C 、D 与“大吉他”建筑的底部B 在同一水平面上,在C 、D 两观测点处测得“大吉他”建筑顶部A 的仰角分别为45︒,30︒,测得30CBD ∠=︒,则“大吉他”建筑AB 的估计高度为多少米()A.米B.34米C.米D.30米8.已知函数()f x 的定义域为R ,()()()2f x y f x f y +=+-,则()A.()00f = B.函数()2f x -是奇函数C.若()22f =,则()20242f =- D.函数()f x 在()0,∞+单调递减二、多项选择题:本大题共3小题,每小题6分,共18分.在每小题给出的四个选项中,有多项符合题目要求,全部选对得6分,选对但不全的得部分分,有选错的得0分.9.已知复数23i z =+(i 是虚数单位),则下列正确的是()A.z =B.z 的虚部是3C.若i z t +是实数,则0=t D.复数z 的共轭复数为23iz =-+10.已知事件A 、B 发生的概率分别为()13P A =,()14P B =,则下列说法正确的是()A.若A 与B 相互独立,则()12P A B = B.若()14P AB =,则事件A 与B 相互独立C.若A 与B 互斥,则()12P A B =D.若B 发生时A 一定发生,则()14P AB =11.将函数sin 1y x =+图象上所有的点向左平移π3个单位,再把所得各点的横坐标缩短为原来的12π(纵坐标不变)得到函数()y f x =的图象,则下列关于()y f x =说法正确的是()A.()f x 的最小正周期为1B.()f x 在5ππ,1212⎡⎤-⎢⎥⎣⎦上为增函数C.对于任意x ∈R 都有()223f x f x ⎛⎫++-= ⎪⎝⎭D.若方程()1102f x ωω⎛⎫=> ⎪⎝⎭在[)0,2上有且仅有4个根,则117,63ω⎡⎤∈⎢⎥⎣⎦三、填空题:本题共3小题,每小题5分,共15分.12.已知角的终边经过点1(2P ,则tan α的值为____________.13.若函数()sin()f x A x ωϕ=+0,0,||2A πωϕ⎛⎫>>< ⎪⎝⎭的部分图像如图所示,则函数()y f x =的解析式为_______.14.窗花是贴在窗纸或窗户玻璃上的剪纸,是中国古老的传统民间艺术之一,如图是一个正八边形的窗花,从窗花图中抽象出的几何图形是一个正八边形,正八边形ABCDEFGH 的边长为4,P 是正八边形ABCDEFGH 内的动点(含边界),则AP AB ⋅的取值范围为________.四、解答题:本题共5小题,共77分.解答应写出文字说明、证明过程或演算步骤.15.已知向量()1,4a =- ,()2,1b =-r(1)求5877a b -;(2)若向量()2,c m = ,向量ma c + 与向量a mb +共线,求m 的值.16.2024年5月3日,搭载嫦娥六号探测器的长征五号遥八运载火箭,在中国文昌航天发射场成功发射,这是我国航天器继嫦娥五号之后,第二次实现月球轨道交会对接,为普及探月知识,某校开展了“探月科普知识竞赛”活动,现从参加该竞赛的学生中随机抽取了80名,统计他们的成绩(满分100分),其中成绩不低于80分的学生被评为“探月达人”,将数据整理后绘制成如图所示的频率分布直方图.(1)估计参加这次竞赛的学生成绩的75%分位数;(2)若在抽取的80名学生中,从成绩在[)70,80,[)80,90,[]90,100中采用分层抽样的方法随机抽取6人,再从这6人中选择2人,求被选中的2人均为“探月达人”的概率.17.已知在ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,且cos sin sin 2A BC a b a cπ⎛⎫-- ⎪⎝⎭=+-(1)求角B ;(2)若点D 在AC 上,BD 为ABC ∠的角平分线,3BD =,求2a c +的最小值.18.已知函数()()π14sin cos R 6f x x x x ⎛⎫=-++∈ ⎪⎝⎭(1)求函数()f x 的最小值,以及()f x 取得最小值时x 的集合;(2)已知ππ2βα<<<,π82125f αβ-⎛⎫-= ⎪⎝⎭,π102613f β⎛⎫+=- ⎪⎝⎭,求cos α的值.19.若函数()f x 在定义域区间[],a b 上连续,对任意1x ,[]2,x a b ∈恒有()()121222f x f x x x f ++⎛⎫≥⎪⎝⎭,则称函数()f x 是区间[],a b 上的上凸函数,若恒有()()121222f x f x x x f ++⎛⎫≤⎪⎝⎭,则称函数()f x 是区间[],a b 上的下凸函数,当且仅当12x x =时等号成立,这个性质称为函数的凹凸性.上述不等式可以推广到取函数定义域中的任意n 个点,即若()f x 是上凸函数,则对任意1x ,2x ,…,[],n x a b ∈恒有()()()1212n nf x f x f x x x x f n n ++++++⎛⎫≥⎪⎝⎭,若()f x 是下凸函数,则对任意1x ,2x ,…,[],n x a b ∈恒有()()()1212n n f x f x f x x x x f n n ++++++⎛⎫≤⎪⎝⎭,当且仅当12n x x x === 时等号成立.应用以上知识解决下列问题:(1)判断函数()()21R f x x x =+∈在定义域上是上凸函数还是下凸函数(说明理由);(2)证明()sin h x x =,()0,πx ∈上是上凸函数;(3)若A 、B 、C 、()0,πD ∈,且πA B C D +++=,求sin sin sin sin A B C D +++的最大值.遵义市2023~2024学年度第二学期期末质量监测高一数学一、单项选择题:本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一个选项是正确的.请把正确的选项填涂在答题卡相应的位置上.1.已知集合{}1,2,3,4,5,6U =,{}1,2,3,4A =,{}3,4,5,6B =,则()U A B =ð()A.{}1,3,5 B.{}2,4,6 C.{}1,2,5,6 D.{}3,5,6【答案】C 【解析】【分析】根据交集和补集含义即可得到答案.【详解】由题意得{}3,4A B = ,则(){}1,2,5,6U A B = ð.故选:C.2.在ABC 中,角A 、B 、C 所对的边分别为a 、b 、c ,若10a =,14b =,23B π=,则sin A =()A.5314-B.514C.514-D.14【答案】D 【解析】【分析】根据正弦定理即可得到答案.【详解】根据正弦定理有sin sin a b A B =,即10sin 2A =sin 14A =.故选:D.3.如图,向量AB a =,BD b =,DC c = ,则AC 向量可以表示为()A.a b c ++r r rB.a b c+-r r rC.a b c-+r r rD.a b c--【答案】A【解析】【分析】利用图形结合向量线性运算即可.【详解】AC AD DC A a b c B BD DC =+=++++=.故选:A.4.已知3sin 4α=,且π0,2α⎛⎫∈ ⎪⎝⎭,则sin 2α=()A. B.8C.14-D.14【答案】B 【解析】【分析】首先求出cos 4α=,再利用二倍角正弦公式即可.【详解】因为π0,2α⎛⎫∈ ⎪⎝⎭,3sin 4α=,则cos 4α==,则3sin 22sin cos 24ααα==⨯⨯.故选:B.5.某中学高一年级甲、乙两班参加了物理科的调研考试,其中甲班40人,乙班35人,甲班的平均成绩为82分,乙班的平均成绩为85分,那么甲、乙两班全部75名学生的平均成绩是多少分()A.82.4B.82.7C.83.4D.83.5【答案】C 【解析】【分析】根据平均数计算公式直接求解即可.【详解】全班75名学生的平均成绩4035828583.47575x =⨯+⨯=.故选:C .6.已知()1,2A ,()2,3B ,()2,5C -,则三角形ABC 的面积为()A.3B.5C.7D.8【答案】A 【解析】【分析】根据两点间的距离判定三角形为直角三角形,求解即可.【详解】||AB == ,||BC ===,||AC ===222||||AC AB BC ∴+=,所以三角形ABC 为直角三角形,1=2S ∴⨯,故选:A .7.遵义市正安县被誉为“中国吉他之乡”,正安县地标性建筑“大吉他”位于正安县吉他广场的中心,现某中学数学兴趣小组准备在吉他广场上对正安“大吉他”建筑的高度进行测量,采用了如图所示的方式来进行测量:在地面选取相距30米的C 、D 两观测点,且C 、D 与“大吉他”建筑的底部B 在同一水平面上,在C 、D 两观测点处测得“大吉他”建筑顶部A 的仰角分别为45︒,30︒,测得30CBD ∠=︒,则“大吉他”建筑AB 的估计高度为多少米()A.米 B.34米C.米D.30米【答案】D 【解析】【分析】根据仰角可得BC AB h ==,BD ==,在三角形BCD 利用余弦定理即可求解.【详解】设教学楼的高度为h ,在直角三角形ABC 中,因为45ACB ∠= ,所以BC AB h ==,在直角三角形ABD 中,因为30ADB ∠= ,所以tan 30ABBD= ,所以BD ==,在BCD △中,由余弦定理可得2222cos CD BC BD BC BD CBD =+-⋅∠,代入数值可得)22233022h h =+-⨯,解得30h =或30h =-(舍),故选:D.8.已知函数()f x 的定义域为R ,()()()2f x y f x f y +=+-,则()A.()00f = B.函数()2f x -是奇函数C.若()22f =,则()20242f =- D.函数()f x 在()0,∞+单调递减【答案】B 【解析】【分析】对A ,赋值法令0x y ==求解;对B ,赋值法结合奇函数的定义判断;对C ,令2y =求得函数的周期求解;对D ,利用单调性定义结合赋值法求解判断.【详解】对于A ,令0x y ==,可得()()()0002f f f =+-,解得()02f =,故A 错误;对于B ,令y x =-,可得()()()02f f x f x =+--,又()02f =,则()()()222f x f x f x ⎡⎤--=-+=--⎣⎦,所以函数()2f x -是奇函数,故B 正确;对于C ,令2y =,得()()()()222f x f x f f x +=+-=,则()f x 是周期函数,周期为2,所以()()202402f f ==,故C 错误;对于D ,令1x x =,21y x x =-,且210x x >>,则()()()1211212f x x x f x f x x +-=+--,即()()()21212f x f x f x x -=--,而0x >时,()f x 与2大小不定,故D 错误.故选:B.二、多项选择题:本大题共3小题,每小题6分,共18分.在每小题给出的四个选项中,有多项符合题目要求,全部选对得6分,选对但不全的得部分分,有选错的得0分.9.已知复数23i z =+(i 是虚数单位),则下列正确的是()A.z =B.z 的虚部是3C.若i z t +是实数,则0=tD.复数z 的共轭复数为23iz =-+【答案】AB 【解析】【分析】对A ,根据复数的模的计算公式即可判断;对B ,根据复数虚部的定义即可判断;对C ,根据复数的分类可判断;对D ,根据共轭复数的定义即可判断.【详解】对于A ,z ==A 正确;对于B ,复数23i z =+的虚部为3,故B 正确;对于C ,因为()i 23i z t t +=++是实数,则30t +=,即3t =-,故C 错误;对于D ,复数23i z =+的共轭复数为23i z =-,故D 错误.故选:AB.10.已知事件A 、B 发生的概率分别为()13P A =,()14P B =,则下列说法正确的是()A.若A 与B 相互独立,则()12P A B = B.若()14P AB =,则事件A 与B 相互独立C.若A 与B 互斥,则()12P A B = D.若B 发生时A 一定发生,则()14P AB =【答案】ABD 【解析】【分析】根据互斥事件和独立事件的概率公式逐项判断.【详解】对于A ,若A 与B 相互独立,则()()()1113412P AB P A P B ==⨯=,所以()()()()111134122P A B P A P B P AB ⋃=+-=+-=,故A 对;对于B ,因为()13P A =,()14P B =,则()()131144P B P B =-=-=,因为()()()131344P A P B P AB =⨯==,所以事件A 与B 相互独立,故B 对;对于C ,若A 与B 互斥,则()()()1173412P A B P A P B ⋃=+=+=,故C 错;对于D ,若B 发生时A 一定发生,则B A ⊆,则()()14P AB P B ==,故D 对.故选:ABD11.将函数sin 1y x =+图象上所有的点向左平移π3个单位,再把所得各点的横坐标缩短为原来的12π(纵坐标不变)得到函数()y f x =的图象,则下列关于()y f x =说法正确的是()A.()f x 的最小正周期为1B.()f x 在5ππ,1212⎡⎤-⎢⎥⎣⎦上为增函数C.对于任意x ∈R 都有()223f x f x ⎛⎫++-= ⎪⎝⎭D.若方程()1102f x ωω⎛⎫=> ⎪⎝⎭在[)0,2上有且仅有4个根,则117,63ω⎡⎤∈⎢⎥⎣⎦【答案】AC 【解析】【分析】根据图象变换得到()f x 的解析式,进而可判断A ,B ,C 选项;对D ,题意转化为πsin π03x ω⎛⎫+= ⎪⎝⎭在[)0,2上有且仅有4个根,根据正弦函数的性质求解判断.【详解】把函数sin 1y x =+图象上所有的点向左平移π3个单位,可得πsin 13y x ⎛⎫=++ ⎪⎝⎭,再把所得各点的横坐标缩短为原来的12π(纵坐标不变)得到函数()πsin 2π13f x x ⎛⎫=++ ⎪⎝⎭,对于A ,周期2π12πT ==,故A 正确;对于B ,令πππ2π2π2π232k x k -+≤+≤+,Z k ∈,即511212k x k -++≤≤,Z k ∈,所以函数()f x 的单调递增区间为51,1212k k ⎡⎤-++⎢⎥⎣⎦,Z k ∈,故B 错误;对于C ,()22ππsin 2π1sin 2π13333f x f x x x ⎡⎤⎛⎫⎛⎫⎛⎫++-=++++-++ ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦5ππsin 2πsin 2π233x x ⎛⎫⎛⎫=+--+ ⎪ ⎪⎝⎭⎝⎭ππsin 2π2πsin 2π233x x ⎡⎤⎛⎫⎛⎫=-+--+ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦ππsin 2πsin 2π2233x x ⎛⎫⎛⎫=---+= ⎪ ⎪⎝⎭⎝⎭.故C 正确;对于D ,根据题意方程112f x ω⎛⎫= ⎪⎝⎭即πsin π03x ω⎛⎫+= ⎪⎝⎭在[)0,2上有且仅有4个根,ππππ2π333x ωω∴≤+<+,由正弦函数性质得π4π2π5π3ω<+≤,解得11763ω<≤,故D 错误.故选:AC.三、填空题:本题共3小题,每小题5分,共15分.12.已知角的终边经过点1(2P ,则tan α的值为____________.【答案】【解析】【详解】试题分析:.考点:三角函数的定义13.若函数()sin()f x A x ωϕ=+0,0,||2A πωϕ⎛⎫>>< ⎪⎝⎭的部分图像如图所示,则函数()y f x =的解析式为_______.【答案】1()2sin(24f x x π=+【解析】【分析】根据函数()f x 的图象求得2,4A T π==,得到1()2sin()2f x x ϕ=+,再由(22f π=和题设条件,求得4πϕ=,即可求得函数的解析式.【详解】由函数()f x 的图象可得72,()422A T πππ==--=,所以22142T ππωπ===,即1()2sin()2f x x ϕ=+,又由()22f π=,即1sin()122πϕ⨯+=,可得2,42k k Z ππϕπ+=+∈,即2,4k k Z πϕπ=+∈,又因为||2ϕπ<,所以4πϕ=,所以1()2sin()24f x x π=+.故答案为:1()2sin(24f x x π=+.14.窗花是贴在窗纸或窗户玻璃上的剪纸,是中国古老的传统民间艺术之一,如图是一个正八边形的窗花,从窗花图中抽象出的几何图形是一个正八边形,正八边形ABCDEFGH 的边长为4,P 是正八边形ABCDEFGH 内的动点(含边界),则AP AB ⋅的取值范围为________.【答案】⎡-+⎣【解析】【分析】建立平面直角坐标系,得到向量的坐标,用向量的数量积坐标运算即可求解.【详解】以A 为坐标原点,,AB AF 所在直线分别为轴,建立平面直角坐标系,则()()0,0,4,0A B 过H 作AF的垂线,垂足为N ,正八边形ABCDEFGH 中,边长为4,所以()821801358HAB ︒︒-⨯∠==,所以AN HN =,所以222AN HN HA AN +=⇒=,所以4AF =+,设(),P x y ,则()()4,0,,AB AP x y == ,所以4AP AB x ⋅=,因为P 是正八边形ABCDEFGH 内的动点(含边界),所以x 的范围为4x -≤≤+所以416x -≤≤+故答案为:⎡-+⎣.四、解答题:本题共5小题,共77分.解答应写出文字说明、证明过程或演算步骤.15.已知向量()1,4a =- ,()2,1b =-r(1)求5877a b -;(2)若向量()2,c m = ,向量ma c + 与向量a mb +共线,求m 的值.【答案】(1)5(2)1-或89【解析】【分析】(1)根据向量的坐标运算,向量模的公式运算得解;(2)根据向量的坐标运算求得ma c + 和a mb +坐标,再由向量共线即可计算出m 的值.【小问1详解】因为()1,4a =- ,()2,1b =-r,所以()5858582,43,4777777a b ⎛⎫-=--⨯⨯+=- ⎪⎝⎭r r ,所以58577a b -==r r .【小问2详解】因为()2,5ma c m m +=-+r r ,()21,4a mb m m +=--+r r,又ma c + 与a mb +共线,所以()()()24521m m m m -+-+=-,所以2980m m +-=,解得1m =-或89.所以m 的值为1-或89.16.2024年5月3日,搭载嫦娥六号探测器的长征五号遥八运载火箭,在中国文昌航天发射场成功发射,这是我国航天器继嫦娥五号之后,第二次实现月球轨道交会对接,为普及探月知识,某校开展了“探月科普知识竞赛”活动,现从参加该竞赛的学生中随机抽取了80名,统计他们的成绩(满分100分),其中成绩不低于80分的学生被评为“探月达人”,将数据整理后绘制成如图所示的频率分布直方图.(1)估计参加这次竞赛的学生成绩的75%分位数;(2)若在抽取的80名学生中,从成绩在[)70,80,[)80,90,[]90,100中采用分层抽样的方法随机抽取6人,再从这6人中选择2人,求被选中的2人均为“探月达人”的概率.【答案】(1)82.5;(2)15.【解析】【分析】(1)根据给定的频率分布直方图,结合75%分位数的意义列式计算即得.(2)求出抽取的6人中,“探月达人”人数,再利用列举法求出概率.【小问1详解】由频率分布直方图知,成绩在[40,50),[50,60),[60,70),[70,80),[80,90)内的频率依次为:0.05,0.15,0.2,0.3,0.2,则成绩在80分以下的频率为0.7,成绩在90分以下频率为0.9,因此参加这次竞赛的学生成绩的75百分位数为(80,90)x ∈,由(80)0.020.05x -⨯=,解得82.5x =,所以参加这次竞赛的学生成绩的75百分位数为82.5.【小问2详解】由于0.30.20.163,62,610.30.20.10.30.20.10.30.20.1⨯=⨯=⨯=++++++,则6人中,成绩在[70,80),[80,90),[90,100]内的学生分别为3人,2人,1人,其中有3人为“探月达人”,设为a ,b ,c ,有3人不是“探月达人”,设为,,d e f ,则从6人中选择2人作为学生代表,有,,,,,,,,,,,,,,ab ac ad ae af bc bd be bf cd ce cf de df ef ,共15种,其中2人均为“探月达人”为,,ab ac bc ,共3种,所以被选中的2人均为“探月达人”的概率为31155=.17.已知在ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,且cos sin sin 2A BC a b a cπ⎛⎫-- ⎪⎝⎭=+-(1)求角B ;(2)若点D 在AC 上,BD 为ABC ∠的角平分线,BD =,求2a c +的最小值.【答案】(1)π3B =(2)6+【解析】【分析】(1)利用正弦定理进行角换边,再结合余弦定理即可得到答案;(2)根据面积法得1112a c +=,再利用乘“1”法即可得到最小值.【小问1详解】因为sin sin sin C A Ba b a c-=+-,所以由正弦定理可得c a ba b a c-=+-,即222a c b ac +-=,又因为222cos 2a c b B ac+-=,则1cos 2B =,因为(0,π)B ∈,所以π3B =.【小问2详解】因为ABD CBD ABC S S S += 所以1π1π1πsin sin sin 262623AB BD BC BD AB BC ⨯+⨯=⨯,因为BD =,所以c BD a BD ⨯+⨯=,所以2()c a ac ⨯+=,即1112a c +=,所以22242(2)66c a a c a c a c a c ⎛⎫+=++=++≥+⎪⎝⎭,当且仅当22a c ==+时,2a c +取得最小值6+.18.已知函数()()π14sin cos R 6f x x x x ⎛⎫=-++∈ ⎪⎝⎭(1)求函数()f x 的最小值,以及()f x 取得最小值时x 的集合;(2)已知ππ2βα<<<,π82125f αβ-⎛⎫-= ⎪⎝⎭,π102613f β⎛⎫+=- ⎪⎝⎭,求cos α的值.【答案】(1)最小值为2-,x 的集合为,|ππZ 3x x k k ⎧⎫⎨⎬⎩⎭=-+∈(2)6365-【解析】【分析】(1)利用三角恒等变换得π()2sin 26f x x ⎛⎫=+ ⎪⎝⎭,则得到其最小值和此时所对应的x 的集合;(2)首先求出4sin()5αβ-=,再计算出3cos()5αβ-=,5cos 13β=-,12sin 13β=,最后化简为繁,利用两角和的余弦公式即可得到答案.【小问1详解】21()14sin cos cos 1cos 2cos 22f x x x x x x x ⎛⎫=-++=-++ ⎪ ⎪⎝⎭π121cos 22sin 26x x x ⎛⎫=-+++=+ ⎪⎝⎭当ππ22π,Z 62x k k +=-+∈,即ππ,Z 3x k k =-+∈时,()f x 取得最小值2-,此时x 的集合为,|ππZ 3x x k k ⎧⎫⎨⎬⎩⎭=-+∈.【小问2详解】πππ82sin 22sin()21221265f αβαβαβ⎛⎫--⎛⎫⎛⎫-=-+=-= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,则4sin()5αβ-=,因为ππ2β<<,所以ππ2β-<-<-,又因为ππ2α<<,所以ππ22αβ-<-<,所以3cos()5αβ-=,因为πππ102sin 22sin 2cos 26266213f βπβββ⎛⎫⎛⎫⎛⎫⎛⎫+=++=+==- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭,所以5cos 13β=-,因为ππ2β<<,所以12sin 13β==,cos cos[()]cos()cos sin()sin ααββαββαββ=-+=---354126351351365⎛⎫=⨯--⨯=- ⎪⎝⎭.19.若函数()f x 在定义域区间[],a b 上连续,对任意1x ,[]2,x a b ∈恒有()()121222f x f x x x f ++⎛⎫≥⎪⎝⎭,则称函数()f x 是区间[],a b 上的上凸函数,若恒有()()121222f x f x x x f ++⎛⎫≤⎪⎝⎭,则称函数()f x 是区间[],a b 上的下凸函数,当且仅当12x x =时等号成立,这个性质称为函数的凹凸性.上述不等式可以推广到取函数定义域中的任意n 个点,即若()f x 是上凸函数,则对任意1x ,2x ,…,[],n x a b ∈恒有()()()1212n n f x f x f x x x x f n n ++++++⎛⎫≥⎪⎝⎭,若()f x 是下凸函数,则对任意1x ,2x ,…,[],n x a b ∈恒有()()()1212n n f x f x f x x x x f n n ++++++⎛⎫≤⎪⎝⎭,当且仅当12n x x x === 时等号成立.应用以上知识解决下列问题:(1)判断函数()()21R f x x x =+∈在定义域上是上凸函数还是下凸函数(说明理由);(2)证明()sin h x x =,()0,πx ∈上是上凸函数;(3)若A 、B 、C 、()0,πD ∈,且πA B C D +++=,求sin sin sin sin A B C D +++的最大值.【答案】(1)下凸函数,理由见解析(2)证明见解析(3)【解析】【分析】(1)作差()()121222f x f x x x f ++⎛⎫-⎪⎝⎭,化简即可证明;(2)任意取12,(0,π)x x ∈,作差()()12122112sin sin cos cos 222222h x h x x x x x x x h ++⎛⎫⎛⎫⎛⎫-=-- ⎪ ⎪⎪⎝⎭⎝⎭⎝⎭,再分析其符号即可;(3)根据(2)中结论得sin sin sin sin sin 44A B C D A B C D ++++++⎛⎫≤ ⎪⎝⎭,代入计算即可得到答案.【小问1详解】下凸函数,理由如下:任意取12,R x x ∈,因为()()()()22221212*********22424f x f x x x x x x x x x f ++-+++⎛⎫-=+-=- ⎪⎝⎭即()()121222f x f x x x f ++⎛⎫≤⎪⎝⎭,当且仅当12x x =时等号成立,故2()1(R)f x x x =+∈是下凸函数.【小问2详解】任意取12,(0,π)x x ∈,不妨设12x x ≤,()()12121212sin sin sin 2222h x h x x x x x x x h ++++⎛⎫⎛⎫-=-⎪ ⎪⎝⎭⎝⎭12121122sincos cos sin sin cos sin cos 22222222x x x x x x x x=+--2112sin sin cos cos 2222x x x x ⎛⎫⎛⎫=-- ⎪⎪⎝⎭⎝⎭,由于12π0222x x <≤<,根据sin y x =在π0,2⎛⎫ ⎪⎝⎭上单调递增,cos y x =在π0,2⎛⎫⎪⎝⎭上单调递减,则2112sin sin ,cos cos 2222x x x x ≥≥,所以()()121222h x h x x x h ++⎛⎫≥⎪⎝⎭,即函数()h x 是上凸函数.【小问3详解】当(0,,π,),A B C D ∈,且πA B C D +++=,由(2)知()sin ,(0,π)h x x x =∈是上凸函数,所以sin sin sin sin πsin sin 4442A B C D A B C D++++++⎛⎫≤==⎪⎝⎭,故πsin sin sin sin 4sin 4sin 244A B C D A B C D +++⎛⎫+++≤== ⎪⎝⎭所以当且仅当π4A B C D ====时等号成立,即sin sin sin sin A B C D +++的最大值为.【点睛】关键点点睛:本题第二问的关键是作差因式分解得()()12122112sin sin cos cos 222222h x h x x x x x x x h ++⎛⎫⎛⎫⎛⎫-==- ⎪ ⎪⎪⎝⎭⎝⎭⎝⎭,再分析其正负即可.。
贵州省遵义市2021-2022学年高一上学期期末考试英语试题含答案
贵州省遵义市2021-2022学年高一上学期期末考试英语第一部分听力(共两节,满分30分)做题时,先将答案标在试卷上。
录音内容结束后,你将有两分钟的时间将试卷上的答案转涂到答题卡上。
第一节(共5小题;每小题1.5分,满分7.5分)听下面5段对话。
每段对话后有一个小题,从题中所给的A、B、C三个选项中选出最佳选项,并标在试卷的相应位置。
听完每段对话后,你都有10秒钟的时间来回答有关小题和阅读下一小题。
每段对话仅读一遍。
例:How much is the shirt?A. £19.15.B. £9.18.C. £9.15.答案是C。
1. What time is it now?A. 9:10 am.B. 9:50 am.C. 10:00 am.2. How much does a buffet meal cost at 7:00 pm?A. $5.B. $8.C. $ 10.3. When did the man decide to play basketball?A. Monday.B. Thursday.C. Friday.4. Where does this man want to have a lunch?A. In a restaurant downstairs.B. In City Bar.C. In a nice cafe.5. What does the woman do?A. An air hostess.B. A restaurant waitress.C. A secretary.第二节(共15小题;每小题1.5分,满分22.5分)听下面5段对话或独白。
每段对话或独白后有几个小题,从题中所给的A、B、C三个选项中选出最佳选项,并标在试卷的相应位置。
听每段对话或独白前,你将有时间阅读各个小题,每小题5秒钟;听完后,各小题将给出5秒钟的作答时间。
每段对话或独白读两遍。
听第6段材料,回答第6、7题。
【推荐下载】贵州省遵义市2017-2018学年高一数学下学期第一次月考试题
一、选择题(本大题共 12 个小题,每小题 5 分,共 60 分)
1. cos24 cos36 sin 24 sin 36 的值为( )
1
A.0
B.
2
3
C.
2
1
D.
2
2. 在数列 an 中, a1
1
1
2 , an 1 1 an ,则 a5 ( )
1 ,∴ cos(B C )
2
12 3 5 4 16 . 13 5 13 5 65
1
,......2 分
2
又∵ 0 B C
,∴ B C . 3
........................ 4 分
∵A B C
,∴ A 2 . ................... 6 分 3
( 2)由余弦定理 a 2
β-α) =
10 10 ,且
α∈
π 4
,
π
,β ∈
3π π, 2
,则
α+β
的值是 Βιβλιοθήκη )7π9πA. 4
B.
4
5π 7π C. 4 或 4
5π 9π D. 4 或 4
二、填空题(本大题共 4 小题,每小题 5 分,共 20 分.请把答案填在题中的横线上)
13. sin15 cos15 的值是
.
14.江岸边有一炮台高 30 m,江中有两条船,船与炮台底部在同一水平面上,由炮台顶部测
三、解答题 . (本大题共 6 小题,共 70 分。解答时应写出文字说明,证明过程或演算步骤)
17.已知 0
,0
2
( I )求 sin 的值;
贵州省遵义市遵义市第四中学2025届高三第一次调研测试数学试卷含解析
贵州省遵义市遵义市第四中学2025届高三第一次调研测试数学试卷请考生注意:1.请用2B 铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。
写在试题卷、草稿纸上均无效。
2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。
一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.已知随机变量i ξ满足()()221kkk i i i P k C p p ξ-==-,1,2i =,0,1,2k =.若21211p p <<<,则( ) A .()()12E E ξξ<,()()12D D ξξ< B .()()12E E ξξ<,()()12D D ξξ> C .()()12E E ξξ>,()()12D D ξξ<D .()()12E E ξξ>,()()12D D ξξ>2.在ABC ∆中,D 在边AC 上满足13AD DC =,E 为BD 的中点,则CE =( ). A .7388BA BC - B .3788BA BC - C .3788BA BC + D .7388BA BC +3.函数()2ln xf x x x=-的图象大致为( ) A . B .C .D .4.设向量a ,b 满足2=a ,1b =,,60a b =,则a tb +的取值范围是 A .)2,⎡+∞⎣B .)3,⎡+∞⎣C .2,6⎡⎤⎣⎦D .3,6⎡⎤⎣⎦5.若,则( )A .B .C .D .6.三棱柱111ABC A B C -中,底面边长和侧棱长都相等,1160BAA CAA ︒∠=∠=,则异面直线1AB 与1BC 所成角的余弦值为( )A .33B .66C .34D .367.如图,长方体1111ABCD A B C D -中,1236AB AA ==,112A P PB =,点T 在棱1AA 上,若TP ⊥平面PBC .则1TP B B ⋅=( )A .1B .1-C .2D .2-8.已知双曲线C :22221x y a b-=(0a >,0b >)的焦距为2c .点A 为双曲线C 的右顶点,若点A 到双曲线C 的渐近线的距离为12c ,则双曲线C 的离心率是( ) A 2B 3C .2D .39.设()f x 是定义在实数集R 上的函数,满足条件()1y f x =+是偶函数,且当1x ≥时,()112xf x ⎛⎫=- ⎪⎝⎭,则()3log 2a f =,312b f ⎛⎫=- ⎪⎝⎭,()3c f =的大小关系是( ) A .a b c >>B .b c a >>C .b a c >>D .c b a >>10.下列四个结论中正确的个数是(1)对于命题0:p x R ∃∈使得2010x -≤,则:p x R ⌝∃∈都有210x ->;(2)已知2(2,)XN σ,则 (2)0.5P X >=(3)已知回归直线的斜率的估计值是2,样本点的中心为(4,5),则回归直线方程为ˆ23yx =-; (4)“1x ≥”是“12x x+≥”的充分不必要条件. A .1B .2C .3D .411.已知ABC 是边长为3的正三角形,若13BD BC =,则AD BC ⋅=A .32- B .152 C .32D .152-12.已知双曲线C :22221(0,0)x y a b a b-=>>的左、右两个焦点分别为1F ,2F ,若存在点P 满足1212::4:6:5PF PF F F =,则该双曲线的离心率为( )A .2B .52C .53D .5二、填空题:本题共4小题,每小题5分,共20分。
贵州省遵义市第四中学2021年高考数学高考数学压轴题 数列多选题分类精编含答案
贵州省遵义市第四中学2021年高考数学高考数学压轴题 数列多选题分类精编含答案一、数列多选题1.已知数列{}n a 的前n 项和为n S ,11a =,()1*11,221,21n n n a n ka k N a n k --+=⎧=∈⎨+=+⎩.则下列选项正确的为( ) A .614a =B .数列{}()*213k a k N-+∈是以2为公比的等比数列C .对于任意的*k N ∈,1223k k a +=-D .1000n S >的最小正整数n 的值为15 【答案】ABD 【分析】根据题设的递推关系可得2212121,21k k k k a a a a -+=-=-,从而可得22222k k a a +-=,由此可得{}2k a 的通项和{}21k a -的通项,从而可逐项判断正误.【详解】由题设可得2212121,21k k k k a a a a -+=-=-, 因为11a =,211a a -=,故2112a a =+=,所以22212121,12k k k k a a a a +++--==,所以22222k k a a +-=, 所以()222222k k a a ++=+,因为2240a +=≠,故220k a +≠, 所以222222k k a a ++=+,所以{}22k a +为等比数列,所以12242k k a -+=⨯即1222k k a +=-,故416214a =-=,故A 对,C 错. 又112122123k k k a ++-=--=-,故12132k k a +-+=,所以2121323k k a a +-+=+,即{}()*213k a k N -+∈是以2为公比的等比数列,故B 正确.()()141214117711S a a a a a a a =+++=++++++()()2381357911132722323237981a a a a a a a =+++++++=⨯-+-++-+=,15141598150914901000S S a =+=+=>,故1000n S >的最小正整数n 的值为15,故D 正确. 故选:ABD. 【点睛】方法点睛:题设中给出的是混合递推关系,因此需要考虑奇数项的递推关系和偶数项的递推关系,另外讨论D 是否成立时注意先考虑14S 的值.2.已知数列{}n a 的前n 项和为n S ,前n 项积为n T ,0n a ≠,且202021111212a a ++≤+( )A .若数列{}n a 为等差数列,则20210S ≥B .若数列{}n a 为等差数列,则10110a ≤C .若数列{}n a 为等比数列,则20200T >D .若数列{}n a 为等比数列,则20200a <【答案】AC 【分析】由不等关系式,构造11()212xf x =-+,易得()f x 在R 上单调递减且为奇函数,即有220200a a +≥,讨论{}n a 为等差数列、等比数列,结合等差、等比的性质判断项、前n 项和或积的符号即可. 【详解】 由202021111212a a ++≤+,得2020211110212212a a +-+-≤+, 令11()212x f x =-+,则()f x 在R 上单调递减,而1121()212212xx x f x --=-=-++, ∴12()()102121xx x f x f x -+=+-=++,即()f x 为奇函数,∴220200a a +≥,当{}n a 为等差数列,22020101120a a a +=≥,即10110a ≥,且2202020212021()02a a S +=≥,故A 正确,B 错误;当{}n a 为等比数列,201820202a a q=,显然22020,a a 同号,若20200a <,则220200a a +<与上述结论矛盾且0n a ≠,所以前2020项都为正项,则202012020...0T a a =⋅⋅>,故C 正确,D 错误. 故选:AC. 【点睛】关键点点睛:利用已知构造函数,并确定其单调性和奇偶性,进而得到220200a a +≥,基于该不等关系,讨论{}n a 为等差、等比数列时项、前n 项和、前n 项积的符号.3.如图,已知点E 是ABCD 的边AB 的中点,()*n F n ∈N为边BC 上的一列点,连接n AF 交BD 于n G ,点()*n G n ∈N 满足()1223n n n n n G D a G A a G E +=⋅-+⋅,其中数列{}n a 是首项为1的正项数列,n S 是数列{}n a 的前n 项和,则下列结论正确的是( )A .313a =B .数列{}3n a +是等比数列C .43n a n =-D .122n n S n +=--【答案】AB 【分析】化简得到()()12323n n n n n n G D a a G A a G B +=--⋅-+⋅,根据共线得到1230n n a a +--=,即()1323n n a a ++=+,计算123n n a +=-,依次判断每个选项得到答案. 【详解】()()112232n n n n n n G D a G A a G A G B +=⋅-+⋅+, 故()()12323n n n n n n G D a a G A a G B +=--⋅-+⋅,,n n G D G B 共线,故1230n n a a +--=,即()1323n n a a ++=+,11a =,故1342n n a -+=⨯,故123n n a +=-.432313a =-=,A 正确;数列{}3n a +是等比数列,B 正确;123n n a +=-,C 错误;2124323412nn n S n n +-=-=---,故D 错误.故选:AB . 【点睛】本题考查了向量运算,数列的通项公式,数列求和,意在考查学生的计算能力,转化能力和综合应用能力.4.已知数列{}n a 的前n 项和为n S ,且1a p =,122n n S S p --=(2n ≥,p 为常数),则下列结论正确的有( ) A .{}n a 一定是等比数列B .当1p =时,4158S =C .当12p =时,m n m n a a a +⋅= D .3856a a a a +=+【答案】BC 【分析】对于A 选项,若0p =,则数列{}n a 不是等比数列,当0p ≠时,通过题目条件可得112n n a a -=,即数列{}n a 为首项为p ,公比为12的等比数列,然后利用等比数列的通项公式、前n 项和公式便可得出B ,C ,D 是否正确. 【详解】由1a p =,122n n S S p --=得,()222a p p p +-=,故22pa =,则2112a a =,当3n ≥时,有1222n n S S p ---=,则120n n a a --=,即112n n a a -=, 故当0p ≠时,数列{}n a 为首项为p ,公比为12的等比数列;当0p =时不是等比数列,故A 错误;当1p =时,441111521812S ⎛⎫⨯- ⎪⎝⎭==-,故B 正确; 当12p =时,12nn a ⎛⎫= ⎪⎝⎭,则12m nm n m n a a a ++⎛⎫⋅== ⎪⎝⎭,故C 正确;当0p ≠时,38271133+22128a a p p ⎛⎫=+=⎪⎝⎭,而56451112+22128a a p p ⎛⎫=+= ⎪⎝⎭, 故3856a a a a +>+,则D 错误; 故选:BC.5.已知数列{}n a ,{}n b 满足1n n n a a +-=,21n n n b a nb ⋅+=,且11a =,n S 是数列{}n b 的前n 项和,则下列结论正确的有( )A .m +∃∈N ,55m m a a a +=+B .n +∀∈N ,33314n a n +≥ C .m +∃∈N ,16m b = D .n +∀∈N ,113n S ≤<【答案】BD 【分析】用累加法得到222n n n a -+=,代入21n n n b a nb ⋅+=,得11212n b n n ⎛⎫=- ⎪++⎝⎭, 代入5m a +5m a a =+求出m 可判断A ;代入33n a n+求最值可判断B ; 令1121612m b m m ⎛⎫=-= ⎪++⎝⎭解出m 可判断C ;裂项相消后可求出n S 的范围可判断D. 【详解】因为1n n n a a +-=,所以211a a -= 322a a -=11(2)n n n a a n -=-≥-以上各式累加得1121(1)2n a a n n n =+++-=--,所以(1)12n n n a -=+,当1n =时,11a =成立, 所以2(1)2122n n n n a n --+=+=,由21n n n b a nb ⋅+=,得112112(1)1222(1)(2)12n n b a n n n n n n n n ⎛⎫====- ⎪+++++⎝-+⎭+,对于A ,()()5254922122m a m m m m ++++++==,25(1)5(51)2411222m a a m m m m -⨯--+=+++=+ , 当55m m a a a +=+时,222492222m m m m -+++=,得15m +=∉N ,A 错误; 对于B,(1)1(13333343411)22222n n n n a n n n n n ++==+=+-≥--+, 当且仅当268n =取等号,因为n +∀∈N ,所以8n =时,8333184a +=, 所以B 正确;对于C ,令1121612m b m m ⎛⎫=-=⎪++⎝⎭得,215308m m ++=,解得m +=N ,所以C 错误;对于D , n +∀∈N ,1231111112233412n S b b b n n ⎛⎫=+++=-+-++- ⎪++⎝⎭112211222n n ⎛⎫=-=-< ⎪++⎝⎭,可以看出n S 是关于n 递增的,所以1n =时有最小值13, 所以113n S ≤<,D 正确. 故选:BD. 【点睛】本题考查了由递推数列求通项公式、裂项相消求数列和,关键点是用累加法求出n a ,然后代入求出n b ,考查了学生的推理能力、计算能力.6.已知数列{}n a ,{}n b 满足,11a =,11n n n a a a +=+,1(1)n n b n a =+,若23100100122223100b b b T b =++++,则( ) A .n a n = B .1n n b n =+ C .100100101T =D .10099100T =【答案】BC 【分析】 先证明数列1n a 是等差数列得1n a n =,进而得1(1)1n nn b n a n ==++,进一步得()211111n b n n n n n ==-++,再结合裂项求和得100100101T =. 【详解】 解:因为11nn n a a a +=+,两边取倒数得: 1111n n a a +=+,即1111n na a ,所以数列1n a 是等差数列,公差为1,首项为111a ,故()1111n n n a =+-⨯=,所以1n a n=, 所以1(1)1n n nb n a n ==++,故()211111n b n n n n n ==-++, 所以31002100122211112310022334100101b b b T b =++++=++++⨯⨯⨯11111111100122334100101101101⎛⎫⎛⎫⎛⎫=+-+-++-=-= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭, 故BC 正确,AD 错误; 故选:BC 【点睛】本题考查数列通项公式的求解,裂项求和,考查运算求解能力,是中档题.本题解题的关键在于证明数列1na 是等差数列,进而结合裂项求和求解100T .7.已知数列{}n a 的前n 项和为n S ,11a =,且1n n S a λ-=(λ为常数).若数列{}n b 满足2920n n a b n n -+-=,且1n n b b +<,则满足条件的n 的取值可以为( )A .5B .6C .7D .8【答案】AB 【分析】利用11a S =可求得2λ=;利用1n n n a S S -=-可证得数列{}n a 为等比数列,从而得到12n na ,进而得到nb ;利用10nnb b 可得到关于n 的不等式,解不等式求得n 的取值范围,根据n *∈N 求得结果. 【详解】当1n =时,1111a S a λ==-,11λ∴-=,解得:2λ=21n n S a ∴=-当2n ≥且n *∈N 时,1121n n S a --=-1122n n nn n a S S a a ,即:12n n a a -=∴数列{}n a 是以1为首项,2为公比的等比数列,12n na2920n n a b n n =-+-,219202n n n n b --+-∴= ()()222111912092011280222n n n n nn n n n n n b b +--+++--+--+∴-=-=< 20n >,()()21128470n n n n ∴-+=--<,解得:47n <<又n *∈N ,5n ∴=或6 故选:AB 【点睛】关键点点睛:本题考查数列知识的综合应用,涉及到利用n a 与n S 的关系求解通项公式、等比数列通项公式的求解、根据数列的单调性求解参数范围等知识,解决本题的关键点是能够得到n b 的通项公式,进而根据单调性可构造出关于n 的不等式,从而求得结果,考查学生计算能力,属于中档题.8.设数列{}n a 的前n 项和为*()n S n N ∈,关于数列{}n a ,下列四个命题中正确的是( )A .若1*()n n a a n N +∈=,则{}n a 既是等差数列又是等比数列B .若2n S An Bn =+(A ,B 为常数,*n N ∈),则{}n a 是等差数列C .若()11nn S =--,则{}n a 是等比数列D .若{}n a 是等差数列,则n S ,2n n S S -,*32()n n S S n N -∈也成等差数列【答案】BCD 【分析】利用等差等比数列的定义及性质对选项判断得解. 【详解】选项A: 1*()n n a a n N +∈=,10n n a a +∴-=得{}n a 是等差数列,当0n a =时不是等比数列,故错; 选项B:2n S An Bn =+,12n n a a A -∴-=,得{}n a 是等差数列,故对;选项C: ()11nn S =--,112(1)(2)n n n n S S a n --∴-==⨯-≥,当1n =时也成立,12(1)n n a -∴=⨯-是等比数列,故对;选项D: {}n a 是等差数列,由等差数列性质得n S ,2n n S S -,*32()n n S S n N -∈是等差数列,故对; 故选:BCD 【点睛】熟练运用等差数列的定义、性质、前n 项和公式是解题关键.9.(多选题)已知函数()22()()n n f n n n ⎧=⎨-⎩当为奇数时当为偶数时,且()()1n a f n f n =++,则na 等于( )A .()21n -+B .21n -C .21nD .12n -【答案】AC 【分析】对n 进行分类讨论,按照()()1n a f n f n =++写出通项即可. 【详解】当n 为奇数时,()()()()22112121n a f n f n n n n n =++=-+=--=-+; 当n 为偶数时,()()()221121n a f n f n n n n =++=-++=+,所以()()()2121n n n a n n ⎧-+⎪=⎨+⎪⎩当为奇数时当为偶数时. 故选:AC . 【点睛】易错点睛:对n 进行分类讨论时,应注意当n 为奇数时,1n +为偶数;当n 为偶数时,1n +为奇数.10.若数列{}n a 的前n 项和是n S ,且22n n S a =-,数列{}n b 满足2log n n b a =,则下列选项正确的为( ) A .数列{}n a 是等差数列B .2nn a =C .数列{}2na 的前n 项和为21223n +-D .数列11n n b b +⎧⎫⎨⎬⋅⎩⎭的前n 项和为n T ,则1n T <【答案】BD 【分析】根据22n nS a =-,利用数列通项与前n 项和的关系得1,1,2n n S n a S n =⎧=⎨≥⎩,求得通项n a ,然后再根据选项求解逐项验证. 【详解】当1n =时,12a =,当2n ≥时,由22n n S a =-,得1122n n S a --=-, 两式相减得:12n n a a -=, 又212a a =,所以数列{}n a 是以2为首项,以2为公比的等比数列, 所以2nn a =,24nn a =,数列{}2na 的前n 项和为()141444143n n n S +--'==-, 则22log log 2nn n b a n ===,所以()1111111n n b b n n n n +==-⋅⋅++,所以 1111111 (11123411)n T n n n =-+-++-=-<++, 故选:BD 【点睛】方法点睛:求数列的前n 项和的方法 (1)公式法:①等差数列的前n 项和公式,()()11122n n n a a n n S na d +-==+②等比数列的前n 项和公式()11,11,11nn na q S a q q q=⎧⎪=-⎨≠⎪-⎩;(2)分组转化法:把数列的每一项分成两项或几项,使其转化为几个等差、等比数列,再求解.(3)裂项相消法:把数列的通项拆成两项之差求和,正负相消剩下首尾若干项.(4)倒序相加法:把数列分别正着写和倒着写再相加,即等差数列求和公式的推导过程的推广.(5)错位相减法:如果一个数列的各项是由一个等差数列和一个等比数列对应项之积构成的,则这个数列的前n项和用错位相减法求解.(6)并项求和法:一个数列的前n项和中,可两两结合求解,则称之为并项求和.形如a n=(-1)n f(n)类型,可采用两项合并求解.。
人教版2020-2021学年下学期高一数学期末检测卷及答案(含两套题)
【点睛】一般地,如果 为等差数列, 为其前 项和,则有性质:
(1)若 ,则 ;
(2) 且 ;
(3) 且 为等差数列;
(4) 为等差数列.
6.A
【解析】
【分析】
利用正弦定理将边转化为角得到 ,再由角C的范围可得选项.
【详解】因为 ,
所以由正弦定理得 ,所以 ,即 ,
又因为 为 的内角,
所以 .
解得 , ,
, ;
(2) ,
,
又 ,由题得 ,即 ,
,即
由题知 且 ,故 ,
故 ,
故只需考虑 , 时 , 时 , 时 ,
17.(10分)已知 中,点 .
(1)求直线 的方程;
(2)求 的面积.
18.(12分)已知函数 .
(1)当 时,求不等式 的解集;
(2)若关于x的不等式 的解集为R,求a的取值范围.
19.(12分)己知向量 , .
(1)若 ,其中 ,求 坐标;
(2)若 与 的夹角为 ,求 的值.
20.(12分)自我国爆发新冠肺炎疫情以来,各地医疗单位都加紧了医疗用品的生产,某医疗器械厂统计了口罩生产车间每名工人的生产速度,将所得数据分成五组并绘制出如图所示的频率分布直方图.已知前四组的频率成等差数列,第五组与第二组的频率相等.
故 ,
故答案为:
【点睛】向量的数量积有两个应用:(1)计算长度或模长,通过用 来求;(2)计算角, .特别地,两个非零向量 垂直的等价条件是 .
15.9
【解析】
【分析】
将 变形后利用基本不等式可求其最小值
【详解】 ,
,等号成立时 , .
故答案为:9.
【点睛】应用基本不等式求最值时,需遵循“一正二定三相等”,如果原代数式中没有积为定值或和为定值,则需要对给定的代数变形以产生和为定值或积为定值的局部结构.求最值时要关注取等条件的验证.
专题07 (基本立体图形)(解析版)-2020-2021学年高一数学下学期期末考试考前必刷题
2020-2021高一下学期期末考试考前必刷题 07(基本立体图形)试卷满分:150分 考试时长:120分钟注意事项:1.本试题满分150分,考试时间为120分钟.2.答卷前务必将姓名和准考证号填涂在答题纸上.3.使用答题纸时,必须使用0.5毫米的黑色签字笔书写,要字迹工整,笔迹清晰.超出答题区书写的答案无效;在草稿纸、试题卷上答题无效.一、单选题(本大题共8小题,共40.0分)1.(2021·全国高一课时练习)下面四个几何体中,是棱台的是( )A .B .C .D .【答案】C【分析】根据棱柱、棱锥、棱台的结构特征,观察可得答案.【详解】A 项中的几何体是棱柱.B 项中的几何体是棱锥;D 项中的几何体的棱AA ′,BB ′,CC ′,DD ′没有交于一点,则D 项中的几何体不是棱台; C 项中的几何体是由一个棱锥被一个平行于底面的平面截去一个棱锥剩余的部分,符合棱台的定义,是棱台.故选:C2.(2021·湖南长沙市·雅礼中学高一月考)如图,已知等腰三角形O A B '''△,OA AB ''''=是一个平面图形的直观图,斜边2O B ''=,则这个平面图形的面积是( )A B .1 C D .【答案】D【分析】利用斜二测画法,由直观图作出原图三角形,再利用三角形面积公式即可求解.【详解】因为O A B '''△是等腰直角三角形,2O B ''=,所以O A A B ''''==,所以原平面图形为:且2OB O B ''==,OA OB ⊥,2OA O A ''==所以原平面图形的面积是122⨯⨯=, 故选:D3.(2020·陕西西安市第三中学高一月考)如果圆锥的侧面展开图是半圆,那么这个圆锥的轴截面对应的等腰三角形的底角是( )A .30°B .45°C .60°D .90°【答案】C【分析】由圆锥侧面展开所得扇形的弧长与底面周长相等可得圆锥母线与底面半径的数量关系,即可求轴截面底角的大小.【详解】若圆锥如下图所示,则侧面展开图半圆的半径R PA PB ==,底面半径r OA OB ==,由题意知:1222R r ππ⨯=,即2R r =, ∴轴截面对应等腰三角形的底角1cos 2OB r PBA PB R ∠===, ∴60PBA ∠=︒,故选:C4.(2020·四川省广元市八二一中学高一月考)某数学小组进行“数学建模”社会实践调查.他们在调查过程中将一实际问题建立起数学模型,现展示如下:四个形状不同、内空高度相等、杯口半径相等的圆口容器,如图所示.盛满液体后倒出一半,设剩余液体的高度从左到右依次为1h ,2h ,3h ,4h .则它们的大小关系正确的是( )A .214h h h >>B .123h h h >>C .324h h h >>D .241h h h >>【答案】A【分析】可根据几何体的图形特征,结合题目,选择答案.【详解】观察图形可知体积减少一半后剩余就的高度最高为2h ,最低为4h .故选:A【点睛】本题考查旋转体的结构特征,属于基础题.5.(2020·山东德州市·高一期末)一个正三棱锥的底面边长是6( )A .B .C .D .3【答案】D【分析】画出正三棱锥A BCD -的图像,得到底面正三角形的中心O 到正三角形的CD 的距离,再利用勾股定理求斜高即可.【详解】正三棱锥A BCD -的底面边长6BC CD DB ===,高AO =所以底面正三角形的中心O 到正三角形的CD 的距离为1623OH =⨯=故正三棱锥的斜高3AH ==;故选:D.6.(2020·全国高一单元测试)某三棱锥的三视图如图所示,则该三棱锥的侧棱最长的是( )A .2B C D .【答案】C【分析】 画出几何体的直观图,利用三视图的数据,求解棱锥最长的棱长即可.【详解】由三视图可知,该三棱锥的直观图如图所示,取AB 的中点O ,则OC AB ⊥,易知2AB OC ==,1PC =,又PC ⊥底面ABC ,所以PC BC ⊥,从而最长棱为PA 和PB ,=.故选:C .【点睛】本题考查三视图求解几何体的几何量,考查空间想象能力以及计算能力,属于中档题.关键在于根据三视图还原出几何体的形状,画出直观图,并分析几何体的结构特征.7.(2020·南阳市第四中学高一月考)给出下列四个命题:①各侧面都是全等四边形的棱柱一定是正棱柱;②对角面是全等矩形的六面体一定是长方体;③棱锥的侧棱长与底面多边形的边长相等,则该棱锥可能是正六棱锥;④长方体一定是正四棱柱.其中正确的命题个数是( )A .0B .1C .2D .3【答案】A【分析】利用底面为菱形的直四棱柱可判断①的正误;利用底面为等腰梯形的直四棱柱可判断②的正误;利用正六棱锥的几何特征可判断③的正误;取长、宽、高都不相等的长方体可判断④的正误.【详解】对于①,底面是菱形(不是正方形)的直四棱柱满足条件,但它不是正棱柱,①错误; 对于②,底面为等腰梯形的直四棱柱的对角面全等,但它不是长方体,②错误; 对于③,如下图所示:在正六棱锥P ABCDEF -中,六边形ABCDEF 为正六边形,设O 为正六边形的中心,则PO ⊥平面ABCDEF ,OA ⊂平面ABCDEF ,则PO OA ⊥,由正六边形的几何性质可知,OAB 为等边三角形,则AB OA =,PA OA ∴>,③错误;对于④,在长方体1111ABCD A BC D -中,若AB 、AD 、1AA 的长两两不相等, 则长方体1111ABCD A BC D -不是正四棱柱,④错误.故选:A.8.(2020·武汉市钢城第四中学高一月考)小蚂蚁的家住在长方体1111ABCD A BC D -的A 处,小蚂蚁的奶奶家住在1C 处,三条棱长分别是12AA =,3AB =,4=AD ,小蚂蚁从A 点出发,沿长方体的表面到小蚂蚁奶奶家1C 的最短距离是( )A B . C D 【答案】D【分析】根据题意知蚂蚁所走的路线有三种情况,利用勾股定理能求出小蚂蚁从A 点出发,沿长方体的表面到小蚂蚁奶奶家1C 的最短距离.【详解】解:根据题意知:蚂蚁所走的路线有三种情况,如下图所示①②③,由勾股定理得:图①中,1AC =图②中,1AC ==图③中,1AC故小蚂蚁从A 点出发,沿长方体的表面到小蚂蚁奶奶家1C 故选:D .【点睛】本题考查最短距离的求法,考查空间中线线、线面、面面间的位置关系等基础知识,考查推理论证能力、空间想象能力、运算求解能力,考查化归与转化思想、数形结合思想、函数与方程思想,属于中档题.二、多选题(本大题共4小题,共20.0分)9.(2020·山东枣庄市·滕州市第一中学新校高一月考)已知圆锥的顶点为P ,母线长为2,A ,B 为底面圆周上两个动点,则下列说法正确的是A .圆锥的高为1B .三角形PAB 为等边三角形C .三角形PABD .直线PA 与圆锥底面所成角的大小为π6 【答案】AD【分析】根据圆锥的性质判断各选项.【详解】由题意圆锥的高为1h ===,A 正确;PAB △中PA PB =是母线长,AB 是底面圆的一条弦,与PA 不一定相等,B 错;当PAB △是轴截面时,cos PAB ∠=,30PAB ∠=︒,则120APB ∠=︒,当,A B 在底面圆上运动时,21sin 2sin 22PAB S PA APB APB =∠=∠≤△,当且仅当90PB ∠=︒时取等号.即PAB △面积最大值为2.C 错;设底面圆圆心为O ,则PAO ∠为PA 与底面所成的角,易知cos 26PAO PAO π∠=∠=,D 正确. 故选:AD .本题考查圆锥的性质,圆锥的轴截面是等腰三角形,腰即为圆锥的母线,底为底面直径,轴截面的高即为圆锥的高.10.(2020·江苏泰州市·兴化一中高一期中)下列命题中正确的有A .空间内三点确定一个平面B .棱柱的侧面一定是平行四边形C .分别在两个相交平面内的两条直线如果相交,则交点只可能在两个平面的交线上D .一条直线与三角形的两边都相交,则这条直线必在三角形所在的平面内【答案】BC【分析】利用平面的定义,棱柱的定义,对选项逐一判断即可.【详解】对于A 选项,要强调该三点不在同一直线上,故A 错误;对于B 选项,由棱柱的定义可知,其侧面一定是平行四边形,故B 正确;对于C 选项,可用反证法证明,故C 正确;对于D 选项,要强调该直线不经过给定两边的交点,故D 错误.故选:BC.【点睛】本题考查平面的基本性质及其推论的应用,考查棱柱的定义,属于基础题.11.(2020·全国高一课时练习)长方体1111ABCD A BC D 的长、宽、高分别为3,2,1,则( )A .长方体的表面积为20B .长方体的体积为6C .沿长方体的表面从A 到1C 的最短距离为D .沿长方体的表面从A 到1C 的最短距离为【答案】BC【分析】由题意,可利用柱体体积公式和多面体表面积公式进行计算,沿表面最短距离可将临近两个面侧面展开图去计算,即可求解正确答案.长方体的表面积为2(323121)22⨯⨯+⨯+⨯=,A 错误.长方体的体积为3216⨯⨯=,B 正确.如图(1)所示,长方体1111ABCD A BC D -中,3AB =,2BC =,11BB =.求表面上最短(长)距离可把几何体展开成平面图形,如图(2)所示,将侧面11ABB A 和侧面11BCC B 展开,则有1AC ==,即经过侧面11ABB A 和侧面11BCC B如图(3)所示,将侧面11ABB A 和底面1111D C B A 展开,则有1AC ==过侧面11ABB A 和底面1111D C B A 时的最短距离是4)所示,将侧面11ADD A 和底面1111D C B A 展开,则有1AC ==11ADD A 和底面1111D C B A 时的最短距离是因为<,所以沿长方体表面由A 到1C 的最短距离是C 正确,D 不正确.故选:BC .【点睛】本题考查长方体体积公式、表面积公式和沿表面的最短距离,考查空间想象能力,属于基础题.12.(2020·瓦房店市高级中学高一期末)如图,透明塑料制成的长方体容器1111ABCD A BC D -内灌进一些水,固定容器一边AB 于地面上,再将容器倾斜,随着倾斜度的不同,有下面几个结论,其中正确的命题有( )A .没有水的部分始终呈棱柱形B .水面EFGH 所在四边形的面积为定值C .随着容器倾斜度的不同,11AC 始终与水面所在平面平行D .当容器倾斜如图(3)所示时,AE AH ⋅为定值【答案】AD【分析】想象容器倾斜过程中,水面形状(注意AB 始终在桌面上),可得结论.【详解】由于AB 始终在桌面上,因此倾斜过程中,没有水的部分,是以左右两侧的面为底面的棱柱,A 正确;图(2)中水面面积比(1)中水面面积大,B 错;图(3)中11AC 与水面就不平行,C 错;图(3)中,水体积不变,因此AEH △面积不变,从而AE AH ⋅为定值,D 正确. 故选:AD .【点睛】本题考查空间线面的位置关系,考查棱柱的概念,考查学生的空间想象能力,属于中档题.三、填空题(本大题共4小题,共20.0分)13.(2020·浙江高一期末)如果用半径为R =个圆锥筒的高是___________.【答案】3【分析】先求半圆的弧长,就是圆锥的底面周长,求出底面圆的半径,然后利用勾股定理求出圆锥的高.【详解】半径为R =,圆锥的底面圆的周长为,3=,故答案为:3.14.(2020·河南)若正三棱锥A BCD -的侧棱长为8,底面边长为4,E ,F 分别为AC ,AD 上的动点(如图),则截面BEF 的周长最小值为______.【答案】11【分析】将正三棱锥A BCD -的侧面沿AB 剪开,然后展开'BB 即为所求,然后利用相似,分别求得BE ,EF ,'FB 即可.【详解】正三棱锥A BCD -的侧面展开图如图,由平面几何知识可得//BB CD ',所以BEC ECD ACB ∠=∠=∠,所以BE =BC =4,BCE ABC ∽, 所以CE BC BC AB =.即448CE =, 所以2CE =,所以6AE =, 又34EF AE CD AC ==, 解得3EF =.所以截面BEF 的周长最小值为:''BB BE EF FB =++=43411++=.故答案为:1115.(2020·浙江杭州市·高一期末)正方体1111ABCD A BC D -中,棱长为2,E 是线段1CD 上的动点,则||||AE DE +的最小值是_______.【分析】在正方体中,由图形可知||||,||||AE AP DE DP ≥≥,且当,E P 重合时,等号同时成立,即可求解.【详解】如图,取1CD 的中点为P ,连接AP ,DP则由1AC AD =,1DC DD =知,1AP CD ⊥, 1DP CD ⊥,所以||||,||||AE AP DE DP ≥≥,所以||||||||AE DE AP DP +≥+,在正方体中,棱长为2,所以2AP ==, 122DP ==故当E 在线段1CD 上运动,E 与P 重合时,||||AE DE +【点睛】关键点点睛:根据图象可知,当E 在线段1CD 上运动时,垂线段最短,可得||||AE AP ≥,同理,当E 在线段1CD 上运动时,||||DE DP ≥,且当E 与P 重合时等号同时成立. 16.(2020·浙江杭州市·高一期末)如图,圆锥的底面直径2AB =,母线长3VA =,点C 在母线VB 上,且1VC =,有一只蚂蚁沿圆锥的侧面从点A 到达点C ,则这只蚂蚁爬行的最短距离是______.【分析】蚂蚁爬行距离最短,即将圆锥侧面展开后A 到C 的直线距离,根据已知条件、余弦定理可求出最短距离.【详解】圆锥的侧面展开图为半径为3的扇形,弧AB 长为122ππ⨯=,∴3AVB π∠=,则3AVC π∠=, 由余弦定理可知22212cos 9123172AC VA VC VA VC AVC =+-⋅⋅∠=+-⨯⨯⨯=,AC =四、解答题(本大题共6小题,共70.0分)17.(2020·全国高一单元测试)画出图中水平放置的四边形ABCD 的直观图.【答案】图见解析.【分析】在四边形ABCD 中,过A 作出x 轴的垂直确定坐标,进而利用斜二测画法画出直观图.【详解】由斜二测画法:纵向减半,横向不变;即可知A 、C 在对应点1(3,1),(0,)2A C '',而B 、D 对应点,B D ''位置不变,如下图示:18.(2020·福建漳州市·高一期末)已知球O 的半径为5.(1)求球O 的表面积;(2)若球O 有两个半径分别为3和4的平行截面,求这两个截面之间的距离.【答案】(1)100π;(2)1或7.【分析】(1)利用球的表面积公式计算即可;(2)先求球心到两个截面的距离,再计算即可.【详解】解:(1)因为球O 的半径为5R =,所以球O 的表面积为24100S R ππ==.(2)设两个半径分别为13r =和24r =的平行截面的圆心分别为1O 和2O ,所以14OO ===,所以23OO ===, 所以1212347O OO OO O =+=+=, 或1122431O OO OO O =-=-=,所以两个截面之间的距离为1或7.【点睛】本题考查了球的表面积和截面问题,属于基础题.19.(2020·河北沧州市一中高一月考)如图所示,在正三棱柱111ABC A B C -中,3AB =,14AA =,M 为1AA 的中点,P 是BC 上的一点,且由P 沿棱柱侧面经过棱1CC 到M 的最.设这条最短路线与1CC 的交点为N ,求:(1)该三棱柱的侧面展开图的对角线的长;(2)PC 和NC 的长.【答案】(1(2)PC 的长为2,NC 的长为45. 【分析】(1)由展开图为矩形,用勾股定理求出对角线长;(2)在侧面展开图中三角形MAP 是直角三角形,可以求出线段AP 的长度,进而可以求PC 的长度,再由相似比可以求出CN 的长度.【详解】(1)由题意,该三棱柱的侧面展开图是宽为4,长为339⨯=的矩形,=(2)将该三棱柱的侧面沿棱1BB 展开,如图所示.设PC 的长为x ,则222()MP MA AC x =++.因为MP =2MA =,3AC =,所以2x =(负值舍去),即PC 的长为2.又因为//NC AM , 所以PC NC PA AM =,即252NC =, 所以45NC =. 【点睛】 本题考查求侧面展开图的对角线长,以及三棱柱中的线段长,熟记三棱柱的结构特征即可,属于常考题型.20.(2020·湖北武汉市·华中师大一附中高一月考)已知一个圆锥的底面半径为2,母线长为4.(1)求圆锥的侧面展开图的扇形的圆心角;(2.求圆柱的表面积.【答案】(1)π (2)(2π+【分析】(1)由圆锥侧面展开图的定义计算;(2)由圆锥截面性质,在轴截面中得到相似三角形,由比例性质可得圆柱的底面半径后可得圆柱表面积.【详解】(1)244r l ππαπ=== (2)如图所示,设圆锥的底面半径为R ,圆柱的底面半径为r ,表面积为S ,则2,4,R OC AC AO =====易知AEB AOC ∆∆AE EBAO OC ∴=,12r r =∴= 222,223S r S r h ππππ====底侧(22S S S ππ∴=+=+=+底侧【点睛】本题考查圆锥的侧面展开图,考查圆柱表面积,考查圆锥的内接圆柱性质.解题关键是掌握圆锥平行于底面的截面的性质.21.(2020·全国高一课时练习)如图,在三棱柱111ABC A B C -中,,E F 分别是11A B ,11AC 的中点,连接,,BE EF FC ,试判断几何体1A EF ABC -是什么几何体,并指出它的底面与侧面.【答案】几何体1A EF ABC -是三棱台.面ABC 是下底面,面1A EF 是上底面,面1ABEA ,面BCFE 和面1ACFA 是侧面【分析】根据题意以及三棱台的结构特征,可以猜想几何体1A EF ABC -是三棱台,再根据三棱台的定义证明即可,然后由三棱台定义可指出它的底面与侧面.【详解】,E F 分别是1111,A B AC 的中点,且11A B AB =,11ACAC =,11B C BC =, 1112A E A F EF AB AC BC ∴===.1~A EF ABC ∴,且1,,AA BE CF 延长后交于一点.又面111A B C 与面ABC 平行,∴几何体1A EF ABC -是三棱台.其中面ABC 是下底面,面1A EF 是上底面,面1ABEA ,面BCFE 和面1ACFA是侧面. 【点睛】本题主要考查三棱台的结构特征,以及利用三棱台定义判断几何体的形状,属于基础题. 22.(2020·全国)在正三棱台111ABC A B C -中,已知10AB =,棱台一个侧面梯形的面积,1,O O 分别为上、下底面正三角形的中心,连接11AO ,AO 并延长,分别交11B C ,BC 于点1D ,D ,160D DA ︒∠=,求上底面的边长.【答案】【分析】由题意,可设上底面边长为x ,利用题中所给侧面梯形面积列方程,求x 值即可.【详解】10AB =,2AD AB ∴==133OD AD ==.设上底面的边长为(0)x x >,则116O D x =. 如图所示,连接1O O ,过1D 作1D H AD ⊥于点H ,则四边形11OHD O 为矩形,且116OH O D x ==.36DH OD OH x ∴=-=-,在1Rt D DH 中,12cos 6036DH D D x ︒⎛⎫==- ⎪ ⎪⎝⎭. 四边形11BC CB 的面积为()11112B C BC D D +⋅,1(10)22x x ⎫=+⨯⎪⎪⎝⎭, 即40(10)(10)x x =+-,x ∴=【点睛】本题考查正棱台几何性质,空间想象能力,计算能力,属于中等题型.。
2021年贵州省遵义市仁怀私立育人中学高一数学理期末试卷含解析
2020-2021学年贵州省遵义市仁怀私立育人中学高一数学理期末试卷含解析一、选择题:本大题共10小题,每小题5分,共50分。
在每小题给出的四个选项中,只有是一个符合题目要求的1. 已知偶函数f(x)在区间[0,+∞)单调递减,则满足的实数x的取值范围是()A.(,)B.[,)C.(,)D.[,)参考答案:A【考点】函数奇偶性的性质.【分析】由偶函数的性质和单调性以及,可得|2x﹣1|<,根据绝对值不等式的解法,解不等式可求范围.【解答】解:∵偶函数f(x)满足,∴f(|2x﹣1|)>f(),∵偶函数f(x)在区间[0,+∞)上单调递减,∴|2x﹣1|<,解得<x<,故选A.2. 某人5次上班途中所花的时间(单位:分钟)分别为x,y,10,11,9.已知这组数据的平均数为10,方差为2,则|x-y|的值为( ).A. 1B. 2C. 3D. 4参考答案:D略3. 对于实数,表示不超过的最大整数. 已知正数数列满足,,其中为数列的前项和,则()A.B.C.D.参考答案:B4. 直线经过A(2,1),B(1,m2)两点(m∈R),那么直线l的倾斜角的取值范围是()A.[0,π) B.∪ C. D.∪参考答案:B5. 等比数列中,则等于 ()A.20 B.18 C.10 D.8参考答案:B6. 已知函数f(x)=(a﹣1)x2+2ax+3为偶函数,那么f(x)在(﹣5,﹣2)上是()A.单调递增函数B.单调递减函数C.先减后增函数D.先增后减函数参考答案:A【考点】函数奇偶性的性质.【专题】函数思想;数形结合法;函数的性质及应用.【分析】根据函数f(x)=(a﹣1)x2+2ax+3为偶函数,可得a=0,分析函数的图象和性质,可得答案【解答】解:∵函数f(x)=(a﹣1)x2+2ax+3为偶函数,∴f(﹣x)=(a﹣1)x2﹣2ax+3=f(x)=(a﹣1)x2+2ax+3,∴a=0,∴f(x)=﹣x2+3,则函数的图象是开口朝下,且以y轴为对称轴的抛物线,∴f(x)在(﹣5,﹣2)上是增函数,故选:A.【点评】本题考查的知识点是二次函数的图象和性质,熟练掌握二次函数的图象和性质,是解答的关键.7. 在△AB C中,已知D是BC延长线上一点,若,点E为线段AD的中点,,则λ=()A.B.C.D.参考答案:B【考点】平面向量的基本定理及其意义.【专题】计算题;数形结合;转化思想;平面向量及应用.【分析】由=, =,,,代入化简即可得出.【解答】解: =, =,,,代入可得: =+=+,与,比较,可得:λ=.故选:B.【点评】本题考查了向量共线定理、向量的三角形法则,考查了推理能力与计算能力,属于中档题.8. 已知数列{a n}的前n项和,那么下述结论正确的是()A.k为任意实数时,{a n}是等比数列B.k =-3时,{a n}是等比数列C.k =-1时,{a n}是等比数列D.{a n}不可能等比数列参考答案:B略9. 已知全集U={1,2,3,4,5,6,7},A={2,4,5},则?U A=( )A.? B.{2,4,6} C.{1,3,6,7} D.{1,3,5,7}参考答案:C【考点】补集及其运算.【专题】计算题.【分析】由全集U,以及A,求出A的补集即可.【解答】解:∵全集U={1,2,3,4,5,6,7},A={2,4,5},∴?U A={1,3,6,7},故选C【点评】此题考查了补集及其运算,熟练掌握补集的定义是解本题的关键.10. 在△ABC中,已知三边a、b、c满足(a+b+c)(a+b-c)=3ab,则∠C等于()A.15° B.30° C.45° D.60°参考答案:D二、填空题:本大题共7小题,每小题4分,共28分11. (12分)求过点A(2,﹣1),圆心在直线y=﹣2x上,且与直线x+y﹣1=0相切的圆的方程.参考答案:考点:圆的切线方程.专题:计算题;直线与圆.分析:设出圆的方程,利用已知条件列出方程,求出圆的几何量,即可得到圆的方程.解答:设圆心为(a,﹣2a),圆的方程为(x﹣a)2+(y+2a)2=r2(2分)则(6分)解得a=1,(10分)因此,所求得圆的方程为(x﹣1)2+(y+2)2=2(12分)点评:本题考查圆的方程的求法,直线与圆的位置关系的应用,考查计算能力.12. 函数f(x)=的定义域为.参考答案:(0,1)【考点】函数的定义域及其求法.【分析】要使函数有意义,则需x >0,且,运用对数函数的单调性求解,即可得到定义域.【解答】解:由题意得:,解得:0<x<1.∴函数f(x)=的定义域为:(0,1).故答案为:(0,1).13. 幂函数的图象过点,那么的值为___ ▲______.参考答案:14. 把函数的图象沿 x轴向左平移个单位,纵坐标伸长到原的2倍(横坐标不变)后得到函数图象,对于函数有以下四个判断:①该函数的解析式为;②该函数图象关于点对称;③该函数在上是增函数;④函数在上的最小值为,则.其中,正确判断的序号是_____________参考答案:②④15. 在中,、、分别为角、、所对的边,若,则此三角形一定是________三角形.参考答案:等腰16. 某单位200名职工的年龄分布情况如图2,现要从中抽取40名职工作样本,用系统抽样法,将全体职工随机按1-200编号,并按编号顺序平均分为40组(1-5号,6-10号…,196-200号).若第5组抽出的号码为22,则第8组抽出的号码应是.若用分层抽样方法,则40岁以下年龄段应抽取人.图 2参考答案:37, 20略17. 设集合=,若,则的值参考答案:三、解答题:本大题共5小题,共72分。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
贵州省遵义市第四中学【最新】高一下学期期末考试数学试题学校:___________姓名:___________班级:___________考号:___________一、单选题 1.已知3sin 5α=-,3tan 4α=,那么角α的终边在( ) A .第一象限B .第二象限C .第三象限D .第四象限2.已知α是第二象限角,(P x 为其终边上一点,且cos 4x α=,则x 等于( )A B .C .D .3.若ABCD 为正方形,E 是CD 的中点,且AB a =,AC b =,则BE 等于( )A .12b a +B .32b a -C .12a b +D .32a b -4.ABC ∆中,·0AB BC >,则ABC ∆一定是( ) A .锐角三角形 B .直角三角形C .钝角三角形D .不确定5.下列各式中,值为12的是( )A .00sin15cos15B .22cos112π-C D .020tan 22.51tan 22.5- 6.函数cos y x x =-的部分图像是( )A .B .C .D .7.为了得到函数sin(2)3y x π=-的图像,只需将函数sin 2y x =的图像( )A .向右平移6π个单位 B .向右平移3π个单位 C .向左平移6π个单位 D .向左平移3π个单位8.函数()2cos sin f x x x =+在区间,44ππ⎡⎤-⎢⎥⎣⎦上的最小值是( ) A.12B.12+-C .-1D.129.sin7cos37sin83cos53︒︒-︒︒的值为( ) A .12-B .12CD.10.若在△ABC 中,2cos B sin A =sin C ,则△ABC 的形状一定是( ) A .等腰直角三角形 B .直角三角形 C .等腰三角形 D .等边三角形11.若22ππαβ-≤<≤,则2αβ+,2αβ-的取值范围分别是( )A .[,)22ππ-,(,0)2π- B .[,]22ππ- ,[,0]2π-C .(,)22ππ-,(,0)2π- D .(,)22ππ-,[,0)2π-12.O 是平面上一定点,,,A B C 是平面上不共线的三个点,动点P 满足AB AC OP OA AB AC μ→→→→→→⎛⎫ ⎪ ⎪=++ ⎪ ⎪⎝⎭,[)0,μ∈+∞,则P 点的轨迹一定经过ABC ∆的( )A .外心B .内心C .重心D .垂心二、填空题13=__________.14.有一两岸平行的河流,水速为1,为使所走的路程最短,小船应朝与水流方向成__________度角的方向行驶.15.已知(a +b +c)(b +c −a)=3bc ,则∠A =__________.161的直角三角形面积的最大值为______.三、解答题17.ABC ∆中,tan tan 1A B >,判断ABC ∆的形状. 18.已知1tan()42πα+=. (1)求tan α的值;(2)求2sin 2cos 1cos 2ααα-+的值.19.在ABC ∆中,已知,,A B C 成等差数列.求:tantan tan 2222A C A C++的值. 20.已知O 为定点,,A B 为动点,开始时满足060AOB ∠=,3OA =,1OB =,后来,A 沿AO 方向,B 沿OB 方向,都以每秒4个单位长度的速度同时运动.(1)用含t 的式子表示t 秒后两动点间的距离()f t ; (2)几秒钟后两动点间的距离最小?21.已知(0,0)O ,(1,0)B ,(,)C b c 是OBC ∆的三个顶点.(1)求:OBC ∆的重心G ,外心F ,垂心H 的坐标; (2)证明:,,G F H 三点共线.22.已知ABC ∆是直角三角形,0=90C ∠,=3AC ,=4BC ,点,D E 分别在,AB BC 上,且DE 把ABC ∆面积二等分,求DE 长的最小值.参考答案1.C 【解析】 【分析】由已知条件得到角α的终边所在象限 【详解】 由35sin α=-则角α的终边在第三象限或者第四象限; 由34tan α=则角α的终边在第一象限或者第三象限; 综上角α的终边在第三象限,故选C 【点睛】本题考查了由三角函数值判断角的范围,根据三角函数值符号特征求出结果,较为简单,也可以记忆“一正二正弦,三切四余弦” 2.D 【详解】由三角函数的定义得cos 4α==解得x =又点(P x 在第二象限内,所以x =选D . 3.B 【解析】 【分析】由向量运算求出结果 【详解】由题意可得1322BE BC CE AC AB AB b a =+=--=- 故选B 【点睛】本题考查了用基底表示向量,运用向量的加减法运算即可求出结果,较为基础4.C 【分析】表示出向量的点乘,结合已知条件进行判定三角形形状 【详解】因为ABC ∆中,·0AB BC >,则()··cos 0AB BC B π->, 即()cos 0B π->,cos 0B <,角B 为钝角, 所以三角形为钝角三角形 故选C 【点睛】本题考查了由向量的点乘判定三角形形状,只需运用公式进行求解,较为简单 5.D 【分析】分别计算四个选项的结果,求出答案 【详解】对于A 中0111151530242sin cos sin =︒=≠ 对于B 中21211262cos cosππ-==≠ 对于C12=≠ 对于D 中002020tan22.512tan22.511451tan 22.521tan 22.522tan =⨯=︒=-- 故选D 【点睛】本题考查了运用二倍角公式求三角函数值,熟练运用公式进行求解,较为简单 6.D 【分析】根据函数cos y x x =-的奇偶性和函数值在某个区间上的符号,对选项进行排除,由此得出正确选项.【详解】∵cos y x x =-是奇函数,其图像关于原点对称,∴排除A,C 项;当0,2x π⎛⎫∈ ⎪⎝⎭时,cos 0y x x =-<,∴排除B 项.故选D. 【点睛】本小题主要考查函数图像的识别,考查函数的单调性,属于基础题. 7.A 【分析】根据函数平移变换的方法,由223x x π→-即22()6x x π→-,只需向右平移6π个单位即可. 【详解】根据函数平移变换,由sin2y x =变换为sin 2236y x sin x ππ⎛⎫⎛⎫=-=- ⎪ ⎪⎝⎭⎝⎭, 只需将sin2y x =的图象向右平移6π个单位,即可得到sin 23y x π⎛⎫=- ⎪⎝⎭的图像,故选A.【点睛】本题主要考查了三角函数图象的平移变换,解题关键是看自变量上的变化量,属于中档题. 8.D 【分析】由同角三角函数关系将其转化为关于sinx 的函数问题,运用二次函数求出最小值 【详解】()22215cos sin 1sin sin 24f x x x sin x x x ⎛⎫=+=-+=--+ ⎪⎝⎭,x ,44ππ⎡⎤∈-⎢⎥⎣⎦,故sin x ⎡∈⎢⎣⎦故当sin x =min y =即当4x π=-时,min y =故选D 【点睛】本题考查了同角三角函数关系,将其转化为关于sinx 的二次函数问题,注意sinx 的取值范围,较为基础 9.A 【解析】 试题分析:sin 7cos37sin83cos53sin 7cos37cos7sin37sin(737)sin(30)︒︒-︒︒=︒︒-︒︒=︒-︒=-︒1sin 302=-︒=-,故选A.考点:诱导公式;两角差的正弦公式. 10.C 【分析】根据2cos B sin A =sin C ()sin A B =+,由两角和与差的三角函数化简求解. 【详解】∵在△ABC 中,2cos B sin A =sin C , ∴2cos B sin A =sin C =sin (A +B ), ∴2cos B sin A =sin A cos B +cos A sin B , ∴sin A cos B ﹣cos A sin B =0, ∴sin (A ﹣B )=0,A B ππ-<-<,∴A ﹣B =0,即A =B , ∴△ABC 为等腰三角形, 故选:C . 【点睛】本题主要考查两角和与差的三角函数,还考查了运算求解的能力,属于中档题.【分析】由已知条件结合不等式的基本性质求出结果 【详解】22ππαβ-≤<≤,424παπ∴-≤<,424πβπ-<≤两式相加可得222παβπ+-<<424πβπ-<≤,则424πβπ-≤-<则222παβπ--≤<又αβ< 则02αβ-<故022παβ--≤<故选D 【点睛】本题考查了两角和与差的范围问题,结合已知条件和不等式性质即可求出答案,注意取等时的条件. 12.B 【分析】 先根据||AB AB →→、||AC AC →→分别表示向量AB →、AC →方向上的单位向量,确定||||A AB A AC C B →→→→+的方向与BAC ∠的角平分线一致,再由AB AC OP OA AB AC μ→→→→→→⎛⎫ ⎪ ⎪=++ ⎪ ⎪⎝⎭可得到AB AC OP OA AP AB AC μ→→→→→→→⎛⎫ ⎪ ⎪-==+ ⎪ ⎪⎝⎭,可得答案.解:||AB AB →→、||AC AC →→分别表示向量AB →、AC →方向上的单位向量,∴||||A AB A AC C B →→→→+的方向与BAC ∠的角平分线一致,又AB AC OP OA AB AC μ→→→→→→⎛⎫ ⎪ ⎪=++ ⎪ ⎪⎝⎭,∴AB AC OP OA AP AB AC μ→→→→→→→⎛⎫ ⎪ ⎪-==+ ⎪ ⎪⎝⎭,∴向量AP →的方向与BAC ∠的角平分线一致∴P 点的轨迹一定经过ABC 的内心.故选:B . 【点睛】本题考查平面向量的线性运算和向量的数乘,以及对三角形内心的理解,考查化简运算能力. 13.cos4sin 4- 【解析】 【分析】运用二倍角和完全平方公式进行化简 【详解】sin 4cos 4==-,53442ππ<<,则sin 4cos4<44cos sin =-,故答案为44cos sin - 【点睛】本题考查了二倍角的运算,在开方时注意大小的讨论,较为基础【分析】由平面向量的知识进行正交分解,然后求出结果【详解】如下图为使小船所走路程最短,V 水+V 船应与岸垂直1,?2,90V AB V AC ADC ====∠=︒水船,则45CAD ∠=︒故小船应朝与水流方向成135度角的方向行驶【点睛】本题考查了平面向量的正交分解,向量的三角形法则,属于基础题15.【解析】由已知得(b+c)2-a 2=3bc,∴b 2+c 2-a 2=bc.∴=.∴∠A=16.14【分析】先设两条直角边长,得等量关系,再根据基本不等式求ab 最值,即得面积最值.【详解】设直角三角形的两条直角边长分别为,a b ,1a b =++解得12≤ab ,当且仅当2a b ==时等号成立,所以直角三角形的面积1124S ab =≤,即S 的最大值为14.本题考查利用基本不等式求最值,考查基本分析求解能力,属基础题.17.见解析【解析】【分析】由三角形内角和为π以及诱导公式、两角和的正切公式进行化简,判定三个角正切值的符号即可得到三角形形状【详解】.∵A B C π++=,∴() tan tan C A B -=+, 即tan tan tan 1tan tan A B C A B+-=- tan tan 1A B >∴tan 0A >,tan 0B >,1tan tan 0A B -<∴ tan 0C -<,tan 0C >,又∵(),,0,A B C π∈∴ABC ∆为锐角三角形【点睛】本题要判断三角形形状,运用诱导公式、两角和的正切公式进行化简即可得到三角形形状,属于基础题18.(1)13;(2)16- 【详解】试题分析:(1)利用正切的两角和公式求tan α的值;(2)利用第一问的结果求第二问,但需要先将式子2sin 2cos 1cos 2ααα-+化简,最后变形成关于tan α的式子,需要运用三角函数的倍角公式将sin 21cos2αα+、化成单角的三角函数,然后分子分母都除以2cos α,然后代入tan α的值即可.试题解析:(1)由1tan 3α∴=(2)222sin 2cos 2sin cos cos 11tan 1cos 22cos 26αααααααα--==-=-+ 考点:1.正切的两角和公式;2.正余弦的倍角公式.19【分析】由已知条件三角成等差数列求出角B 的值,然后求出22A C +的值,运用两角和的正切公式进行化简求值【详解】∵,,A B C 成等差数列,∴2B A C =+∵A B C π++=,∴3B π=,23A C π+=, ∴223A C π+=∴tan 22A C ⎛⎫+=⎪⎝⎭∴tan tan tan 2222A C A C +=∴tan tan tan 2222A C A C ++=【点睛】本题考查了三角形内角正切值的化简,根据内角和为π,运用两角和的正切公式即可求出结果,较为基础20.(1)()f t =(0)t ≥;(2)见解析【解析】【分析】(1)分类讨论后运用余弦定理求出两点之间的距离(2)运用配方法求出根号内二次函数的最小值【详解】(1)设运动时间为t ,则当304t ≤≤时,()f t ==当34t >时,()f t ==∴()f t = ()0t ≥(2)由(1)知()f t =∴当14t =时,()min 2f x = 即14秒时两动点间距离最小. 【点睛】本题考查了运用余弦定理求最值问题,熟练运用公式是解题关键,并运用配方法求出最值,属于基础题21.(1)见解析;(2)见解析【分析】 (1)由三角形内0GO GB GC ++=代入点坐标求出重心坐标,再由由FO FC =和BH OC ⊥分别求出外心和垂心坐标(2)由(1)中的结果代入点坐标求证三点共线【详解】 据题意,设()11,G x y ,21,2F y ⎛⎫ ⎪⎝⎭,()3,H b y , 则由0GO GB GC ++=可得()()()()111111,1,,0,0x y x y b x c y --+--+--=∴()()()()111111100x x b x y y c y ⎧-+-+-=⎪⎨-+-+-=⎪⎩, ∴1,33b c G +⎛⎫ ⎪⎝⎭由FO FC =可得()2222221122y b c y ⎛⎫⎛⎫+=-+- ⎪ ⎪⎝⎭⎝⎭ 解得:221,22b c b F c ⎛⎫+- ⎪⎝⎭由BH OC ⊥可得()()()33·1,?,10BH OB b y b c b b cy =-=-+= 解得2,b b H b c ⎛⎫- ⎪⎝⎭(2)由(1)易知221233,66b b c b GF c ⎛⎫-+-= ⎪⎝⎭222133,63b b c b GH c ⎛⎫---+= ⎪⎝⎭∴2GH GF =-,∴,,G F H 三点共线.【点睛】本题考查了求三角形重心、外心、垂心的坐标表示,并证明三点共线,熟练运用向量知识进行求解是关键,并能掌握本题解法22.2【解析】【分析】 设BD x =,BE y =,运用面积公式、余弦定理、不等式求出最小值【详解】设BD x =,BE y =,易求得3sin 5B =,4cos 5B =, 由题意,得12BDE ABC S S ∆∆=即111sin 34222xy B =⨯⨯⨯,∴10xy = 由余弦定理,得2222242cos 25DE x y xy B x y xy =+-=+-⨯ 822455xy xy xy ≥-==当且仅当x y ==∴DE 长的最小值为2.【点睛】 本题考查了运用余弦定理解三角形,熟练运用余弦定理公式、面积公式以及不等式进行化简是关键,本题属于中档题。