第12课 二次函数的应用(1)——最值问题
高中数学教学备课教案二次函数的应用函数的最值问题
高中数学教学备课教案二次函数的应用函数的最值问题高中数学教学备课教案二次函数的应用——函数的最值问题一、教学目标1. 理解二次函数的最值问题,包括最大值和最小值的定义及求解方法。
2. 能够利用二次函数的最值问题解决实际生活中的应用问题。
3. 掌握相关的解题技巧和方法。
4. 培养学生分析问题、解决问题的能力。
二、教学重难点1. 理解最值问题的定义和求解方法。
2. 应用最值问题解决实际问题的能力。
三、教学过程导入:通过与学生的互动讨论,引出最值问题的概念。
1. 什么是最值问题?最大值和最小值有何不同?2. 举例说明最值问题在日常生活中的应用场景。
讲解一:最值问题的基本思路与方法1. 对于一元二次函数 f(x) = ax^2 + bx + c,求最大值或最小值的过程。
2. 最值问题的关键在于找到临界点,即导数为0的点,进而求得函数的最值。
3. 通过二次函数的图像,直观地理解最值的求解过程。
演示一:求解一元二次函数的最值1. 设一个具体的一元二次函数,如 f(x) = x^2 - 4x + 3。
2. 计算导数 f'(x) = 2x - 4,并令其等于0,解方程得到临界点 x = 2。
3. 讨论 x 的取值范围及对应的函数值,确定最大值和最小值。
讲解二:应用二次函数最值解决实际问题1. 通过具体例子,介绍如何将实际问题转化为数学问题,利用最值问题求解。
(例子1:某汽车行驶问题;例子2:抛物线的喷水问题)2. 强调建立数学模型的重要性,培养学生的数学建模能力。
演示二:解决实际问题的步骤及方法1. 选择合适的变量与函数模型。
2. 建立函数模型并确定函数的最值。
3. 根据实际问题的限制条件,确定变量的取值范围。
4. 求解最值并给出合理的解释。
讲解三:其他相关问题的讨论1. 当函数的定义域为有限区间时,如何确定最值?2. 如何处理一元二次函数的最值问题时出现的特殊情况?演示三:解决其他相关问题的方法1. 分析问题,考虑定义域的限制及函数图像的特点。
第二十二章 第12课 二次函数的应用(1)——最值问题
解:∵四边形 ABCD 为矩形,∴BC=AD=4,CD=AB=3, 当运动 x 秒时,则 AQ=x,BP=x, ∴BQ=AB-AQ=3-x,CP=BC-BP=4-x, ∴S△ADQ=21AD·AQ=12×4x=2x, S△BPQ=12BQ·BP=12(3-x)x=23x-12x2,S△PCD=12PC·CD=12·(4- x)·3=6-32x,
又 S 矩形 ABCD=AB·BC=3×4=12,∴S=S 矩形 ABCD-S△ADQ- S△BPQ-S△PCD =12-2x-32x-12x2-6-32x=12x2-2x+6=12(x-2)2+4, 即 S=12(x-2)2+4,∴S 为开口向上的二次函数,且对称轴为 x =2,
2.如图,小明用铁栅栏及一面墙(墙足够长)围成一个矩形自行车 场地 ABCD,在 AB 和 BC 边各有一个 2 米宽的小门(不用铁栅 栏),小明共用铁栅栏 40 米,设矩形 ABCD 的边 AD 长为 x 米, 矩形的面积为 S 平方米.
(1)写出 S 与 x 的函数关系式; (2)如果要围成 192 平方米的场地,AD 的长是___6____. (3)当 x 取何值时,S 有最大值? 并求出最大值.
1.某商场经营某种品牌的童装,购进时的单价是 40 元.根据市场 调查,在一段时间内,销售单价是 60 元时,销售量是 100 件, 而销售单价每降低 1 元,就会多售出 10 件. (1)写出销售量 y(件)与销售单价 x(元)之间的函数解析式. (2)写出销售该品牌童装获得的利润 w(元)与销售单价 x(元)之 间的函数解析式.
则当 AC=__5____时,ABCD 的最大面积为__2_______.
4.在矩形 ABCD 中,AB=3,AD=4,动点 Q 从点 A 出发,以每 秒 1 个单位的速度,沿 AB 向点 B 移动;同时点 P 从点 B 出发, 仍以每秒 1 个单位的速度,沿 BC 向点 C 移动,连接 QP,QD, PD.若两个点同时运动的时间为 x 秒(0<x≤3),设△QPD 的面 积为 S,用含 x 的函数关系式表示 S;当 x 为何值时,S 有最小 值? 并求出最小值.
二次函数的最值问题与问题解决技巧
二次函数的最值问题与问题解决技巧二次函数是高中数学中一个重要的概念,它有许多实际应用并且涉及到最值问题。
解决这类问题需要一定的技巧和方法。
本文将介绍二次函数的最值问题以及解决这些问题的技巧。
一、二次函数的最值问题最值问题在数学中非常常见,它代表了在一定条件下,函数的最大值或最小值。
对于二次函数而言,最值问题可以通过确定二次函数的开口方向以及顶点位置来解决。
1. 二次函数的开口方向对于二次函数y=ax²+bx+c,其中a,b,c为常数,a不等于0。
通过a的正负可以判断二次函数的开口方向。
当a大于0时,二次函数的开口是向上的,形状像一个U;当a小于0时,二次函数的开口是向下的,形状像一个倒U。
2. 顶点的横坐标和纵坐标二次函数的最值就出现在顶点处,因此需要确定顶点的横坐标和纵坐标。
对于一般形式的二次函数y=ax²+bx+c,顶点的横坐标为x=-b/2a,可以通过对称轴求得;顶点的纵坐标为y=f(-b/2a),即将x=-b/2a代入函数中计算得到。
3. 最值问题的解答根据二次函数的开口方向和顶点的位置,可以得到最值问题的解答。
当二次函数开口向上时,顶点是函数的最小值;当二次函数开口向下时,顶点是函数的最大值。
二、解决二次函数最值问题的技巧解决二次函数最值问题的技巧主要包括图像法、配方法、导数法等。
1. 图像法通过绘制二次函数的图像,可以直观地找出函数的最值。
根据二次函数的开口方向和顶点的位置,可以判断最值是最小值还是最大值。
2. 配方法当二次函数的系数a不为1时,可以使用配方法将其转化为完全平方的形式,从而更容易找到最值。
例如对于二次函数y=ax²+bx+c,可以将x²+bx转化为(x+b/2a)²-b²/4a,然后再根据顶点的位置判断最值。
3. 导数法通过对二次函数求导,可以得到导函数,进而求出极值点。
导数为0处的x值就是函数的极值点,通过计算可以得到相应的y值。
二次函数的最值问题课件
顶点法
总结词
利用二次函数的顶点坐标求最值。
详细描述
根据二次函数的顶点公式$(h, k)$,代入原函数求出最值。当$a > 0$时,函数有最小值;当$a < 0$时,函数有 最大值。
导数法
总结词
通过求导数判断函数的单调性,进而 找到最值点。
详细描述
对二次函数求导得到$f'(x) = 2ax + b$,令导数等于0得到临界点$x = frac{b}{2a}$,通过判断单调性找到最 值点。
复杂的二次函数最值问题
总结词
运用配方法或公式法求最值
详细描述
对于复杂的二次函数,可以通过配方法或公式法求出最值 。配方法是通过配方将二次函数转化为顶点式,再利用顶 点式求最值;公式法是利用公式直接求出二次函数的最值 。
总结词
利用导数求最值
详细描述
对于复杂的二次函数,可以利用导数求出函数的极值点, 再根据极值点的位置和函数的单调性判断最值的位置,从 而求出最值。
总结词
结合实际背景求解
详细描述
对于实际应用中的二次函数最值问题,需要结合实际背景 进行分析。例如,在物理学中,可以利用二次函数的最值 求解物体的最大速度、最小压力等;在经济学中,可以利 用二次函数的最值求解成本最低、利润最大等问题。
06
总结与思考
二次函数最值问题的总结
定义与性质
二次函数最值问题主要研究的是 二次函数在特定条件下的最大值 或最小值。这些条件可能包括函 数的开口方向、顶点位置、定义
详细描述
二次函数是数学中常见的一种函数形式,其一般形式为 y=ax^2+bx+c,其中a、b、c为常数,且a≠0。a决定了抛 物线的开口方向和宽度,b决定了抛物线的左右位置,c决定 了抛物线的上下位置。
二次函数的应用最值问题
二次函数的应用最值问题二次函数是一个在数学中广泛应用的函数模型。
在实际问题和生产生活中,二次函数的最值问题也经常出现。
本文将介绍二次函数的最值问题,包括实际问题中的二次函数最值、生产生活中的二次函数最值、利用配方法求二次函数的最值、利用导数求解二次函数的最值、利用作图法求解二次函数的最值、利用公式法求解二次函数的最值和利用对称轴求解二次函数的最值等方面。
一、实际问题中的二次函数最值在实际问题中,二次函数最值通常出现在诸如最大利润、最小成本、最高产量等问题中。
例如,一个工厂生产一种产品,该产品的成本包括固定成本和可变成本。
固定成本是不随产量变化的成本,而可变成本是随产量变化的成本。
因此,总成本函数是一个开口向下的二次函数。
为了使总成本最低,需要找到自变量的取值,使得总成本函数的导数为零,并判断导数是否为零,从而确定最值是否存在。
二、生产生活中的二次函数最值在生产生活中,二次函数最值也经常出现。
例如,一个公司投资一个项目,该项目的收益随投资额变化,且收益函数是一个开口向下的二次函数。
为了使收益最大,需要找到投资额的最优解。
最优解可以通过求解收益函数的导数并令其为零得到。
三、利用配方法求二次函数的最值配方法是求二次函数最值的一种常用方法。
该方法的基本思想是将二次函数转化为一个完全平方项和一个常数项之和的形式,然后利用平方的非负性求出最值。
具体步骤如下:(1)将二次函数配方为一个完全平方项和一个常数项之和的形式;(2)根据平方的非负性,求出这个完全平方项的取值;(3)将这个完全平方项的取值代入配方后的二次函数中,求出最值。
四、利用导数求解二次函数的最值利用导数求解二次函数的最值是一种比较简单的方法。
该方法的基本思想是先求出二次函数的导数,然后令导数为零,解出此时的自变量取值,最后比较所有自变量取值对应的函数值,找出最大(或最小)的一个即可。
五、利用作图法求解二次函数的最值作图法是一种直观地求解二次函数最值的方法。
二次函数的最值与最值问题的应用
二次函数的最值与最值问题的应用二次函数是数学中常见的一类函数,具有很多重要的性质和应用。
其中最值与最值问题是二次函数的重要内容之一。
本文将详细介绍二次函数的最值性质,以及如何利用最值问题解决实际应用中的相关问题。
一、二次函数的基本性质二次函数的一般形式为:y = ax² + bx + c其中,a、b、c为常数,且a ≠ 0。
二次函数的图像为抛物线,开口方向取决于a的正负性。
在讨论二次函数的最值之前,我们先了解一些与最值相关的基本性质。
1. 首先,二次函数的开口方向由系数a的正负性决定。
当a > 0时,抛物线开口向上,函数的最小值出现在顶点上;当a < 0时,抛物线开口向下,函数的最大值出现在顶点上。
2. 其次,二次函数的顶点即为函数的最值点。
顶点坐标为(h, k),其中h为抛物线的对称轴的横坐标,k为函数的最值(最小值或最大值)。
3. 再次,二次函数的对称轴与顶点的横坐标相同。
对称轴的方程为x = h。
二、二次函数的最值问题二次函数的最值问题是指求解函数的最小值或最大值的问题。
在实际应用中,最值问题经常出现,例如求解投掷问题中的飞行距离最大值或者盈利问题中的最大利润等。
1. 求解二次函数的最值为了求解二次函数的最值,我们可以利用二次函数图像的特点,即找出抛物线的顶点坐标。
通过完成平方项的平方,将二次函数转换为顶点形式,可以轻松地求解最值问题。
例如,对于函数y = x² - 4x + 3,我们可以完成平方项的平方,将其转换为顶点形式:y = (x - 2)² - 1从中可以看出,顶点坐标为(2, -1),函数的最小值为-1。
因此,原二次函数的最小值为-1。
2. 应用最值问题最值问题在实际应用中非常常见,下面以一个具体的应用为例进行解析。
例题:某商品的价格为p(元),销量为x(件),已知该商品的价格和销量满足二次函数关系p = 0.5x² - 2x + 8,求该商品的最佳销量以及最佳价格。
二次函数实际应用之利润最大值、面积最值问题
合用标准文案二次函数的实质应用——最大利润问题、面积最大 ( 小) 值问题一:最大利润问题知识要点:二次函数的一般式 y ax 2bx c ( a0 )化成极点式 ya( x b ) 24ac b 2 ,若是自变量的2a 4a取值范围是全体实数,那么函数在极点处获取最大值〔或最小值〕 .即当 a0 时,函数有最小值,并且当 xb , y 最小值 4ac b 2 ;2a4a当 a0 时,函数有最大值,并且当x b, y 最大值 4ac b 2 .2a4a若是自变量的取值范围是x 1xx 2 ,若是极点在自变量的取值范围x 1 x x 2 内,那么当xb, y 最值4ac b 2 ,若是极点不在此范围内,那么需考虑函数在自变量的取值范围内的增减2a4a ax 22性;若是在此范围内 y 随 x 的增大而增大,那么当 x x 2 时, y 最大 bx 2 c ,当 x x 1 时, y最小ax 12bx 1 c ;若是在此范围内y 随 x 的增大而减小,那么当 x x 1 时, y 最大ax 12 bx 1 c ,当 xx 2 时,y最小ax 22bx 2 c .商品定价一类利润计算公式:经常出现的数据: 商品进价;商品售价;商品销售量;涨价或降价;销售量变化;其他本钱。
总利润 =总售价 -总进价 - 其他本钱 =单位商品利润 ×总销售量-其他本钱单位商品利润 =商品定价-商品进价总售价 =商品定价 ×总销售量;总进价 =商品进价×总销售量[ 例 1]:某电子厂商投产一种新式电子厂品, 每件制造本钱为 18 元,试销过程中发现, 每个月销售量 y 〔万件〕与销售单价 x 〔元〕之间的关系能够近似地看作一次函数 y= ﹣ 2x+100 .〔利润 = 售价﹣制造本钱〕( 1 〕写出每个月的利润 z 〔万元〕与销售单价 x 〔元〕之间的函数关系式;( 2 〕当销售单价为多少元时,厂商每个月能获取 3502 万元的利润?当销售单价为多少元时,厂商每个月能获取最大利润?最大利润是多少?〔 3 〕依照相关部门规定, 这种电子产品的销售单价不能够高于 32 元,若是厂商要获取每个月不低于 350 万 元的利润,那么制造出这种产品每个月的最低制造本钱需要多少万元? 解:〔 1 〕 z= 〔 x -18 〕 y= 〔x -18 〕〔 -2x+100 〕 = -2x 2+136x-1800 ,∴ z 与 x 之间的函数解析式为 z= -2x 2 +136x-1800;〔 2 〕由 z=350 ,得 350= -2x 2+136x -1800 ,解这个方程得 x 1=25 ,x 2 =43因此,销售单价定为 25 元或 43 元,将 z =-2x 2 +136x-1800配方,得 z=-2 〔 x-34 〕 2+512 ,因此,当销售单价为 34 元时,每个月能获取最大利润,最大利润是 512 万元;(3 〕结合〔 2 〕及函数 z=-2x 2+136x ﹣ 1800 的图象〔以以下列图〕可知,当25≤x ≤43时 z ≥350 ,优秀文档又由限价 32 元,得 25 ≤x ≤32,依照一次函数的性质,得 y=-2x+100 中 y 随 x 的增大而减小,∴当 x=32时,每个月制造本钱最低最低本钱是 18 ×〔 -2 ×32+100 〕 =648 〔万元〕, 因此,所求每个月最低制造本钱为 648 万元.[ 练习 ] :1.某商品现在的售价为每件 60 元,每星期可卖出 300 件,市场检查反响:每涨价 1 元,每星期 少卖出 10 件;每降价 1 元,每星期可多卖出 20 件,商品的进价为每件 40 元,怎样定价才能使利润 最大?解:设涨价〔或降价〕为每件x 元,利润为 y 元,y 1 为涨价时的利润, y 2 为降价时的利润那么: y 1 (60 40 x)(300 10x)10( x 2 10x 600)10( x 5) 26250当 x5 ,即:定价为 65 元时, y max6250 〔元〕y 2 (60 40 x)(30020x)20( x 20)( x15)20( x 2.5) 2 6125当,即:定价为 57.5 元时, y max 6125 〔元〕综合两种情况,应定价为65 元时,利润最大.[ 例 2] : 市 “健益 〞商场购进一批 20 元 /千克的绿色食品,若是以 30?元 /千克销售,那么每天可售出400 千克.由销售经验知,每天销售量y (千克 )?与销售单价 x (元 )( x30 〕存在以以下列图所示的一次函数关系式. ⑴试求出 y 与 x 的函数关系式;⑵设 “健益 〞商场销售该绿色食品每天获取利润 P 元,当销售单价为何值时,每天可获取最大利润?最大利润是多少?⑶依照市场检查,该绿色食品每天可获利润不高出 4480 元, ?现该商场经理要求每天利润不得低于4180 元,请你帮助该商场确定绿色食品销售单价 x 的范围 (?直接写出答案 ).解:⑴设 y=kx+b 由图象可知,30k b 400,k 2040k b 200 解之得 :1000 ,b即一次函数表达式为y20x 1000 (30 x50) .⑵ P(x20) y ( x 20)( 20 x 1000)20 x 2 1 4 0 x0 2 0 0 0 0∵ a 200 ∴ P 有最大值.当 x140035 时, P max4500 〔元〕(2 20)〔或经过配方,P 20( x 35) 24500 ,也可求得最大值〕答:当销售单价为35 元 /千克时,每天可获取最大利润4500 元.⑶∵ 418020( x35) 2 4500 44801 ( x 35) 216∴ 31≤x ?≤34或 36≤x ≤39.练习 2.某公司投资 700 万元购甲、乙两种产品的生产技术和设备后, 进行这两种产品加工. 生产甲种产品每件还需本钱费 30 元,生产乙种产品每件还需本钱费 20 元.经市场调研发2合用标准文案现:甲种产品的销售单价为x〔元〕,年销售量为 y〔万件〕,当 35≤x<50 时, y 与 x 之间的函数关系式为 y=20﹣;当 50≤x≤70 时, y 与 x 的函数关系式以以下列图,乙种产品的销售单价,在 25 元〔含〕到 45 元〔含〕之间,且年销售量牢固在10 万件.物价部门规定这两种产品的销售单价之和为90 元.〔1〕当 50≤x≤70 时,求出甲种产品的年销售量y〔万元〕与 x 〔元〕之间的函数关系式.〔2〕假设公司第一年的年销售量利润〔年销售利润=年销售收入﹣生产本钱〕为W〔万元〕,那么怎样定价,可使第一年的年销售利润最大?最大年销售利润是多少?〔3〕第二年公司可重新对产品进行定价,在〔2〕的条件下,并要求甲种产品的销售单价x 〔元〕在 50≤x≤70 范围内,该公司希望到第二年年终,两年的总盈利〔总盈利=两年的年销售利润之和﹣投资本钱〕不低于85 万元.请直接写出第二年乙种产品的销售单价m〔元〕的范围.解:〔1〕设y与x的函数关系式为 y=kx+b〔k≠0〕,∵函数图象经过点〔 50, 10〕,〔 70, 8〕,∴,解得,因此, y=﹣0.1x+15;〔 2〕∵乙种产品的销售单价在25元〔含〕到 45元〔含〕之间,∴,解之得 45≤x≤65,①45≤x< 50时, W=〔x﹣30〕〔 20﹣〕+10〔90﹣x﹣20〕,=﹣0.2x2+16x+100,=﹣〔x2﹣ 80x+1600〕+320+100,=﹣〔x﹣40〕2+420,∵﹣<0,∴ x> 40时, W随x的增大而减小,∴当 x=45时, W 有最大值, W最大 =﹣〔45﹣ 40〕2+420=415万元;②50≤x≤65时, W=〔x﹣30〕〔﹣ 0.1x+15〕+10〔 90﹣x﹣20〕,=﹣0.1x2+8x+250,=﹣〔x2﹣80x+1600〕 +160+250,=﹣〔x﹣40〕2+410,∵﹣<0,∴ x> 40时, W随x的增大而减小,∴当 x=50时, W 有最大值, W最大 =﹣〔50﹣ 40〕2+410=400万元.综上所述,当 x=45,即甲、乙两种产品定价均为 45元时,第一年的年销售利润最大,最大年销售利润是 415万元;(3〕依照题意得,W=﹣0.1x2+8x+250+415﹣700=﹣0.1x2+8x﹣35,令 W=85,那么﹣ 0.1x2+8x﹣35=85,解得 x1=20,x2=60.又由题意知, 50≤x≤65,依照函数性质解析, 50≤x≤60,即 50≤90﹣m≤60,∴ 30≤m≤40.二、面积最大〔最小〕值问题实责问题中图形面积的最值问题解析思路为:优秀文档〔1〕解析图形的成因〔 2〕鉴别图形的形状〔 3〕找出图形面积的计算方法〔4〕把计算中要用到的所有线段用未知数表示〔5〕把线段长度代入计算方法形成图形面积的函数解析式,注意自变量的取值范围〔6〕依照函数的性质以及自变量的取值范围求出头积的最值。
二次函数的最值问题(课件)
二次函数的单调性
探讨二次函数在定义域内的单调性及其应用。
递增
当二次函数在定义域内递增时,函数值随自变量的 增加而增加。
递减
当二次函数在定义域内递减时,函数值随自变量的 增加而减小。
二次函数的最值存在性定理
研究二次函数在定义域内的最值及其实际应用。
1
最大值存在
当二次函数的系数a为负时,函数在定义域内存在最大值。
2
最小值存在
当二次函数的系数a为正时,函数在定义域内存在最小值。
3
应用举例
高空抛物运动和经济生产成本最小化问题。
求解二次函数的最值
介绍三种方法求解二次函数的最值,并提供实例演示。
配方法
通过坐标变换将二次函数转化 为标准形式,再求解最值。
求导数法
求二次函数的导数,找出极值 点,进而量值。
1 常见错误
对最值问题中容易出现的错误进行梳理和解答。
2 纠正方法
针对学生常见错误,提供具体纠正方法和建议。
3 信息搜索
介绍如何搜索最值问题解题思路和方法的有效途径。
联系与拓展
探讨二次函数最值问题与其他数学知识的联系,以及应用在其他领域的延伸。 如与最优化问题的关系,以及在物理、经济等领域中的应用。
2 完全平方公式
利用完全平方公式,将二次函数转化为平方 项相加的形式,求出零点。
二次函数的图像特点
了解二次函数图像的对称轴和开口方向,以及与函数系数之间的关系。
对称轴
二次函数图像关于垂直于x轴 的直线对称。
开口方向
由二次项系数的正负确定开 口的方向。
函数系数
了解函数系数与图像形状的 关系,如变量a的变化。
二次函数的最值问题
本课件介绍了二次函数的最值问题。包括二次函数的定义和特点、求零点的 因式分解法和完全平方公式、二次函数的图像与对称轴、单调性、最值存在 性定理等。
二次函数的实际应用----最值问题以及设计方案问题
二次函数的实际应用——最大(小)值问题知识要点:二次函数的一般式c bx ax y ++=2(0≠a )化成顶点式ab ac a b x a y 44)2(22-++=,如果自变量的取值范围是全体实数,那么函数在顶点处取得最大值(或最小值).即当0>a 时,函数有最小值,并且当abx 2-=,a b ac y 442-=最小值;当0<a 时,函数有最大值,并且当abx 2-=,a b ac y 442-=最大值.如果自变量的取值范围是21x x x ≤≤,如果顶点在自变量的取值范围21x x x ≤≤内,则当abx 2-=,a b ac y 442-=最值,如果顶点不在此范围内,则需考虑函数在自变量的取值范围内的增减性;如果在此范围内y 随x 的增大而增大,则当2x x =时,c bx ax y ++=222最大,当1x x =时,c bx ax y ++=121最小;如果在此范围内y 随x 的增大而减小,则当1x x =时,c bx ax y ++=121最大,当2x x =时,c bx ax y ++=222最小1.二次函数c 中,2b ac =,且0x =时4y =-,则( ) A.4y =-最大 B.4y =-最小 C.3y =-最大 D.3y =-最小2..已知二次函数22)3()1(-+-=x x y ,当x =_________时,函数达到最小值。
3..若一次函数的图像过第一、三、四象限,则函数()A.最大值B..最大值C.最小值D.有最小值4.若二次函数2()y a x h k =-+的值恒为正值, 则 _____. A. 0,0a k <> B. 0,0a h >> C. 0,0a k >> D. 0,0a k << 5.函数92+-=x y 。
当-2<X<4时函数的最大值为6.若函数322-+=x x y ,当24-≤≤-x 函数值有最 值为40元的苹果,物价部门规定每箱售价不得高于55元,市场调查发现,若每箱以50元的价格调查,平均每天销售90箱,价格每提高1元,平均每天少销售3箱.(1)求平均每天销售量y (箱)与销售价x (元/箱)之间的函数关系式.(3分) (2)求该批发商平均每天的销售利润w (元)与销售价x (元/箱)之间的函数关系式.(3分)(3)当每箱苹果的销售价为多少元时,可以获得最大利润?最大利润是多少?(4分)2.有一种螃蟹,从海上捕获后不放养,最多只能存活两天.如果放养在塘内,可以延长存活时间,但每天也有一定数量的蟹死去.假设放养期内蟹的个体质量基本保持不变,现有一经销商,按市场价收购这种活蟹1000 kg 放养在塘内,此时市场价为每千克30元,据测算,此后每千克活蟹的市场价每天可上升1元,但是,放养一天需支出各种费用为400元,且平均每天还有10 kg 蟹死去,假定死蟹均于当天全部销售出,售价都是每千克20元.(1)设x 天后每千克活蟹的市场价为p 元,写出p 关于x 的函数关系式;(2)如果放养x 天后将活蟹一次性出售,并记1000 kg 蟹的销售总额为Q 元,写出Q 关于x 的函数关系式.(3)该经销商将这批蟹放养多少天后出售,可获最大利润(利润=Q -收购总额)?类型二1.随着绿城南宁近几年城市建设的快速发展,对花木的需求量逐年提高。
二次函数的应用 最值问题
——最值问题
例1:已知二次函数y=x2+bx+c的图象过 点A(-3,0)和点B(1,0), 且与y轴交于点C,D点在抛物线上且横 坐标是-2. (1)求抛物线的解析式; (2)抛物线的对称轴上有一动点Q使得 QA+QD的值最小,求出QA+QD的最小值.
例2:如图,直线y=x-3与x轴、 y轴分别交于B、C两点,抛 物 线 y=x2+bx+c同 时 经 过 B、 C两点,点A是抛物线与x轴 的另一交点
(1)求抛物线解析式 ( 2 ) 若 点 p 在 直 线 BC 上 , 且
S△ABP=4,求P点坐标
例2变式: 1.如图,直线y=x-3与x轴、y 轴分别交于B、C两点,抛物 线y=x2+bx+c同时经过B、C两 点,点A是抛物线与x轴的另 一交点,若点p在抛物线上, 且S△ABP=4求P点坐标。
线y=x2+bx+c同时经过B、C两
点,点A是抛物线与x轴的另
一交点,
若点P是直线BC下方抛物线上
一点,△PBC的面积是否存在
P
最大面积?最大面积是多少?
例2变式:
4.如图,直线y=x-3与x轴、y
轴分别交于B、C两点,抛物
线y=x2+bx+c同时经过B、C两
点,点A是抛物线与x轴的另
一交点,
若点P是直线BC下方抛物线上
一点,四边形ABPC的面积是
P
否存在最大面积?最大面积是
多少?
练习1.
如图,在平面直角坐标系中,直线 y=x+4与x轴、y轴分别交于A、B两点, 抛物线y=﹣x2+bx+c经过A、B两点, 并与x轴交于另一点C(点C点A的右 侧),点P是抛物线上一动点. (1)求抛物线的解析式及点C的坐标; (2)若点P在第二象限内,过点P作 PD⊥x轴于D,交AB于点E.当点P运 动到什么位置时,线段PE最长? 此时PE等于多少? (3)△PAB的面积是否存在最大面积? 最大面积是多少?
二次函数的最值与应用
二次函数的最值与应用二次函数是高中数学中的重要内容,它在实际问题中有着广泛的应用。
在研究二次函数时,最值是其中一个重要的性质,它能帮助我们解决很多实际生活中的问题。
本文将深入探讨二次函数的最值原理及其应用。
一、二次函数的最值原理1. 最值的定义最值即函数在某个特定区间内取得的最大值或最小值。
二次函数的最值可以通过抽象函数形式来确定。
对于一般形式的二次函数y = ax^2 + bx + c,其中a、b、c为实数且a不为零,其图像是一个开口朝上或开口朝下的抛物线。
2. 最值的条件二次函数的最值可以通过一些条件来确定。
当二次函数开口方向为开口朝上时,其最值为最小值,当开口方向为开口朝下时,其最值为最大值。
此外,对于二次函数y = ax^2 + bx + c,最值的横坐标为(-b/2a)。
二、二次函数最值的求解1. 最值的求解方法解决二次函数的最值问题可以通过图像、导数以及配方法来求解。
其中通过图像可以直观地确定最值点的位置,通过导数可以求得最值点的切线斜率为零,而通过配方法则是用完全平方式将二次函数转化为顶点形式,从而确定最值。
2. 图像法求最值图像法通过绘制二次函数的图像来确定最值点的位置。
对于开口朝上的二次函数,最小值点即为图像的顶点;对于开口朝下的二次函数,最大值点即为图像的顶点。
通过观察图像的形状,可以直观地判断出最值点的位置。
3. 导数法求最值导数法通过求二次函数的导函数(一次导数)来确定最值点的位置。
对于二次函数y = ax^2 + bx + c,其导函数为y' = 2ax + b。
通过求导函数的解,可以得到最值点的横坐标,从而确定最值点的位置。
4. 配方法求最值配方法通过将二次函数用完全平方式转化为顶点形式来确定最值点的位置。
对于二次函数y = ax^2 + bx + c,通过完全平方式将其转化为y = a(x - h)^2 + k的形式,其中(h, k)为顶点的坐标。
通过转化后的函数形式,可以直接确定最值点的位置。
二次函数的应用最值与问题求解
二次函数的应用最值与问题求解在数学中,二次函数是一种形式为f(x)=ax^2+bx+c的函数,其中a、b、c是实数且a不等于0。
二次函数的图像是一个开口方向朝上或者朝下的抛物线。
本文将探讨二次函数在实际问题中的应用,特别是与最值与问题求解相关的应用。
1. 最值与问题求解的概念最值指的是函数在某个特定区间内取得的最大值或最小值。
对于二次函数,最值通常出现在抛物线的顶点处。
问题求解是指通过建立二次函数的数学模型,解决与实际问题相关的数学问题。
最值与问题求解是二次函数的重要应用之一。
2. 最值与问题求解的例子例子1:弧线问题某地的一座桥由一段抛物线形状的钢筋弯曲而成。
假设桥的弧线方程为f(x)=3x^2-4x+10,其中x表示距桥起始位置的距离。
求整个桥的最高点的高度及到达最高点的距离。
解析:由于方程f(x)为二次函数,可以通过求导数得到最高点的横坐标。
对f(x)求导得到f'(x)=6x-4。
令f'(x)=0,解方程可得x=2/3。
将x=2/3代入f(x)中,可得到最高点的高度为f(2/3)=10/3。
因此,整个桥的最高点的高度为10/3,到达最高点的距离为2/3。
例子2:火箭运动问题某火箭从地面垂直起飞,并以速度v1向上运动。
假设空气阻力不考虑,火箭的运动可以用二次函数表示。
已知火箭的高度h与时间t的关系由函数h(t)=-5t^2+v1t表达。
求火箭达到最大高度的时间和最大高度。
解析:由于方程h(t)为二次函数,最大高度对应于抛物线的顶点。
顶点的横坐标可以通过求导数得到。
对h(t)求导得到h'(t)=-10t+v1。
令h'(t)=0,解方程可得t=v1/10。
将t=v1/10代入h(t)中,可得到最大高度为h(v1/10)=-v1^2/20。
3. 最值与问题求解的应用领域最值与问题求解的二次函数应用广泛,包括但不限于以下领域:- 物理学:例如物体的抛射运动、自由落体运动等- 经济学:例如生产成本、利润最大化等- 工程学:例如设计建筑物弧线、汽车行驶的最佳路径等4. 最值与问题求解的解决方法在实际问题中,求解最值与问题求解的方法通常包括以下步骤:1) 建立二次函数的数学模型,根据问题的特点确定函数的系数a、b、c。
二次函数的应用之最值问题教学设计
二次函数的应用之最值问题教学设计一、教学目标【知识与技能】通过本节学习,巩固二次函数 2y=ax bx c(a 0)++≠的图象与性质,理解顶点与最值的关系,会求解最值问题。
【过程与方法】通过观察图象,理解顶点的特殊性,会把实际问题中的最值转化为二次函数的最值问题,通过动手动脑,提高分析解决问题的能力,并体会一般与特殊的关系,了解数形结合思想、分类讨论思想。
【情感、态度与价值观】通过学生之间的讨论、交流和探索,建立合作意识,提高探索能力,激发学习的兴趣和欲望,体会数学在生活中广泛的应用价值。
二、教学重难点分析教学重点:利用二次函数2y=ax bx c(a 0)++≠的图象与性质,求面积最值问题 教学难点:1、正确构建数学模型2、对函数图象顶点、端点与最值关系的理解与应用三教学过程设计(一)复习引入:1.复习:二次函数 2y=ax bx c(a>0)++ 的图象、顶点坐标、对称轴和最值。
2.(1)求函数y = x 2-2x -3的最值。
(2)求函数y =x 2-2x -3的最值。
(0≤x ≤ 3)3、你认为抛物线在什么位置取得最值?(二)新课讲解【探究活动一】1、设置问题情境:某水产养殖户用长40m 的围网,在水库中围一块矩形的水面,投放鱼苗。
要使围成的水面面积最大,则它的边长应是多少米?为____________(3)矩形的一边长为_______米时,它的面积最大?最大面积是_______米2。
此时,它的另一边长为__________米。
2.例题讲解例1.如图,在一面靠墙的空地上用长为24米的篱笆,围成中间隔有二道篱笆的长方形花圃,设花圃的宽AB 为x 米,面积为S 平方米。
(1)若设花圃的宽AB 为x 米,面积为S 米2。
求S 与x 的函数关系式及自变量的取值范围;(2)当x 取何值时所围成的花圃面积最大,最大值是多少?(3)若墙的最大可用长度为8米,则求围成花圃的最大面积。
说明:解这类问题一般的步骤:(1)列出二次函数的解析式,并根据自变量的实际意义,确定自变量的取值范围;(2)在自变量的取值范围内,运用公式法、配方法或图像法求出二次函数的最大值或最小值.3、练习(1)某居民小区要在一块一边靠墙(墙长15m)的空地上修建一个矩形花园ABCD ,花园的一边靠墙,另三边用总长为40m 的栅栏围成.若设花园的宽为AD=x(m) ,花园的面积为y(m ²).(1)求y 与x 之间的函数关系,并写出自变量的取值范围;(2)根据(1)中求得的函数关系式,问当x 取何值时,花园的面积最大,最大面积是多少?【探究活动二】1、设置问题情境:有一玩具厂,如果安排装配工15人,那么每人每天可装配玩具190个;如果增加人数,那么每增加1人,可使每人每天少装配玩具10个。
二次函数应用题之最值问题
二次函数应用题之最值问题(讲义)一、知识点睛1.理解题意,辨识类型.二次函数应用题常见类型有:实际应用问题,最值问题.2.梳理信息,确定_______________及__________________,建立函数模型.①梳理信息时需要借助_______________.②函数模型:确定自变量和因变量;根据题意确定题目中各个量之间的等量关系,用自变量表达对应的量从而确定函数表达式.例如:问“当售价为多少元时,年利润最大?”确定售价为自变量x,年利润为因变量y,年利润=(售价-进价)×年销量,用x表达年销量,从而确定y 与x之间的函数关系.3.根据二次函数性质求解,_____________.验证结果是否符合实际背景及自变量取值范围要求.二、精讲精练1.某汽车租赁公司拥有20辆汽车.据统计,当每辆车的日租金为400元时,可全部租出,且每辆车的日租金每增加50元,未租出的车将增加1辆,公司平均每日的各项支出共4800元.设公司每日租出x辆车时,日收益为y元.(日收益=日租金收入-平均每日各项支出)(1)公司每日租出x辆车时,每辆车的日租金为_______元(用含x的代数式表示);(2)当每日租出多少辆时,租赁公司的日收益最大?最大是多少元?(3)当每日租出多少辆时,租赁公司的日收益不盈也不亏?【分析】2.某商品的进价为每件40元,售价为每件50元,每个月可卖出210件.如果每件商品的售价每上涨1元,则每个月少卖10件(每件售价不能高于65元).设每件商品的售价上涨x元(x为正整数),每个月的销售利润为y元.(1)求y与x的函数关系式,并直接写出自变量x的取值范围;(2)每件商品的售价定为多少元时,每个月可获得最大利润?最大的月利润是多少元?(3)每件商品的售价定为多少元时,每个月的利润恰为2200元?根据以上结论,请你直接写出售价在什么范围时,每个月的利润不低于2200元.【分析】3.某中学课外活动小组准备围建一个矩形生物苗圃园.其中一边靠墙,另外三边用长为30米的篱笆围成.已知墙长为18米(如图所示),设这个苗圃园垂直于墙的一边的长为x米.(1)若平行于墙的一边的长为y米,直接写出y与x之间的函数关系式及自变量x的取值范围.(2)垂直于墙的一边的长为多少米时,这个苗圃园的面积最大?最大面积是多少?(3)当这个苗圃园的面积不小于88平方米时,试结合函数图象,直接写出x的取值范围.18米苗圃园4.某工厂生产一种合金薄板(其厚度忽略不计),这些薄板的形状均为正方形,边长在5~50(单位:cm)之间.每张薄板的成本价(单位:元)与它的面积(单位:cm2)成正比例;每张薄板的出厂价(单位:元)由基础价和浮动价两部分组成,其中基础价与薄板的大小无关,是固定不变的,浮动价与薄板的边长成正比例.在营销过程中得到了表格中的数据:(2)已知出厂一张边长为40cm的薄板,获得的利润为26元.(利润=出厂价-成本价)①求一张薄板的利润与边长之间满足的函数关系式.②当边长为多少时,出厂一张薄板所获得的利润最大?最大利润是多少?【分析】5.我市高新技术开发区的某公司,用480万元购得某种产品的生产技术后,并进一步投入资金1 520万元购买生产设备,进行该产品的生产加工.已知生产这种产品每件还需成本费40元.经过市场调查发现:该产品的销售单价定在150元到300元之间较为合理,销售单价x(元)与年销售量y(万件)之间的变化可近似的看作是如下表所反映的一次函数:(2)请说明投资的第一年,该公司是盈利还是亏损?若盈利,最大利润是多少?若亏损,最少亏损多少?(3)在(2)的前提下,即在第一年盈利最大或亏损最小时,第二年公司重新确定产品售价,能否使两年共盈利1 790万元?若能,求出第二年的产品售价;若不能,请说明理由.【分析】三、回顾与思考【参考答案】 知识点睛2.函数表达式,自变量取值范围.①列表、图形. 3.验证取舍.精讲精练1.(1)50 1 400x -+;(2)当每日租出14辆时,租赁公司的日收益最大,最大是 5000元.(3)当每日租出4辆时,租赁公司的日收益不盈也不亏. 2.(1)210110 2 100y x x =-++(115x ≤≤,且x 为正整数); (2)每件商品的售价定为5元或6元时,每个月可获得最 大利润,最大的月利润是2400元;(3)每件商品的售价定为51元或60元时,每个月的利润 恰为2200元,每件商品的售价m 满足5160m ≤≤时,每 个月的利润不低于2200元. 3.(1)230y x =-+(615x <≤);(2)垂直于墙的一边的长为152米时,这个苗圃园的面积最大,最大面积是2252平方米;(3)611x ≤≤.4.设一张薄板的边长为x cm ,出厂价为y 元,利润为w 元. (1)210y x =+; (2)①2121025w x x =-++; ②当边长为25cm 时,出厂一张薄板所获得的利润最大,最 大利润是35元. 5.(1)13010y x =-+(150300x ≤≤); (2)投资的第一年该公司亏损,最少亏损310万元; (3)不能,理由略.二次函数应用题之最值问题(随堂测试)1. 某商场将进货单价为2 000元的冰箱以2 400元售出,平均每天能售出8台,为了配合国家“家电下乡”政策的实施,商场决定采取适当的降价措施.调查表明:这种冰箱的销售单价每降低50元,平均每天就能多售出4台. (1)设每台冰箱降价x 元,商场每天销售这种冰箱的利润是y 元,请求出y 与x 之间的函数关系式.(2)商场要想在这种冰箱销售中每天盈利4 800元,同时又 要使百姓得到实惠,每台冰箱应降价多少元?(3)每台冰箱降价多少元时,商场每天销售这种冰箱的利润 最高?最高利润是多少? 【分析】【参考答案】1.(1)2224 3 20025y x x =-++. (2)每台冰箱应降价200元.(3)每台冰箱降价150元时,商场每天销售这种冰箱的利润 最高,最高利润是5 000元.二次函数应用题之最值问题(作业)1.某商店经营儿童益智玩具,已知成批购进时的单价是20元.调查发现:销售单价是30元时,月销售量是230件,而销售单价每上涨1元,月销售量就减少10件,但每件玩具售价不能高于40元.设每件玩具的销售单价上涨了x元时(x为正整数),月销售利润为y元.(1)求y与x之间的函数关系式,并直接写出自变量x的取值范围.(2)当每件玩具的售价定为多少元时,月销售利润恰好为2 520元?(3)每件玩具的售价定为多少元时,可使月销售利润最大?最大的月销售利润是多少?【分析】2.在Rt△ABC的内部作一个矩形DEFG,按如图所示的位置放置,其中∠A=90°,AB=40 m,AC=30m.(1)如果设矩形的一边DE=x m,那么DG边的长度如何表示?(2)在(1)的条件下,设矩形的面积为y m2,则当x取何值时,y的值最大?最大值是多少?G FEDCB A3.某商家经销一种绿茶,用于装修门面已投资3000元,已知绿茶每千克的成本为50元,在第一个月的试销时间内发现,销量w(kg)随销售单价x(元/kg)的变化而变化,具体变化规律如下表所示:设该绿茶的月销售利润为y(元)(销售利润=单价×销售量-成本-投资).(1)请根据上表,写出w与x之间的函数关系式(不必写出自变量x的取值范围);(2)求y与x之间的函数关系式(不必写出自变量x的取值范围),并求出当x为何值时,y的值最大;(3)若在第一个月里,按使y获得最大值的销售单价进行销售后,在第二个月里受物价部门的干预,销售单价不得高于90元/kg,要想在全部收回投资的基础上使第二个月的利润达到1700元,那么第二个月里应该确定销售单价为多少元?【分析】4. 已知二次函数图象的顶点坐标为(1,-1),且图象经过点(0,-3).求这个二次函数的解析式.5. 二次函数2y ax bx =+的图象如图所示,若一元二次方程20ax bx m ++=有实数根,则m 的最大值为( ) A .-3B .3C .-5D .9 6. 抛物线2y ax bx c =++上部分点的横坐标x ,纵坐标y 的对应值如下表:7.【参考答案】1.(1)210130 2 300y x x =-++(110x ≤≤,且x 为正整数); (2)当每件玩具的售价定为32元时,月销售利润恰好为 2520元;(3)每件玩具的售价定为6元或7元时,可使月销售利润最 大,最大的月销售利润是2720元. 2.(1)255012DG x =-+; (2)当x =12时,y 的值最大,最大值是300. 3.(1)2240w x =-+;(2)2234015 000y x x =-+-,当x =85时,y 的值最大;(3)第2个月里应该确定销售单价为75元. 4.2243y x x =-+- 5.B 6.①②④⑤ 7.①④⑤⑥每周一练(二)1. △ABC 中,∠A ,∠B 均为锐角,且(tan 0B A =,则△ABC 一定是()A .等腰三角形B .等边三角形C .直角三角形D .有一个角是60°的三角形 2. 已知tan 1α=,那么2sin cos 2sin cos -+αααα的值为( )A .13B .12C .1D .163. 对于二次函数2(1)(3)y x x =+-,下列说法正确的是( )A .图象开口向下B .当2x <时,y 随x 的增大而减小C .函数有最小值-8D .与y 轴交点的坐标为(0,-8)4. 在同一平面直角坐标系内,将函数2241y x x =++的图象沿x 轴向右平移2个单位长度后再沿y 轴向下平移1个单位长度,所得图象的顶点坐标是( ) A .(-1,1) B .(1,-2) C .(2,-2)D .(1,-1)5. 将抛物线2y ax bx c =++的图象向左平移2个单位,再向下平移3个单位,所得图象的解析式为223y x x =-+,则有( ) A .b =2,c =6B .b =2,c =-6 C .b =-6,c =14D .b =-6,c =0 6. 二次函数2()y a x m n =++的图象如图所示,则一次函数y mx n =+的图象经过( )A .一、二、三象限B .一、二、四象限C .二、三、四象限D .一、三、四象限7. 反比例函数与二次函数在同一平面直角坐标系中的大致图象如图所示,则它们的解析式可能分别是()A .k y x =,2y kx x =-B .ky x =,2y kx x =+ C .k y x =-,2y kx x =+D .ky x =-,2y kx x =-第7题图第8题图8. 已知二次函数2y ax bx c =++(0a <)的图象如图所示,当50x -≤≤时,下列说法正确的是( )A .有最小值-5,最大值0B .有最小值-3,最大值6C .有最小值0,最大值6D .有最小值2,最大值9. 已知二次函数2y x bx c =-++的图象经过A (1,2),B (3,2),C (0,-1),D (2,3)四点,且点P (1x ,1y ),Q (2x ,2y )也在该函数的图象上,则当101x <<,223x <<时,1y 与2y 的大小关系正确的是()A .12y y ≥B .12y y >C .12y y <D .12y y ≤10. 若等腰三角形的面积为10,腰长为5,则此等腰三角形的底角的正切值为_________.11. 若抛物线c bx x y ++=22的顶点坐标是(-1,-2),则b 与c 的值分别是_______、_______.12. 已知两数之和为-10,则它们乘积的最大值是________,此时两数分别为____________.13. 如图,已知函数3y x=-与2y ax bx=+(0a >,0b >)的图象交于点P ,且点P 的纵坐标为1,则关于x 的方程230ax bx x++=的解为____________.14. 若不论x 取何值,抛物线221y ax x =-++的函数值总为正数,则抛物线的顶点在第___象限,a 的取值范围是_______.15. 已知二次函数()()1y x m x n =--+(m n <)的图象与x 轴交于A (x 1,0),B (x 2,0)两点,且12x x <,则实数x 1,x 2,m ,n 的大小关系为_______________________.16. 二次函数2y ax bx c =++(a ≠0)的部分图象如图所示,x =1,则下列说法正确的有_________.(填写序号)①0abc <;②0a b c -+<;③30a c +<;④当13x -<<时,0y >;⑤()a b m am b +>+(m ≠1). 17. 已知二次函数的图象经过A (0,3),B (2,3),C (-1,0)三点. (1)求此二次函数的解析式; (2)求此二次函数图象的顶点坐标;(3)若P (n ,y 1),Q (4,y 2)是该二次函数图象上的两点,且12y y <,则实数n 的取值范围是_________________.18. 已知二次函数图象的顶点坐标为(3,-2),且与y 轴交于点(0,25).(1)求函数的解析式,并画出它的图象; (2)当y ≤6时,求自变量x 的取值范围.19. 如图,二次函数2(2)y x m =-+的图象与y 轴交于点C ,点B 与点C 关于该二次函数图象的对称轴对称.已知一次函数y kx b =+的图象经过该二次函数图象上的点A (1,0)及点B .(1)求二次函数与一次函数的解析式;(2)根据图象,写出满足2kx b x m+-+(2)≥的x的取值范围.20.学校计划用地面砖铺设教学楼前矩形广场的地面ABCD,已知矩形广场地面的长为100米,宽为80米.图案设计如图所示,广场的四角均为小正方形,阴影部分为四个矩形,且四个矩形的宽都与小正方形的边长相等.阴影部分铺绿色地面砖,其余部分铺白色地面砖.Array(1)要使铺白色地面砖的面积为5200形的边长应为多少米?(2)如果铺白色地面砖的费用为每平方米30平方米20费用最少?最少总费用是多少元?21.如图,排球运动员站在点O处练习发球,将球从O点正上方2m的A处发出,把球看成点,其运行的高度y(m)与运行的水平距离x(m)满足关系式2=-+.已知球网与O点的水平距离为9m,高度为2.43m,球场(6) 2.6y a x的边界距O点的水平距离为18m.(1)求y与x的关系式(不要求写出自变量x的取值范围);(2)球能否越过球网?球会不会出界?请说明理由.y22. 如图所示,一条小河的两岸1l ∥2l ,河两岸各有一座建筑物A 和B .为测量A ,B 间的距离,小明从点B 出发,在垂直河岸2l 的方向上选取一点C ,然后沿垂直于BC 的直线行进24米到达点D ,测得∠CDA =90°.取CD 的中点E ,测得∠BEC =56°,∠AED =67°,求A ,B 间的距离. (参考数据:sin56°≈45,tan56°≈32,sin67°≈1415,tan67°≈73,226=676,227=729)67°56°l 2l 1AF DECB23.如图,自来水厂A和村庄B在小河l的两侧,现要在A,B间铺设一条输水管道,为了搞好工程预算,需测算出A,B间的距离.一小船在点P处测得A在正北方向,B位于南偏东24.5°的方向,前行1200m,到达点Q处,测得A位于北偏西49°的方向,B位于南偏西41°的方向.(1)线段BQ与PQ是否相等?请说明理由.(2)求A,B间的距离.(参考数据cos41°≈0.75)东l【参考答案】1.D2.A3.C4.B5.C6.C7.B8.B 9.C10.2或1211.4,012.25;5-,5- 13.3x =- 14.二,1a <- 15.12m x x n <<< 16.①②③⑤17.(1)223y x x =-++;(2)(1,4);(3)24n n <->或.18.(1)21(3)22y x =--,图象略;(2)17x -≤≤. 19.(1)()221y x =--,1y x =-;(2)14x ≤≤. 20.(1)小正方形的边长应为10米或35米;(2)当广场四角小正方形的边长为22.5米时,总费用最少, 最少总费用是199 500元. 21.(1)()216 2.660y x =--+; (2)球能越过球网,球会出界,理由略. 22.A ,B 间的距离为26米.23.(1)相等,理由略;(2)A ,B 间的距离为2000 m .。
二次函数的应用(1)——最值问题
零障碍导教导学案
第 12课 二次函数的应用(1)———最值问题
一、知识储备
1.二次函数 y= -2(x-10)2 +200,当 x=
时,y取得最
值=
.
2.二次函数 y=(x-2)2 +50,当 x=
得最
值=
.
时,y取
二、新课学习
点 P从点 A开始,沿 AB边向点 B以每秒 1cm的速 x(元)与产品的日销售量 y(件)之间的关系如下表:
度移动;点 Q从点 B开始,沿着 BC边向点 C以每秒 (1)求出日销售量 y(件)与销售价 x(元)的函数关
2cm的速度移动.如果 P,Q同时出发,问经过几秒 系式(y是 x的一次函数);
天可售出 20双,每双盈利 40元,如果每 双 降 价 1 销售单价是 25元时,每天的销售量为 250件,销售
元,那么每天可多售出 2双.
单价每上涨 1元,每天的销售量就减少 10件.
(1)要想平均每天销售盈利 1200元,那么每双运动 (1)写出每天所得的销售利润 y(元)与涨价 x(元)
钟△PBQ的面积最大?最大面积是多少?
(2)要使每 日 的 销 售 利 润 最 大,每 件 产 品 的 销 售 价
应定为多少元?此时每日销售利润是多少元?
x/元 15 20 30 …
y/件 25 20 10 …
第3关
鞋应降价多少元?
之间的函数关系式;
上册第二十二章 二次函数的应用(一)—最值问题人教版九级数学全一册课件
三级检测练
一级基础巩固练
6. 已知 x 人结伴去旅游共需支出 y 元,若 x,y 满足关系 式 y=2x2-20x+950,则当总支出最少时,人数为 5 .
7. 某单位商品的利润 y 与变化的单价数 x 之间的关系为 y=-5x2+10x,当 0.5≤x≤2 时,最大利润是 5 .
上册第二十二章 二次函数的应用(一)—最值问题 人教版 九级数 学全一 册课件
上册第二十二章 二次函数的应用(一)—最值问题 人教版 九级数 学全一 册课件
4. 某超市销售一种商品,成本每千克 40 元,规定每千克售 价不低于成本,且不高于 60 元,经市场调查,每天的销售量
y(单位:千克)与每千克售价 x(单位:元)满足一次函数
3. (例 2)商场销售一批名牌衬衫,平均每天可售出 40 件,每件盈利 40 元. 为了扩大销售,增加盈利,尽 快减少库存,商场决定采取适当的降价措施. 经调查 发现,如果每件衬衫每降价 1 元,商场平均每天可多 售出 4 件.
(1)若商场平均每天要盈利 2 400 元,每件衬衫应降 价多少元? (2)若该商场要每天盈利最大,每件衬衫应降价多少 元?盈利最大是多少元?
上册第二十二章 二次函数的应用(一)—最值问题 人教版 九级数 学全一 册课件
上册第二十二章 二次函数的应用(一)—最值问题 人教版 九级数 学全一 册课件
(3)若该公司按每销售一千克提取 1 元用于捐资助学,且保 证每天的销售利润不低于 3 600 元,问该羊肚菌销售价 格该如何确定. 解:①当12≤x≤20时, W=(x-12-1)y=(x-13)(-200x+4 400) =-200(x-17.5)2+4 050. ∴-200(x-17.5)2+4 050=3 600. 解得x1=16,x2=19. 定价为16≤x≤19. ②当20<x≤24时,W=400(x-12-1)=400x-5 200≥3 600.解得22≤x≤24. 综上,销售价格确定为16≤x≤19或22≤x≤24.
沪科版九年级上册二次函数的应用面积、利润最值问题精品课件PPT
沪科版九年级上册21.4 二次函数的应用(1) 面积、利润最值问题课件
沪科版九年级上册21.4 二次函数的应用(1) 面积、利润最值问题课件
当堂训练
3.九年级数学兴趣小组经过市场调查,得到某种运动
服每月的销量与售价的相关信息如下表:
售价(元/件) 100 110 120 130 … 月销量(件)200 180 160 140 … 已知该运动服的进价为每件60元,设售价为x元/件.
(1)请用含x的式子表示:
①销售该运动服每件的利润是(x-60)元; ②月销量是(400-2x)件;(直接写出结果)
沪科版九年级上册21.4 二次函数的应用(1) 面积、利润最值问题课件
沪科版九年级上册21.4 二次函数的应用(1) 面积、利润最值问题课件
一、复习引入二次函数最值的理论
思考:你能说明当为 x什 b么 时,函数的最 2a
y4acb2 呢?此时是最大最值小还值是呢? 4a
二次函数的一 y般 ax2式 b: xc(a0)
沪科版九年级上册21.4 二次函数的应用(1) 面积、利润最值问题课件
解 设围成的矩形水面的一边长为xm,那么,矩形水面 的另一边长应为(20-x)m.若它的面积是Sm2,则有它 的面积是Sm2由题可得 S=x(20-x).
将这个函数的表达式配方,得 S= -(x-10)2+100(0<x<20).
C.4<x<16
D.x>4或x<16
沪科版九年级上册21.4 二次函数的应用(1) 面积、利润最值问题课件
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
主讲老师:
第二十二章 二次函数
第12课 二次函数的应用(1)——最值问题
一、知识储备
1.二次函数y=-2(x-10)2+200当x=___1_0____时,y取得最 ___大_____值=___2_0_0___.
2. 二次函数y=(x-2)2+50当x=____2____时,y取得最___小_____ 值=___5_0____.
∴当销售价定为25元时,最大利润为225元.
பைடு நூலகம்
9. 公路上行驶的汽车急刹车时,刹车距离s(m)与时间t(s)的函数 关系式s=20t-5t2,当遇到紧急情况时,司机急刹车,但由于 惯性汽车要滑行_____2_____s才能停下来,最大的滑行距离为 _____2_0____m.
10. 某宾馆有50个房间供游客住宿.若每个房间每天的定价为180元, 房间会全部住满;当每个房间每天的定价每增加10元时,就会 有一个房间空闲.另外需宾馆对每个居住房间每天支出20元的 各种费用.房价定为多少时,宾馆利润最大?
6. 一种新上市的文具,进价为20元,试销阶段发现: 当销售单价是25元时,每天的销售量为250件,销售单价每上 涨1元,每天的销售量就减少10件. (1)写出每天所得的销售利润y(元)与涨价x(元)之间的函数关系式; (2)求销售单价为多少元时,该文具每天的销售利润最大.
(1)25-20=5,y=(5+x)(250-10x)=-10x2+200x+1 250 (2)y=-10(x-10)2+2 250,当x=10,ymax=2250 即单价为25+10=35元时,销售的最大利润为2 250元.
花圃的面积最大,最大面积为50 m2.
4. 有一根长为20 cm的铁丝,把它弯成一个矩形ABCD, 其中AB=x cm,矩形面积为y cm2. (1)求y与x之间的函数关系式; (2)当x为何值时,矩形的面积最大?最大面积为多少? (1)y=x(10-x)或y=-x2+10x (2)当x=5时,矩形最大面积为25 cm2.
5. (例2)天虹商场在销售中发现:安踏运动鞋平均每天可售出20双, 每双盈利40元,如果每双降价1元,那么每天可多售出2双. (1)要想平均每天销售盈利1 200元,那么每双运动鞋应降价多少元? (2)当降价多少元时,可获得最大利润?最大利润是多少? (1)10元或20元 (2)当降价15元时,可获得最大利润1 250元.
三、过关检测 第1关 7.如图,△ABC中,∠B=90°,AB=6 cm,BC=12 cm.点P从点
A开始,沿AB边向点B以每秒1 cm的速度移动;点Q从点B开始,
沿着BC边向点C以每秒2 cm的速度移动.如果P,Q同时出发,
问经过几秒钟△PBQ的面积最大?最大面积是多少?
S△PBQ=
1 2
PB·BQ
二、新课学习
3. (例1)要用总长为20 m的铁栏杆,一面靠墙(墙长为12 m)围成 一个矩形ABCD花圃,设AB=x m.矩形ABCD的面积y m2. (1)求y与x之间的函数关系式; (2)当x为何值时,花圃的面积最大?最大面积是多少?
(1)y=x(20-2x)或y=-2x2+20x (2)y=-2(x-5)2+50,当x=5时,
此时每日销售利润是多少元? x/元 15 20 30 …
(1)设y=kx+b,则
15k+b=25 20k+b=20
∴
k=-1 b=40
∴y=-x+40
y/件 25 20 10 …
(2)设利润为w元,则w=(x-10)(40-x) =-x2+50x-400 =-(x-25)2+225
= 1 (6-t)·2t
2
=-(t-3)2+9
∴经过3秒钟△PBQ的面积达到最大值9 cm2.
第2关
8.某产品每件成本10元,试销阶段每件产品的销售价x(元)与产品
的日销售量y(件)之间的关系如下表:
(1)求出日销售量y(件)与销售价x(元)的函数关系式(y是x的一次函数);
(2)要使每日的销售利润最大,每件产品的销售价应定为多少元?
解:设定价增加x元,宾馆所得利润为y元,则
y=(180+x-20)(50- x )=- 1 x2+34x+8000
10 10 其中0≤x≤500,且x为10的倍数 当
x=-
b
=170时
2a
∴房价定为180+170=350元时,宾馆利润最大
∴ymax=
4ac 4a
b2
=10890元
谢谢!