2016年内蒙古呼和浩特市中考数学试卷及解析

合集下载

【数学】2016年内蒙古呼伦贝尔市、兴安盟中考真题(解析版)

【数学】2016年内蒙古呼伦贝尔市、兴安盟中考真题(解析版)

2016年内蒙古呼伦贝尔市、兴安盟中考真题一、选择题(本大题共12小题,每小题3分,共36分)1.(3分)﹣的倒数为()A.﹣2 B.C.﹣D.22.(3分)化简(﹣x)3(﹣x)2,结果正确的是()A.﹣x6B.x6C.x5 D.﹣x53.(3分)下列调查适合做抽样调查的是()A.对某小区的卫生死角进行调查B.审核书稿中的错别字C.对八名同学的身高情况进行调查D.对中学生目前的睡眠情况进行调查4.(3分)下列几何体中,主视图是矩形的是()A.B.C.D.5.(3分)某种品牌运动服经过两次降价,每件零售价由560元降为315元,已知两次降价的百分率相同,求每次降价的百分率.设每次降价的百分率为x,下面所列的方程中正确的是()A.560(1+x)2=315 B.560(1﹣x)2=315 C.560(1﹣2x)2=315 D.560(1﹣x2)=3156.(3分)将点A(3,2)向左平移4个单位长度得点A′,则点A′关于y轴对称的点的坐标是()A.(﹣3,2)B.(﹣1,2)C.(1,﹣2)D.(1,2)7.(3分)如图,在△ABC中,AB=AC,过点A作AD∥BC,若∠1=70°,则∠BAC的大小为()A.40°B.30°C.70°D.50°8.(3分)从一组数据中取出a个x1,b个x2,c个x3,组成一个样本,那么这个样本的平均数是()A.B.C.D.9.(3分)若1<x<2,则的值为()A.2x﹣4 B.﹣2 C.4﹣2x D.210.(3分)园林队在某公园进行绿化,中间休息了一段时间,已知绿化面积S(m)2与工作时间t(h)的函数关系的图象如图所示,则休息后园林队每小时绿化面积为()A.100m2B.50m2C.80m2D.40m211.(3分)在平面直角坐标系中,将抛物线y=﹣x2向下平移1个单位长度,再向左平移1个单位长度,得到的抛物线的解析式是()A.y=﹣x2﹣x﹣B.y=﹣x2+x﹣C.y=﹣x2+x﹣D.y=﹣x2﹣x﹣12.(3分)如图,Rt△ABC中,AB=9,BC=6,∠B=90°,将△ABC折叠,使A点与BC的中点D重合,折痕为PQ,则线段BQ的长度为()A.B.C.4 D.5二、填空题(本题5个小题,每小题3分,共15分)13.(3分)因式分解:xy2﹣4xy+4x=.14.(3分)一天有8.64×104秒,一年如果按365天计算,用科学记数法表示一年有秒.15.(3分)不等式组的解集是.16.(3分)小杨用一个半径为36cm、面积为324πcm2的扇形纸板制作一个圆锥形的玩具帽(接缝的重合部分忽略不计),则帽子的底面半径为cm.17.(3分)如图,在Rt△ABC中,∠C=90°,AC=3,BC=4,把△ABC绕AB边上的点D顺时针旋转90°得到△A′B′C′,A′C′交AB于点E,若AD=BE,则△A′DE的面积是.三、解答题(本题4个小题,每小题6分,共24分)18.(6分)计算:3tan30°﹣+(2016+π)0+(﹣)﹣2.19.(6分)解方程:.20.(6分)如图,△ABC中,AD⊥BC,垂足是D,若BC=14,AD=12,tan∠BAD=,求sin C的值.21.(6分)有甲、乙两个不透明的布袋,甲袋中有2个完全相同的小球,分别标有数字0和﹣2;乙袋中有3个完全相同的小球,分别标有数字﹣2,0和1,小明从甲袋中随机取出1个小球,记录标有的数字为x,再从乙袋中随机取出1个小球,记录标有的数字为y,这样确定了点Q的坐标(x,y)(1)写出先Q所有可能的坐标;(2)求点Q在x轴上的概率.四、(本题7分)22.(7分)如图,分别以Rt△ABC的直角边AC及斜边AB向外作等边△ACD及等边△ABE,已知:∠BAC=30°,EF⊥AB,垂足为F,连接DF.(1)试说明AC=EF;(2)求证:四边形ADFE是平行四边形.五、(本题7分)23.(7分)为了解我市的空气质量情况,某环保兴趣小组从环境监测网随机抽取了若干天的空气质量情况作为样本进行统计,绘制了如图所示的条形统计图和扇形统计图(部分信息未给出).请你根据图中提供的信息,解答下列问题:(1)计算被抽取的天数;(2)请补全条形统计图,并求扇形统计图中表示“优”的扇形的圆心角度数;(3)请估计该市这一年(365天)达到“优”和“良”的总天数.六、(本题8分)24.(8分)如图,已知⊙O的直径为AB,AC⊥AB于点A,BC与⊙O相交于点D,在AC 上取一点E,使得ED=EA.(1)求证:ED是⊙O的切线;(2)当OE=10时,求BC的长.七、(本题10分)25.(10分)某药品研究所开发一种抗菌新药,经多年动物实验,首次用于临床人体试验,测得成人服药后血液中药物浓度y(微克/毫升)与服药时间x小时之间函数关系如图所示(当4≤x≤10时,y与x成反比例).(1)根据图象分别求出血液中药物浓度上升和下降阶段y与x之间的函数关系式.(2)问血液中药物浓度不低于4微克/毫升的持续时间多少小时?八、(本题13分)26.(13分)如图,抛物线y=﹣x2+2x+3与x轴相交的于A,B两点(点A在点B的左侧),与y轴相交于点C,顶点为D.(1)直接写出A,B,C三点的坐标和抛物线的对称轴;(2)连接BC,与抛物线的对称轴交于点E,点P为线段BC上的一个动点(P不与C,B 两点重合),过点P作PF∥DE交抛物线于点F,设点P的横坐标为m.①用含m的代数式表示线段PF的长,并求出当m为何值时,四边形PEDF为平行四边形.②设△BCF的面积为S,求S与m的函数关系式;当m为何值时,S有最大值.参考答案一、选择题(本大题共12小题,每小题3分,共36分)1.A【解析】﹣的倒数为﹣2.故选A.2.D【解析】(﹣x)3(﹣x)2=(﹣x)3+2=﹣x5.故选D.3.D【解析】A、对某小区的卫生死角适合全面调查,所以此选项错误;B、审核书稿中的错别字应该全面调查,所以此选项错误;C、对八名同学的身高情况应该全面调查,所以此选项错误;D、对中学生目前的睡眠情况应该抽样调查,所以此选项正确;故选D.4.B【解析】A、圆锥的主视图为等腰三角形;B、圆柱的主视图为矩形;C、三棱柱的主视图为中间有一实线的矩形;D、球体的主视图为圆;故选B.5.B【解析】设每次降价的百分率为x,由题意得:560(1﹣x)2=315,故选B.6.D【解析】∵将点A(3,2)向左平移4个单位长度得点A′,∴点A′的坐标为(﹣1,2),∴点A′关于y轴对称的点的坐标是(1,2),故选D.7.A【解析】∵AD∥BC,∴∠C=∠1=70°,∵AB=AC,∴∠B=∠C=70°,∴∠BAC=180°﹣∠B﹣∠C=40°.故选A.8.B【解析】由题意知,a个x1的和为ax1,b个x2的和为bx2,c个x3的和为cx3,数据总共有a+b+c个,∴这个样本的平均数=,故选B.9.D【解析】∵1<x<2,∴x﹣3<0,x﹣1>0,原式=|x﹣3|+=|x﹣3|+|x﹣1|=3﹣x+x﹣1=2.故选D.10.B【解析】根据图象可得,休息后园林队2小时绿化面积为160﹣60=100(m2).每小时绿化面积为100÷2=50(m2).故选B.11.A【解析】将抛物线y=﹣x2向下平移1个单位长度,得到的抛物线的解析式是:y=﹣x2﹣1,再向左平移1个单位长度,得到的抛物线的解析式是:y=﹣(x+1)2﹣1=﹣x2﹣x﹣.故选A.12.C【解析】设BQ=x,由折叠的性质可得DQ=AQ=9﹣x,∵D是BC的中点,∴BD=3,在Rt△BQD中,x2+32=(9﹣x)2,解得:x=4.故线段BQ的长为4.故选C.二、填空题(本题5个小题,每小题3分,共15分)13.x(y﹣2)2【解析】xy2﹣4xy+4x=x(y2﹣4y+4)=x(y﹣2)2.故答案为:x(y﹣2)2.14.3.1536×107【解析】365×8.64×104=3 153.6×104=3.153 6×107秒.故答案为3.153 6×107秒.15.x>3【解析】由(1)得,x>2由(2)得,x>3所以解集是:x>3.16.9【解析】∵扇形的半径为36cm,面积为324πcm2,∴扇形的弧长L===18π,∴帽子的底面半径R1==9cm.故答案为:9.17.【解析】Rt△ABC中,由勾股定理求AB==5,由旋转的性质,设AD=A′D=BE=x,则DE=5﹣2x,∵△ABC绕AB边上的点D顺时针旋转90°得到△A′B′C′,∴∠A′=∠A,∠A′DE=∠C=90°,∴△A′DE∽△ACB,∴=,即=,解得x=,∴S△A′DE=DE×A′D=×(5﹣2×)×=,故答案为:.三、解答题(本题4个小题,每小题6分,共24分)18.解:原式=3×﹣+1+4,=5.19.解:方程的两边同乘(x﹣1)(x+1),得3x+3﹣x﹣3=0,解得x=0.检验:把x=0代入(x﹣1)(x+1)=﹣1≠0.∴原方程的解为:x=0.20.解:∵在直角△ABD中,tan∠BAD==,∴BD=AD•tan∠BAD=12×=9,∴CD=BC﹣BD=14﹣9=5,∴AC===13,∴sin C==.21.解:(1)画树状图为:共有6种等可能的结果数,它们为(0,﹣2),(0,0),(0,1),(﹣2,﹣2),(﹣2,0),(﹣2,1);(2)点Q在x轴上的结果数为2,所以点Q在x轴上的概率==.四、(本题7分)22.证明:(1)∵Rt△ABC中,∠BAC=30°,∴AB=2BC,又∵△ABE是等边三角形,EF⊥AB,∴AB=2AF∴AF=BC,在Rt△AFE和Rt△BCA中,,∴Rt△AFE≌Rt△BCA(HL),∴AC=EF;(2)∵△ACD是等边三角形,∴∠DAC=60°,AC=AD,∴∠DAB=∠DAC+∠BAC=90°又∵EF⊥AB,∴EF∥AD,∵AC=EF,AC=AD,∴EF=AD,∴四边形ADFE是平行四边形.五、(本题7分)23.解:(1)扇形图中空气为优所占比例为20%,条形图中空气为优的天数为12天,∴被抽取的总天数为:12÷20%=60(天);(2)轻微污染天数是60﹣36﹣12﹣3﹣2﹣2=5天;表示优的圆心角度数是360°=72°,如图所示:;(3)样本中优和良的天数分别为:12,36,一年(365天)达到优和良的总天数为:×365=292(天).故估计本市一年达到优和良的总天数为292天.六、(本题8分)24.(1)证明:如图,连接OD.∵AC⊥AB,∴∠BAC=90°,即∠OAE=90°.在△AOE与△DOE中,,∴△AOE≌△DOE(SSS),∴∠OAE=∠ODE=90°,即OD⊥ED.又∵OD是⊙O的半径,∴ED是⊙O的切线;(2)解:如图,∵OE=10.∵AB是直径,∴∠ADB=90°,即AD⊥BC.又∵由(1)知,△AOE≌△DOE,∴∠AEO=∠DEO,又∵AE=DE,∴OE⊥AD,∴OE∥BC,∴=,∴BC=2OE=20,即BC的长是20.七、(本题10分)25.解:(1)当0≤x≤4时,设直线解析式为:y=kx,将(4,8)代入得:8=4k,解得:k=2,故直线解析式为:y=2x,当4≤x≤10时,设反比例函数解析式为:y=,将(4,8)代入得:8=,解得:a=32,故反比例函数解析式为:y=;因此血液中药物浓度上升阶段的函数关系式为y=2x(0≤x≤4),下降阶段的函数关系式为y=(4≤x≤10).(2)当y=4,则4=2x,解得:x=2,当y=4,则4=,解得:x=8,∵8﹣2=6(小时),∴血液中药物浓度不低于4微克/毫升的持续时间6小时.八、(本题13分)26.解:(1)对于抛物线y=﹣x2+2x+3,令x=0,得到y=3;令y=0,得到﹣x2+2x+3=0,即(x﹣3)(x+1)=0,解得:x=﹣1或x=3,则A(﹣1,0),B(3,0),C(0,3),抛物线对称轴为直线x=1;(2)①设直线BC的函数解析式为y=kx+b,把B(3,0),C(0,3)分别代入得:,解得:k=﹣1,b=3,∴直线BC的解析式为y=﹣x+3,当x=1时,y=﹣1+3=2,∴E(1,2),当x=m时,y=﹣m+3,∴P(m,﹣m+3),令y=﹣x2+2x+3中x=1,得到y=4,∴D(1,4),当x=m时,y=﹣m2+2m+3,∴F(m,﹣m2+2m+3),∴线段DE=4﹣2=2,∵0<m<3,∴y F>y P,∴线段PF=﹣m2+2m+3﹣(﹣m+3)=﹣m2+3m,连接DF,由PF∥DE,得到当PF=DE时,四边形PEDF为平行四边形,由﹣m2+3m=2,得到m=2或m=1(不合题意,舍去),则当m=2时,四边形PEDF为平行四边形;②连接BF,设直线PF与x轴交于点M,由B(3,0),O(0,0),可得OB=OM+MB=3,∵S=S△BPF+S△CPF=PF•BM+PF•OM=PF(BM+OM)=PF•OB,∴S=×3(﹣m2+3m)=﹣m2+m(0<m<3),则当m=时,S取得最大值.。

内蒙古呼和浩特市中考数学试题(含解析)

内蒙古呼和浩特市中考数学试题(含解析)

内蒙古呼和浩特市中考数学试卷一、选择题(本大题共10个小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.﹣2的倒数是()A.2B.﹣2 C.D.2.如图,已知a∥b,∠1=65°,则∠2的度数为()A.65°B.125°C.115°D.25°3.在一个不透明的口袋中,装有3个红球,2个白球,除颜色不同外,其余都相同,则随机从口袋中摸出一个球为红色的概率是()A.B.C.D.4.下列各因式分解正确的是()A.﹣x2+(﹣2)2=(x﹣2)(x+2)B.x2+2x﹣1=(x﹣1)2C.4x2﹣4x+1=(2x﹣1)2D.x2﹣4x=x(x+2)(x﹣2)5.已知:x1,x2是一元二次方程x2+2ax+b=0的两根,且x1+x2=3,x1x2=1,则a、b的值分别是()A.a=﹣3,b=1 B.a=3,b=1 C.,b=﹣1 D.,b=16.如图,在一长方形内有对角线长分别为2和3的菱形,边长为1的正六边形和半径为1的圆,则一点随机落在这三个图形内的概率较大的是()A.落在菱形内B.落在圆内C.落在正六边形内D.一样大7.下面四条直线,其中直线上每个点的坐标都是二元一次方程x﹣2y=2的解是()A.B.C.D.8.已知:在等腰梯形ABCD中,AD∥BC,AC⊥BD,AD=3,BC=7,则梯形的面积是()A.25 B.50 C.D.9.已知:M,N两点关于y轴对称,且点M在双曲线上,点N在直线y=x+3上,设点M的坐标为(a,b),则二次函数y=﹣abx2+(a+b)x()A.有最大值,最大值为B.有最大值,最大值为C.有最小值,最小值为D.有最小值,最小值为10.下列命题中,真命题的个数有()①一个图形无论经过平移还是旋转,变换后的图形与原来图形的对应线段一定平行②函数图象上的点P(x,y)一定在第二象限③正投影的投影线彼此平行且垂直于投影面④使得|x|﹣y=3和y+x2=0同时成立的x的取值为.A.3个B.1个C.4个D.2个二、填空题(本大题共6个小题,每小题3分,共18分,本题要求把正确结果填在答题纸规定的横线上,不需要解答过程)11.函数y=中,自变量x的取值范围是_________.12.太阳的半径约为696 000千米,用科学记数法表示为_________千米.13.如图,在△ABC中,∠B=47°,三角形的外角∠DAC和∠ACF的平分线交于点E,则∠AEC=_________.14.实数a,b在数轴上的位置如图所示,则的化简结果为_________.15.一组数据﹣1,0,2,3,x,其中这组数据的极差是5,那么这组数据的平均数是_________.16.如图是某几何体的三视图及相关数据(单位:cm),则该几何体的侧面积为_________cm.三、解答题(本大题包括9个小题,共72分,解答应写出必要的演算步骤、证明过程或文字说明)17.(1)计算:.(2)先化简,再求值:,其中.18.(1)解不等式:5(x﹣2)+8<6(x﹣1)+7;(2)若(1)中的不等式的最小整数解是方程2x﹣ax=3的解,求a的值.19.如图,一次函数y=kx+b与反比例函数的图象交于A(m,6),B(n,3)两点.(1)求一次函数的解析式;(2)根据图象直接写出时x的取值范围.20.如图,四边形ABCD是正方形,点G是BC边上任意一点,DE⊥AG于E,BF∥DE,交AG于F.(1)求证:AF﹣BF=EF;(2)将△ABF绕点A逆时针旋转,使得AB与AD重合,记此时点F的对应点为点F′,若正方形边长为3,求点F′与旋转前的图中点E之间的距离.21.如图是交警在一个路口统计的某个时段来往车辆的车速情况(单位:千米/时)(1)找出该样本数据的众数和中位数;(2)计算这些车的平均速度;(结果精确到0.1)(3)若某车以50.5千米/时的速度经过该路口,能否说该车的速度要比一半以上车的速度快?并说明判断理由.22.如图,线段AB,DC分别表示甲、乙两建筑物的高.某初三课外兴趣活动小组为了测量两建筑物的高,用自制测角仪在B外测得D点的仰角为α,在A处测得D点的仰角为β.已知甲、乙两建筑物之间的距离BC为m.请你通过计算用含α、β、m的式子分别表示出甲、乙两建筑物的高度.23.如图,某化工厂与A,B两地有公路和铁路相连,这家工厂从A地购买一批每吨1 000元的原料运回工厂,制成每吨8 000元的产品运到B地.已知公路运价为1.5元/(吨•千米),铁路运价为1.2元/(吨•千米),这两次运输共支出公路运费15 000元,铁路运费97 200元,请计算这批产品的销售款比原料费和运输费的和多多少元?(1)根据题意,甲、乙两名同学分别列出尚不完整的方程组如下:甲:乙:根据甲,乙两名同学所列方程组,请你分别指出未知数x,y表示的意义,然后在等式右边的方框内补全甲、乙两名同学所列方程组.甲:x表示_________,y表示_________乙:x表示_________,y表示_________(2)甲同学根据他所列方程组解得x=300,请你帮他解出y的值,并解决该实际问题.24.如图,已知AB为⊙O的直径,PA与⊙O相切于点A,线段OP与弦AC垂直并相交于点D,OP与弧AC相交于点E,连接BC.(1)求证:∠PAC=∠B,且PA•BC=AB•CD;(2)若PA=10,sinP=,求PE的长.25.如图,抛物线y=ax2+bx+c(a<0)与双曲线相交于点A,B,且抛物线经过坐标原点,点A的坐标为(﹣2,2),点B在第四象限内,过点B作直线BC∥x轴,点C为直线BC与抛物线的另一交点,已知直线BC与x轴之间的距离是点B到y轴的距离的4倍,记抛物线顶点为E.(1)求双曲线和抛物线的解析式;(2)计算△ABC与△ABE的面积;(3)在抛物线上是否存在点D,使△ABD的面积等于△ABE的面积的8倍?若存在,请求出点D的坐标;若不存在,请说明理由.内蒙古呼和浩特市中考数学试卷参考答案与试题解析一、选择题(本大题共10个小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.(3分)﹣2的倒数是()A.2B.﹣2 C.D.考点:倒数。

2016年呼和浩特市中考数学试卷答案

2016年呼和浩特市中考数学试卷答案

{
{ {
{
{
1 0分
6分 7分 8分 9分
7 >0 2 ( ) 7 -x2 +2 x+3 xȡ0 所以当t= 时 , 线段 P 也有一个公共点 Q 与y= 2 ( ) 2 -x -2 x+3 x<0 ) , ) 即点 P 与点 ( 重合时 , 线段 P ③ 当线段 P Q 过点 ( -3, 0 -3, 0 Q 只与 2 ( ) 有一个公共点 , 此时t=-3 x+3 x<0 y=-x -2 ( ) -x2 +2 x+3 xȡ0 所以当tɤ-3 时 , 线段 P 也有一个公共点. Q 与y= 2 ( ) -x -2 x+3 x<0 ( 令 Δ=1 解得 : 6+4 3-2 t) =0, t=
a-2 a+ c=4 4 9 9 a-7 a+ c=4 4 解得 a=-1, c=3 2 ʑ㊀ x+3 y=-x +2 ) ʑ㊀ 顶点 D 的坐标 ( 1, 4 ( ) ㊁ ( ) , ( ) 两点的坐标为 2 ȵ㊀C D 0, 3 1, 4 由三角形两边之差小于第三边可知 | P C -PD|ɤ| C D| ㊁ ㊁ 三点共线时 此时最大值为 ʑ㊀P C D | P C -PD|取得最大值 ,
1分 2分 3分 4分 5分 6分
( ) 解: 2 5 .( 1 2 分) 1 ȵ㊀ a x2 -2 a x+ c 的对称轴为x=1 y= 9ö æ7 ) 所以抛物线过 ( 和 两点 , 1, 4 è2 4ø 代入解析式得 :
1分 2分 3分 4分 5分 6分 7分 8分 9分
7分 8分
1分 2分 3分 4分 5分
4分 5分
A C 在R t әA B C 中, c o s 3 5 ʎ = B C

2016年内蒙古呼和浩特市中考数学一模试卷带答案解析

2016年内蒙古呼和浩特市中考数学一模试卷带答案解析

2016年内蒙古呼和浩特市中考数学一模试卷一、选择题(每小题3分,共30分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.(3分)方程﹣2x +3=0的解是(的解是( )A .B .﹣C .D .﹣2.(3分)已知:如图,直线a ∥b ,直线c 与直线a 、b 相交.∠1=120°,则∠2的度数是(的度数是( )A .120°B .60°C .30°D .80°3.(3分)一个圆锥侧面展开图的扇形的弧长为12π,则这个圆锥底面圆的半径为(为( ) A .6B .12C .24D .24.(3分)若a >0且a x =2,a y =3,则a x ﹣2y的值为(的值为( )A .B .﹣C .D .5.(3分)如图是几何体的三视图,根据图中数据,求得该几何体的体积为( )A .40πB .50πC .90πD .130π6.(3分)在数轴上任取一个比﹣5大比7小的整数a 对应的点,则取到的点对应的整数a 满足满足||a |>2的概率为(的概率为( )A .B .C .D . 7.(3分)函数y=ax ﹣2(a ≠0)与y=ax 2(a ≠0)在同一平面直角坐标系中的图象可能是(象可能是( )A .B .C .D .8.(3分)数轴上表示1,的对应点分别为A 、B .点B 关于点A 的对称点为C ,则点C 所表示的相反数是(所表示的相反数是( ) A .﹣1﹣B .1﹣C .﹣2+D .﹣2﹣9.(3分)下列运算正确的是(分)下列运算正确的是( )A .×= B .•=1 C .﹣2x 2﹣3x +5=(1﹣x )(2x +5) D .(﹣a )7÷a 3=a 4 10.(3分)以下四个函数,其图象一定关于原点对称的是(分)以下四个函数,其图象一定关于原点对称的是( )A .y=2016x +mB .y=+C .y=x 2﹣2016 D .y=二、填空题(本大題共6小题,毎小通3分,共18分.本题要求把正确结果填在答題纸规定的横线上,不需要解答过程)11.(3分)已知某孢子的直径为0.00093毫米,用科学记数法写为用科学记数法写为毫米. 12.(3分)北偏东30°与南偏东50°的两条射线组成的角的度数为的两条射线组成的角的度数为 °. 13.(3分)顺次连接A 、B .C ,D 得到平行四边形ABCD ,已知AB=4,BC=6,∠B=60°.则此平行四边形面积是.则此平行四边形面积是 .14.(3分)用换元法解分式方程﹣=﹣1时,如果设=y ,并将原方程化为关于y 的整式方程,那么这个整式方程是的整式方程,那么这个整式方程是. 15.(3分)腰长为10,一条高为8的等腰三角形的底边长为的等腰三角形的底边长为 . 16.(3分)以下四个命题:①如果三角形一边的中点到其他两边距离相等,那么这个三角形一定是等腰三角形:②两条对角线互相垂直且相等的四边形是正方形:③一组数据2,4,6.4的方差是2;④△OAB 与△OCD 是以O 为位似中心的位似图形,且位似比为1:4,已知∠OCD=90°,OC=CD .点A 、C 在第一象限.若点D坐标为(2,0),则点A坐标为(,),其中正确命题有(填其中正确命题有正确命题的序号即可)三、解答题(本大题共9小题,满分72分,解答应写出文字说明,证明过程或演算步骤)17.(10分)(1)先化简,再求值.(+)•(x2﹣1),其中x=. )计算:||4﹣|﹣(﹣)×+()﹣1.(2)计算:18.(7分)如图,△BAD是由△BEC在平面内绕点B旋转60°而得,且AB⊥BC,BE=CE,连接DE.(1)求证:△BDE≌△BCE;(2)试判断四边形ABED的形状,并说明理由.19.(6分)某微商一次购进了一种时令水果250千克,开始两天他以每千克高于进价40%的价格卖出180千克.第三天他发现网上卖该种水果的商家陡增,于是他果断将剩余的该种水果在前两天的售价基础上打4折全部售出.最后他卖该种水果获得618元的利润,计算商家打折卖出的该种剩余水果亏了多少元? 20.(6分)已知关于x的不等式组(a≠0)求该不等式组的解集. 21.(6分)如图,船A、B在东西方向的海岸线MN上,均收到已触礁搁浅的船P的求救信号,已知船P在船A的北偏东62°方向上,在船B的北偏西37°方向上,若AP=30海里.求船B到船P的距离PB(结果用含非特殊角的三角函数表示即可).22.(10分)分校为了调查初三年级学生每周的课外活动时间,随机抽查了50名初三学生,对其平均毎周参加课外活动的时间进行了调查.由调查结果绘制了频数分布直方图,根据图中信息回答下列问题:(1)求m的值;(2)计算50名学生的课外活动时间的平均数(每组时间用其组中值表示),对初三年级全体学生平均每周的课外活动吋问做个推断;(3)从参加课外活动时间在6~10小时的5名学生中随机选取2人,请你用列表法,求其中至少有1人课外活动时间在8~10小时的概率.23.(7分)如图,在平面直角坐标系中,一次函数y=kx+b的图象分別交x轴、y 轴于A、B两点.与反比例函数y=﹣的图象交于C,D两点,DE⊥x轴于点E.已知DE=3,AE=6.(1)求一次函数的解析式;(2)直接写出不等式kx+b+>0的解集.24.(8分)如图,在△ABC中,∠B=90°,以AB为直径的⊙O交AC于D,过点D作⊙O的切线交BC于E,AE交⊙O于点F.(1)求证:E是BC的中点;(2)求证:AD•AC=AE•AF=4DO2.25.(12分)如图,在平面直角坐标系中,开口向下的抛物线y=ax2+bx+c交y轴于A点,交x轴于B、C两点(点B在点C的左侧).已知A点坐标为(0,﹣5),BC=4,抛物线过点(2,3).(1)求此抛物线的解析式;(2)记抛物线的顶点为M,求△ACM的面积;(3)在抛物线上是否存在点P,使△ACP是以AC为直角边的直角三角形?若存在,求出点P的坐标;若不存在,请说明理由.2016年内蒙古呼和浩特市中考数学一模试卷参考答案与试题解析一、选择题(每小题3分,共30分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.(3分)方程﹣2x +3=0的解是(的解是( ) A . B .﹣ C . D .﹣ 【解答】解:移项,得﹣2x=﹣3, 系数化成1得x=. 故选C .2.(3分)已知:如图,直线a ∥b ,直线c 与直线a 、b 相交.∠1=120°,则∠2的度数是(的度数是( )A .120°B .60°C .30°D .80° 【解答】解:∵∠1+∠3=180°, ∴∠3=180°﹣∠1=180°﹣120°120°=60°=60°, ∵a ∥b , ∴∠2=∠3=60°. 故选B .3.(3分)一个圆锥侧面展开图的扇形的弧长为12π,则这个圆锥底面圆的半径为(为( )A.6 B.12 C.24 D.2【解答】解:设底面圆半径为r,则2πr=12π,化简得r=6.故选A.4.(3分)若a>0且a x=2,a y=3,则a x﹣2y的值为(的值为()A. B.﹣ C. D.【解答】解:a x﹣2y=a x÷a2y=a x÷(a y)2=2÷9=.故选:D.5.(3分)如图是几何体的三视图,根据图中数据,求得该几何体的体积为( )A.40π B.50π C.90π D.130π【解答】解:观察三视图发现该几何体为空心圆柱,其内圆半径为2,外圆半径为3,高为10,所以其体积为10×(π×32﹣π×22)=50π,故选:B.6.(3分)在数轴上任取一个比﹣5大比7小的整数a对应的点,则取到的点对应的整数a满足满足||a|>2的概率为(的概率为()A. B. C. D.【解答】解:∵在数轴上任取一个比﹣5大比7小的实数a对应的点,|a|>2时,即7>a>2或﹣5<a<﹣2,∴所有的比﹣5大比7小的整数为:﹣4,﹣3,﹣2,﹣1,0,1,2,3,4,5,6,符合题意的整数有:3,4,5,6,﹣3,﹣4∴取到的点对应的实数a 满足满足||a |>2的概率为:.故选:C .7.(3分)函数y=ax ﹣2(a ≠0)与y=ax 2(a ≠0)在同一平面直角坐标系中的图象可能是(象可能是( )A .B .C .D .【解答】解:∵在y=ax ﹣2, ∴b=﹣2,∴一次函数图象与y 轴的负半轴相交, ∵①当a >0时,∴二次函数图象经过原点,开口向上,一次函数图象经过第一、三、四象限, ∵②当a <0时,∴二次函数图象经过原点,开口向下,一次函数图象经过第二、三、四象限, 故选A .8.(3分)数轴上表示1,的对应点分别为A 、B .点B 关于点A 的对称点为C ,则点C 所表示的相反数是(所表示的相反数是( ) A .﹣1﹣B .1﹣C .﹣2+D .﹣2﹣【解答】解:∵数轴上表示1,的对应点分别为A 、B ,∴AB=﹣1,设B 点关于点A 的对称点为点C 为x , 则有=1,解可得x=2﹣,∴点C 所对应的数为2﹣,∴点C 所表示的相反数是﹣(2﹣)=﹣2+.故选:C .9.(3分)下列运算正确的是(分)下列运算正确的是( )A.×= B.•=1C.﹣2x2﹣3x+5=(1﹣x)(2x+5) D.(﹣a)7÷a3=a4【解答】解:A、原式=2×=,错误;B、原式=|a﹣b|•=1或﹣1,错误;C、原式=(1﹣x)(2x+5),正确;D、原式=﹣a4,错误.故选C.10.(3分)以下四个函数,其图象一定关于原点对称的是(分)以下四个函数,其图象一定关于原点对称的是( )A.y=2016x+m B.y=+ C.y=x 2﹣2016 D.y=【解答】解:A、y=2016x+m,只有m=0时,图象关于原点对称,故此选项错误;B、y=+,是反比例函数图象组合体,符合题意;C、y=x2﹣2016,是二次函数,关于y轴对称,故此选项错误;D、y=,此图象关于y轴对称,故此选项错误;故选:B.二、填空题(本大題共6小题,毎小通3分,共18分.本题要求把正确结果填在答題纸规定的横线上,不需要解答过程)11.(3分)已知某孢子的直径为0.00093毫米,用科学记数法写为毫米,用科学记数法写为 9.3×10﹣4 毫米.【解答】解:0.00093=9.3×10﹣4,故答案为:9.3×10﹣4.12.(3分)北偏东30°与南偏东50°的两条射线组成的角的度数为的两条射线组成的角的度数为 100 °. 【解答】解:如图:北偏东30°与南偏东50°的两条射线组成的角的度数为180﹣30﹣50=100°,故答案为:100.13.(3分)顺次连接A、B.C,D得到平行四边形ABCD,已知AB=4,BC=6,∠B=60°.则此平行四边形面积是.则此平行四边形面积是 12 .【解答】解:如图作AE⊥BC于E.在Rt△ABE中,∵∠AEB=90°,AB=4,∠B=60°,∴BE=AB=2,AE===2,∵四边形ABCD是平行四边形,∴S=BC•AE=6×=12.平行四边形ABCD故答案为12.14.(3分)用换元法解分式方程﹣=﹣1时,如果设=y,并将原y2+y﹣2=0 .的整式方程,那么这个整式方程是方程化为关于y的整式方程,那么这个整式方程是【解答】解:设=y,则=,原方程化为:y﹣=﹣1,两边同时乘以y,整理得:y2+y﹣2=0.故答案为y2+y﹣2=0.15.(3分)腰长为10,一条高为8的等腰三角形的底边长为的等腰三角形的底边长为 12或4或8 . 【解答】解:①如图1当AB=AC=10,AD=8,则BD=CD==6,∴底边长为12;②如图2.当AB=AC=10,CD=8时,则AD==6,∴BD=4,∴BC==4,∴此时底边长为4;③如图3:当AB=AC=10,CD=8时,则AD==6,∴BD=16,∴BC=8,∴此时底边长为8.故答案为:12或4或8.16.(3分)以下四个命题:①如果三角形一边的中点到其他两边距离相等,那么这个三角形一定是等腰三角形:②两条对角线互相垂直且相等的四边形是正方形:③一组数据2,4,6.4的方差是2;④△OAB与△OCD是以O为位似中心的位似图形,且位似比为1:4,已知∠OCD=90°,OC=CD.点A、C在第一象限.若①③④,其中正确命题有点D坐标为(2,0),则点A坐标为(,),其中正确命题有①③④(填正确命题的序号即可)那么这个三角形一①如果三角形一边的中点到其他两边距离相等,那么这个三角形一【解答】解:①如果三角形一边的中点到其他两边距离相等,定是等腰三角形,故①正确;②两条对角线互相垂直且相等的四边形是正方形或等腰梯形,故②错误;③一组数据2,4,6.4的方差是2,故③正确;④△OAB与△OCD是以O为位似中心的位似图形,且位似比为1:4,已知∠OCD=90°,OC=CD.点A、C在第一象限.若点D坐标为(2,0)得,C(,).由位似比为1:4,得点A坐标为(,),故④正确;故答案为:①③④.三、解答题(本大题共9小题,满分72分,解答应写出文字说明,证明过程或演算步骤)17.(10分)(1)先化简,再求值.(+)•(x2﹣1),其中x=. )计算:||4﹣|﹣(﹣)×+()﹣1.(2)计算:【解答】解:(1)原式=•(x+1)(x﹣1)=2x+2+x﹣1=3x+1,当x=时,原式=;(2)原式=﹣4﹣(﹣4)+3=3.18.(7分)如图,△BAD是由△BEC在平面内绕点B旋转60°而得,且AB⊥BC,BE=CE,连接DE.(1)求证:△BDE≌△BCE;(2)试判断四边形ABED的形状,并说明理由.【解答】(1)证明:∵△BAD是由△BEC在平面内绕点B旋转60°而得,∴DB=CB,∠ABD=∠EBC,∠ABE=60°,∵AB⊥BC,∴∠ABC=90°,∴∠DBE=∠CBE=30°,在△BDE和△BCE中,∵,∴△BDE≌△BCE(SAS);(2)四边形ABED为菱形;由(1)得△BDE≌△BCE,∵△BAD是由△BEC旋转而得,∴△BAD≌△BEC,∴BA=BE,AD=EC=ED,又∵BE=CE,∴四边形ABED为菱形.19.(6分)某微商一次购进了一种时令水果250千克,开始两天他以每千克高于进价40%的价格卖出180千克.第三天他发现网上卖该种水果的商家陡增,于是他果断将剩余的该种水果在前两天的售价基础上打4折全部售出.最后他卖该种水果获得618元的利润,计算商家打折卖出的该种剩余水果亏了多少元? 【解答】解:设进价为x元/千克,依题意得:180(1+40%)x+70×40%×(1+40%)﹣250x=618,解得x=15,70×15﹣70×15×1.4×0.4=462(元).答:亏了462元.20.(6分)已知关于x的不等式组(a≠0)求该不等式组的解集. 【解答】解:,解不等式①得x>8,解不等式②得x<4a+8,当a>0时,不等式组的解集为8<x<4a+8,当a<0时,不等式组无解.21.(6分)如图,船A、B在东西方向的海岸线MN上,均收到已触礁搁浅的船P的求救信号,已知船P在船A的北偏东62°方向上,在船B的北偏西37°方向上,若AP=30海里.求船B到船P的距离PB(结果用含非特殊角的三角函数表示即可).【解答】解:如图所示:过点P作PE⊥AB于点E.由题意得,∠PAE=28°,∠PBE=53°,AP=30海里.在Rt△APE中,PE=APsin∠PAE=30sin28°;在Rt△BPE中,PE=30sin28°,∠PBE=53°,则BP==海里.22.(10分)分校为了调查初三年级学生每周的课外活动时间,随机抽查了50名初三学生,对其平均毎周参加课外活动的时间进行了调查.由调查结果绘制了频数分布直方图,根据图中信息回答下列问题:(1)求m的值;(2)计算50名学生的课外活动时间的平均数(每组时间用其组中值表示),对初三年级全体学生平均每周的课外活动吋问做个推断;(3)从参加课外活动时间在6~10小时的5名学生中随机选取2人,请你用列表法,求其中至少有1人课外活动时间在8~10小时的概率.【解答】解:(1)m=50﹣6﹣25﹣3﹣2=14;(2)∵==4.24,∴估计初三年级全体学生平均每周的课外活动时间为:4.24小时;(3)分别用A,B表示在6~8小时与在8~10小时的学生,画树状图得:∵共有20种等可能的结果,其中至少有1人课外活动时间在8~10小时的有14种情况,∴其中至少有1人课外活动时间在8~10小时的概率为:=.23.(7分)如图,在平面直角坐标系中,一次函数y=kx+b的图象分別交x轴、y 轴于A、B两点.与反比例函数y=﹣的图象交于C,D两点,DE⊥x轴于点E.已知DE=3,AE=6.(1)求一次函数的解析式;(2)直接写出不等式kx+b+>0的解集.【解答】解:(1)∵点D在反比例函数y=﹣的图象上,且DE=3,∴将y=3代入反比例函数解析式得:3=﹣,即x=﹣2,点D的坐标为(﹣2,3).又∵AE=6,∴A点的坐标为(4,0).将A与D点的坐标代入一次函数解析式中得:,解得:.∴一次函数解析式为y=﹣x+2.(2)将y=﹣x+2代入y=﹣中得:﹣x+2=﹣,解得:x1=﹣2,x2=6,当x=6时,y=﹣=﹣1,即点C的坐标为(6,﹣1).kx+b+>0可转化为kx+b>﹣,根据两个函数y=﹣x+2与y=﹣的图象可知:不等式的解集为:x<﹣2或0<x<6.24.(8分)如图,在△ABC中,∠B=90°,以AB为直径的⊙O交AC于D,过点D作⊙O的切线交BC于E,AE交⊙O于点F.(1)求证:E是BC的中点;(2)求证:AD•AC=AE•AF=4DO2.【解答】(1)证明:连接BD,如右图所示,∵AB是⊙O的直径,∴BD⊥AC,又∵∠ABC=90°,∴CB切⊙O于点B,且ED且⊙O于点E,∴EB=ED,EDB=90°==∠EBD+∠C, ∴∠EBD=∠EDB,∠CDE+∠EDB=90°∴∠CDE=∠C,∴ED=EC,∴EB=EC,即点E是BC的中点;(2)证明:∵AB=2OD,∴AB2=4OD2,连接BF,由由上图所示,∵AB是⊙O的直径,∴BF⊥AE,∴△ABE∽△AFB,∴,∴AB2=AE•AF,同理可得,AB2=AD•AC,∴AB2=AD•AC=AE•AF,即AD•AC=AE•AF=4DO2.25.(12分)如图,在平面直角坐标系中,开口向下的抛物线y=ax2+bx+c交y轴于A点,交x轴于B、C两点(点B在点C的左侧).已知A点坐标为(0,﹣5),BC=4,抛物线过点(2,3).(1)求此抛物线的解析式;(2)记抛物线的顶点为M,求△ACM的面积;(3)在抛物线上是否存在点P,使△ACP是以AC为直角边的直角三角形?若存在,求出点P的坐标;若不存在,请说明理由.【解答】解:(1)由点A的坐标为(0,﹣5)可知c=﹣5,又∵抛物线经过点(2,3),∴4a+2b﹣5=3①,设B(x1,0),C(x2,0),则(x1﹣x2)2=16.即(x1+x2)2﹣2x1x2=16.∵x1+x2=﹣,x1x2=,∴+=16②.将方程①与方程②联立,解得:a=﹣1,b=6.∴抛物线的解析式为y=﹣x2+6x﹣5.(2)如图1所示:记AM与x轴的交点坐标为D.∵y=﹣x2+6x﹣5=﹣(x﹣3)2+4,∴点M的坐标为(3,4).设直线AM的解析式为y=kx+b.∵将A(0,﹣5)、M(3,4)代入得,解得:k=3,b=﹣5,∴直线AM的解析式为y=3x﹣5.∵令y=0得:3x﹣5=0.解得:x=,∴D(,0).∵令抛物线的y=0得:﹣x2+6x﹣5=0,解得x1=1,x2=5,∴C(5,0).∴S=S△CDA+S△CDM=×(5﹣)×(4+5)=15.△ACM(3)①当∠PCA=90°时,如图2所示:过点C作CP⊥AC,交抛物线与点P.设AC的解析式为y=kx+b.∵将点A、C的坐标代入得:,解得:k=1,b=﹣5,∴直线AC的解析式为y=x﹣5.设PC的解析式为y=k1x+b1.∵PC⊥AC,∴k1=﹣1.∴直线PC的解析式为y=﹣x+b1.∵将C(5,0)代入得:﹣5+b=0,解得;b=5,∴PC的解析式为y=﹣x+5.∵将y=﹣x+5代入y=﹣x2+6x﹣5得:﹣x2+6x﹣5=﹣x+5,整理得:x2﹣7x+10=0,解得;x1=2,x2=5(舍去).∴点P的坐标为(2,3)②当∠PAC=90°时,如图3所示:∵AP⊥AC,A(0,﹣5)∴AP的解析式为y=﹣x﹣5.将y=﹣x﹣5代入y=﹣x2+6x﹣5得:﹣x2+6x﹣5=﹣x﹣5,整理得:x2﹣7x=0,解得;x1=7,x2=0(舍去).∴点P的坐标为(7,﹣12).综上所述点P的坐标为(2,3)或(7,12).赠送:初中数学几何模型举例【模型四】 几何最值模型: 图形特征:lP A'ABlC PA B D运用举例:MFEACB P2.如图,在边长为6的菱形ABCD 中,∠BAD =60°,E 为AB 的中点,F 为AC 上一动点,则EF +BF 的最小值为_________。

2016年内蒙古呼市卷中考数学试卷+答案

2016年内蒙古呼市卷中考数学试卷+答案

2016年呼和浩特市中考试卷数学试题(含答案全解全析)(满分:120分时间:120分钟)第Ⅰ卷(选择题,共30分)一、选择题(本大题共10小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.互为相反数的两个数的和为()A.0B.-1C.1D.22.将数字“6”旋转180°,得到数字“9”,将数字“9”旋转180°,得到数字“6”,现将数字“69”旋转180°,得到的数字是()A.96B.69C.66D.993.下列说法正确的是()A.“任意画一个三角形,其内角和为360°”是随机事件B.已知某篮球运动员投篮投中的概率为0.6,则他投十次可投中6次C.抽样调查选取样本时,所选样本可按自己的喜好选取D.检测某城市的空气质量,采用抽样调查法4.某企业今年3月份产值为a万元,4月份比3月份减少了10%,5月份比4月份增加了15%,则5月份的产值是()A.(a-10%)(a+15%)万元B.a(1-90%)(1+85%)万元C.a(1-10%)(1+15%)万元D.a(1-10%+15%)万元5.下列运算正确的是()A.a2+a3=a5B.(-2a2)3÷(a2)2=-16a4C.3a-1=13aD.(2√3a2-√3a)2÷3a2=4a2-4a+16.如图,△ABC是一块绿化带,将阴影部分修建为花圃.已知AB=15,AC=9,BC=12,阴影部分是△ABC的内切圆.一只自由飞翔的小鸟将随机落在这块绿化带上,则小鸟落在花圃上的概率为()A.16B.π6C.π8D.π57.已知一次函数y=kx+b-x的图象与x轴的正半轴相交,且函数值y随自变量x的增大而增大,则k,b的取值情况为()A.k>1,b<0B.k>1,b>0C.k>0,b>0D.k>0,b<08.一个几何体的三视图如图所示,则该几何体的表面积为()A.4πB.3πC.2π+4D.3π+49.如图,面积为24的正方形ABCD中,有一个小正方形EFGH,其中E、F、G分别在AB、BC、FD上.若BF=√62,则小正方形的周长为()A.5√68B.5√66C.5√62D.10√6310.已知a≥2,m2-2am+2=0,n2-2an+2=0,则(m-1)2+(n-1)2的最小值是()A.6B.3C.-3D.0第Ⅱ卷(非选择题,共90分)二、填空题(本大题共6小题,每小题3分,共18分.本题要求把正确结果填在横线上,不需要解答过程)11.下图是某市电视台记者为了解市民获取新闻的主要途径,通过抽样调查绘制的一个条形统计图.若该市约有230万人,则可估计其中将报纸和手机上网作为获取新闻的主要途径的总人数大约为 万人.12.已知函数y=-1x ,当自变量的取值为-1<x<0或x ≥2,函数值y 的取值为 .13.在学校组织的义务植树活动中,甲、乙两组各四名同学的植树棵数如下,甲组:9,9,11,10;乙组:9,8,9,10;分别从甲、乙两组中随机选取一名同学,则这两名同学的植树总棵数为19的概率为 .14.在周长为26π的☉O 中,CD 是☉O 的一条弦,AB 是☉O 的切线,且AB ∥CD,若AB 和CD 之间的距离为18,则弦CD 的长为 .15.已知平行四边形ABCD 的顶点A 在第三象限,对角线AC 的中点在坐标原点,一边AB 与x 轴平行且AB=2,若点A 的坐标为(a,b),则点D 的坐标为 .16.以下四个命题:①对应角和面积都相等的两个三角形全等.②“若x 2-x=0,则x=0”的逆命题.③若关于x 、y 的方程组{-x +y -a =0,bx -y +1=0有无数多组解,则a=b=1.④将多项式5xy+3y-2x 2y因式分解,其结果为-y(2x+1)(x-3). 其中正确的命题的序号为 .三、解答题(本大题共9小题,满分72分.解答应写出文字说明,证明过程或演算步骤)17.(10分)计算(1)(5分)计算:(12)-2+|√3-2|+3tan 30°;(2)(5分)先化简,再求值:1x+1-3-xx 2-6x+9÷x 2+x x -3,其中x=-32.18.(6分)在一次综合实践活动中,小明要测某地一座古塔AE 的高度.如图,已知塔基顶端B(和A 、E 共线)与地面C 处固定的绳索的长BC 为80 m.他先测得∠BCA=35°,然后从C 点沿AC 方向走30 m 到达D 点,又测得塔顶E 的仰角为50°.求塔高AE.(人的高度忽略不计,结果用含非特殊角的三角函数表示)19.(6分)已知关于x 的不等式组{5x +2>3(x -1),12x ≤8-32x +2a 有四个整数解,求实数a 的取值范围.20.(7分)在一次男子马拉松长跑比赛中,随机抽得12名选手所用的时间(单位:分钟)得到如下样本数据:140146143175125164134155152168162148(1)计算该样本数据的中位数和平均数;(2)如果一名选手的成绩是147分钟,请你依据该样本数据中位数,推断他的成绩如何.21.(7分)已知,如图,△ACB和△ECD都是等腰直角三角形,∠ACB=∠ECD=90°,D为AB边上一点.(1)求证:△ACE≌△BCD;(2)求证:2CD2=AD2+DB2.22.(7分)某一公路的道路维修工程,准备从甲、乙两个工程队中选一个队单独完成.根据两队每天的工程费用和每天完成的工程量可知,若由两队合做此项维修工程,6天可以完成,共需工程费用385 200元,若单独完成此项维修工程,甲队比乙队少用5天,每天的工程费用甲队比乙队多4 000元.从节省资金的角度考虑,应该选择哪个工程队?23.(8分)已知反比例函数y=k的图象在二四象限,一次函数为y=kx+b(b>0).直线x=1与x轴x交于点B,与直线y=kx+b交于点A;直线x=3与x轴交于点C,与直线y=kx+b交于点D.(1)若点A 、D 都在第一象限,求证:b>-3k;(2)在(1)的条件下,设直线y=kx+b 与x 轴交于点E,与y 轴交于点F,当ED EA =34且△OFE 的面积等于272时,求这个一次函数的解析式,并直接写出不等式kx >kx+b 的解集.24.(9分)如图,已知AD 是△ABC 的外角∠EAC 的平分线,交BC 的延长线于点D,延长DA 交△ABC 的外接圆于点F,连接FB,FC. (1)求证:∠FBC=∠FCB;(2)已知FA ·FD=12,若AB 是△ABC 外接圆的直径,FA=2,求CD 的长.25.(12分)已知二次函数y=ax 2-2ax+c(a<0)的最大值为4,且抛物线过点(72,-94).点P(t,0)是x 轴上的动点,抛物线与y 轴的交点为C,顶点为D.(1)求该二次函数的解析式及顶点D的坐标;(2)求|PC-PD|的最大值及对应的点P的坐标;(3)设Q(0,2t)是y轴上的动点,若线段PQ与函数y=a|x|2-2a|x|+c的图象只有一个公共点,求t 的取值.答案全解全析:一、选择题1.A互为相反数的两个数的和为0.故选A.2.B 根据数字“6”和“9”的特点及旋转的定义知,数字“69”旋转180°得到“69”.故选B.3.D 选项A 中事件是不可能事件,选项A 错;投中的概率为0.6,不代表投十次可投中6次,选项B 错;抽样调查选取样本时应注意要有广泛性和代表性,选项C 错.故选D.4.C 由题意知4月份产值为a(1-10%)万元,所以5月份产值为a(1-10%)(1+15%)万元.故选C.5.D 因为a 2与a 3不是同类项,不能合并,所以选项A 错;因为(-2a 2)3÷(a 2)2=-8a 6·4a 2=-32a 4,所以选项B 错;因为3a -1=3a ,所以选项C 错.故选D.6.B 设△ABC 内切圆的半径为r,则r=AC+BC -AB2=3,则其面积为9π.S △ABC =12AC ·BC=54,则小鸟落在花圃上的概率为9π54=π6.故选B.7.A 根据题意得{k -1>0,-b k -1>0,解得{k >1,b <0.故选A. 8.D 由几何体的三视图可知此几何体为圆柱的一半,其底面半圆的半径为1,高为2,所以该几何体的表面积为4+π+12×2π×2=3π+4.故选D.9.C ∵正方形ABCD 的面积为24,∴其边长为√24=2√6, 又∵BF=√62,∴CF=3√62,∵四边形ABCD 与四边形EFGH 均为正方形,∴∠B=∠C=90°,∠EFG=90°,∴∠DFC+∠CDF=90°,∠BFE+∠DFC=90°,∴∠BFE=∠CDF, ∴△EFB ∽△FDC,∴EB BF =FCCD ,∴EB=3√68. 在Rt △EBF 中,EF=√EB 2+BF 2=5√68,∴小正方形EFGH 的周长为4EF=5√62,故选C.评析 本题考查了正方形的性质、三角形相似的判定与性质及勾股定理.属中档题. 10.A 由题意知m,n 可看作一元二次方程x 2-2ax+2=0的两个实数根,所以m+n=2a,mn=2. 则(m-1)2+(n-1)2=m 2+n 2-2(m+n)+2 =(m+n)2-2(mn+m+n)+2=4a 2-4a-2 =4(a -12)2-3.因为a ≥2,所以当a=2时,4(a -12)2-3有最小值6, 即(m-1)2+(n-1)2的最小值是6.故选A. 二、填空题 11.答案 151.8解析 由条形统计图知本次共调查了260+400+150+100+90=1 000人.其中将报纸和手机上网作为获取新闻的主要途径的人数为660人,占调查人数的66%,所以估计该市将报纸和手机上网作为获取新闻的主要途径的总人数大约为230×66%=151.8(万人). 12.答案 y>1或-12≤y<0解析 函数y=-1x,在每个象限内,y 都随x 的增大而增大,所以当-1<x<0或x ≥2时,y>1或-12≤y<0. 13.答案516解析 画树状图如图.本次试验结果共16个,记“分别从甲、乙两组中随机选取一名同学,两名同学的植树总棵数为19”为事件A,事件A 包含的结果有5个,所以P(A)=516.14.答案 24解析 因为☉O 的周长为26π,所以其半径r=13<18,因为平行线AB 、CD 间的距离为18,则弦心距为18-13=5,所以CD=2√132-52=24. 15.答案 (-a-2,-b)或(-a+2,-b)解析 因为AB ∥x 轴,A(a,b),且AB=2,所以B 的坐标为(a+2,b)或(a-2,b),因为▱ABCD 是中心对称图形,其对称中心与原点重合,所以点B 与点D 关于原点对称,所以点D 的坐标为(-a-2,-b)或(-a+2,-b).16.答案 ①②③④解析 对应角相等的两个三角形相似,面积相等则有对应边相等,所以两三角形全等,①正确;“若x 2-x=0,则x=0”的逆命题为“若x=0,则x 2-x=0”,是真命题,②正确;由-x+y-a=0得y=x+a,代入bx-y+1=0中,得(b-1)x=a-1,当b-1=a-1=0时,x 有无数个值,即a=b=1时,方程组有无数多组解,③正确;5xy+3y-2x 2y=-y(2x 2-5x-3)=-y(2x+1)(x-3),故④正确.所以正确命题的序号是①②③④.三、解答题17.解析 (1)原式=4+2-√3+3×√33(3分)=6-√3+√3=6.(5分)(2)原式=1x+1+x -3(x -3)2·x -3x (x+1)(2分) =1x+1+1x (x+1)(3分)=x+1x (x+1)=1x.(4分) 当x=-32时,原式=1-32=-23.(5分) 18.解析 已知∠BCA=35°,BC=80 m,由题意得∠EDA=50°,DC=30 m.在Rt △ABC 中,cos 35°=AC BC , ∴AC=BCcos 35°=80cos 35°(m).(2分)在Rt △ADE 中,tan 50°=AE AD ,(3分)∵AD=AC+DC=(80cos 35°+30)m,(4分)∴AE=[(80cos 35°+30)tan 50°]m.(5分)答:塔高为[80cos 35°+30)tan 50°]m.(6分)19.解析 {5x +2>3(x -1),(1)12x ≤8-32x +2a ,(2) 解不等式(1)得x>-52,(2分)解不等式(2)得x ≤a+4.(4分)由不等式组的解集有四个整数解得1≤a+4<2,(5分)所以-3≤a<-2.(6分)20.解析 (1)中位数为148+1522=150(分钟).(2分)设基准数a=140,则新数据为0 6 3 35 -15 24 -6 15 12 28 22 8,(3分) ∴x =140+0+6+3+35+(-15)+24+(-6)+15+12+28+22+812=151(分钟).(5分)(2)依据(1)中得到的样本数据的中位数可以估计,在这次马拉松比赛中,大约有一半选手的成绩快于150分钟.有一半选手的成绩慢于150分钟.这名选手的成绩是147分钟,快于中位数150分钟,可以推断他的成绩比一半以上选手的成绩好.(7分)21.证明 (1)∵△ACB 和△ECD 都是等腰直角三角形,∴CD=CE,AC=BC,∠ECD=∠ACB=90°,∴∠ECD-∠ACD=∠ACB-∠ACD,即∠ECA=∠DCB.(1分)在△ACE 与△BCD 中,{EC =DC ,∠ACE =∠BCD ,AC =BC ,(3分)∴△ACE ≌△BCD.(4分)(2)∵△ACE ≌△BCD,∴AE=BD.(5分)∵∠EAC=∠BAC=45°,∴∠EAD=90°.在Rt △EAD 中,ED 2=AD 2+AE 2,∴ED 2=AD 2+BD 2.(6分)又ED 2=EC 2+CD 2=2CD 2,∴2CD 2=AD 2+DB 2.(7分)22.解析 设甲队单独完成此项维修工程需x 天.(1分)依据题意可列方程:1x +1x+5=16.(3分) 解得x 1=10,x 2=-3(舍去),经检验,x=10是原方程的解.(4分)设甲队每天的工程费用为y 元.依据题意可列方程:6y+6(y-4 000)=385 200,解得y=34 100.(5分)∴甲队完成此项维修工程的费用为34 100×10=341 000(元),乙队完成此项维修工程的费用为30 100×15=451 500(元).(6分)答:从节省资金的角度考虑,应该选择甲工程队.(7分)23.解析 (1)证明:由反比例函数的图象在二四象限可知k<0.(1分)∴一次函数y=kx+b 的函数值y 随x 的增大而减小,∵A 、D 两点都在第一象限,∴3k+b>0,且k+b>0,(2分)∴b>-3k.(3分)(2)由题意得ED EA =CD AB , ∴3k+b k+b =34,①(4分)∵E (-b k ,0),F(0,b),(5分)∴S △OEF =12·(-b k )·b=272,②(6分)解由①②联立的方程组,得k=-13,b=3,∴这个一次函数的解析式为y=-13x+3.(7分)解集为9-√852<x<0或x>9+√852.(8分)24.解析 (1)证明:∵四边形AFBC 内接于圆,∴∠FBC+∠FAC=180°,又∵∠CAD+∠FAC=180°,∴∠FBC=∠CAD,(1分)∵AD 是△ABC 的外角∠EAC 的平分线,∴∠EAD=∠CAD,又∵∠EAD=∠FAB,∴∠FAB=∠CAD.(2分)又∵∠FAB=∠FCB,∴∠FBC=∠FCB.(3分)(2)由(1)知∠FBC=∠FCB,∠FCB=∠FAB,∴∠FAB=∠FBC,(4分)又∵∠BFA=∠BFD,∴△AFB ∽△BFD.(5分)于是有∠FBA=∠FDB,BF FD =FA BF ,即BF 2=FA ·FD=12,∴BF=2√3.(6分) 而FA=2,∴FD=6,AD=4,∵AB 为圆的直径,∴∠BFA=∠BCA=90°,(7分)∴tan ∠FBA=AF BF =2√3=√33,∴∠FBA=30°,(8分)又∵∠FBA=∠FDB,∴∠FDB=30°,∴CD=2√3.(9分)25.解析 (1)y=ax 2-2ax+c 的对称轴为直线x=1, 所以抛物线过(1,4)和(72,-94)两点.(1分)代入解析式得{a -2a +c =4,494a -7a +c =-94,(2分) 解得a=-1,c=3,∴y=-x 2+2x+3,(3分)∴顶点D 的坐标为(1,4).(4分)(2)∵C 、D 两点的坐标为(0,3),(1,4),由三角形两边之差小于第三边可知|PC-PD|≤|CD|,(5分)∴P 、C 、D 三点共线时|PC-PD|取得最大值,此时最大值为|CD|=√2.(6分)易知CD 所在直线的方程为y=x+3,将P(t,0)代入得t=-3,∴此时对应的点P 为(-3,0).(7分)(3)y=a|x|2-2a|x|+c 的解析式可化为y={-x 2+2x +3(x ≥0),-x 2-2x +3(x <0).(8分) 设线段PQ 所在直线的方程为y=kx+b(k ≠0),将P(t,0),Q(0,2t)代入得到线段PQ 所在直线的方程为y=-2x+2t,(9分)∴①当线段PQ 过点(0,3),即点Q 与点C 重合时,线段PQ 与函数y={-x 2+2x +3(x ≥0),-x 2-2x +3(x <0)有一个公共点,此时t=32, 当线段PQ 过点(3,0),即点P 与点(3,0)重合时,t=3,此时线段PQ 与y={-x 2+2x +3(x ≥0),-x 2-2x +3(x <0)有两个公共点,所以当32≤t<3时,线段PQ 与y={-x 2+2x +3(x ≥0),-x 2-2x +3(x <0)有一个公共点.(10分) ②将y=-2x+2t 代入y=-x 2+2x+3(x ≥0)得-x 2+4x+3-2t=0,令Δ=16+4(3-2t)=0,解得t=72>0,所以当t=72时,线段PQ 与y={-x 2+2x +3(x ≥0),-x 2-2x +3(x <0)也有一个公共点.(11分) ③当线段PQ 过点(-3,0),即点P 与点(-3,0)重合时,线段PQ 只与y=-x 2-2x+3(x<0)有一个公共点,此时t=-3,所以当t ≤-3时,线段PQ 与y={-x 2+2x +3(x ≥0),-x 2-2x +3(x <0)也有一个公共点. 综上所述,t 的取值为32≤t<3或t=72或t ≤-3.(12分) 评析 本题为二次函数综合题,考查了用待定系数法求二次函数解析式,三角形三边关系,一次函数与二次函数图象的交点个数问题,需要根据变量t 的不同取值分类讨论,此处是本题的解题关键.属难题.(说明:本试卷各题只要方法合理,可依据情况酌情给分)。

中考数学复习:专题4-16 双等腰直角三角形问题前解法分析

中考数学复习:专题4-16 双等腰直角三角形问题前解法分析

专题16 双等腰直角三角形问题前解法分析【专题综述】一个等腰直角三角形绕另一等腰直角三角形旋转,形成以双等腰直角三角形为背景的数学问题,在近年各地中考试卷中大量出现.本文拟通过对不同类型的双等腰直角三角形问题的剖析,找到某些共性,以达到帮助大家提高解题题能力的目的.【方法解读】一、共直角顶点的两个等腰直角三角形例1 (2016内蒙古呼和浩特市)已知,如图,△ACB 和△ECD 都是等腰直角三角形,∠ACB=∠ECD=90°,D 为AB 边上一点.(1)求证:△ACE ≌△BCD ; (2)求证:2222=CD AD DB .【举一反三】如图1,在四边形ABCD 中,点E 、F 分别是AB 、CD 的中点,过点E 作AB 的垂线,过点F 作CD 的垂线,两垂线交于点G ,连接AG 、BG 、CG 、DG ,且∠AGD=∠BGC . (1)求证:AD=BC ; (2)求证:△AGD ∽△EGF ;(3)如图2,若AD 、BC 所在直线互相垂直,求AD:EF 的值.【来源】湖北武汉市硚口区六十中学2017年九年级数学中考模拟试卷二、共底角顶点的两个等腰直角三角形例2 如图1,A,B分别在射线OA,ON上,且∠MON为钝角,现以线段OA,OB为斜边向∠MON的外侧作等腰直角三角形,分别是△OAP,△OBQ,点C,D,E分别是OA,OB,AB的中点.(1)求证:△PCE≌△EDQ;(2)延长PC,QD交于点R.如图2,若∠MON=150°,求证:△ABR为等边三角形;(3)如图3,若△ARB∽△PEQ,求∠MON大小.【举一反三】已知两个共一个顶点的等腰Rt△ABC,Rt△CEF,∠ABC=∠CEF=90°,连接AF,M是AF的中点,连接MB、ME.(1)如图1,当CB与CE在同一直线上时,求证:MB∥CF;(2)如图1,若CB=a,CE=2a,求BM,ME的长;(3)如图2,当∠BCE=45°时,求证:BM=ME.【来源】2013年初中毕业升学考试(湖南常德卷)数学(带解析)三、一直角顶点和一底角顶点重合的两个等腰直角三角形例3 如图,在Rt△ABC中,∠BAC=90°,AC=2AB,点D是AC的中点,将一块锐角为45°的直角三角板如图放置,使三角板斜边的两个端点分别与A、D重合,连结BE、EC.试猜想线段BE和EC的数量..及位置..关系,并证明你的猜想.【举一反三】如图△ABC与△DEA是两个全等的等腰直角三角形,∠BAC=∠D=90°,△DEA 绕点A旋转,边AD、AE 与BC分别与AD、AE相交于点F、G,CB=5.回答下列问题:(1)求证:△GAF∽△GBA;(2)求证:AF2=FG•FC;(3)设y=AF2+AG2,FG=x,求y与x的函数关系式;(不要求写出自变量的取值范围)(4)探究BF2、FG2、GC2之间的关系,证明你的结论.【来源】2016届江苏省南京市汇文中学九年级上学期期中数学试卷(带解析)四、一直角顶点和一底边中点重合的两个等腰直角三角形例4 (2016四川省资阳市)如图,在等腰直角△ABC中,∠ACB=90°,CO⊥AB于点O,点D、E分别在边AC、BC上,且AD=CE,连结DE交CO于点P,给出以下结论:①△DOE 是等腰直角三角形;②∠CDE=∠COE ;③若AC=1,则四边形CEOD 的面积为14;④22222AD BE OP DP PE +-=⋅,其中所有正确结论的序号是 .【举一反三】已知:△ABC 中,∠A =90°,AB =AC ,D 为BC 的中点,(1)如图,E ,F 分别是AB ,AC 上的点,且BE =AF ,求证:△DEF 为等腰直角三角形;(2)若E ,F 分别为AB ,CA 延长线上的点,仍有BE =AF ,其他条件不变,那么,△DEF 是否仍为等腰直角三角形?证明你的结论.【来源】2012-2013年福建仙游承璜第二学校八年级上期末考试数学试题(带解析)【强化训练】1.如图,已知,△ABC 与△DCE 为一小一大的两个等腰直角三角形,顶点C 互相重合。

内蒙古呼和浩特市中考数学试卷含答案解析版

内蒙古呼和浩特市中考数学试卷含答案解析版

2017年内蒙古呼和浩特市中考数学试卷一、选择题(本大题共10小题,每小题3分,共30分)1.(3分)我市冬季里某一天的最低气温是﹣10℃,最高气温是5℃,这一天的温差为( )A .﹣5℃B .5℃C .10℃D .15℃2.(3分)中国的陆地面积约为9600000km 2,将这个数用科学记数法可表示为( )A .×107km 2B .960×104km 2C .×106km 2D .×105km 23.(3分)图中序号(1)(2)(3)(4)对应的四个三角形,都是△ABC 这个图形进行了一次变换之后得到的,其中是通过轴对称得到的是( )A .(1)B .(2)C .(3)D .(4)4.(3分)如图,是根据某市2010年至2014年工业生产总值绘制的折线统计图,观察统计图获得以下信息,其中信息判断错误的是( )A .2010年至2014年间工业生产总值逐年增加B .2014年的工业生产总值比前一年增加了40亿元C .2012年与2013年每一年与前一年比,其增长额相同D .从2011年至2014年,每一年与前一年比,2014年的增长率最大5.(3分)关于x 的一元二次方程x 2+(a 2﹣2a )x +a ﹣1=0的两个实数根互为相反数,则a 的值为( )A .2B .0C .1D .2或06.(3分)一次函数y=kx +b 满足kb >0,且y 随x 的增大而减小,则此函数的图象不经过( )A .第一象限B .第二象限C .第三象限D .第四象限7.(3分)如图,CD 为⊙O 的直径,弦AB ⊥CD ,垂足为M ,若AB=12,OM :MD=5:8,则⊙O 的周长为( )A .26πB .13πC .96π5D .39√10π58.(3分)下列运算正确的是( )A .(a 2+2b 2)﹣2(﹣a 2+b 2)=3a 2+b 2B .a 2+1a−1﹣a ﹣1=2a a−1C .(﹣a )3m ÷a m =(﹣1)m a 2mD .6x 2﹣5x ﹣1=(2x ﹣1)(3x ﹣1)9.(3分)如图,四边形ABCD 是边长为1的正方形,E ,F 为BD 所在直线上的两点,若AE=√5,∠EAF=135°,则下列结论正确的是( ) A .DE=1 B .tan ∠AFO=13C .AF=√102D .四边形AFCE 的面积为9410.(3分)函数y=x 2+1|x|的大致图象是( ) A . B . C .D .二、填空题(本大题共6小题,每小题3分,共18分)11.(3分)若式子√1−2x有意义,则x 的取值范围是 . 12.(3分)如图,AB ∥CD ,AE 平分∠CAB 交CD 于点E ,若∠C=48°,则∠AED 为 °.13.(3分)如图是某几何体的三视图,根据图中数据,求得该几何体的表面积为 .14.(3分)下面三个命题:①若{x =a y =b 是方程组{|x|=22x −y =3的解,则a +b=1或a +b=0; ②函数y=﹣2x 2+4x +1通过配方可化为y=﹣2(x ﹣1)2+3;③最小角等于50°的三角形是锐角三角形,其中正确命题的序号为 .15.(3分)如图,在?ABCD 中,∠B=30°,AB=AC ,O 是两条对角线的交点,过点O 作AC 的垂线分别交边AD ,BC 于点E ,F ,点M 是边AB 的一个三等分点,则△AOE 与△BMF 的面积比为 .16.(3分)我国魏晋时期数学家刘徽首创“割圆术”计算圆周率.随着时代发展,现在人们依据频率估计概率这一原理,常用随机模拟的方法对圆周率π进行估计,用计算机随机产生m个有序数对(x,y)(x,y是实数,且0≤x≤1,0≤y≤1),它们对应的点在平面直角坐标系中全部在某一个正方形的边界及其内部.如果统计出这些点中到原点的距离小于或等于1的点有n个,则据此可估计π的值为.(用含m,n的式子表示)三、解答题(本大题共9小题,共72分)17.(10分)(1)计算:|2﹣√5|﹣√2(√18﹣√102)+32;(2)先化简,再求值:x−2x+2x÷x2−4x+4x−4+12x,其中x=﹣65.18.(6分)如图,等腰三角形ABC中,BD,CE分别是两腰上的中线.(1)求证:BD=CE;(2)设BD与CE相交于点O,点M,N分别为线段BO和CO的中点,当△ABC的重心到顶点A的距离与底边长相等时,判断四边形DEMN的形状,无需说明理由.19.(10分)为了解某地某个季度的气温情况,用适当的抽样方法从该地这个季度中抽取30天,对每天的最高气温x(单位:℃)进行调查,并将所得的数据按照12≤x<16,16≤x<20,20≤x<24,24≤x<28,28≤x<32分成五组,得到如图频数分布直方图.(1)求这30天最高气温的平均数和中位数(各组的实际数据用该组的组中值代表);(2)每月按30天计算,各组的实际数据用该组的组中值代表,估计该地这个季度中最高气温超过(1)中平均数的天数;(3)如果从最高气温不低于24℃的两组内随机选取两天,请你直接写出这两天都在气温最高一组内的概率.20.(7分)某专卖店有A,B两种商品,已知在打折前,买60件A商品和30件B商品用了1080元,买50件A商品和10件B商品用了840元,A,B两种商品打相同折以后,某人买500件A商品和450件B商品一共比不打折少花1960元,计算打了多少折?21.(6分)已知关于x的不等式2m−mx2>12x﹣1.(1)当m=1时,求该不等式的解集;(2)m取何值时,该不等式有解,并求出解集.22.(7分)如图,地面上小山的两侧有A,B两地,为了测量A,B两地的距离,让一热气球从小山西侧A地出发沿与AB成30°角的方向,以每分钟40m的速度直线飞行,10分钟后到达C 处,此时热气球上的人测得CB 与AB 成70°角,请你用测得的数据求A ,B 两地的距离AB 长.(结果用含非特殊角的三角函数和根式表示即可)23.(7分)已知反比例函数y=−k 2−1x(k 为常数). (1)若点P 1(1−√32,y 1)和点P 2(﹣12,y 2)是该反比例函数图象上的两点,试利用反比例函数的性质比较y 1和y 2的大小;(2)设点P (m ,n )(m >0)是其图象上的一点,过点P 作PM ⊥x 轴于点M .若tan∠POM=2,PO=√5(O 为坐标原点),求k 的值,并直接写出不等式kx +k 2+1x>0的解集.24.(9分)如图,点A ,B ,C ,D 是直径为AB 的⊙O 上的四个点,C 是劣弧BD̂的中点,AC 与BD 交于点E .(1)求证:DC 2=CE?AC ;(2)若AE=2,EC=1,求证:△AOD 是正三角形;(3)在(2)的条件下,过点C 作⊙O 的切线,交AB 的延长线于点H ,求△ACH 的面积.25.(10分)在平面直角坐标系xOy 中,抛物线y=ax 2+bx +c 与y 轴交于点C ,其顶点记为M ,自变量x=﹣1和x=5对应的函数值相等.若点M 在直线l :y=﹣12x +16上,点(3,﹣4)在抛物线上.(1)求该抛物线的解析式;(2)设y=ax 2+bx +c 对称轴右侧x 轴上方的图象上任一点为P ,在x 轴上有一点A (﹣72,0),试比较锐角∠PCO 与∠ACO 的大小(不必证明),并写出相应的P 点横坐标x 的取值范围.(3)直线l 与抛物线另一交点记为B ,Q 为线段BM 上一动点(点Q 不与M 重合),设Q 点坐标为(t ,n ),过Q 作QH ⊥x 轴于点H ,将以点Q ,H ,O ,C 为顶点的四边形的面积S 表示为t 的函数,标出自变量t 的取值范围,并求出S 可能取得的最大值.2017年内蒙古呼和浩特市中考数学试卷参考答案与试题解析一、选择题(本大题共10小题,每小题3分,共30分)1.(3分)(2017?呼和浩特)我市冬季里某一天的最低气温是﹣10℃,最高气温是5℃,这一天的温差为( )A.﹣5℃B.5℃C.10℃D.15℃【考点】1A:有理数的减法.【分析】用最高温度减去最低温度,再根据减去一个数等于加上这个数的相反数进行计算即可得解.【解答】解:5﹣(﹣10),=5+10,=15℃.故选D.【点评】本题考查了有理数的减法,熟记减去一个数等于加上这个数的相反数是解题的关键.2.(3分)(2017?呼和浩特)中国的陆地面积约为9600000km2,将这个数用科学记数法可表示为()A.×107km2B.960×104km2C.×106km2D.×105km2【考点】1I:科学记数法—表示较大的数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n 的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值大于10时,n是正数;当原数的绝对值小于1时,n是负数.【解答】解:将9600000用科学记数法表示为:×106.故选:C.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.3.(3分)(2017?呼和浩特)图中序号(1)(2)(3)(4)对应的四个三角形,都是△ABC这个图形进行了一次变换之后得到的,其中是通过轴对称得到的是()A.(1)B.(2)C.(3)D.(4)【考点】P3:轴对称图形.【专题】17 :推理填空题.【分析】轴对称是沿着某条直线翻转得到新图形,据此判断出通过轴对称得到的是哪个图形即可.【解答】解:∵轴对称是沿着某条直线翻转得到新图形,∴通过轴对称得到的是(1).【点评】此题主要考查了轴对称图形的性质和应用,要熟练掌握,解答此题的关键是要明确:轴对称是沿着某条直线翻转得到新图形,观察时要紧扣图形变换特点,进行分析判断.4.(3分)(2017?呼和浩特)如图,是根据某市2010年至2014年工业生产总值绘制的折线统计图,观察统计图获得以下信息,其中信息判断错误的是()A.2010年至2014年间工业生产总值逐年增加B.2014年的工业生产总值比前一年增加了40亿元C.2012年与2013年每一年与前一年比,其增长额相同D.从2011年至2014年,每一年与前一年比,2014年的增长率最大【考点】VD:折线统计图.【分析】根据题意结合折线统计图确定正确的选项即可.【解答】解:A、2010年至2014年间工业生产总值逐年增加,正确,不符合题意;B、2014年的工业生产总值比前一年增加了40亿元,正确,不符合题意;C、2012年与2013年每一年与前一年比,其增长额相同,正确,不符合题意;D、从2011年至2014年,每一年与前一年比,2012年的增长率最大,故D符合题意;故选:D.【点评】本题考查了折线统计图,计算增长率是解题关键.5.(3分)(2017?呼和浩特)关于x的一元二次方程x2+(a2﹣2a)x+a﹣1=0的两个实数根互为相反数,则a的值为()A.2 B.0 C.1 D.2或0【考点】AB:根与系数的关系.【专题】11 :计算题.【分析】设方程的两根为x1,x2,根据根与系数的关系得a2﹣2a=0,解得a=0或a=2,然后利用判别式的意义确定a的取值.【解答】解:设方程的两根为x1,x2,根据题意得x1+x2=0,所以a2﹣2a=0,解得a=0或a=2,当a=2时,方程化为x2+1=0,△=﹣4<0,故a=2舍去,所以a的值为0.【点评】本题考查了根与系数的关系:若x 1,x 2是一元二次方程ax 2+bx +c=0(a ≠0)的两根时,x 1+x 2=﹣b a ,x 1x 2=c a.也考查了根的判别式. 6.(3分)(2017?呼和浩特)一次函数y=kx +b 满足kb >0,且y 随x 的增大而减小,则此函数的图象不经过( )A .第一象限B .第二象限C .第三象限D .第四象限【考点】F7:一次函数图象与系数的关系.【分析】根据y 随x 的增大而减小得:k <0,又kb >0,则b <0.再根据k ,b 的符号判断直线所经过的象限.【解答】解:根据y 随x 的增大而减小得:k <0,又kb >0,则b <0,故此函数的图象经过第二、三、四象限,即不经过第一象限.故选A .【点评】能够根据k ,b 的符号正确判断直线所经过的象限.7.(3分)(2017?呼和浩特)如图,CD 为⊙O 的直径,弦AB ⊥CD ,垂足为M ,若AB=12,OM :MD=5:8,则⊙O 的周长为( )A .26πB .13πC .96π5D .39√10π5【考点】M2:垂径定理. 【分析】连接OA ,根据垂径定理得到AM=12AB=6,设OM=5x ,DM=8x ,得到OA=OD=13x ,根据勾股定理得到OA=12×13,于是得到结论. 【解答】解:连接OA ,∵CD 为⊙O 的直径,弦AB ⊥CD ,∴AM=12AB=6, ∵OM :MD=5:8,∴设OM=5x ,DM=8x ,∴OA=OD=13x ,∴AM=12x=6,∴x=12,∴OA=12×13, ∴⊙O 的周长=2OA?π=13π,故选B .【点评】本题考查的是垂径定理,根据题意作出辅助线,构造出直角三角形,利用勾股定理求解是解答此题的关键.8.(3分)(2017?呼和浩特)下列运算正确的是( )A .(a 2+2b 2)﹣2(﹣a 2+b 2)=3a 2+b 2B .a 2+1a−1﹣a ﹣1=2a a−1C .(﹣a )3m ÷a m =(﹣1)m a 2mD .6x 2﹣5x ﹣1=(2x ﹣1)(3x ﹣1) 【考点】6B :分式的加减法;4I :整式的混合运算;57:因式分解﹣十字相乘法等.【分析】直接利用分式的加减运算法则以及结合整式除法运算法则和因式分解法分别分析得出答案.【解答】解:A 、(a 2+2b 2)﹣2(﹣a 2+b 2)=3a 2,故此选项错误;B 、a 2+1a−1﹣a ﹣1=a 2+1−(a+1)(a−1)a−1=2a−1,故此选项错误; C 、(﹣a )3m ÷a m =(﹣1)m a 2m ,正确;D 、6x 2﹣5x ﹣1,无法在实数范围内分解因式,故此选项错误;故选:C .【点评】此题主要考查了分式的加减运算以及整式除法运算和因式分解等知识,正确掌握运算法则是解题关键.9.(3分)(2017?呼和浩特)如图,四边形ABCD 是边长为1的正方形,E ,F 为BD 所在直线上的两点,若AE=√,∠EAF=135°,则下列结论正确的是( )A .DE=1B .tan ∠AFO=13C .AF=√102D .四边形AFCE 的面积为94【考点】LE :正方形的性质;T7:解直角三角形.【分析】根据正方形的性质求出AO 的长,用勾股定理求出EO 的长,然后由∠MAN=135°及∠BAD=90°可以得到相似三角形,根据相似三角形的性质求出BF 的长,再一一计算即可判断.【解答】解:∵四边形ABCD 是正方形,∴AB=CB=CD=AD=1,AC ⊥BD ,∠ADO=∠ABO=45°,∴OD=OB=OA=√22,∠ABF=∠ADE=135°, 在Rt △AEO 中,EO=√AE 2−OA 2=√5−12=32√2, ∴DE=√2,故A 错误.∵∠EAF=135°,∠BAD=90°,∴∠BAF +∠DAE=45°,∵∠ADO=∠DAE +∠AED=45°,∴∠BAF=∠AED ,∴△ABF ∽△EDA ,∴BF DA =AB DE , ∴BF 1=√2, ∴BF=√22, 在Rt △AOF 中,AF=√OA 2+OF 2=√(22)2+(√2)2=√102,故C 正确, tan ∠AFO=OA OF =√22√2=12,故B 错误, ∴S 四边形AECF =12?AC?EF=12×√2×52√2=52,故D 错误, 故选C .【点评】本题考查的是相似三角形的判定与性质,根据正方形的性质,运用勾股定理求出相应线段的长,再根据∠EAF=135°和∠BAD=90°,得到相似三角形,用相似三角形的性质求出BF 的长,然后根据对称性求出四边形的面积. 10.(3分)(2017?呼和浩特)函数y=x 2+1|x|的大致图象是( )A.B.C.D.【考点】E6:函数的图象.【分析】本题可用排除法解答,根据y始终大于0,可排除D,再根据x≠0可排除A,根据函数y=x2+1|x|和y=32x有交点即可排除C,即可解题.【解答】解:①∵|x|为分母,∴|x|≠0,即|x|>0,∴A错误;②∵x2+1>0,|x|>0,∴y=x2+1|x|>0,∴D错误;③∵当直线经过(0,0)和(1,32)时,直线解析式为y=32x,当y=32x=x2+1|x|时,x=√2,∴y=32x与y=x2+1|x|有交点,∴C错误;④∵当直线经过(0,0)和(1,1)时,直线解析式为y=x,当y=x=x2+1|x|时,x无解,∴y=x与y=x2+1|x|没有有交点,∴B正确;故选B.【点评】此题主要考查了函数图象的性质,考查了平方根和绝对值大于等于0的性质,本题中求得直线与函数的交点是解题的关键.二、填空题(本大题共6小题,每小题3分,共18分)11.(3分)(2017?呼和浩特)若式子√1−2x 有意义,则x的取值范围是x<12.【考点】72:二次根式有意义的条件;62:分式有意义的条件.【分析】根据二次根式有意义的条件:被开方数为非负数,再结合分式有意义的条件:分母≠0,可得不等式1﹣2x>0,再解不等式即可.【解答】解:由题意得:1﹣2x>0,解得:x<1 2,故答案为:x<1 2,【点评】此题主要考查了二次根式有意义的条件;用到的知识点为:二次根式有意义,被开方数为非负数.12.(3分)(2017?呼和浩特)如图,AB∥CD,AE平分∠CAB交CD于点E,若∠C=48°,则∠AED为114°.【考点】JA:平行线的性质;IJ:角平分线的定义.【分析】根据平行线性质求出∠CAB的度数,根据角平分线求出∠EAB的度数,根据平行线性质求出∠AED的度数即可.【解答】解:∵AB∥CD,∴∠C+∠CAB=180°,∵∠C=48°,∴∠CAB=180°﹣48°=132°,∵AE平分∠CAB,∴∠EAB=66°,∵AB∥CD,∴∠EAB+∠AED=180°,∴∠AED=180°﹣66°=114°,故答案为:114.【点评】本题考查了角平分线定义和平行线性质的应用,解题时注意:两条平行线被第三条直线所截,同旁内角互补.13.(3分)(2017?呼和浩特)如图是某几何体的三视图,根据图中数据,求得该几何体的表面积为(225+25√2)π.【考点】U3:由三视图判断几何体.【分析】根据给出的几何体的三视图可知几何体是由圆柱体和圆锥体构成,从而根据三视图的特点得知高和底面直径,代入表面积公式计算即可.【解答】解:由三视图可知,几何体是由圆柱体和圆锥体构成,故该几何体的表面积为:20×10π+π×82+12×10π×√52+52=(225+25√2)π 故答案是:(225+25√2)π.【点评】本题考查了由三视图判断几何体,该三视图中的数据确定圆锥的底面直径和高是解本题的关键;本题体现了数形结合的数学思想,注意圆锥的高,母线长,底面半径组成直角三角形.14.(3分)(2017?呼和浩特)下面三个命题:①若{x =a y =b 是方程组{|x|=22x −y =3的解,则a +b=1或a +b=0; ②函数y=﹣2x 2+4x +1通过配方可化为y=﹣2(x ﹣1)2+3;③最小角等于50°的三角形是锐角三角形,其中正确命题的序号为 ②③ .【考点】O1:命题与定理.【分析】①根据方程组的解的定义,把{x =a y =b 代入{|x|=22x −y =3,即可判断; ②利用配方法把函数y=﹣2x 2+4x +1化为顶点式,即可判断;③根据三角形内角和定理以及锐角三角形的定义即可判断.【解答】解:①把{x =a y =b 代入{|x|=22x −y =3,得{|a|=22a −b =3, 如果a=2,那么b=1,a +b=3;如果a=﹣2,那么b=﹣7,a +b=﹣9.故命题①是假命题;②y=﹣2x 2+4x +1=﹣2(x ﹣1)2+3,故命题②是真命题;③最小角等于50°的三角形,最大角不大于80°,一定是锐角三角形,故命题③是真命题.所以正确命题的序号为②③.故答案为②③.【点评】主要考查命题的真假判断,正确的命题叫真命题,错误的命题叫做假命题.判断命题的真假关键是要熟悉课本中的定义以及性质定理等知识.15.(3分)(2017?呼和浩特)如图,在?ABCD 中,∠B=30°,AB=AC ,O 是两条对角线的交点,过点O 作AC 的垂线分别交边AD ,BC 于点E ,F ,点M 是边AB 的一个三等分点,则△AOE 与△BMF 的面积比为 3:4 .【考点】S9:相似三角形的判定与性质;L5:平行四边形的性质.【分析】作MH ⊥BC 于H ,设AB=AC=m ,则BM=13m ,MH=12BM=16m ,根据平行四边形的性质求得OA=OC=12AC=12m ,解直角三角形求得FC=√33m ,然后根据ASA 证得△AOE ≌△COF ,证得AE=FC=√33m ,进一步求得OE=12AE=√36m ,从而求得S △AOE =√324m 2,作AN ⊥BC 于N ,根据等腰三角形的性质以及解直角三角形求得BC=√3m ,进而求得BF=BC ﹣FC=√3m ﹣√33m=2√33m ,分别求得△AOE 与△BMF 的面积,即可求得结论. 【解答】解:设AB=AC=m ,则BM=13m , ∵O 是两条对角线的交点,∴OA=OC=12AC=12m , ∵∠B=30°,AB=AC ,∴∠ACB=∠B=30°,∵EF ⊥AC ,∴cos ∠ACB=OC FC ,即cos30°=12m FC , ∴FC=√33m , ∵AE ∥FC ,∴∠EAC=∠FCA ,又∵∠AOE=∠COF ,AO=CO ,∴△AOE ≌△COF ,∴AE=FC=√33m , ∴OE=12AE=√36m , ∴S △AOE =12OA?OE=12×12m ×√36m=√324m 2, 作AN ⊥BC 于N ,∵AB=AC ,∴BN=CN=12BC , ∵BN=√32AB=√32m , ∴BC=√3m ,∴BF=BC ﹣FC=√3m ﹣√33m=2√33m , 作MH ⊥BC 于H ,∵∠B=30°,∴MH=12BM=16m , ∴S △BMF =12BF?MH=12×2√33m ×16m=√318m 2, ∴S △AOE S △BMF =√324m 2√318m =34. 故答案为3:4.【点评】本题考查了平行四边形的性质、全等三角形的判定和性质以及解直角三角形等,熟练掌握性质定理是解题的关键.16.(3分)(2017?呼和浩特)我国魏晋时期数学家刘徽首创“割圆术”计算圆周率.随着时代发展,现在人们依据频率估计概率这一原理,常用随机模拟的方法对圆周率π进行估计,用计算机随机产生m 个有序数对(x ,y )(x ,y 是实数,且0≤x ≤1,0≤y ≤1),它们对应的点在平面直角坐标系中全部在某一个正方形的边界及其内部.如果统计出这些点中到原点的距离小于或等于1的点有n 个,则据此可估计π的值为 4nm .(用含m ,n 的式子表示)【考点】X8:利用频率估计概率;D2:规律型:点的坐标.【分析】根据落在扇形内的点的个数与正方形内点的个数之比等于两者的面积之比列出14?π1=nm ,可得答案. 【解答】解:根据题意,点的分布如图所示:则有14?π1=n m, ∴π=4n m ,故答案为:4n m. 【点评】此题主要考查了利用频率估计概率,大量反复试验下频率稳定值即概率.用到的知识点为:频率=所求情况数与总情况数之比.三、解答题(本大题共9小题,共72分)17.(10分)(2017?呼和浩特)(1)计算:|2﹣√5|﹣√2(√18﹣√102)+32; (2)先化简,再求值:x−2x 2+2x ÷x 2−4x+4x 2−4+12x ,其中x=﹣65. 【考点】6D :分式的化简求值;2C :实数的运算.【专题】11 :计算题;513:分式.【分析】(1)原式利用绝对值的代数意义化简,去括号合并即可得到结果;(2)原式第一项利用除法法则变形,约分后利用同分母分式的加法法则计算得到最简结果,把x 的值代入计算即可求出值.【解答】解:(1)原式=√5﹣2﹣12+√5+32=2√5﹣1; (2)原式=x−2x(x+2)?(x+2)(x−2)(x−2)2+12x =1x +12x =32x, 当x=﹣65时,原式=﹣54. 【点评】此题考查了分式的化简求值,以及实数的运算,熟练掌握运算法则是解本题的关键.18.(6分)(2017?呼和浩特)如图,等腰三角形ABC 中,BD ,CE 分别是两腰上的中线.(1)求证:BD=CE ;(2)设BD 与CE 相交于点O ,点M ,N 分别为线段BO 和CO 的中点,当△ABC 的重心到顶点A 的距离与底边长相等时,判断四边形DEMN 的形状,无需说明理由.【考点】KD :全等三角形的判定与性质;K5:三角形的重心;KH :等腰三角形的性质.【分析】(1)根据已知条件得到AD=AE ,根据全等三角形的性质即可得到结论;(2)根据三角形中位线的性质得到ED ∥BC ,ED=12BC ,MN ∥BC ,MN=12BC ,等量代换得到ED ∥MN ,ED=MN ,推出四边形EDNM 是平行四边形,由(1)知BD=CE ,求得DM=EN ,得到四边形EDNM 是矩形,根据全等三角形的性质得到OB=OC ,由三角形的重心的性质得到O 到BC 的距离=12BC ,根据直角三角形的判定得到BD ⊥CE ,于是得到结论. 【解答】(1)解:由题意得,AB=AC ,∵BD ,CE 分别是两腰上的中线,∴AD=12AC ,AE=12AB , ∴AD=AE ,在△ABD 和△ACE 中{AB =AC ∠A =∠A AD =AE,∴△ABD ≌△ACE (ASA ).∴BD=CE ;(2)四边形DEMN 是正方形,证明:∵E 、D 分别是AB 、AC 的中点,∴AE=12AB ,AD=12AC ,ED 是△ABC 的中位线, ∴ED ∥BC ,ED=12BC , ∵点M 、N 分别为线段BO 和CO 中点,∴OM=BM ,ON=CN ,MN 是△OBC 的中位线,∴MN ∥BC ,MN=12BC , ∴ED ∥MN ,ED=MN ,∴四边形EDNM 是平行四边形,由(1)知BD=CE ,又∵OE=ON ,OD=OM ,OM=BM ,ON=CN ,∴DM=EN ,∴四边形EDNM 是矩形,在△BDC 与△CEB 中,{BE =CDCE =BD BC =CB,∴△BDC ≌△CEB ,∴∠BCE=∠CBD ,∴OB=OC ,∵△ABC 的重心到顶点A 的距离与底边长相等,∴O 到BC 的距离=12BC , ∴BD ⊥CE ,∴四边形DEMN 是正方形.【点评】本题考查了等腰三角形的性质、三角形中位线定理、矩形的判定、平行四边形的判定与性质、全等三角形的判定与性质;熟练掌握等腰三角形的性质和三角形中位线定理,并能进行推理论证是解决问题的关键.19.(10分)(2017?呼和浩特)为了解某地某个季度的气温情况,用适当的抽样方法从该地这个季度中抽取30天,对每天的最高气温x (单位:℃)进行调查,并将所得的数据按照12≤x <16,16≤x <20,20≤x <24,24≤x <28,28≤x <32分成五组,得到如图频数分布直方图.(1)求这30天最高气温的平均数和中位数(各组的实际数据用该组的组中值代表);(2)每月按30天计算,各组的实际数据用该组的组中值代表,估计该地这个季度中最高气温超过(1)中平均数的天数;(3)如果从最高气温不低于24℃的两组内随机选取两天,请你直接写出这两天都在气温最高一组内的概率.【考点】X6:列表法与树状图法;V5:用样本估计总体;V8:频数(率)分布直方图;W2:加权平均数;W4:中位数.【分析】(1)根据30天的最高气温总和除以总天数,即可得到这30天最高气温的平均数,再根据第15和16个数据的位置,判断中位数;(2)根据30天中,最高气温超过(1)中平均数的天数,即可估计这个季度中最高气温超过(1)中平均数的天数;(3)从6天中任选2天,共有15种等可能的结果,其中两天都在气温最高一组内的情况有6种,据此可得这两天都在气温最高一组内的概率.【解答】解:(1)这30天最高气温的平均数为:14×8+18×6+22×10+26×2+30×430=℃; ∵中位数落在第三组内,∴中位数为22℃;(2)∵30天中,最高气温超过(1)中平均数的天数为16天,∴该地这个季度中最高气温超过(1)中平均数的天数为1630×90=48(天); (3)从6天中任选2天,共有15种等可能的结果,其中两天都在气温最高一组内的情况有6种,故这两天都在气温最高一组内的概率为615=25.【点评】本题主要考查了频数分布直方图,平均数以及中位数的计算,一般来说,用样本去估计总体时,样本越具有代表性、容量越大,这时对总体的估计也就越精确.解题时注意:如果一组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数.20.(7分)(2017?呼和浩特)某专卖店有A,B两种商品,已知在打折前,买60件A 商品和30件B商品用了1080元,买50件A商品和10件B商品用了840元,A,B两种商品打相同折以后,某人买500件A商品和450件B商品一共比不打折少花1960元,计算打了多少折?【考点】9A:二元一次方程组的应用.【分析】设打折前A商品的单价为x元/件、B商品的单价为y元/件,根据“买60件A 商品和30件B商品用了1080元,买50件A商品和10件B商品用了840元”,即可得出关于x、y的二元一次方程组,解之即可得出x、y的值,再算出打折前购买500件A 商品和450件B商品所需钱数,结合少花钱数即可求出折扣率.【解答】解:设打折前A商品的单价为x元/件、B商品的单价为y元/件,根据题意得:{60x+30y=1080 50x+10y=840,解得:{x=16 y=4,500×16+450×4=9800(元),9800−19609800=.答:打了八折.【点评】本题考查了二元一次方程组的应用,找准等量关系,列出二元一次方程组是解题的关键.21.(6分)(2017?呼和浩特)已知关于x的不等式2m−mx2>12x﹣1.(1)当m=1时,求该不等式的解集;(2)m取何值时,该不等式有解,并求出解集.【考点】C3:不等式的解集.【专题】11 :计算题;524:一元一次不等式(组)及应用.【分析】(1)把m=1代入不等式,求出解集即可;(2)不等式去分母,移项合并整理后,根据有解确定出m的范围,进而求出解集即可.【解答】解:(1)当m=1时,不等式为2−x2>x2﹣1,去分母得:2﹣x>x﹣2,解得:x <2;(2)不等式去分母得:2m ﹣mx >x ﹣2,移项合并得:(m +1)x <2(m +1),当m ≠﹣1时,不等式有解,当m >﹣1时,不等式解集为x <2;当x <﹣1时,不等式的解集为x >2.【点评】此题考查了不等式的解集,熟练掌握不等式的基本性质是解本题的关键.22.(7分)(2017?呼和浩特)如图,地面上小山的两侧有A ,B 两地,为了测量A ,B 两地的距离,让一热气球从小山西侧A 地出发沿与AB 成30°角的方向,以每分钟40m 的速度直线飞行,10分钟后到达C 处,此时热气球上的人测得CB 与AB 成70°角,请你用测得的数据求A ,B 两地的距离AB 长.(结果用含非特殊角的三角函数和根式表示即可)【考点】T8:解直角三角形的应用.【分析】过点C 作CM ⊥AB 交AB 延长线于点M ,通过解直角△ACM 得到AM 的长度,通过解直角△BCM 得到BM 的长度,则AB=AM ﹣BM .【解答】解:过点C 作CM ⊥AB 交AB 延长线于点M ,由题意得:AC=40×10=400(米).在直角△ACM 中,∵∠A=30°,∴CM=12AC=200米,AM=√32AC=200√3米. 在直角△BCM 中,∵tan20°=BM CM, ∴BM=200tan20°,∴AB=AM ﹣BM=200√3﹣200tan20°=200(√3﹣tan20°),因此A ,B 两地的距离AB 长为200(√3﹣tan20°)米.【点评】本题考查解直角三角形的应用、三角函数等知识,解题的关键是添加辅助线,构造直角三角形,记住三角函数的定义,以及特殊三角形的边角关系,属于中考常考题型.23.(7分)(2017?呼和浩特)已知反比例函数y=−k 2−1x(k 为常数).(1)若点P 1(1−√32,y 1)和点P 2(﹣12,y 2)是该反比例函数图象上的两点,试利用反比例函数的性质比较y 1和y 2的大小;(2)设点P (m ,n )(m >0)是其图象上的一点,过点P 作PM ⊥x 轴于点M .若tan∠POM=2,PO=√5(O 为坐标原点),求k 的值,并直接写出不等式kx +k 2+1x>0的解集.【考点】G6:反比例函数图象上点的坐标特征;T7:解直角三角形.【分析】(1)先根据反比例函数的解析式判断出函数图象所在的象限及其增减性,再根据P 1、P 2两点的横坐标判断出两点所在的象限,故可得出结论.(2)根据题意求得﹣n=2m ,根据勾股定理求得m=1,n=﹣2,得到P (1,﹣2),即可得到﹣k 2﹣1=﹣2,即可求得k 的值,然后分两种情况借助反比例函数和正比例函数图象即可求得.【解答】解:(1)∵﹣k 2﹣1<0,∴反比例函数y=−k 2−1x在每一个象限内y 随x 的增大而增大, ∵﹣12<1−√32<0, ∴y 1>y 2;(2)点P (m ,n )在反比例函数y=−k 2−1x的图象上,m >0, ∴n <0,∴OM=m ,PM=﹣n ,∵tan ∠POM=2,∴PM OM =−n m=2, ∴﹣n=2m ,∵PO=√5,∴m 2+(﹣n )2=5,∴m=1,n=﹣2,∴P (1,﹣2),∴﹣k 2﹣1=﹣2,解得k=±1,①当k=﹣1时,则不等式kx+k2+1x>0的解集为:x<﹣√2或0<x<√2;②当k=1时,则不等式kx+k2+1x>0的解集为:x>0.【点评】本题考查的是反比例函数图象上点的坐标特点,即反比例函数图象上各点的坐标一定适合此函数的解析式;也考查了反比例函数和一次函数的交点.24.(9分)(2017?呼和浩特)如图,点A,B,C,D是直径为AB的⊙O上的四个点,C是劣弧BD̂的中点,AC与BD交于点E.(1)求证:DC2=CE?AC;(2)若AE=2,EC=1,求证:△AOD是正三角形;(3)在(2)的条件下,过点C作⊙O的切线,交AB的延长线于点H,求△ACH的面积.【考点】MR:圆的综合题.【分析】(1)由圆周角定理得出∠DAC=∠CDB,证明△ACD∽△DCE,得出对应边成比例,即可得出结论;(2)求出DC=√3,连接OC、OD,如图所示:证出BC=DC=√3,由圆周角定理得出∠ACB=90°,由勾股定理得出AB=√AC2+BC2=2√3,得出OB=OC=OD=DC=BC=√3,证出△OCD、△OBC是正三角形,得出∠COD=∠BOC=∠OBC=60°,求出∠AOD=60°,即可得出结论;(3)由切线的性质得出OC⊥CH,求出∠H=30°,证出∠H=∠BAC,得出AC=CH=3,求出AH和高,由三角形面积公式即可得出答案.【解答】(1)证明:∵C是劣弧BD̂的中点,∴∠DAC=∠CDB,∵∠ACD=∠DCE,∴△ACD∽△DCE,∴ACDC=CDCE,∴DC2=CE?AC;(2)证明:∵AE=2,EC=1,∴AC=3,∴DC2=CE?AC=1×3=3,。

2016年内蒙古呼和浩特市中考一模数学试卷含答案

2016年内蒙古呼和浩特市中考一模数学试卷含答案

2016年内蒙古呼和浩特市中考一模数学试卷含答案1.2x-3=5的解是______。

2.直线a与直线b的交角为60°,则直线a与直线b的斜率之差为________。

3.已知一个圆锥的侧面展开图的扇形的弧长为12π,则该圆锥的底面圆的半径为______。

4.若a>0,且ax=2,ay=3,则ax-2y的值为______。

5.该几何体的体积为______。

6.在数轴上任取一个比-5大比7小的实数a对应的点,则取到的点对应的实数a满足|a|>2的概率为______。

11.某孢子的直径为0.毫米,科学记数法写为0.93 x 10^-3毫米。

12.___与___的两条射线组成的角的度数为88°。

13.已知平行四边形ABCD,AB=4,BC=6,∠B=60°,则该平行四边形的面积为12.14.用换元法解分式方程 (2x-12x/x-2x-1) = -1,设 2x-1/x=y,化简后得到 2y^2-3y-1=0.15.等腰三角形的底边长为12.16.正确命题为①和②。

17.(1) 化简后得到 2x^3-x^2-2x+1 = 0,代入 x= (3-√3)/3,得到结果为 2-√3.2) 计算得到结果为 -5/23.18.(1) 因为 BE=CE,∠___∠BEC=60°,所以△BCE 为等边三角形,且 BD=DE=EC,所以△BDE 也为等边三角形,因此△BDE ≌△BCE。

2) 四边形 ABCD 是平行四边形。

19.前两天的售价为进价 x 1.4,总收入为 180 x (1.4 x 进价),后一天的售价为进价 x 0.6,总收入为 70 x (0.6 x 进价),总利润为 618,因此进价为 6,后一天的收入为 70 x 0.6 x 6 = 252,亏了 168 元。

20.将不等式组化简得到 2x。

-4,因此解集为 x。

-4.21.如图所示,设 AP=x,BP=y,则 AB=x+y,根据正弦定理得到 sin62°/x = sin37°/y,解得 y = x x sin37°/sin62°,代入AB=x+y,得到 AB=x(1+sin37°/sin62°)。

16内蒙古自治区中考真题解析

16内蒙古自治区中考真题解析

第 6题解图
26π=2πr,∴ r=13,∵ AB∥ CD且 AB与

CD之间的距离为 18,∴OM=18-r=5,∵

AB为 ⊙O的 切 线,∴ ∠CMO=∠AEO=

90°,∴在 Rt△CMO中,CM=槡OC2-OM2

=12,∴CD=2CM=24.
15.(-a-2,-b)或(-a+2,-b) 【解析】

12.y>1或

1 2

y<0
【解

】∵


3.D 【解析】三角形内角和为 180°,A为不可能事件,故 A错误;概 率指的是事件发生可能性大小的数值,概率为 0.6,即发生可能 性较大,故 B错误;抽样调查为了获得较为准确的调查结果,抽样 时要注意样本的代表性和广泛性,故 C错误;调查某城市的空气 质量数据量较大,不易获得精准结果,宜采用抽样调查,故 D正 确,故选 D.
=32槡6,∴DF= 槡CF2+CD2
=52槡6,∵ ∠EFG=90,∴ ∠EFB+

∠DFC=90,∵∠EFB+∠BEF=90,∴∠DFC=∠BEF,又∵∠B
16.①②③④ 【解析】①对应角相等的两个三角形相似,且面积比 为相似比的平方,又∵两三角形面积相等,∴ 相似比的平方为 1,即相似比为 1,即全等,故①为真命题;②若 x=0则 x2-x=0, 故②为真命题;③若二元一次方程组有无数个解,则这两个二元 一次方程为同一个一次函数的解析式,即两条直线重合,故原式 可变形为 yy= =x bx++a1,∴a=b=1,故③ 为真命题;④5xy+3y-
6.B 【解析】∵AB=15,AC=9,BC=12,∴ AB2=AC2 +BC2,∴△ABC为 Rt△ABC, 如解图,作圆心 O,连接 OA、OB、OC,过点 O分别作 AB、BC、AC的 垂 线 交 于 点 D、 E、F,∵ ⊙O是 Rt△ABC的内 切 圆,∴ ∠OFC=∠FCE=∠CEO =90°,OE =

内蒙古呼和浩特市中考数学试卷含答案解析

内蒙古呼和浩特市中考数学试卷含答案解析

内蒙古呼和浩特市中考数学试卷一、选择题(本大题共10小题,每小题3分,共30分)1.我市冬季里某一天的最低气温是﹣10℃,最高气温是5℃,这一天的温差为()A.﹣5℃B.5℃C.10℃D.15℃2.中国的陆地面积约为9600000km2,将这个数用科学记数法可表示为()A.0.96×107km2B.960×104km2C.9.6×106km2 D.9.6×105km23.图中序号(1)(2)(3)(4)对应的四个三角形,都是△ABC这个图形进行了一次变换之后得到的,其中是通过轴对称得到的是()A.(1)B.(2)C.(3)D.(4)4.如图,是根据某市2010年至2014年工业生产总值绘制的折线统计图,观察统计图获得以下信息,其中信息判断错误的是()A.2010年至2014年间工业生产总值逐年增加B.2014年的工业生产总值比前一年增加了40亿元C.2012年与2013年每一年与前一年比,其增长额相同D.从2011年至2014年,每一年与前一年比,2014年的增长率最大5.关于x的一元二次方程x2+(a2﹣2a)x+a﹣1=0的两个实数根互为相反数,则a的值为()A.2 B.0 C.1 D.2或06.一次函数y=kx+b满足kb>0,且y随x的增大而减小,则此函数的图象不经过()A.第一象限B.第二象限C.第三象限D.第四象限7.如图,CD为⊙O的直径,弦AB⊥CD,垂足为M,若AB=12,OM:MD=5:8,则⊙O的周长为()A.26πB.13πC.D.8.下列运算正确的是()A.(a2+2b2)﹣2(﹣a2+b2)=3a2+b2 B.﹣a﹣1=C.(﹣a)3m÷a m=(﹣1)m a2m D.6x2﹣5x﹣1=(2x﹣1)(3x﹣1)9.如图,四边形ABCD是边长为1的正方形,E,F为BD所在直线上的两点,若AE=,∠EAF=135°,则下列结论正确的是()A.DE=1 B.tan∠AFO=C.AF= D.四边形AFCE的面积为10.函数y=的大致图象是()A.B.C.D.二、填空题(本大题共6小题,每小题3分,共18分)11.若式子有意义,则x的取值范围是.12.如图,AB∥CD,AE平分∠CAB交CD于点E,若∠C=48°,则∠AED为°.13.如图是某几何体的三视图,根据图中数据,求得该几何体的表面积为.14.下面三个命题:①若是方程组的解,则a+b=1或a+b=0;②函数y=﹣2x2+4x+1通过配方可化为y=﹣2(x﹣1)2+3;③最小角等于50°的三角形是锐角三角形,其中正确命题的序号为.15.如图,在▱ABCD中,∠B=30°,AB=AC,O是两条对角线的交点,过点O作AC的垂线分别交边AD,BC于点E,F,点M是边AB的一个三等分点,则△AOE 与△BMF的面积比为.16.我国魏晋时期数学家刘徽首创“割圆术”计算圆周率.随着时代发展,现在人们依据频率估计概率这一原理,常用随机模拟的方法对圆周率π进行估计,用计算机随机产生m个有序数对(x,y)(x,y是实数,且0≤x≤1,0≤y≤1),它们对应的点在平面直角坐标系中全部在某一个正方形的边界及其内部.如果统计出这些点中到原点的距离小于或等于1的点有n个,则据此可估计π的值为.(用含m,n的式子表示)三、解答题(本大题共9小题,共72分)17.(1)计算:|2﹣|﹣(﹣)+;(2)先化简,再求值:÷+,其中x=﹣.18.如图,等腰三角形ABC中,BD,CE分别是两腰上的中线.(1)求证:BD=CE;(2)设BD与CE相交于点O,点M,N分别为线段BO和CO的中点,当△ABC 的重心到顶点A的距离与底边长相等时,判断四边形DEMN的形状,无需说明理由.19.为了解某地某个季度的气温情况,用适当的抽样方法从该地这个季度中抽取30天,对每天的最高气温x(单位:℃)进行调查,并将所得的数据按照12≤x <16,16≤x<20,20≤x<24,24≤x<28,28≤x<32分成五组,得到如图频数分布直方图.(1)求这30天最高气温的平均数和中位数(各组的实际数据用该组的组中值代表);(2)每月按30天计算,各组的实际数据用该组的组中值代表,估计该地这个季度中最高气温超过(1)中平均数的天数;(3)如果从最高气温不低于24℃的两组内随机选取两天,请你直接写出这两天都在气温最高一组内的概率.20.某专卖店有A,B两种商品,已知在打折前,买60件A商品和30件B商品用了1080元,买50件A商品和10件B商品用了840元,A,B两种商品打相同折以后,某人买500件A商品和450件B商品一共比不打折少花1960元,计算打了多少折?21.已知关于x的不等式>x﹣1.(1)当m=1时,求该不等式的解集;(2)m取何值时,该不等式有解,并求出解集.22.如图,地面上小山的两侧有A,B两地,为了测量A,B两地的距离,让一热气球从小山西侧A地出发沿与AB成30°角的方向,以每分钟40m的速度直线飞行,10分钟后到达C处,此时热气球上的人测得CB与AB成70°角,请你用测得的数据求A,B两地的距离AB长.(结果用含非特殊角的三角函数和根式表示即可)23.已知反比例函数y=(k为常数).(1)若点P1(,y1)和点P2(﹣,y2)是该反比例函数图象上的两点,试利用反比例函数的性质比较y1和y2的大小;(2)设点P(m,n)(m>0)是其图象上的一点,过点P作PM⊥x轴于点M.若tan∠POM=2,PO=(O为坐标原点),求k的值,并直接写出不等式kx+>0的解集.24.如图,点A,B,C,D是直径为AB的⊙O上的四个点,C是劣弧的中点,AC与BD交于点E.(1)求证:DC2=CE•AC;(2)若AE=2,EC=1,求证:△AOD是正三角形;(3)在(2)的条件下,过点C作⊙O的切线,交AB的延长线于点H,求△ACH 的面积.25.在平面直角坐标系xOy中,抛物线y=ax2+bx+c与y轴交于点C,其顶点记为M,自变量x=﹣1和x=5对应的函数值相等.若点M在直线l:y=﹣12x+16上,点(3,﹣4)在抛物线上.(1)求该抛物线的解析式;(2)设y=ax2+bx+c对称轴右侧x轴上方的图象上任一点为P,在x轴上有一点A (﹣,0),试比较锐角∠PCO与∠ACO的大小(不必证明),并写出相应的P 点横坐标x的取值范围.(3)直线l与抛物线另一交点记为B,Q为线段BM上一动点(点Q不与M重合),设Q点坐标为(t,n),过Q作QH⊥x轴于点H,将以点Q,H,O,C为顶点的四边形的面积S表示为t的函数,标出自变量t的取值范围,并求出S可能取得的最大值.内蒙古呼和浩特市中考数学试卷参考答案与试题解析一、选择题(本大题共10小题,每小题3分,共30分)1.我市冬季里某一天的最低气温是﹣10℃,最高气温是5℃,这一天的温差为()A.﹣5℃B.5℃C.10℃D.15℃【考点】1A:有理数的减法.【分析】用最高温度减去最低温度,再根据减去一个数等于加上这个数的相反数进行计算即可得解.【解答】解:5﹣(﹣10),=5+10,=15℃.故选D.2.中国的陆地面积约为9600000km2,将这个数用科学记数法可表示为()A.0.96×107km2B.960×104km2C.9.6×106km2 D.9.6×105km2【考点】1I:科学记数法—表示较大的数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值大于10时,n是正数;当原数的绝对值小于1时,n是负数.【解答】解:将9600000用科学记数法表示为:9.6×106.故选:C.3.图中序号(1)(2)(3)(4)对应的四个三角形,都是△ABC这个图形进行了一次变换之后得到的,其中是通过轴对称得到的是()A.(1)B.(2)C.(3)D.(4)【考点】P3:轴对称图形.【分析】轴对称是沿着某条直线翻转得到新图形,据此判断出通过轴对称得到的是哪个图形即可.【解答】解:∵轴对称是沿着某条直线翻转得到新图形,∴通过轴对称得到的是(1).故选:A.4.如图,是根据某市2010年至2014年工业生产总值绘制的折线统计图,观察统计图获得以下信息,其中信息判断错误的是()A.2010年至2014年间工业生产总值逐年增加B.2014年的工业生产总值比前一年增加了40亿元C.2012年与2013年每一年与前一年比,其增长额相同D.从2011年至2014年,每一年与前一年比,2014年的增长率最大【考点】VD:折线统计图.【分析】根据题意结合折线统计图确定正确的选项即可.【解答】解:A、2010年至2014年间工业生产总值逐年增加,正确,不符合题意;B、2014年的工业生产总值比前一年增加了40亿元,正确,不符合题意;C、2012年与2013年每一年与前一年比,其增长额相同,正确,不符合题意;D、从2011年至2014年,每一年与前一年比,2012年的增长率最大,故D符合题意;故选:D.5.关于x的一元二次方程x2+(a2﹣2a)x+a﹣1=0的两个实数根互为相反数,则a的值为()A.2 B.0 C.1 D.2或0【考点】AB:根与系数的关系.【分析】设方程的两根为x1,x2,根据根与系数的关系得a2﹣2a=0,解得a=0或a=2,然后利用判别式的意义确定a的取值.【解答】解:设方程的两根为x1,x2,根据题意得x1+x2=0,所以a2﹣2a=0,解得a=0或a=2,当a=2时,方程化为x2+1=0,△=﹣4<0,故a=2舍去,所以a的值为0.故选B.6.一次函数y=kx+b满足kb>0,且y随x的增大而减小,则此函数的图象不经过()A.第一象限B.第二象限C.第三象限D.第四象限【考点】F7:一次函数图象与系数的关系.【分析】根据y随x的增大而减小得:k<0,又kb>0,则b<0.再根据k,b 的符号判断直线所经过的象限.【解答】解:根据y随x的增大而减小得:k<0,又kb>0,则b<0,故此函数的图象经过第二、三、四象限,即不经过第一象限.故选A.7.如图,CD为⊙O的直径,弦AB⊥CD,垂足为M,若AB=12,OM:MD=5:8,则⊙O的周长为()A.26πB.13πC.D.【考点】M2:垂径定理.【分析】连接OA,根据垂径定理得到AM=AB=6,设OM=5x,DM=8x,得到OA=OD=13x,根据勾股定理得到OA=×13,于是得到结论.【解答】解:连接OA,∵CD为⊙O的直径,弦AB⊥CD,∴AM=AB=6,∵OM:MD=5:8,∴设OM=5x,DM=8x,∴OA=OD=13x,∴AM=12x=6,∴x=,∴OA=×13,∴⊙O的周长=2OA•π=13π,故选B.8.下列运算正确的是()A.(a2+2b2)﹣2(﹣a2+b2)=3a2+b2 B.﹣a﹣1=C.(﹣a)3m÷a m=(﹣1)m a2m D.6x2﹣5x﹣1=(2x﹣1)(3x﹣1)【考点】6B:分式的加减法;4I:整式的混合运算;57:因式分解﹣十字相乘法等.【分析】直接利用分式的加减运算法则以及结合整式除法运算法则和因式分解法分别分析得出答案.【解答】解:A、(a2+2b2)﹣2(﹣a2+b2)=3a2,故此选项错误;B、﹣a﹣1==,故此选项错误;C、(﹣a)3m÷a m=(﹣1)m a2m,正确;D、6x2﹣5x﹣1,无法在实数范围内分解因式,故此选项错误;故选:C.9.如图,四边形ABCD是边长为1的正方形,E,F为BD所在直线上的两点,若AE=,∠EAF=135°,则下列结论正确的是()A.DE=1 B.tan∠AFO=C.AF= D.四边形AFCE的面积为【考点】LE:正方形的性质;T7:解直角三角形.【分析】根据正方形的性质求出AO的长,用勾股定理求出EO的长,然后由∠MAN=135°及∠BAD=90°可以得到相似三角形,根据相似三角形的性质求出BF的长,再一一计算即可判断.【解答】解:∵四边形ABCD是正方形,∴AB=CB=CD=AD=1,AC⊥BD,∠ADO=∠ABO=45°,∴OD=OB=OA=,∠ABF=∠ADE=135°,在Rt△AEO中,EO===,∴DE=,故A错误.∵∠EAF=135°,∠BAD=90°,∴∠BAF+∠DAE=45°,∵∠ADO=∠DAE+∠AED=45°,∴∠BAF=∠AED,∴△ABF∽△EDA,∴=,∴=,∴BF=,在Rt△AOF中,AF===,故C正确,tan∠AFO===,故B错误,=•AC•EF=××=,故D错误,∴S四边形AECF故选C.10.函数y=的大致图象是()A.B.C.D.【考点】E6:函数的图象.【分析】本题可用排除法解答,根据y始终大于0,可排除D,再根据x≠0可排除A,根据函数y=和y=x有交点即可排除C,即可解题.【解答】解:①∵|x|为分母,∴|x|≠0,即|x|>0,∴A错误;②∵x2+1>0,|x|>0,∴y=>0,∴D错误;③∵当直线经过(0,0)和(1,)时,直线解析式为y=x,当y=x=时,x=,∴y=x与y=有交点,∴C错误;④∵当直线经过(0,0)和(1,1)时,直线解析式为y=x,当y=x=时,x无解,∴y=x与y=没有有交点,∴B正确;故选B.二、填空题(本大题共6小题,每小题3分,共18分)11.若式子有意义,则x的取值范围是x.【考点】72:二次根式有意义的条件;62:分式有意义的条件.【分析】根据二次根式有意义的条件:被开方数为非负数,再结合分式有意义的条件:分母≠0,可得不等式1﹣2x>0,再解不等式即可.【解答】解:由题意得:1﹣2x>0,解得:x<,故答案为:x,12.如图,AB∥CD,AE平分∠CAB交CD于点E,若∠C=48°,则∠AED为114°.【考点】JA:平行线的性质;IJ:角平分线的定义.【分析】根据平行线性质求出∠CAB的度数,根据角平分线求出∠EAB的度数,根据平行线性质求出∠AED的度数即可.【解答】解:∵AB∥CD,∴∠C+∠CAB=180°,∵∠C=48°,∴∠CAB=180°﹣48°=132°,∵AE平分∠CAB,∴∠EAB=66°,∵AB∥CD,∴∠EAB+∠AED=180°,∴∠AED=180°﹣66°=114°,故答案为:114.13.如图是某几何体的三视图,根据图中数据,求得该几何体的表面积为π.【考点】U3:由三视图判断几何体.【分析】根据给出的几何体的三视图可知几何体是由圆柱体和圆锥体构成,从而根据三视图的特点得知高和底面直径,代入表面积公式计算即可.【解答】解:由三视图可知,几何体是由圆柱体和圆锥体构成,故该几何体的表面积为:20×10π+π×82+×10π×=π故答案是:π.14.下面三个命题:①若是方程组的解,则a+b=1或a+b=0;②函数y=﹣2x2+4x+1通过配方可化为y=﹣2(x﹣1)2+3;③最小角等于50°的三角形是锐角三角形,其中正确命题的序号为②③.【考点】O1:命题与定理.【分析】①根据方程组的解的定义,把代入,即可判断;②利用配方法把函数y=﹣2x2+4x+1化为顶点式,即可判断;③根据三角形内角和定理以及锐角三角形的定义即可判断.【解答】解:①把代入,得,如果a=2,那么b=1,a+b=3;如果a=﹣2,那么b=﹣7,a+b=﹣9.故命题①是假命题;②y=﹣2x2+4x+1=﹣2(x﹣1)2+3,故命题②是真命题;③最小角等于50°的三角形,最大角不大于80°,一定是锐角三角形,故命题③是真命题.所以正确命题的序号为②③.故答案为②③.15.如图,在▱ABCD中,∠B=30°,AB=AC,O是两条对角线的交点,过点O作AC的垂线分别交边AD,BC于点E,F,点M是边AB的一个三等分点,则△AOE 与△BMF的面积比为3:4.【考点】S9:相似三角形的判定与性质;L5:平行四边形的性质.【分析】作MH⊥BC于H,设AB=AC=m,则BM=m,MH=BM=m,根据平行四边形的性质求得OA=OC=AC=m,解直角三角形求得FC=m,然后根据ASA证得△AOE≌△COF,证得AE=FC=m,进一步求得OE=AE=m,从而=m2,作AN⊥BC于N,根据等腰三角形的性质以及解直角三角形求得S△AOE求得BC=m,进而求得BF=BC﹣FC=m﹣m=m,分别求得△AOE与△BMF的面积,即可求得结论.【解答】解:设AB=AC=m,则BM=m,∵O是两条对角线的交点,∴OA=OC=AC=m,∵∠B=30°,AB=AC,∴∠ACB=∠B=30°,∵EF⊥AC,∴cos∠ACB=,即cos30°=,∴FC=m,∵AE∥FC,∴∠EAC=∠FCA,又∵∠AOE=∠COF,AO=CO,∴△AOE≌△COF,∴AE=FC=m,∴OE=AE=m,=OA•OE=××m=m2,∴S△AOE作AN⊥BC于N,∵AB=AC,∴BN=CN=BC,∵BN=AB=m,∴BC=m,∴BF=BC﹣FC=m﹣m=m,作MH⊥BC于H,∵∠B=30°,∴MH=BM=m,=BF•MH=×m×m=m2,∴S△BMF∴==.故答案为3:4.16.我国魏晋时期数学家刘徽首创“割圆术”计算圆周率.随着时代发展,现在人们依据频率估计概率这一原理,常用随机模拟的方法对圆周率π进行估计,用计算机随机产生m个有序数对(x,y)(x,y是实数,且0≤x≤1,0≤y≤1),它们对应的点在平面直角坐标系中全部在某一个正方形的边界及其内部.如果统计出这些点中到原点的距离小于或等于1的点有n个,则据此可估计π的值为.(用含m,n的式子表示)【考点】X8:利用频率估计概率;D2:规律型:点的坐标.【分析】根据落在扇形内的点的个数与正方形内点的个数之比等于两者的面积之比列出=,可得答案.【解答】解:根据题意,点的分布如图所示:则有=,∴π=,故答案为:.三、解答题(本大题共9小题,共72分)17.(1)计算:|2﹣|﹣(﹣)+;(2)先化简,再求值:÷+,其中x=﹣.【考点】6D:分式的化简求值;2C:实数的运算.【分析】(1)原式利用绝对值的代数意义化简,去括号合并即可得到结果;(2)原式第一项利用除法法则变形,约分后利用同分母分式的加法法则计算得到最简结果,把x的值代入计算即可求出值.【解答】解:(1)原式=﹣2﹣++=2﹣1;(2)原式=•+=+=,当x=﹣时,原式=﹣.18.如图,等腰三角形ABC中,BD,CE分别是两腰上的中线.(1)求证:BD=CE;(2)设BD与CE相交于点O,点M,N分别为线段BO和CO的中点,当△ABC 的重心到顶点A的距离与底边长相等时,判断四边形DEMN的形状,无需说明理由.【考点】KD:全等三角形的判定与性质;K5:三角形的重心;KH:等腰三角形的性质.【分析】(1)根据已知条件得到AD=AE,根据全等三角形的性质即可得到结论;(2)根据三角形中位线的性质得到ED∥BC,ED=BC,MN∥BC,MN=BC,等量代换得到ED∥MN,ED=MN,推出四边形EDNM是平行四边形,由(1)知BD=CE,求得DM=EN,得到四边形EDNM是矩形,根据全等三角形的性质得到OB=OC,由三角形的重心的性质得到O到BC的距离=BC,根据直角三角形的判定得到BD⊥CE,于是得到结论.【解答】(1)解:由题意得,AB=AC,∵BD,CE分别是两腰上的中线,∴AD=AC,AE=AB,∴AD=AE,在△ABD和△ACE中,∴△ABD≌△ACE(ASA).∴BD=CE;(2)四边形DEMN是正方形,证明:∵E、D分别是AB、AC的中点,∴AE=AB,AD=AC,ED是△ABC的中位线,∴ED∥BC,ED=BC,∵点M、N分别为线段BO和CO中点,∴OM=BM,ON=CN,MN是△OBC的中位线,∴MN∥BC,MN=BC,∴ED∥MN,ED=MN,∴四边形EDNM是平行四边形,由(1)知BD=CE,又∵OE=ON,OD=OM,OM=BM,ON=CN,∴DM=EN,∴四边形EDNM是矩形,在△BDC与△CEB中,,∴△BDC≌△CEB,∴∠BCE=∠CBD,∴OB=OC,∵△ABC的重心到顶点A的距离与底边长相等,∴O到BC的距离=BC,∴BD⊥CE,∴四边形DEMN是正方形.19.为了解某地某个季度的气温情况,用适当的抽样方法从该地这个季度中抽取30天,对每天的最高气温x(单位:℃)进行调查,并将所得的数据按照12≤x <16,16≤x<20,20≤x<24,24≤x<28,28≤x<32分成五组,得到如图频数分布直方图.(1)求这30天最高气温的平均数和中位数(各组的实际数据用该组的组中值代表);(2)每月按30天计算,各组的实际数据用该组的组中值代表,估计该地这个季度中最高气温超过(1)中平均数的天数;(3)如果从最高气温不低于24℃的两组内随机选取两天,请你直接写出这两天都在气温最高一组内的概率.【考点】X6:列表法与树状图法;V5:用样本估计总体;V8:频数(率)分布直方图;W2:加权平均数;W4:中位数.【分析】(1)根据30天的最高气温总和除以总天数,即可得到这30天最高气温的平均数,再根据第15和16个数据的位置,判断中位数;(2)根据30天中,最高气温超过(1)中平均数的天数,即可估计这个季度中最高气温超过(1)中平均数的天数;(3)从6天中任选2天,共有15种等可能的结果,其中两天都在气温最高一组内的情况有6种,据此可得这两天都在气温最高一组内的概率.【解答】解:(1)这30天最高气温的平均数为:=20.4℃;∵中位数落在第三组内,∴中位数为22℃;(2)∵30天中,最高气温超过(1)中平均数的天数为16天,∴该地这个季度中最高气温超过(1)中平均数的天数为×90=48(天);(3)从6天中任选2天,共有15种等可能的结果,其中两天都在气温最高一组内的情况有6种,故这两天都在气温最高一组内的概率为=.20.某专卖店有A,B两种商品,已知在打折前,买60件A商品和30件B商品用了1080元,买50件A商品和10件B商品用了840元,A,B两种商品打相同折以后,某人买500件A商品和450件B商品一共比不打折少花1960元,计算打了多少折?【考点】9A:二元一次方程组的应用.【分析】设打折前A商品的单价为x元/件、B商品的单价为y元/件,根据“买60件A商品和30件B商品用了1080元,买50件A商品和10件B商品用了840元”,即可得出关于x、y的二元一次方程组,解之即可得出x、y的值,再算出打折前购买500件A商品和450件B商品所需钱数,结合少花钱数即可求出折扣率.【解答】解:设打折前A商品的单价为x元/件、B商品的单价为y元/件,根据题意得:,解得:,500×16+450×4=9800(元),=0.8.答:打了八折.21.已知关于x的不等式>x﹣1.(1)当m=1时,求该不等式的解集;(2)m取何值时,该不等式有解,并求出解集.【考点】C3:不等式的解集.【分析】(1)把m=1代入不等式,求出解集即可;(2)不等式去分母,移项合并整理后,根据有解确定出m的范围,进而求出解集即可.【解答】解:(1)当m=1时,不等式为>﹣1,去分母得:2﹣x>x﹣2,解得:x<2;(2)不等式去分母得:2m﹣mx>x﹣2,移项合并得:(m+1)x<2(m+1),当m≠﹣1时,不等式有解,当m>﹣1时,不等式解集为x<2;当x<﹣1时,不等式的解集为x>2.22.如图,地面上小山的两侧有A,B两地,为了测量A,B两地的距离,让一热气球从小山西侧A地出发沿与AB成30°角的方向,以每分钟40m的速度直线飞行,10分钟后到达C处,此时热气球上的人测得CB与AB成70°角,请你用测得的数据求A,B两地的距离AB长.(结果用含非特殊角的三角函数和根式表示即可)【考点】T8:解直角三角形的应用.【分析】过点C作CM⊥AB交AB延长线于点M,通过解直角△ACM得到AM的长度,通过解直角△BCM得到BM的长度,则AB=AM﹣BM.【解答】解:过点C作CM⊥AB交AB延长线于点M,由题意得:AC=40×10=400(米).在直角△ACM中,∵∠A=30°,∴CM=AC=200米,AM=AC=200米.在直角△BCM中,∵tan20°=,∴BM=200tan20°,∴AB=AM﹣BM=200﹣200tan20°=200(﹣tan20°),因此A,B两地的距离AB长为200(﹣tan20°)米.23.已知反比例函数y=(k为常数).(1)若点P1(,y1)和点P2(﹣,y2)是该反比例函数图象上的两点,试利用反比例函数的性质比较y1和y2的大小;(2)设点P(m,n)(m>0)是其图象上的一点,过点P作PM⊥x轴于点M.若tan∠POM=2,PO=(O为坐标原点),求k的值,并直接写出不等式kx+>0的解集.【考点】G6:反比例函数图象上点的坐标特征;T7:解直角三角形.【分析】(1)先根据反比例函数的解析式判断出函数图象所在的象限及其增减性,再根据P1、P2两点的横坐标判断出两点所在的象限,故可得出结论.(2)根据题意求得﹣n=2m,根据勾股定理求得m=1,n=﹣2,得到P(1,﹣2),即可得到﹣k2﹣1=﹣2,即可求得k的值,然后分两种情况借助反比例函数和正比例函数图象即可求得.【解答】解:(1)∵﹣k2﹣1<0,∴反比例函数y=在每一个象限內y随x的增大而增大,∵﹣<<0,∴y1>y2;(2)点P(m,n)在反比例函数y=的图象上,m>0,∴n<0,∴OM=m,PM=﹣n,∵tan∠POM=2,∴==2,∴﹣n=2m,∵PO=,∴m2+(﹣n)2=5,∴m=1,n=﹣2,∴P(1,﹣2),∴﹣k2﹣1=﹣2,解得k=±1,①当k=﹣1时,则不等式kx+>0的解集为:x<﹣或0<x<;②当k=1时,则不等式kx+>0的解集为:x>0.24.如图,点A,B,C,D是直径为AB的⊙O上的四个点,C是劣弧的中点,AC与BD交于点E.(1)求证:DC2=CE•AC;(2)若AE=2,EC=1,求证:△AOD是正三角形;(3)在(2)的条件下,过点C作⊙O的切线,交AB的延长线于点H,求△ACH 的面积.【考点】MR:圆的综合题.【分析】(1)由圆周角定理得出∠DAC=∠CDB,证明△ACD∽△DCE,得出对应边成比例,即可得出结论;(2)求出DC=,连接OC、OD,如图所示:证出BC=DC=,由圆周角定理得出∠ACB=90°,由勾股定理得出AB==2,得出OB=OC=OD=DC=BC=,证出△OCD、△OBC是正三角形,得出∠COD=∠BOC=∠OBC=60°,求出∠AOD=60°,即可得出结论;(3)由切线的性质得出OC⊥CH,求出∠H=30°,证出∠H=∠BAC,得出AC=CH=3,求出AH和高,由三角形面积公式即可得出答案.【解答】(1)证明:∵C是劣弧的中点,∴∠DAC=∠CDB,∵∠ACD=∠DCE,∴△ACD∽△DCE,∴=,∴DC2=CE•AC;(2)证明:∵AE=2,EC=1,∴AC=3,∴DC2=CE•AC=1×3=3,∴DC=,连接OC、OD,如图所示:∵C是劣弧的中点,∴OC平分∠DOB,BC=DC=,∵AB是⊙O的直径,∴∠ACB=90°,∴AB==2,∴OB=OC=OD=DC=BC=,∴△OCD、△OBC是正三角形,∴∠COD=∠BOC=∠OBC=60°,∴∠AOD=180°﹣2×60°=60°,∵OA=OD,∴△AOD是正三角形;(3)解:∵CH是⊙O的切线,∴OC⊥CH,∵∠COH=60°,∴∠H=30°,∵∠BAC=90°﹣60°=30°,∴∠H=∠BAC,∴AC=CH=3,∵AH=3,AH上的高为BC•sin60°=,∴△ACH的面积=×3×=.25.在平面直角坐标系xOy中,抛物线y=ax2+bx+c与y轴交于点C,其顶点记为M,自变量x=﹣1和x=5对应的函数值相等.若点M在直线l:y=﹣12x+16上,点(3,﹣4)在抛物线上.(1)求该抛物线的解析式;(2)设y=ax2+bx+c对称轴右侧x轴上方的图象上任一点为P,在x轴上有一点A (﹣,0),试比较锐角∠PCO与∠ACO的大小(不必证明),并写出相应的P 点横坐标x的取值范围.(3)直线l与抛物线另一交点记为B,Q为线段BM上一动点(点Q不与M重合),设Q点坐标为(t,n),过Q作QH⊥x轴于点H,将以点Q,H,O,C为顶点的四边形的面积S表示为t的函数,标出自变量t的取值范围,并求出S可能取得的最大值.【考点】HF:二次函数综合题.【分析】(1)根据已知条件得到抛物线的对称轴为x=2.设抛物线的解析式为y=a (x﹣2)2﹣8.将(3,﹣4)代入得抛物线的解析式为y=4(x﹣2)2﹣8,即可得到结论;(2)由题意得:C(0,8),M(2,﹣8),如图,当∠PCO=∠ACO时,过P作PH⊥y轴于H,设CP的延长线交x轴于D,则△ACD是等腰三角形,于是得到OD=OA=,根据相似三角形的性质得到x=,过C作CE∥x轴交抛物线与E,则CE=4,设抛物线与x轴交于F,B,则B(2+,0),于是得到结论;(3)解方程组得到D(﹣1,28得到Q(t,﹣12t+16)(﹣1≤t<2),①当﹣1≤t<0时,②当0<t<时,③当<t<2时,求得二次函数的解析式即可得到结论.【解答】解:(1)∵自变量x=﹣1和x=5对应的函数值相等,∴抛物线的对称轴为x=2.∵点M在直线l:y=﹣12x+16上,∴y M=﹣8.设抛物线的解析式为y=a(x﹣2)2﹣8.将(3,﹣4)代入得:a﹣8=﹣4,解得:a=4.∴抛物线的解析式为y=4(x﹣2)2﹣8,整理得:y=4x2﹣16x+8.(2)由题意得:C(0,8),M(2,﹣8),如图,当∠PCO=∠ACO时,过P作PH⊥y轴于H,设CP的延长线交x轴于D,则△ACD是等腰三角形,∴OD=OA=,∵P点的横坐标是x,∴P点的纵坐标为4x2﹣16x+8,∵PH∥OD,∴△CHP∽△COD,∴,∴x=,过C作CE∥x轴交抛物线与E,则CE=4,设抛物线与x轴交于F,B,则B(2+,0),∴y=ax2+bx+c对称轴右侧x轴上方的图象上任一点为P,∴当x=时,∠PCO=∠ACO,当2+<x<时,∠PCO<∠ACO,当<x<4时,∠PCO>∠ACO;(3)解方程组,解得:,∴D(﹣1,28),∵Q为线段BM上一动点(点Q不与M重合),∴Q(t,﹣12t+16)(﹣1≤t<2),①当﹣1≤t<0时,S=(﹣t)(﹣12t+16﹣8)+8(﹣t)=6t2﹣12t=6(t﹣1)2﹣6,∵﹣1≤t<0,∴当t=﹣1时,S最大=18;②当0<t<时,S=t•8+t(﹣12t+16)=﹣6t2+12t=﹣6(t﹣1)2+6,∵0<t<,∴当t=﹣1时,S最大=6;③当<t<2时,S=t•8+(12t﹣16)=6t2﹣4t=6(t﹣)2﹣,∵<t<2,∴此时S为最大值.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2016年内蒙古呼和浩特市中考数学试卷一、选择题(本大题共10小题,每小题3分,共30分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.(3分)(2016•呼和浩特)互为相反数的两个数的和为()A.0 B.﹣1 C.1 D.22.(3分)(2016•呼和浩特)将数字“6”旋转180°,得到数字“9”,将数字“9”旋转180°,得到数字“6”,现将数字“69”旋转180°,得到的数字是()A.96 B.69 C.66 D.993.(3分)(2016•呼和浩特)下列说法正确的是()A.“任意画一个三角形,其内角和为360°”是随机事件B.已知某篮球运动员投篮投中的概率为0.6,则他投十次可投中6次C.抽样调查选取样本时,所选样本可按自己的喜好选取D.检测某城市的空气质量,采用抽样调查法4.(3分)(2016•呼和浩特)某企业今年3月份产值为a万元,4月份比3月份减少了10%,5月份比4月份增加了15%,则5月份的产值是()A.(a﹣10%)(a+15%)万元B.a(1﹣90%)(1+85%)万元C.a(1﹣10%)(1+15%)万元 D.a(1﹣10%+15%)万元5.(3分)(2016•呼和浩特)下列运算正确的是()数学加专项强化班A.a2+a3=a5B.(﹣2a2)3÷()2=﹣16a4C.3a﹣1=D.(2a2﹣a)2÷3a2=4a2﹣4a+16.(3分)(2016•呼和浩特)如图,△ABC是一块绿化带,将阴影部分修建为花圃,已知AB=15,AC=9,BC=12,阴影部分是△ABC的内切圆,一只自由飞翔的小鸟将随机落在这块绿化带上,则小鸟落在花圃上的概率为()A.B.C.D.7.(3分)(2016•呼和浩特)已知一次函数y=kx+b﹣x的图象与x轴的正半轴相交,且函数值y随自变量x的增大而增大,则k,b的取值情况为()A.k>1,b<0 B.k>1,b>0 C.k>0,b>0 D.k>0,b<08.(3分)(2016•呼和浩特)一个几何体的三视图如图所示,则该几何体的表面积为()A.4πB.3πC.2π+4 D.3π+49.(3分)(2016•呼和浩特)如图,面积为24的正方形ABCD中,有一个小正方形EFGH,其中E、F、G分别在AB、BC、FD上.若BF=,则小正方形的周长为()A.B.C.D.10.(3分)(2016•呼和浩特)已知a≥2,m2﹣2am+2=0,n2﹣2an+2=0,则(m﹣1)2+(n ﹣1)2的最小值是()A.6 B.3 C.﹣3 D.0二、填空题(本题共6小题,每小题3分,共18分.本题要求把正确结果填在答题卡规定的横线上,不要解答过程)11.(3分)(2016•呼和浩特)如图是某市电视台记者为了解市民获取新闻的主要图径,通过抽样调查绘制的一个条形统计图.若该市约有230万人,则可估计其中将报纸和手机上网作为获取新闻的主要途径的总人数大约为______万人.数学加专项强化班12.(3分)(2016•呼和浩特)已知函数y=﹣,当自变量的取值为﹣1<x<0或x≥2,函数值y的取值______.13.(3分)(2016•呼和浩特)在学校组织的义务植树活动中,甲、乙两组各四名同学的植树棵数如下,甲组:9,9,11,10;乙组:9,8,9,10;分别从甲、乙两组中随机选取一名同学,则这两名同学的植树总棵数为19的概率______.14.(3分)(2016•呼和浩特)在周长为26π的⊙O中,CD是⊙O的一条弦,AB是⊙O的切线,且AB∥CD,若AB和CD之间的距离为18,则弦CD的长为______.15.(3分)(2016•呼和浩特)已知平行四边形ABCD的顶点A在第三象限,对角线AC的中点在坐标原点,一边AB与x轴平行且AB=2,若点A的坐标为(a,b),则点D的坐标为______.16.(3分)(2016•呼和浩特)以下四个命题:①对应角和面积都相等的两个三角形全等;②“若x2﹣x=0,则x=0”的逆命题;③若关于x、y的方程组有无数多组解,则a=b=1;④将多项式5xy+3y﹣2x2y因式分解,其结果为﹣y(2x+1)(x﹣3).其中正确的命题的序号为______.三、解答题(本题共9小题,满分72分,解答应写出文字说明,证明过程或演算步骤)17.(10分)(2016•呼和浩特)计算数学加专项强化班(1)计算:()﹣2+|﹣2|+3tan30°(2)先化简,再求值:﹣÷,其中x=﹣.18.(6分)(2016•呼和浩特)在一次综合实践活动中,小明要测某地一座古塔AE的高度.如图,已知塔基顶端B(和A、E共线)与地面C处固定的绳索的长BC为80m.她先测得∠BCA=35°,然后从C点沿AC方向走30m到达D点,又测得塔顶E的仰角为50°,求塔高AE.(人的高度忽略不计,结果用含非特殊角的三角函数表示)19.(6分)(2016•呼和浩特)已知关于x的不等式组有四个整数解,求实数a的取值范围.20.(7分)(2016•呼和浩特)在一次男子马拉松长跑比赛中,随机抽得12名选手所用的时间(单位:分钟)得到如下样本数据:140 146 143 175 125 164 134 155 152 168 162 148 (1)计算该样本数据的中位数和平均数;(2)如果一名选手的成绩是147分钟,请你依据样本数据中位数,推断他的成绩如何?21.(7分)(2016•呼和浩特)已知,如图,△ACB和△ECD都是等腰直角三角形,∠ACB=∠ECD=90°,D为AB边上一点.(1)求证:△ACE≌△BCD;(2)求证:2CD2=AD2+DB2.22.(7分)(2016•呼和浩特)某一公路的道路维修工程,准备从甲、乙两个工程队选一个队单独完成.根据两队每天的工程费用和每天完成的工程量可知,若由两队合做此项维修工程,6天可以完成,共需工程费用385200元,若单独完成此项维修工程,甲队比乙队少用5天,每天的工程费用甲队比乙队多4000元,从节省资金的角度考虑,应该选择哪个工程队?23.(8分)(2016•呼和浩特)已知反比例函数y=的图象在二四象限,一次函数为y=kx+b(b>0),直线x=1与x轴交于点B,与直线y=kx+b交于点A,直线x=3与x轴交于点C,与直线y=kx+b交于点D.(1)若点A,D都在第一象限,求证:b>﹣3k;(2)在(1)的条件下,设直线y=kx+b与x轴交于点E与y轴交于点F,当=且△OFE 的面积等于时,求这个一次函数的解析式,并直接写出不等式>kx+b的解集.24.(9分)(2016•呼和浩特)如图,已知AD是△ABC的外角∠EAC的平分线,交BC的延长线于点D,延长DA交△ABC的外接圆于点F,连接FB,FC.(1)求证:∠FBC=∠FCB;数学加专项强化班(2)已知FA•FD=12,若AB是△ABC外接圆的直径,FA=2,求CD的长.25.(12分)(2016•呼和浩特)已知二次函数y=ax2﹣2ax+c(a<0)的最大值为4,且抛物线过点(,﹣),点P(t,0)是x轴上的动点,抛物线与y轴交点为C,顶点为D.(1)求该二次函数的解析式,及顶点D的坐标;(2)求|PC﹣PD|的最大值及对应的点P的坐标;(3)设Q(0,2t)是y轴上的动点,若线段PQ与函数y=a|x|2﹣2a|x|+c的图象只有一个公共点,求t的取值.2016年内蒙古呼和浩特市中考数学试卷参考答案与试题解析一、选择题(本大题共10小题,每小题3分,共30分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.(3分)(2016•呼和浩特)互为相反数的两个数的和为()A.0 B.﹣1 C.1 D.2【考点】相反数.【分析】直接利用相反数的定义分析得出答案.【解答】解:互为相反数的两个数的和为:0.故选:A.【点评】此题主要考查了相反数的定义,正确把握定义是解题关键.2.(3分)(2016•呼和浩特)将数字“6”旋转180°,得到数字“9”,将数字“9”旋转180°,得到数字“6”,现将数字“69”旋转180°,得到的数字是()A.96 B.69 C.66 D.99【考点】生活中的旋转现象.【分析】直接利用中心对称图形的性质结合69的特点得出答案.【解答】解:现将数字“69”旋转180°,得到的数字是:69.故选:B.【点评】此题主要考查了生活中的旋转现象,正确想象出旋转后图形是解题关键.3.(3分)(2016•呼和浩特)下列说法正确的是()A.“任意画一个三角形,其内角和为360°”是随机事件B.已知某篮球运动员投篮投中的概率为0.6,则他投十次可投中6次C.抽样调查选取样本时,所选样本可按自己的喜好选取D.检测某城市的空气质量,采用抽样调查法【考点】概率的意义;全面调查与抽样调查;随机事件.【分析】根据概率是事件发生的可能性,可得答案.【解答】解:A、“任意画一个三角形,其内角和为360°”是不可能事件,故A错误;B、已知某篮球运动员投篮投中的概率为0.6,则他投十次可能投中6次,故B错误;C、抽样调查选取样本时,所选样本要具有广泛性、代表性,故C错误;D、检测某城市的空气质量,采用抽样调查法,故D正确;故选:D.【点评】本题考查了概率的意义,概率是反映事件发生机会的大小的概念,只是表示发生的机会的大小,机会大也不一定发生,机会小也有可能发生.数学加专项强化班4.(3分)(2016•呼和浩特)某企业今年3月份产值为a万元,4月份比3月份减少了10%,5月份比4月份增加了15%,则5月份的产值是()A.(a﹣10%)(a+15%)万元B.a(1﹣90%)(1+85%)万元C.a(1﹣10%)(1+15%)万元 D.a(1﹣10%+15%)万元【考点】列代数式.【分析】由题意可得:4月份的产值为:a(1﹣10%),5月份的产值为:4月的产值×(1+15%),进而得出答案.【解答】解:由题意可得:4月份的产值为:a(1﹣10%),5月份的产值为:a(1﹣10%)(1+15%),故选:C.【点评】此题主要考查了列代数式,正确理解增长率的定义是解题关键.5.(3分)(2016•呼和浩特)下列运算正确的是()A.a2+a3=a5B.(﹣2a2)3÷()2=﹣16a4C.3a﹣1=D.(2a2﹣a)2÷3a2=4a2﹣4a+1【考点】整式的除法;合并同类项;幂的乘方与积的乘方;负整数指数幂.【分析】分别利用合并同类项法则以及整式的除法运算法则和负整指数指数幂的性质分别化简求出答案.【解答】解:A、a2+a3,无法计算,故此选项错误;B、(﹣2a2)3÷()2=﹣8a6÷=﹣32a4,故此选项错误;C、3a﹣1=,故此选项错误;D、(2a2﹣a)2÷3a2=4a2﹣4a+1,正确.故选:D.【点评】此题主要考查了合并同类项以及整式的除法运算和负整指数指数幂的性质等知识,正确掌握相关运算法则是解题关键.6.(3分)(2016•呼和浩特)如图,△ABC是一块绿化带,将阴影部分修建为花圃,已知AB=15,AC=9,BC=12,阴影部分是△ABC的内切圆,一只自由飞翔的小鸟将随机落在这块绿化带上,则小鸟落在花圃上的概率为()A.B.C.D.【考点】几何概率;三角形的内切圆与内心.【分析】由AB=15,BC=12,AC=9,得到AB2=BC2+AC2,根据勾股定理的逆定理得到△ABC为直角三角形,于是得到△ABC的内切圆半径==3,求得直角三角形的面积和圆的面积,即可得到结论.【解答】解:∵AB=15,BC=12,AC=9,∴AB2=BC2+AC2,∴△ABC为直角三角形,∴△ABC的内切圆半径==3,∴S△ABC=AC•BC=×12×9=54,S圆=9π,∴小鸟落在花圃上的概率==,故选B.【点评】本题考查了几何概率,直角三角形内切圆的半径等于两直角边的和与斜边差的一半.同时也考查了勾股定理的逆定理.7.(3分)(2016•呼和浩特)已知一次函数y=kx+b﹣x的图象与x轴的正半轴相交,且函数值y随自变量x的增大而增大,则k,b的取值情况为()A.k>1,b<0 B.k>1,b>0 C.k>0,b>0 D.k>0,b<0【考点】一次函数图象与系数的关系.【分析】先将函数解析式整理为y=(k﹣1)x+b,再根据图象在坐标平面内的位置关系确定k,b的取值范围,从而求解.【解答】解:一次函数y=kx+b﹣x即为y=(k﹣1)x+b,∵函数值y随x的增大而增大,∴k﹣1>0,解得k>1;∵图象与x轴的正半轴相交,∴图象与y轴的负半轴相交,∴b<0.故选:A.【点评】本题考查的是一次函数的图象与系数的关系,由于y=kx+b与y轴交于(0,b),当b>0时,(0,b)在y轴的正半轴上,直线与y轴交于正半轴;当b<0时,(0,b)在y 轴的负半轴,直线与y轴交于负半轴.熟知一次函数的增减性是解答此题的关键.8.(3分)(2016•呼和浩特)一个几何体的三视图如图所示,则该几何体的表面积为()A.4πB.3πC.2π+4 D.3π+4【考点】由三视图判断几何体.【分析】首先根据三视图判断几何体的形状,然后计算其表面积即可.【解答】解:观察该几何体的三视图发现其为半个圆柱,半圆柱的直径为2,长方体的长为2,宽为1,高为1,故其表面积为:π×12+(π+2)×2=3π+4,故选D.【点评】本题考查了由三视图判断几何体的知识,解题的关键是首先根据三视图得到几何体的形状,难度不大.9.(3分)(2016•呼和浩特)如图,面积为24的正方形ABCD中,有一个小正方形EFGH,其中E、F、G分别在AB、BC、FD上.若BF=,则小正方形的周长为()A.B.C.D.【考点】正方形的性质.【分析】先利用勾股定理求出DF,再根据△BEF∽△CFD,得=求出EF即可解决问题.【解答】解:∵四边形ABCD是正方形,面积为24,∴BC=CD=2,∠B=∠C=90°,∵四边形EFGH是正方形,∴∠EFG=90°,∵∠EFB+∠DFC=90°,∠BEF+∠EFB=90°,∴∠BEF=∠DFC,∵∠EBF=∠C=90°,∴△BEF∽△CFD,∴=,∵BF=,CF=,DF==,∴=,∴EF=,∴正方形EFGH的周长为.故选C.【点评】本题考查正方形的性质、相似三角形的判定和性质等知识,解题的关键是正确寻找相似三角形,利用相似三角形的性质解决问题,属于中考常考题型.10.(3分)(2016•呼和浩特)已知a≥2,m2﹣2am+2=0,n2﹣2an+2=0,则(m﹣1)2+(n ﹣1)2的最小值是()A.6 B.3 C.﹣3 D.0【考点】根与系数的关系;二次函数的最值.【分析】根据已知条件得到m,n是关于x的方程x2﹣2ax+2=0的两个根,根据根与系数的关系得到m+n=2a,mn=2,于是得到4(a﹣)2﹣3,当a=2时,(m﹣1)2+(n﹣1)2有最小值,代入即可得到结论.【解答】解:∵m2﹣2am+2=0,n2﹣2an+2=0,∴m,n是关于x的方程x2﹣2ax+2=0的两个根,∴m+n=2a,mn=2,∴(m﹣1)2+(n﹣1)2=m2﹣2m+1+n2﹣2n+1=(m+n)2﹣2mn﹣2(m+n)+2=4a2﹣4﹣4a+2=4(a﹣)2﹣3,∵a≥2,∴当a=2时,(m﹣1)2+(n﹣1)2有最小值,∴(m﹣1)2+(n﹣1)2的最小值=4(a﹣)2+3=4(2﹣)2﹣3=6,故选A.【点评】本题考查了根与系数的关系,二次函数的最值,熟练掌握根与系数的关系是解题的关键.二、填空题(本题共6小题,每小题3分,共18分.本题要求把正确结果填在答题卡规定的横线上,不要解答过程)11.(3分)(2016•呼和浩特)如图是某市电视台记者为了解市民获取新闻的主要图径,通过抽样调查绘制的一个条形统计图.若该市约有230万人,则可估计其中将报纸和手机上网作为获取新闻的主要途径的总人数大约为151.8万人.【考点】条形统计图;用样本估计总体.【分析】利用样本估计总体的思想,用总人数230万乘以报纸和手机上网的人数所占样本的百分比即可求解.【解答】解:由统计图可知调查的人数为260+400+150+100+90=1000人,所以报纸和手机上网作为获取新闻的主要途径的人数所占百分比=×100%=66%,则该市约有230万人,则可估计其中将报纸和手机上网作为获取新闻的主要途径的总人数大约=230×66%=151.8万,故答案为:151.8.【点评】本题考查读频数分布直方图的能力和利用统计图获取信息的能力,本题用到的知识点是:频率=频数÷总数,用样本估计整体让整体×样本的百分比即可.12.(3分)(2016•呼和浩特)已知函数y=﹣,当自变量的取值为﹣1<x<0或x≥2,函数值y的取值y>1或﹣≤y<0.【考点】反比例函数的性质.【分析】画出图形,先计算当x=﹣1和x=2时的对应点的坐标,并描出这两点,根据图象写出y的取值.【解答】解:当x=﹣1时,y=﹣=1,当x=2时,y=﹣,由图象得:当﹣1<x<0时,y>1,当x≥2时,﹣≤y<0,故答案为:y>1或﹣≤y<0.【点评】本题结合图形考查了反比例函数的性质.注意:反比例函数的增减性只指在同一象限内.13.(3分)(2016•呼和浩特)在学校组织的义务植树活动中,甲、乙两组各四名同学的植树棵数如下,甲组:9,9,11,10;乙组:9,8,9,10;分别从甲、乙两组中随机选取一名同学,则这两名同学的植树总棵数为19的概率.【考点】列表法与树状图法.【分析】首先根据题意画出树状图,然后由树状图求得所有等可能的结果与两名同学的植树总棵数为19的情况,再利用概率公式即可求得答案.【解答】解:画树状图如图:数学加专项强化班∵共有16种等可能结果,两名同学的植树总棵数为19的结果有5种结果,∴这两名同学的植树总棵数为19的概率为,故答案为:.【点评】本题考查的是用列表法或画树状图法求概率.列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件,树状图法适合两步或两步以上完成的事件.注意概率=所求情况数与总情况数之比.14.(3分)(2016•呼和浩特)在周长为26π的⊙O中,CD是⊙O的一条弦,AB是⊙O的切线,且AB∥CD,若AB和CD之间的距离为18,则弦CD的长为24.【考点】切线的性质.【分析】如图,设AB与⊙O相切于点F,连接OF,OD,延长FO交CD于点E,首先证明OE⊥CD,在RT△EOD中,利用勾股定理即可解决问题.【解答】解:如图,设AB与⊙O相切于点F,连接OF,OD,延长FO交CD于点E.∵2πR=26π,∴R=13,∴OF=OD=13,∵AB是⊙O切线,∴OF⊥AB,∵AB∥CD,∴EF⊥CD即OE⊥CD,∴CE=ED,∵EF=18,OF=13,∴OE=5,在RT△OED中,∵∠OED=90°,OD=13,OE=5,∴ED===12,∴CD=2ED=24.故答案为24.【点评】本题考查切线的性质、垂径定理、勾股定理等知识,解题的关键是正确添加辅助线,利用垂径定理解决问题,属于中考常考题型.15.(3分)(2016•呼和浩特)已知平行四边形ABCD的顶点A在第三象限,对角线AC的中点在坐标原点,一边AB与x轴平行且AB=2,若点A的坐标为(a,b),则点D的坐标为(﹣2﹣a,﹣b)(2﹣a,﹣b).【考点】平行四边形的性质;坐标与图形性质.【分析】根据平行四边形的性质得到CD=AB=2,根据已知条件得到B(2+a,b),或(a﹣2,b),∵由于点D与点B关于原点对称,即可得到结论.【解答】解:当点A、B在y轴异侧时,如图1,∵AB与x轴平行且AB=2,A(a,b),∴B(a+2,b),∵对角线AC的中点在坐标原点,∴点A、C关于原点对称,∵四边形ABCD为平行四边形,∴点B、D关于原点对称,∴D(﹣a﹣2,﹣b);当点A、B在y轴同侧时,如图2,同理可得B(a﹣2,b),则D(﹣a+2,﹣b).故点D的坐标为(﹣a﹣2,﹣b)或(﹣a+2,﹣b).故答案为:(﹣2﹣a,﹣b),(2﹣a,﹣b).【点评】本题考查了平行四边形的性质,坐标与图形的性质,关于原点对称的点的坐标特征,注意分类思想的应用.16.(3分)(2016•呼和浩特)以下四个命题:①对应角和面积都相等的两个三角形全等;②“若x2﹣x=0,则x=0”的逆命题;③若关于x、y的方程组有无数多组解,则a=b=1;④将多项式5xy+3y﹣2x2y因式分解,其结果为﹣y(2x+1)(x﹣3).其中正确的命题的序号为①②③④.【考点】命题与定理.【分析】①正确,根据相似比为1的两个三角形全等即可判断.②正确.写出逆命题即可判断.③正确.根据方程组有无数多组解的条件即可判断.④正确.首先提公因式,再利用十字相乘法即可判断.【解答】解:①正确.对应角相等的两个三角形相似,又因为面积相等,所以相似比为1,所以两个三角形全等,故正确.②正确.理由:“若x2﹣x=0,则x=0”的逆命题为x=0,则x2﹣x=0,故正确.③正确.理由:∵关于x、y的方程组有无数多组解,∴==,∴a=b=1,故正确.④正确.理由:5xy+3y﹣2x2y=﹣y(2x2﹣5x﹣3)=﹣y(2x+1)(x﹣3),故正确.故答案为①②③④.【点评】本题考查命题由定理,相似三角形的定义.全等三角形的定义、方程组的解等知识,解题的关键是灵活运用这些知识解决问题,属于中考常考题型.三、解答题(本题共9小题,满分72分,解答应写出文字说明,证明过程或演算步骤)17.(10分)(2016•呼和浩特)计算(1)计算:()﹣2+|﹣2|+3tan30°(2)先化简,再求值:﹣÷,其中x=﹣.【考点】分式的化简求值;实数的运算;负整数指数幂;特殊角的三角函数值.【分析】(1)分别根据负整数指数幂的计算法则、绝对值的性质及特殊角的三角函数值计算出各数,再根据实数混合运算的法则进行计算即可;(2)先算除法,再算加减,最后把x的值代入进行计算即可.【解答】解:(1)原式=4+2﹣+3×=6﹣+=6;(2)原式=﹣•=+==,当x=﹣时,原式==﹣.【点评】本题考查的是分式的化简求值,分式求值题中比较多的题型主要有三种:转化已知条件后整体代入求值;转化所求问题后将条件整体代入求值;既要转化条件,也要转化问题,然后再代入求值.18.(6分)(2016•呼和浩特)在一次综合实践活动中,小明要测某地一座古塔AE的高度.如图,已知塔基顶端B(和A、E共线)与地面C处固定的绳索的长BC为80m.她先测得∠BCA=35°,然后从C点沿AC方向走30m到达D点,又测得塔顶E的仰角为50°,求塔高AE.(人的高度忽略不计,结果用含非特殊角的三角函数表示)【考点】解直角三角形的应用-仰角俯角问题.【分析】根据锐角三角函数关系,得出cos∠ACB=,得出AC的长即可;利用锐角三角函数关系,得出tan∠ADE=,求出AE即可.【解答】解:在Rt△ABC中,∠ACB=35°,BC=80m,∴cos∠ACB=,∴AC=80cos35°,在Rt△ADE中,tan∠ADE=,∵AD=AC+DC=80cos35°+30,∴AE=(80cos35°+30)tan50°.答:塔高AE为(80cos35°+30)tan50°m.【点评】此题主要考查了解直角三角形的应用,根据已知正确得出锐角三角函数关系是解题关键.19.(6分)(2016•呼和浩特)已知关于x的不等式组有四个整数解,求实数a的取值范围.【考点】一元一次不等式组的整数解.【分析】分别求出不等式组中两不等式的解集,根据不等式组有四个整数解,即可确定出a 的范围.【解答】解:解不等式组,解不等式①得:x>﹣,解不等式②得:x≤a+4,∵不等式组有四个整数解,∴1≤a+4<2,解得:﹣3≤a<﹣2.【点评】此题考查了一元一次不等式组的整数解,熟练掌握运算法则是解本题的关键.20.(7分)(2016•呼和浩特)在一次男子马拉松长跑比赛中,随机抽得12名选手所用的时间(单位:分钟)得到如下样本数据:140 146 143 175 125 164 134 155 152 168 162 148 (1)计算该样本数据的中位数和平均数;(2)如果一名选手的成绩是147分钟,请你依据样本数据中位数,推断他的成绩如何?【考点】中位数;算术平均数.【分析】(1)根据中位数和平均数的概念求解;(2)根据(1)求得的中位数,与147进行比较,然后推断该选手的成绩.【解答】解:(1)将这组数据按照从小到大的顺序排列为:125,134,140,143,146,148,152,155,162,164,168,175,则中位数为:=150,平均数为:=151;(2)由(1)可得,中位数为150,可以估计在这次马拉松比赛中,大约有一半选手的成绩快于150分钟,有一半选手的成绩慢于150分钟,这名选手的成绩为147分钟,快于中位数150分钟,可以推断他的成绩估计比一半以上选手的成绩好.【点评】本题考查了中位数和平均数的概念:将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数;如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数;平均数是指在一组数据中所有数据之和再除以数据的个数.21.(7分)(2016•呼和浩特)已知,如图,△ACB和△ECD都是等腰直角三角形,∠ACB=∠ECD=90°,D为AB边上一点.(1)求证:△ACE≌△BCD;(2)求证:2CD2=AD2+DB2.【考点】全等三角形的判定与性质.【专题】证明题.数学加专项强化班【分析】(1)本题要判定△ACE≌△BCD,已知△ACB和△ECD都是等腰直角三角形,∠ACB=∠ECD=90°,则DC=EA,AC=BC,∠ACB=∠ECD,又因为两角有一个公共的角∠ACD,所以∠BCD=∠ACE,根据SAS得出△ACE≌△BCD.(2)由(1)的论证结果得出∠DAE=90°,AE=DB,从而求出AD2+DB2=DE2,即2CD2=AD2+DB2.【解答】证明:(1)∵△ABC和△ECD都是等腰直角三角形,∴AC=BC,CD=CE,∵∠ACB=∠DCE=90°,∴∠ACE+∠ACD=∠BCD+∠ACD,∴∠ACE=∠BCD,在△ACE和△BCD中,,∴△AEC≌△BDC(SAS);(2)∵△ACB是等腰直角三角形,∴∠B=∠BAC=45度.∵△ACE≌△BCD,∴∠B=∠CAE=45°∴∠DAE=∠CAE+∠BAC=45°+45°=90°,∴AD2+AE2=DE2.由(1)知AE=DB,∴AD2+DB2=DE2,即2CD2=AD2+DB2.【点评】本题考查了全等三角形的判定与性质,等腰直角三角形的性质,以及等角的余角相等的性质,熟记各性质是解题的关键.22.(7分)(2016•呼和浩特)某一公路的道路维修工程,准备从甲、乙两个工程队选一个队单独完成.根据两队每天的工程费用和每天完成的工程量可知,若由两队合做此项维修工程,6天可以完成,共需工程费用385200元,若单独完成此项维修工程,甲队比乙队少用5天,每天的工程费用甲队比乙队多4000元,从节省资金的角度考虑,应该选择哪个工程队?【考点】分式方程的应用.【分析】设甲队单独完成此项工程需要x天,乙队单独完成需要(x+5)天,然后依据6天可以完成,列出关于x的方程,从而可求得甲、乙两队单独完成需要的天数,然后设甲队每天的工程费为y元,则可表示出乙队每天的工程费,接下来,根据两队合作6天的工程费用为385200元列方程求解,于是可得到两队独做一天各自的工程费,然后可求得完成此项工程的工程费,从而可得出问题的答案.【解答】解:设甲队单独完成此项工程需要x天,乙队单独完成需要(x+5)天.依据题意可列方程:+=,解得:x1=10,x2=﹣3(舍去).经检验:x=10是原方程的解.设甲队每天的工程费为y元.依据题意可列方程:6y+6(y﹣4000)=385200,解得:y=34100.甲队完成此项工程费用为34100×10=341000元.乙队完成此项工程费用为30100×15=451500元.答:从节省资金的角度考虑,应该选择甲工程队.【点评】本题主要考查的是分式方程的应用、一元一次方程的应用,根据题意列出关于x的方程是解题的关键.23.(8分)(2016•呼和浩特)已知反比例函数y=的图象在二四象限,一次函数为y=kx+b(b>0),直线x=1与x轴交于点B,与直线y=kx+b交于点A,直线x=3与x轴交于点C,与直线y=kx+b交于点D.(1)若点A,D都在第一象限,求证:b>﹣3k;(2)在(1)的条件下,设直线y=kx+b与x轴交于点E与y轴交于点F,当=且△OFE 的面积等于时,求这个一次函数的解析式,并直接写出不等式>kx+b的解集.【考点】反比例函数综合题.【分析】(1)由反比例函数y=的图象在二四象限,得到k<0,于是得到一次函数为y=kx+b 随x的增大而减小,根据A,D都在第一象限,得到不等式即可得到结论;(2)根据题意得到,由三角形的面积公式得到S△OEF=×(﹣)×b=联立方程组解得k=﹣,b=3,即可得到结论.【解答】解:(1)证明:∵反比例函数y=的图象在二四象限,∴k<0,∴一次函数为y=kx+b随x的增大而减小,∵A,D都在第一象限,∴3k+b>0,∴b>﹣3k;(2)由题意知:,∴①,∵E(﹣,0),F(0,b),∴S△OEF=×(﹣)×b=②,由①②联立方程组解得:k=﹣,b=3,∴这个一次函数的解析式为y=﹣x+3,解﹣=﹣x+3得x1=,x2=,∴直线y=kx+b与反比例函数y=的交点坐标的横坐标是或,∴不等式>kx+b的解集为<x<0或x>.【点评】本题考查了反比例函数和一次函数的性质,求函数的解析式,三角形面积公式的应用,熟练掌握反比例函数和一次函数的性质是解题的关键.24.(9分)(2016•呼和浩特)如图,已知AD是△ABC的外角∠EAC的平分线,交BC的延长线于点D,延长DA交△ABC的外接圆于点F,连接FB,FC.(1)求证:∠FBC=∠FCB;(2)已知FA•FD=12,若AB是△ABC外接圆的直径,FA=2,求CD的长.【考点】相似三角形的判定与性质;三角形的外接圆与外心.【分析】(1)由圆内接四边形的性质和邻补角关系证出∠FBC=∠CAD,再由角平分线和对顶角相等得出∠FAB=∠CAD,由圆周角定理得出∠FAB=∠FCB,即可得出结论;(2)由(1)得:∠FBC=∠FCB,由圆周角定理得出∠FAB=∠FBC,由公共角∠BFA=∠BFD,证出△AFB∽△BFD,得出对应边成比例求出BF,得出FD、AD的长,由圆周角定理得出∠BFA=∠BCA=90°,由三角函数求出∠FBA=30°,再由三角函数求出CD的长即可.【解答】(1)证明:∵四边形AFBC内接于圆,∴∠FBC+∠FAC=180°,∵∠CAD+∠FAC=180°,∴∠FBC=∠CAD,∵AD是△ABC的外角∠EAC的平分线,∴∠EAD=∠CAD,∵∠EAD=∠FAB,∴∠FAB=∠CAD,又∵∠FAB=∠FCB,∴∠FBC=∠FCB;(2)解:由(1)得:∠FBC=∠FCB,又∵∠FCB=∠FAB,∴∠FAB=∠FBC,∵∠BFA=∠BFD,∴△AFB∽△BFD,∴,∴BF2=FA•FD=12,∴BF=2,∵FA=2,∴FD=6,AD=4,∵AB为圆的直径,∴∠BFA=∠BCA=90°,∴tan∠FBA===,∴∠FBA=30°,又∵∠FDB=∠FBA=30°,∴CD=AD•cos30°=4×=2.【点评】本题考查了相似三角形的判定与性质、圆周角定理、圆内接四边形的性质、三角函数等知识;本题综合性强,有一定难度,证明三角形相似是解决问题的关键.。

相关文档
最新文档