高一数学(数列)章节测试题

合集下载

高一必修数列测试题及答案详解高一数学

高一必修数列测试题及答案详解高一数学

高一必修数列测试题及答案详解高一数学一、填空题1. 若\[a_n = 2n - 1\],则数列\[\{a_n\}\]的前5项分别为\[1, 3, 5, 7, 9\]。

2. 若\[b_n = 3^n\],则数列\[\{b_n\}\]的前4项分别为\[3, 9, 27, 81\]。

3. 若\[c_n = \frac{n(n+1)}{2}\],则数列\[\{c_n\}\]的前6项分别为\[1, 3, 6, 10, 15, 21\]。

二、选择题1. 以下是等差数列的是(B)。

A. 1, 2, 4, 7, 11B. 2, 4, 8, 16, 32C. 1, 3, 6, 10, 15D. 3, 8, 15, 24, 352. 若\[a_1=2\],\[a_2=5\],则\[a_3=8\),\[a_4=11\),则\(a_n\)的通项公式是(C)。

A. \(a_n=2n+1\)B. \(a_n=3n-1\)C. \(a_n=3n-1\)D. \(a_n=2n+4\)3. 若对于等差数列\(\{a_n\}\)有\(\frac{{a_5 - a_2}}{7}=3\),则\(d=\)(A)。

A. 1B. 2C. 3D. 4三、解答题1. 求等差数列\(\{a_n\}\)的前5项之和,已知\(a_1=1\),\(a_3=7\)。

(解答略)2. 若等差数列\(\{a_n\}\)的首项为-3,公差为4,求该数列的第n项和。

\({S_n}=\)(解答略)3. 若等差数列\(\{a_n\}\)的首项为2,公差为3,已知\(\frac{{a_m+a_n}}{2}=13\),求\(m\)与\(n\)的值。

(解答略)四、解题思路详解1. 填空题1解析:根据数列通项公式\[a_n = 2n - 1\],带入\[n=1,2,3,4,5\],即可得到\[a_n\]的前5项。

2. 填空题2解析:根据数列通项公式\[b_n=3^n\],带入\[n=1,2,3,4\],即可得到\[b_n\]的前4项。

高一数学必修5第二章《数列》单元测试

高一数学必修5第二章《数列》单元测试

必修5第二章《数列》单元测试班级 姓名 座号一、选择题(每小题6分)1、数列1,-3,5,-7,9,…的一个通项公式为( )A .12-=n a nB .)12()1(--=n a n nC .)21()1(n a nn --= D .)12()1(+-=n a nn2、等比数列2,4,8,16,…的前n 项和为( )A .121-+nB .22-nC .n 2D .221-+n3、等比数列{}n a 中,已知112733n a a q ===,,,则n 为( )A .3B .4C .5D .64、等比数列{}n a 中,9696==a a ,,则3a 等于( )A .3B .23C .916D .45、若数列{}n a 中,n a =43-3n ,则n S 最大值n= ( )A .13B .14C .15D .14或156、等差数列{}n a 的首项11=a ,公差0≠d ,如果521a a a 、、成等比数列,那么d 等于()A .3B .2C .-2D .2±7、等差数列{}n a 的前m 项的和是30,前2m 项的和是100,则它的前3m 项的和是( )A .130B .170C .210D .2608、 数列{a n }的通项公式是a n =1(1)n n +(n ∈N*),若前n 项的和为1011,则项数n 为( )A .12B .11C .10D .9二、填空题(每小题6分)9、等差数列{}n a 中,n S =40,1a =13,d =-2 时,n =______________ 10、{}a n 为等差数列,14739a a a ++=,25833a a a ++=,=++a a a 963 _______11、在等差数列{}n a 中,35791120a a a a a ++++=,则113a a += __________12、在数列{}n a 中,11a =,且对于任意自然数n ,都有1n n a a n +=+,则100a =______三、解答题13、(本题10分)求数列11111,2,3,424816…的前n 项和。

高一数学数列试题答案及解析

高一数学数列试题答案及解析

高一数学数列试题答案及解析1.数列1,,,…,,….是()A.递增数列B.递减数列C.常数列D.摆动数列【答案】【解析】显然该数列从第二项起,各项的分母是偶数且越来越大,所以数列的各项越来越小.【考点】数列增减性的判断.2.设数列满足:,,则()A.B.C.D.【答案】A【解析】由题可得:,对n分别取正整数后进进迭加,可得,又,当n=19时有,所以.【考点】迭加法求数列的通项公式.3.正项数列的前项和满足:(1)求数列的通项公式;(2)令,求数列的前项和.【答案】(1) ,(2)【解析】(1) 先化简关系式:,,再利用与关系,得时.最后验证,得到数列的通项. (2)因为数列通项是“等比乘等差”型,需用错位相减法求解前项和.运用错位相减法求和时需注意三点:一是相减时注意项的符号,二是求和时注意项的个数,三是最后结果需除以由相减得:所以.试题解析:(1)解:由,得.由于是正项数列,所以.于是时,.综上,数列的通项.(2),由相减得:所以【考点】由求,错位相减法求和4.(本小题满分12分)已知数列{an }满足 a1=1,an+1=.,写出它的前5项,并归纳出数列的一个通项公式(不要求证明)【答案】解:∵a1=1,an+1=,∴a2==, a3==, a4==, a5==.∴它的前5项依次是1,,,,…………………….8分故它的一个通项公式为an=. (12)【解析】略5.在等差数列中,已知,=4,则公差d等于()A.1 B. C.- 2 D 3【答案】C【解析】,所以.6.数列为等差数列,为正整数,其前项和为,数列为等比数列,且,数列是公比为64的等比数列,.(1)求;(2)求证.【答案】(1)(2)见解析【解析】(1)设的公差为,的公比为,则为正整数,,.依题意有①由知为正有理数,故为的因子之一,解①得,故.(2),∴.7.设,且则()A.B.C.D.【答案】C【解析】,,所以数列是等比数列,,首项,所以【考点】1.复合函数;2.等比数列.8.已知数列(Ⅰ)计算(Ⅱ)令是等比数列;(Ⅲ)设、分别为数列、的前,使得数列为等差数列?若存在,试求出的值;若不存在,请说明理由.【答案】(Ⅰ)(Ⅱ)详见解析(Ⅲ)【解析】(Ⅰ)将点代入直线可得到数列的递推公式,由首项可逐个求出的值;(Ⅱ)首先将数列的通项公式整理化简,找到相邻的两项,证明数列是等比数列主要需要证明相邻两项的比值是常数,常数即公比,需要说明数列首项不为零;(Ⅲ)首先由已知整理出两数列通项公式和前n项和,代入中化简,由定义数列是等差数列需满足相邻两项的差值为常数,因此找到数列的相邻项相减,使其为常数时寻求此时的取值试题解析:(Ⅰ)由题意,同理(Ⅱ)因为所以又,所以数列是以为首项,为公比的等比数列.(Ⅲ)由(2)得,又所以由题意,记则故当【考点】1.数列的通项公式递推公式;2.等差等比数列的判定;3.数列求和9.已知数列满足,(),则().A.0B.C.D.-【答案】D【解析】所以a的周期为3,.【考点】数列性质的应用10.等比数列的前项的和,且,,则.【答案】【解析】根据等比数列前项和的性质,,,,是等比数列,所以,,那么,所以.【考点】等比数列前项和的性质11.(本小题满分13分)已知数列的前项和,,等差数列中(1)求数列、的通项公式;(2)是否存在正整数,使得若存在,求出的最小值,若不存在,请说明理由.【答案】(1);;(2)存在,.【解析】(1)数列是等差数列,所以待定系数求首项和公差,求数列的通项公式的方法是已知求,当时,,然后两式相减,得到递推,再求的值,最后再写出通项;(2)第一步,先求的通项公式,是等差数列乘以等比数列,所以求和,采用错位相减法求和,,然后再解关于的不等式,求出整数.试题解析:(1)当时,,相减得:又数列是以1为首项,3为公比的等比数列,.又(2)令①②①-②得:…9分即,当,,当。

6521高一数学数列试题

6521高一数学数列试题

高一数学同步测试(13)—数列单元测试题一、选择题1.若S n 是数列{a n }的前n 项和,且,2n S n =则}{n a 是 ( )A .等比数列,但不是等差数列B .等差数列,但不是等比数列C .等差数列,而且也是等比数列D .既非等比数列又非等差数列2.某种细菌在培养过程中,每20分钟分裂一次(一个分裂为两个),经过3小时,这种细菌由1个可繁殖成 ( )A .511个B .512个C .1023个D .1024个 3.等差数列{a n }中,已知为则n a a a a n ,33,4,31521==+= ( )A .48B .49C .50D .514.已知{a n }是等比数列,且a n >0,a 2a 4+2a 3a 5+a 4a 6=25,那么a 3+a 5的值等于 ( )A .5B .10C .15D .205.等比数列{a n }的首项a 1=1,公比q ≠1,如果a 1,a 2,a 3依次是某等差数列的第1,2,5项,则q 等于 ( ) A .2 B .3 C .-3 D .3或-3 6.等比数列{a n }的前3项的和等于首项的3倍,则该等比数列的公比为( )A .-2B .1C .-2或1D .2或-17.已知方程0)2)(2(22=+-+-n x x m x x 的四个根组成的一个首项为41的等差数列,则=-||n m( )A .1B .43 C .21 D .83 8.数列{a n }中,已知S 1 =1, S 2=2 ,且S n +1-3S n +2S n -1 =0(n ∈N*),则此数列为( ) A .等差数列 B .等比数列C .从第二项起为等差数列D .从第二项起为等比数列9.等比数列前n 项和为54,前2n 项和为60,则前3n 项和为( )A .66B .64C .2663 D .260310.设等差数列{a n }的公差为d ,若它的前n 项和S n =-n 2,则( )A .a n =2n -1,d =-2B .a n =2n -1,d =2C .a n =-2n +1,d =-2D .a n =-2n +1,d =211.数列{a n }的通项公式是a n =11++n n (n ∈N*),若前n 项的和为10,则项数为( )A .11B .99C .120D .12112.某人于2000年7月1日去银行存款a 元,存的是一年定期储蓄,计划2001年7月1日将到期存款的本息一起取出再加a 元之后还存一年定期储蓄,此后每年的7月1日他都按照同样的方法在银行取款和存款.设银行一年定期储蓄的年利率r 不变,则到2005年7月1日他将所有的存款和本息全部取出时,取出的钱共为 ( ) A .a (1+r )4元 B .a (1+r )5元C .a (1+r )6元D .ra[(1+r )6-(1+r )]元 二、填空题:13.设{a n }是公比为q 的等比数列,S n 是它的前n 项和,若{S n }是等差数列, 则q = .14.设数列{}n a 满足121+-=+n n n na a a ,,,3,2,1 =n 当21=a 时, .15.数列{}n a 的前n项的和S n =3n 2+ n +1,则此数列的通项公式a n =__ . 16.在等差数列}{n a 中,当s r a a =)(s r ≠时,}{n a 必定是常数数列.然而在等比数列}{n a中,对某些正整数r 、s )(s r ≠,当s r a a =时,非常数数列}{n a 的一个例子是 ___ ___.三、解答题:17.已知:等差数列{n a }中,4a =14,前10项和18510=S . (1)求n a ;(2)将{n a }中的第2项,第4项,…,第n2项按原来的顺序排成一个新数列,求此数列的前n 项和n G .18.求下面各数列的和:(1)111112123123n++++++++++;(2).21225232132nn -++++19.数列{a n }满足a 1=1,a n =21a n -1+1(n ≥2) (1)若b n =a n -2,求证{b n }为等比数列; (2)求{a n }的通项公式.20.某渔业公司年初用98万元购买一艘捕鱼船,第一年各种费用12万元,以后每年都增加4万元,每年捕鱼收益50万元, (1)问第几年开始获利? (2)若干年后,有两种处理方案:(3)年平均获利最大时,以26万元出售该渔船; (4)总纯收入获利最大时,以8万元出售该渔船. 问哪种方案合算.21.已知数列{}n a 是等差数列,且.12,23211=++=a a a a (1)求数列{}n a 的通项公式;(2)令).(R x x a b n n n ∈=求数列{}n b 前n 项和的公式.22.某房地产公司推出的售房有两套方案:一种是分期付款的方案,当年要求买房户首付3万元,然后从第二年起连续十年,每年付款8000元;另一种方案是一次性付款,优惠价为9万元,若一买房户有现金9万元可以用于购房,又考虑到另有一项投资年收益率为5%,他该采用哪种方案购房更合算?请说明理由.(参考数据 1.059≈1.551,1.0510≈1.628)参考答案一、选择题:BBCAB CCDDC CD 二、填空题:13.1.14.1+=n a n )1(≥n .15.⎪⎩⎪⎨⎧≥-==)2(26)1(5n n n a n.16、)0(,,,,≠--a a a a a ,r 与s 同为奇数或偶数.三、解答题:17.解析:(1)由41014185a S =⎧⎨=⎩ ∴11314,1101099185,2a d a d +=⎧⎪⎨+⋅⋅⋅=⎪⎩153a d =⎧⎨=⎩ 由23,3)1(5+=∴⋅-+=n a n a n n(1)设新数列为{n b },由已知,223+⋅=n nb.2)12(62)2222(3321n n G n n n +-=+++++=∴ *)(,62231N n n G n n ∈-+⋅=∴+ 18.解析:(1)12)]111()3121()211[(2)111(2)1(23211+=+-++-+-=+-=+=++++=n n n n S n n n n n a n n 故(本题用到的方法称为“裂项法”,把通项公式化为a n =f (n +1)-f (n )的形式)(2)通项.)21()12(212nnn n n a ⨯-=-=呈“等差×等比”的形式, nn n n S 212)21(231---=-19.解析: (1)由a n =21a n -1+1得a n -2=21(a n -1-2)即21221=---n n a a ,(n ≥2)∴{b n }为以-1为首项,公比为21的等比数列 (2)b n =(-1)( 21)n -1,即a n -2=-(21)n -1∴a n =2-(21)n -1 20.解析:(1)由题设知每年费用是以12为首项,4为公差的等差数列,设纯收入与年数的关系为()f n ,∴[]9824098)48(161250)(2--=-++++-=n n n n n f , 获利即为()f n >0, ∴04920,09824022<+->--n n n n 即,解之得:1010 2.217.1n n <<<<即,又n ∈N , ∴n =3,4,…,17, ∴当n =3时即第3年开始获利; (1)(i)年平均收入=)49(240)(nn n n f +-= ∵n n 49+≥14492=⨯nn ,当且仅当n =7时取“=”, ∴nn f )(≤40-2×14=12(万元)即年平均收益,总收益为12×7+26=110万元,此时n =7. (ii)102)10(2)(2+--=n n f ,∴当102)(,10max ==n f n总收益为102+8=110万元,此时n =10,比较两种方案,总收益均为110万元,但第一种方案需7年,第二种方案需10年,故选择第一种.21.解析:设数列}{n a 公差为d ,则 ,12331321=+=++d a a a a 又.2,21==d a所以.2n a n =(Ⅱ)解:令,21n n b b b S +++= 则由,2n n n n nx x a b ==得 ,2)22(4212n n n nx x n x x S +-++=- ① ,2)22(42132++-+++=n n n nx x n x x xS ② 当1≠x 时,①式减去②式,得 ,21)1(22)(2)1(112++---=-++=-n n n nn nx xx x nxx x x S x所以.12)1()1(212xnx x x x S n n n ----=+当1=x 时, )1(242+=+++=n n n S n ,综上可得当1=x 时,)1(+=n n S n当1≠x 时,.12)1()1(212x nx x x x S n n n ----=+ 22.解析:如果分期付款,到第十一年付清后看其是否有结余,设首次付款后第n 年的结余数为a n , ∵a 1=(9-3)×(1+0.5%)-0.8=6×1.05-0.8 a 2=(6×1.05-0.8)×1.05-0.8=6×1.052-0.8×(1+1.05) …… a 10=6×1.0510-0.8(1+1.05+…+1.059)=6×1.0510-0.8×105.1105.110--=6×1.0510-16×(1.0510-1) =16-10×1.0510≈16-16.28=-0.28(万元) 所以一次性付款合算.。

高一数学数列 单元测试 试题

高一数学数列 单元测试  试题

高一数学数列 单元测试一、选择题〔每一小题3分,一共54分〕1、等差数列n a a a a ,,,,321 的公差为d ,那么数列n ca ca ca ca ,,,,321 〔c 为常数,且0≠c 〕是〔 〕A .公差为d 的等差数列B .公差为cd 的等差数列C .非等差数列D .以上都不对2、在数列{}n a 中,122,211=-=+n n a a a ,那么101a 的值是〔 〕A .49B .50C .51D .523、,231,231-=+=b a 那么b a ,的等差中项为〔 〕A .3B .2C .31 D .214、等差数列{}n a 中,12010=S ,那么101a a +的值是〔 〕A .12B .24C .36D .485、2b ac =是c b a 、、成等比数列的〔 〕A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件6、设4321,,,a a a a 成等比数列,其公比为2,那么432122a a a a ++的值是〔〕A .41 B .21C .81 D .17、数列3,5,9,17,33,…的通项公式n a 等于〔 〕A .n2B .12+nC .12-nD .12+n 8、数列{}n a 的通项公式是11++=n n a n ,假设前n 项的和为10,那么项数n 为〔〕A .11B .99C .120D .1219、计算机的本钱不断降低,假设每隔3年计算机价格降低31,如今价格为8100元的计算机,9年后的价格可降为〔 〕A .2400元B .900元C .300元D .3600元10、数列{}n a 、{}n b 都是等差数列,其中100,75,2510010011=+==b a b a ,那么{}n n b a +前100项的和为〔 〕A .0B .100C .10000D .10240011、假设数列{}n a 的前n 项和为2n S n =,那么〔〕A .12-=n a nB .12+=n a nC .12--=n a nD .12+-=n a n12、等比数列{}n a 中,===+q a a a a 则,8,63232〔〕A .2B .21C .2或者21 D .-2或者21-13、等差数列—3,1,5,…的第15项的值是〔 〕A .40B .53C .63D .7614、在等比数列中,32,31,891===q a a n ,那么项数n 为〔 〕 A .3B .4C .5D .615、实数c b a 、、满足122,62,32===cba,那么实数c b a 、、是〔〕A .等差非等比数列B .等比非等差数列C .既是等比又是等差数列D .既非等差又非等比数列16、假设c b a 、、成等比数列,那么关于x 的方程02=++c bx ax 〔 〕A .必有两个不等实根B .必有两个相等实根C .必无实根D .以上三种情况均有可能17、等差数列{}n a 满足011321=+++a a a a ,那么有〔〕A .0111>+a aB .0102<+a aC .093=+a aD .66=a18、数列 ,1614,813,412,211前n 项的和为〔 〕A .2212n n n ++B .12212+++-nn n C .2212nn n ++-D . 22121nn n -+-+二、填空题〔每一小题3分,一共15分〕19、在等差数列{}n a 中,2054321=++++a a a a a ,那么3a 等于20、某厂在1995年底制定消费方案,要使2021年底的总产量在原有根底上翻两番,那么年平均增长率为21、等差数列{}n a 的公差0≠d ,且931,,a a a 成等比数列,那么1042931a a a a a a ++++的值是22、数列{}n a 中,11,111+==-n n a a a ,那么=4a23、在等比数列{}n a 中,各项均为正数,且,7,13211=++=a a a a 那么数列{}n a 的通项公式是_________=n a三、解答题〔第2 4、25两题每一小题7分,第26题8分,第27题9分,一共31分〕 24、等差数列{}n a 中,33,4,31521==+=n a a a a ,试求n 的值25、数列{}n a 中,*11,3,2N n n a a a n n ∈=-=+,求数列{}n a 的通项公式n a26、在等比数列{}n a 的前n 项和中,1a 最小,且128,66121==+-n n a a a a ,前n 项和126=n S ,求n 和公比q27、等比数列{}n b 与数列{}n a 满足*,3N n b n an ∈=(1) 判断{}n a 是何种数列,并给出证明; (2) 假设2021138,b b b m a a 求=+参考答案一、二、19、4 20、1410- 21、1613 22、35 23、12-n 三、24、50333132 ,33313232)1(31,32 31,452411152==-∴=-=⋅-+==∴==+=++=+n n a n n a d a d a d d a a a n n 得又25、由⎪⎩⎪⎨⎧-=-=-=-⇒=--+)1(3633123121n a a a a a a n a a n nn n将上面各等式相加,得2)1(32)1(3631-+=⇒-+++=-n n a n a a n n26、因为{}n a 为等比数列,所以64,2,,128661111121==≤⎩⎨⎧==+∴=-n n n n n na a a a a a a a a a a a 解得且 依题意知1≠q21261,1261=⇒=--∴=q qqa a S n n 6,6421=∴=-n q n27、〔1〕设{}n b 的公比为q , q n a a q b n a n a a nn n 311log 10(33,31-+=⇒=⋅∴=-所以{}n a 是以q 3log 为公差的等差数列〔2〕m a a =+138所以由等差数列性质得m a a a a =+=+138201m a a a b b b m a a a a a 10202120120213310220)(2021==⇒=⨯+=+++∴+++励志赠言经典语录精选句;挥动**,放飞梦想。

高一数学数列单元考试题.doc

高一数学数列单元考试题.doc

高一数学数列单元考试题样稿(2008.03.22)一、选择题1、在等差数列{}n a 中,3a =9,9a =3,则12a = BA 、-3B 、0C 、3D 、6 2、在等差数列{}n a 中,,6,5462+=-=a a a 那么=1a ( ).BA .-9B .-8C .-7D .-43、等比数列{}n a 中 13a =,424a =,则345a a a ++=CA . 33B . 72C . 84D . 1894、在等比数列{a n }中,a 9+a 10=a(a 0≠),a 19+a 20=b,则a 99+a 100的值为( )AA .89a bB .(a b )9C .910ab D .(a b )105、在数列{a n }中,a 1=2,a n+1=2a n +2,则a 100的值为( )BA .2100-2B .2101-2C .2101D .2156、已知数列{n a }的前n 项和29n S n n =-,第k 项满足58k a <<,则k =( )BA .9B .8C .7D .67、设数列{a n }是首项为50,公差为2的等差数列;{b n }是首项为10,公差为4的等差数列,以a k 、b k 为相邻两边的矩形内最大圆面积记为S k ,若k ≤21,那么S k 等于 ( ) A .(2k +1)2π B .(2k +3)2π C .(2k +12)2π D .(k +24)2π8、我们把1,3,6,10,15,……这些数叫做三角形数,因为这些数目的点子可以排成一个正三角形(如下图)则第七个三角形数是( ) B A 、27B 、28C 、29D 、30二、填空题9、若三个数1,,9x 成等比数列,则 x =1 3 6 10 15 ……答: 3±10、在等差数列}{n a 中,n S 表示前n 项和,58218a a a -=+,则=9S 答:5411、在数列{}n a中n a =且9n S =,则n = .9912、定义“等和数列”:在一个数列中,如果每一项与它的后一项的和都为同一个常数,那么这个数列叫做等和数列,这个常数叫做该数列的公和。

第二章数列试卷 高一数学《数列》单元测试卷

第二章数列试卷 高一数学《数列》单元测试卷

高一数学《数列》单元测试卷班级:_____________ 姓名: 成绩: 一、选择题(每小题5分,共60分)1.{a n }是首项a 1=1,公差为d =3的等差数列,如果a n =2 005,则序号n 等于( ).A .667B .668C .669D .6702.在各项都为正数的等比数列{a n }中,首项a 1=3,前三项和为21,则a 3+a 4+a 5=( ).A .33B .72C .84D .1893.等比数列{a n }中,a 2=9,a 5=243,则{a n }的前4项和为( ).A .81B .120C .168D .192 4.已知等差数列{a n }的公差为2,若a 1,a 3,a 4成等比数列, 则a 2=( ).A .-4B .-6C .-8D . -105.公比为2的等比数列{n a } 的各项都是正数,且 3a 11a =16,则5a =( )A .1B .2C .4D .86.在等比数列{}n a (n ∈N*)中,若11a =,418a =,则该数列的前10项和为( ) A .4122- B .2122- C .10122- D .11122-7.若等差数列{n a }的前三项和93=S 且11=a ,则2a 等于( )A .3B .4C .5D .68.等差数列{}n a 的前n 项和为n S 若=则432,3,1S a a ==( )A .12B .10C .8D .69.等差数列{}n a 的前n 项和为n S ,且3S =6,1a =4, 则公差d 等于( )A .1B 53C.- 2 D 310.已知等差数列共有10项,其中奇数项之和15,偶数项之和为30,则其公差是( )A .5B .4C .3D .211 .若{}n a 是等比数列,前n 项和21n n S =-,则2222123n a a a a ++++=( )A.2(21)n -B.21(21)3n -C.41n -D.1(41)3n -12、等比数列{}n a 中,0n a >,a 5a 6=9,则313233310log log log log a a a a +++⋅⋅⋅+=( )A.12B.10C.8D.32log 5+ 二、填空题(每小题5分,共20分)13、等比数列{a n }的前n 项和为S n ,若S 3+3S 2=0,则公比q =_______14、若等比数列{}n a 满足2412a a =,则2135a a a = .15、已知数列{}n a 满足1n n a a n +=+,1a =1,则n a =16、在等差数列{a n }中,若a 4+a 6+a 8+a 10+a 12=120,则a 9-13a 11的值为三、解答题(共70分)17、(本小题满分10分)等比数列{}n a 中前n 项和为n S ,42S =,86S =,求17181920a a a a +++的值.18、(本小题满分12分)已知等差数列{}n a 中,a1=1,a3=-3.(I )求数列{}n a 的通项公式;(II )若数列{}n a 的前n 项和n S =-35,求n 的值. 19、(本小题满分12分) 数列{}n a 中,18a =,42a =,且满足2120n n n a a a ++-+= (1)求数列{}n a 的通项公式; (2)设12||||||n n S a a a =+++,求n S 。

高一数学数列试题及答案

高一数学数列试题及答案

高一数学数列试题及答案一、选择题1. 已知数列{a_n}是等差数列,且a_1=1,a_4=7,那么a_7的值为()。

A. 13B. 14C. 15D. 162. 等比数列{b_n}中,b_1=2,b_3=8,则b_5的值为()。

A. 16B. 32C. 64D. 1283. 数列{c_n}的前n项和为S_n,若S_5=15,S_10=35,则S_15的值为()。

A. 55B. 50C. 60D. 654. 数列{d_n}满足d_1=1,d_{n+1}=2d_n+1,求d_3的值为()。

A. 5B. 7C. 9D. 11二、填空题5. 已知等差数列{a_n}的前n项和为S_n,若S_3=9,S_6=21,则a_4+a_5+a_6的值为______。

6. 等比数列{b_n}中,b_1b_2b_3=8,b_2=2,则b_4的值为______。

7. 数列{c_n}满足c_1=2,c_{n+1}=c_n+n,求c_5的值为______。

三、解答题8. 已知数列{a_n}是等差数列,且a_1=2,a_3+a_5=22,求a_7的值。

9. 等比数列{b_n}中,b_1=3,b_2b_3=45,求b_5的值。

10. 数列{c_n}满足c_1=1,c_{n+1}=2c_n+1,求c_4的值。

答案:一、选择题1. C解析:已知等差数列{a_n},a_1=1,a_4=7,设公差为d,则有a_4=a_1+3d,即7=1+3d,解得d=2。

因此,a_7=a_1+6d=1+6×2=13。

2. C解析:已知等比数列{b_n},b_1=2,b_3=8,设公比为q,则有b_3=b_1q^2,即8=2q^2,解得q=2或q=-2。

由于等比数列的公比不能为负数,所以q=2。

因此,b_5=b_1q^4=2×2^4=64。

3. C解析:已知数列{c_n}的前n项和为S_n,S_5=15,S_10=35。

由于S_5,S_10-S_5,S_15-S_10构成等差数列,所以有2(S_10-S_5)=S_5+(S_15-S_10),即2×(35-15)=15+(S_15-35),解得S_15=60。

高一数学数列 单元测试 试题

高一数学数列 单元测试 试题

卜人入州八九几市潮王学校高一数学数列单元测试一. 选择题:{}a n 中,311=a ,)2(2)1(1≥-=-n a a n n n ,那么=a 5() A.316- B.316C.38- D.38 {}a n 中,=++a a a 74139,=++a a a 85233那么=++a a a 963() A.30B.27 C.24D.21{}a n 是递增等差数列,前三项的和是12,前三项的积为48,那么它的首项是()A.1B.2C.4D.6{}a n 中,假设8171593=+++a a a a ,那么=a 11() A.1B.-1 C5.等差数列前10项和为100,前100项和为10。

那么前110项的和为A .-90B .90C .-110D .106.两个等差数列,它们的前n 项和之比为1235-+n n ,那么这两个数列的第9项之比是〔〕 A .35B .58C .38D .47 7.设等比数列{a n }中,每项均为正数,且a 3·a 8=81,log 3a 1+log 3a 2+…+log 3a 10等于A.5B.10 C8.等比数列的公比为2,假设前4项之和为1,那么前8项之和为()A.15B.17 C9.数列1,a ,a2,……,a n 1-,……的前N 项和为() A.a a n --11 B.a a n --+111C.a a n --+11210.设直角三角形ABC 三边成等比数列,公比为q,那么q 2的值是() A.2B.215- C.215+ D.215± 11.假设数列22331,2cos ,2cos ,2cos ,,θθθ前100项之和为0,那么θ的值是〔〕 A.()3k k Z ππ±∈ B.2()3k k Z ππ±∈ C.22()3k k Z ππ±∈ D.以上之答案均不对 2a =3,2b =6,2c =12,那么数列a,b,c 成A.等差B.等比C.非等差也非等比D.既等差也等比二. 填空题:13.在等差数列{}a n 中,a 3、a 10是方程0532=--x x 的两根, 那么=+a a 85 14.数列{}a n的通项公式n a =n 项和为10,那么项数n 为______________。

高一数列测试题及答案

高一数列测试题及答案

高一数列测试题及答案一、选择题(每题5分,共30分)1. 数列1, 1/2, 1/3, 1/4, ...的前n项和为S_n,那么S_5等于()A. 2B. 3C. 4D. 52. 已知数列{a_n}是等差数列,且a_1=2,公差d=3,则a_5等于()A. 14B. 15C. 16D. 173. 等比数列{b_n}的前n项和为S_n,若S_3=7,b_1=1,公比q=2,则b_3等于()A. 4B. 8C. 16D. 324. 数列{c_n}满足c_1=1,c_{n+1}=2c_n+1,那么c_3等于()A. 5B. 7C. 9D. 115. 已知数列{d_n}的通项公式为d_n=3n-2,那么d_5等于()A. 13B. 14C. 15D. 166. 数列{e_n}满足e_1=2,e_{n+1}=e_n+2n,那么e_4等于()A. 16B. 18C. 20D. 22二、填空题(每题5分,共20分)7. 等差数列{f_n}的前n项和为S_n,若a_5=10,a_1=2,则公差d等于______。

8. 等比数列{g_n}中,若g_3=8,g_1=2,则公比q等于______。

9. 数列{h_n}满足h_1=3,h_{n+1}=3h_n-2,那么h_4等于______。

10. 数列{i_n}的通项公式为i_n=2^n,那么i_5等于______。

三、解答题(每题10分,共50分)11. 已知数列{j_n}是等差数列,且j_1=5,j_3=11,求数列的通项公式。

12. 等比数列{k_n}中,若k_1=3,k_2k_4=324,求公比q。

13. 数列{l_n}满足l_1=1,l_{n+1}=2l_n+n,求l_5。

14. 数列{m_n}的通项公式为m_n=n^2-n+1,求m_1到m_5的和。

15. 数列{n_n}满足n_1=1,n_{n+1}=n_n+n,求n_4。

答案:一、选择题1. B2. C3. C4. D5. C6. A二、填空题7. 28. 29. 1710. 32三、解答题11. 通项公式为j_n=2n+3。

高一数列试题及答案

高一数列试题及答案

高一数列试题及答案一、选择题1. 已知数列{a_n}是等差数列,且a_1+a_3=10,a_2+a_4=12,则a_5的值为()。

A. 14B. 16C. 18D. 20答案:A解析:设等差数列的公差为d,则a_3=a_1+2d,a_4=a_2+2d。

根据题意,有a_1+a_1+2d=10,a_2+a_2+2d=12。

解得a_1=4,d=2。

因此,a_5=a_1+4d=4+4×2=14。

2. 已知数列{a_n}是等比数列,且a_1a_3=8,a_2=4,则a_4的值为()。

A. 16B. 32C. 64D. 128答案:C解析:设等比数列的公比为q,则a_3=a_1q^2,a_2=a_1q。

根据题意,有a_1a_1q^2=8,a_1q=4。

解得a_1=2,q=2。

因此,a_4=a_1q^3=2×2^3=16。

3. 已知数列{a_n}满足a_1=1,a_{n+1}=2a_n+1,求a_5的值为()。

A. 21B. 33C. 65D. 129答案:C解析:根据递推关系,可得a_2=2a_1+1=3,a_3=2a_2+1=7,a_4=2a_3+1=15,a_5=2a_4+1=31。

因此,a_5=65。

二、填空题4. 已知数列{a_n}是等差数列,且a_1=3,公差d=2,则a_10的值为______。

答案:23解析:根据等差数列的通项公式,a_n=a_1+(n-1)d,代入n=10,得a_10=3+(10-1)×2=23。

5. 已知数列{a_n}是等比数列,且a_1=2,公比q=3,则a_5的值为______。

答案:486解析:根据等比数列的通项公式,a_n=a_1q^(n-1),代入n=5,得a_5=2×3^(5-1)=486。

三、解答题6. 已知数列{a_n}满足a_1=1,a_{n+1}=3a_n+2,求a_5的值。

答案:121解析:根据递推关系,可得a_2=3a_1+2=5,a_3=3a_2+2=17,a_4=3a_3+2=53,a_5=3a_4+2=161。

高一数学单元测试卷——数列.doc

高一数学单元测试卷——数列.doc

高一数学单元测试卷——数列班级姓名学号一.选择题:1..若数列{a n}的公差为0.5,且a1+a3+a5+…+a99=60,则a1+a +a3+···+a1002的值是()(A)120 (B)145 (C)150 (D)1702. 已知等差数列{an}中,a1=2,d=-2,前n项的和为Sn,则{Sn}( )(A)有最大值,没有最小值(B)有最小值,没有最大值(C)有最大值,也有最小值(D)没有最大值,也没有最小值3. 已知命题A:a、b、c成等差数列,命题B:2b=a+c,则A是B的一个()(A)充要条件(B)必要而不充分条件(B)而不必要条件(D)既不充分条件又不必要条件4.已知-9,a1,a2,-1这4个数成等差数列,-9,b1,b2,b3,-1 这5个数成等比数列,则b2(a2-a1)等于()9(A). 8 (B) –8 (C)±8 (D)85.在数列{a n}中,已知a n+1=a n+n(n∈N*),且a1=2,则a99的值是()(A)1001 (B)1001.5 (C)1002 (D)1002.5 二、填空题:1.数列6、66、666、6666…的一个通项公式____________。

2.在各项均为正数的等比数列{an}中,若a50*a51=9,则log 3 a1+log3 a2+…+log3 a100=_____________。

3.等比数列{an}中,且a3>0,a2a4+2a3a5+a4a6=36,那么a3+a5=4.等比数列{a n}中,a1+a2+a3=90,a4+a5+a6=60,则a1+a2+a3+···+a9=5.数列a+b,a2+2b,a3+3b,······,a n+nb(a≠1)的前n项和为s n,则s10=.三.解答题。

1. 数列成等比数列,若第二个数加4 就成等差数列,再把这个等差数列的第三项加32又成等比数列,求这三个数。

高一数学《数列》同步训练(共7份)含答案必修5

高一数学《数列》同步训练(共7份)含答案必修5

必修5《数列》同步训练(共7份)含答案2.1 数列的概念与简单表示法一、选择题:1.下列解析式中不.是数列1,-1,1,-1,1,-1…,的通项公式的是 ( ) A.(1)n n a =- B.1(1)n n a +=- C.1(1)n n a -=- D.{11n n a n =-,为奇数,为偶数2,的一个通项公式是 ( )A. n aB. n a =C. n a =D.n a =3.已知数列{}n a ,1()(2)n a n N n n +=∈+,那么1120是这个数列的第 ( )项. A. 9 B. 10 C. 11 D. 124.数列{}n a ,()n a f n =是一个函数,则它的定义域为 ( )A. 非负整数集B. 正整数集C. 正整数集或其子集D. 正整数集或{}1,2,3,4,,n5.已知数列{}n a ,22103n a n n =-+,它的最小项是 ( )A. 第一项B. 第二项C. 第三项D. 第二项或第三项6.已知数列{}n a ,13a =,26a =,且21n n n a a a ++=-,则数列的第五项为( )A. 6B. 3-C. 12-D. 6-二.填空题:7、观察下面数列的特点,用适当的数填空(1),14,19,116,; (2)32,54,,1716,3332,。

8.已知数列{}n a ,85,11n a kn a =-=且,则17a =.9.根据下列数列的前几项的值,写出它的一个通项公式。

(1)数列0.7,0.77,0.777,0.7777,…的一个通项公式为.(2)数列4,0,4,0,4,0,…的一个通项公式为.(3)数列1524354863,,,,,,25101726的一个通项公式为.10.已知数列{}n a 满足12a =-,1221n n na a a +=+-,则4a =.三.解答题11.已知数列{}n a 中,13a =,1021a =,通项n a 是项数n 的一次函数,①求{}n a 的通项公式,并求2005a ;②若{}n b 是由2468,,,,,a a a a 组成,试归纳{}n b 的一个通项公式.12.已知{}n a 满足13a =,121n n a a +=+,试写出该数列的前5项,并用观察法写出这个数列的一个通项公式.2.2等差数列一.选择题:1、等差数列{a n }中,a 1=60,a n+1=a n+3则a 10为………………………………( ) A 、-600 B 、-120 C 、60 D 、-602、若等差数列中,a 1=4,a 3=3,则此数列的第一个负数项是……………………( )A 、a 9B 、a 10C 、a 11D 、a 12 3.若数列{}n a 的通项公式为25n a n =+,则此数列是 ( )A.公差为2的等差数列B. 公差为5的等差数列C.首项为5的等差数列D. 公差为n 的等差数列4.已知{a n }是等差数列,a 7+a 13=20,则a 9+a 10+a 11=……………………( ) A 、36 B 、30 C 、24 D 、185.等差数列3,7,11,,---的一个通项公式为 ( )A.47n -B.47n --C.41n +D.41n -+6.若{}n a 是等差数列,则123a a a ++,456a a a ++,789a a a ++,,32313n n n a a a --++,是 ( )A.一定不是等差数列B.一定是递增数列C.一定是等差数列D.一定是递减数列二.填空题:7.等差数列{}n a 中,350a =,530a =,则7a =.8.等差数列{}n a 中,3524a a +=,23a =,则6a =.9.已知等差数列{}n a 中,26a a 与的等差中项为5,37a a 与的等差中项为7,则n a =.10.若{a n }是等差数列,a 3,a 10是方程x 2-3x-5=0的两根,则a 5+a 8=.三.解答题11.判断数52,27()k k N ++∈是否是等差数列{}n a :5,3,1,1,,---中的项,若是,是第几项?12.等差数列{a n}中,a1=23,公差d为整数,若a6>0,a7<0.(1)求公差d的值;(2)求通项a n.13、若三个数a-4,a+2,26-2a,适当排列后构成递增等差数列,求a的值和相应的数列.2.3等差数列的前n 项和一.选择题:1.等差数列{}n a 中,10120S =,那么110a a += ( )A.12B.24C.36D.482.从前180个正偶数的和中减去前180个正奇数的和,其差为 ( )A.0B.90C.180D.3603.已知等差数列{}n a ,219n a n =-,那么这个数列的前n 项和n s ( )A.有最小值且是整数B.有最小值且是分数C.有最大值且是整数D.有最大值且是分数4.等差数列{}n a 的前m 项的和为30,前2m 项的和为100,则它的前3m 项的和为( )A.130B.170C.210D.2605.在等差数列{}n a 和{}n b 中,125a =,175b =,100100100a b +=,则数列{}n n a b +的前100项和为 ( )A.0B.100C.1000D.100006.若关于x 的方程20x x a -+=和20x x b -+=()a b ≠的四个根组成首项为14的等差数列,则a b += ( ) A.38B.1124C.1324D.3172二.填空题:本大题共4小题,每小题 4分,共16分,把正确答案写在题中横线上.7.等差数列{}n a 中,若638a a a =+,则9s =.8.等差数列{}n a 中,若232n S n n =+,则公差d =.9.有一个 凸n 边形,各内角的度数成等差数列,公差是100,最小角为1000,则边数n=.10.若两个等差数列{}n a 和{}n b 的前n 项和分别为n S 和n T ,且满足733n n S n T n +=+,则88a b =. 三.解答题11.在等差数列{}n a 中,40.8a =,11 2.2a =,求515280a a a +++.12.已知等差数列{a n}的项数为奇数,且奇数项的和为44,偶数项的和为33,求此数列的中间项及项数。

高一数学第三章数列过关检测题

高一数学第三章数列过关检测题

高一数学第三章数列过关检测题班级: 姓名: 学号: 成绩:一.选择题1.数列0,0,0,…,0,…( )(A ) 是等差数列但不是等比数列 (B )是等比数列但不是等差数列 (C ) 既是等差数列又是等比数列 (D )既不是等差数列又不是等比数列2.已知{n a }是首项为1a ,公差为d 的等差数列,{n b }是首项为1b ,公比为q 的等比数列,那么数列{n n b a +}的第13项是( )(A ) 121112q b d a ++ (B ) 131112q b d a ++ (C ) 121113q b d a ++ (D ) 131113q b d a ++ 3.在等比数列{n a }中,2a =8,5a =64,则公比q 为( ) (A ) 2 (B ) 3 (C ) 4 (D ) 84.在等差数列{n a }中,已知1a +2a +3a +4a +5a =20,那么3a 等于( ) (A ) 4 (B ) 5 (C ) 6 (D ) 75.在等比数列{n a }中,2a =9,5a =243,则数列{n a }的前4项和为( ) (A ) 81 (B ) 120 (C ) 168 (D ) 19246.如果1+n a =n a +1,(*N n ∈)且1a =2,则100a 的值是( )(A ) 102 (B ) 99 (C ) 101 (D ) 100 7.某种细菌在培养过程中,每20分钟分裂一次(一个分裂成二个),则经过3小时,这种细菌由1个可以繁殖成( )(A ) 511 (B ) 512 (C ) 1023 (D ) 1024 8.数列{n a }的前n 项和为n S ,若n a =)1(1+n n ,则5S 等于( )(A ) 1 (B ) 65 (C ) 61 (D ) 3019.在由正数组成的等比数列{n a }中,首项1a =3,3a =12,则3a +4a +5a =( ) (A ) 33 (B ) 72 (C ) 84 (D ) 189610.设数列{n a }是递增等差数列,前3项的和为12,前3项的积为48,则它的首项是( ) (A ) 1 (B ) 2 (C ) 4 (D ) 611.若数列{n a }为等比数列,则下面四个命题:①数列{3n a }也是等比数列;②数列{—n a }也是等比数列;③数列{na 1}也是等比数列;④数列{n a }也是等比数列,其中正确的个数是( )(A ) 1个 (B ) 2个 (C ) 3个 (D ) 4个 12.数列{n a }的通项公式n a =n +⋅⋅⋅+++3211,则其前n 项和n S =( )(A ) 12+n n (B ) nn 21+ (C ) 2)1(+n n (D )122+++n n n二.填空题13.等比数列{n a }的首项1a =1,前n 项和为n S ,若510S S =3231,则公比q =14.等差数列{n a }的前3项和为21,前6项和为24,则数列{n a }的前9项和等于15.若数列{n a }满足1+n a =n a +32,且1a =0,则7a =16.在38和227之间插入三个数,使这五个数成等比数列,则插入的三个数的乘积为三.解答题17.成等差数列的三个数的和等于15,并且这三个数分别加上1,3,9后又成等比数列,求这三个数.参考答案一.选择题二.填空题 13.21-14.41 15.4 16.216 三.解答题17.解:设这三个数分别为d a -,a ,d a +,因为这三个数的和等于15,所以得 d a -+a +d a +=15 即a 3=15,a =5又因为这三个数分别加上1,3,9后又成等比数列,所以又有 (d -6)(d +14)=28整理得 2d +8d 20-=0,解得1d =2,2d =10- 当d =2时,这三个数分别为3,5,7 当d =10-时,这三个数分别为15,5,5-。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高一数学章节测试题——数列
10. 已知{}n a 为等差数列,
1a +3a +5a =105,246a a a ++=99.以n S 表示{}n a 的前n 项和,则使得n S 达到最大值的n 是( )
A.21
B.20
C.19
D. 18
11. 已知数列{}n a 的前n 项和n S 满足1,1==++a S S S m n m n ,那么=
10a
( )
A.1
B.9
C.10
D.55
12. 已知等比数列{}n a 满足0,1,2,n a n >=,且25252(3)n n a a n -⋅=≥,则当
1n ≥时,2123221log log log n a a a -++
+=( )
A. (21)n n -
B. 2(1)n +
C. 2n
D. 2(1)n - 选择题答题卡:
二、填空题(本大题共4小题,每小题5分,共20分.)
13. 设等差数列{}n a 的前n 项和为n S .若972S =,则
249a a a ++=_______________.
14. 在等比数列{}n a 中,若公比q=4,且前3项之和等于21,则该数列的通项公式
=n a _____________.
15. 设数列{}n a 中,1211++==+n a a a n n ,,则通项=n a _____________.
16. 设{}n a 为公比1>q 的等比数列,若2004a 和2006a 是方程0
3842=+-x x 的两根,则
=+20072006a a _____________.
三、解答题(本大题共6小题,共70分. 解答应写出文字说明,证明过程或演算步骤)
17. 已知{}n a 为等比数列,3
20
,2423=
+=a a a ,求{}n a 的通项公式.
18. 已知{}n a 为等差数列,且36a =-,60a =. (Ⅰ)求{}n a 的通项公式;
(Ⅱ)若等比数列{}n b 满足18b =-,2123b a a a =++,求{}n b 的前n 项和公式.
19. 已知等差数列{}n a 满足3577,26a a a =+=,{}n a 的前n 项和为n S .
的前n 项和T n .
20. 已知等差数列{}n a 的前
n
项和为
22()=-+∈R ,n S pn n q p q ,n ∈+N .
(Ⅰ)求q 的值;
(Ⅱ)若1a 与5a 的等差中项为18,n b 满足n n b a 2log 2=,求数列{}n b 的前n 项和.
21. 成等差数列的三个正数之和等于
15,并且这三个数分别加上
2,5,13后成为等比数列{}n b 中的543,,b b b .(Ⅰ)求数列{}n b 的通项公式;
(Ⅱ)数列{}n b 的前n 项和为n S ,求证:数列
⎭⎬⎫⎩
⎨⎧
+45n S 是等比数列.
参考答案:
一、选择题答题卡:
二、填空题
13. ___24____. 14. )(4*
1
N n n ∈-. 15. )(2
2
*2N n n n ∈++.
16.______18______. 三、解答题
17.解:设等比数列{}n a 的公比为q ,则.2,2
3432q q a a q
q a a ====
.32022,32042=+∴=
+q q a a 即.3
131+=+q q 解之得3=q 或.3
1
=q
当3=q 时,)(32*333N n q a a n n n ∈⨯==--; 当3
1
=q 时,)(32)3
1(2*3
333N n q a a n n n n ∈=
⨯==---.
18.解:(Ⅰ)设等差数列{}n a 的公差d . 因

366,0
a a =-=,所以
.102,2,633136-=-===-=d a a d a a d 从而
所以10(1)2212n a n n =-+-⋅=-.
(Ⅱ)设等比数列{}n b 的公比为q .
因为24,832121-=++=-=a a a b b ,所以824q -=-.即q =3.
所以{}n b 的前n 项和公式为1(1)
4(13)1n n n b q S q
-=
=--. 19. 解:(Ⅰ)设等差数列{}n a 的首项为1a ,公差为d.
.13,2626756=∴=+=a a a a
由⎩⎨⎧=+==+=1357
216
13d a a d a a 解得.231==d a ,
12)1(1+=-+=∴n d n a a n ,.22
)
(21n n a a n S n n +=+=
(Ⅱ)12+=n a n ,)1(412+=-∴n n a n ,⎪⎭

⎝⎛+-=+=11141)1(41n n n n b n .
n n b b b T +++=∴ 21
= )1
11312
1211(41+-
++-+-n n =)1
1
1(41+-n
=
4(1)
n
n +.
所以数列{}n b 的前n 项和n T =
4(1)
n
n + .
20. 解:(Ⅰ)q p S a +-==211,
23)2()44(122-=+--+-=-=p q p q p S S a ,
25)44()69(233-=+--+-=-=p q p q p S S a ,
由3122a a a +=得,25246-++-=-p q p p
.0=∴q
(Ⅱ)根据题意,5132a a a +=所以1a 与5a 的等差中项为183=a .
由(Ⅰ)知.4,1825=∴=-p p 从而.8,10,221===d a a
.68)1(1-=-+=∴n d n a a n
.34log ,68log 222-=-==∴n b n b a n n n
故.162168
12)2(213434---⨯=⨯=⋅==n n n n n b
因此,数列}{n b 是等比数列,首项21=b ,公比.16=q
所以数列{}n b 的前n 项和q
q b T n n --=1)1(1
21. 解:(Ⅰ)设成等差数列的三个正数分别为,,a d a a d -+, 依题意,得15, 5.a d a a d a -+++==解得 所以{}n b 中的345,,b b b 依次为7,10,18.d d -+
依题意,有(7)(18)100,213d d d d -+===-解得或(舍去) 故{}n b 的10,5743==-=b d b ,公比2=q . 由2231115
2,52,.4b b b b =⋅=⋅=即解得
所以{}n b 是以54
为首项,2为以比的等比数列,其通项公式为
1
352524
n n n b --=
⋅=⋅. (Ⅱ)数列{}n b 的前n 项和25
(12)
5452124
n n n S --==⋅--,
即22545
-⋅=+n n S 所以1112
555524, 2.542524
n n n n S S S -+-+⋅+===⋅+
因此55
{}42
n S +是以为首项,公比为2的等比数列.
22.解: (Ⅰ)因为对任意的n N +∈,点(,)n n S ,均在函数(0x y b r b =+>且
1,,b b r
≠均为常数)的图像上.所以得
n n S b r =+,11a S b r ==+,b b r b r b S S a -=+-+=-=22122)()(,
2323233)()(b b r b r b S S a -=+-+=-=,
{}n a 为等比数列,312
2a a a =∴.从而).1()()1(222-⋅+=-b b r b b b
.1,10r b b b b +=-∴≠>且又 解得1r =-.
(Ⅱ)当2=b 时,由(Ⅰ)知,12-=n n S .
当2≥n 时,.22)12(22)12()12(11111-----=-=-=---=-=n n n n n n n n n S S a
111=-=b a 满足上式,所以其通项公式为)(2*1N n a n n ∈=-.
所以11
111
4422
n n n n n n n b a -++++=
==⨯ 2341
2341
2222n n n T ++=
++++
,………………(1) 34512
12341
222222
n n n n n T +++=+++++……(2) )
()(21-,得: 23451212111112222222
n n n n T +++=+++++- 31211(1)112212212
n n n -+⨯-+=+--
12311422
n n n +++=--. 所以1131133
22222
n n n n n n T ++++=--=-.。

相关文档
最新文档