初二数学证明期末测试题答案及解析

合集下载

初二数学证明试题

初二数学证明试题

初二数学证明试题1.要判定一个命题是真命题,往往需要从命题的条件出发,根据已知的定义、公理、定理一步一步推得结论成立.这样的推理过程叫做_______.【答案】证明【解析】根据证明的概念直接填空即可。

要判定一个命题是真命题,往往需要从命题的条件出发,根据已知的定义、公理、定理一步一步推得结论成立.这样的推理过程叫做证明.【考点】本题考查的是证明的概念点评:解答本题的关键是熟练掌握证明的概念:要判定一个命题是真命题,往往需要从命题的条件出发,根据已知的定义、公理、定理一步一步推得结论成立.这样的推理过程叫做证明.2.证明几何命题时,表述要按照一定的格式,一般为:(1)按题意________;(2)分清命题的________,结合图形,在“已知”中写出______,在“求证”中写出______;(3)在“证明”中写出______.【答案】画出图形,条件和结论,条件,结论,推理过程【解析】根据证明几何命题的格式直接填空即可。

证明几何命题时,表述要按照一定的格式,一般为:(1)按题意画出图形;(2)分清命题的条件和结论,结合图形,在“已知”中写出条件,在“求证”中写出结论;(3)在“证明”中写出推理过程.【考点】本题考查的是证明几何命题的格式点评:解答本题的关键是熟练掌握证明几何命题的格式:(1)按题意画出图形;(2)分清命题的条件和结论,结合图形,在“已知”中写出条件,在“求证”中写出结论;(3)在“证明”中写出推理过程.3.在△ABC中,∠A+∠B=110°,∠C=2∠A,则∠A=______,∠B=_______.【答案】∠A=35°,∠B=75°【解析】根据∠A+∠B=110°,三角形的内角和为180°,即可求得∠C的度数,再根据∠C=2∠A 求得∠A的度数,从而得到∠B的度数。

∵∠A+∠B=110°,∴∠C=180°-(∠A+∠B)=70°,∵∠C=2∠A,∴∠A=35°,∴∠B=180°-∠A-∠C=75°.【考点】本题考查的是三角形的内角和定理点评:解答本题的关键是熟练掌握三角形的内角和为180°.4.如图所示,AB∥CD,CE平分∠ACD并交AB于E,∠A=118°,则______.【答案】31°【解析】由AB∥CD,∠A=118°,根据平行线的性质可求得∠ACD的度数,再由CE平分∠ACD可求得∠ECD的度数,再根据平行线的性质即可得到结果。

内蒙古初二初中数学期末考试带答案解析

内蒙古初二初中数学期末考试带答案解析

内蒙古初二初中数学期末考试班级:___________ 姓名:___________ 分数:___________一、选择题1.如图,AB、CD相交于点O,AD=CB,请你补充一个条件,使得△ABD≌△CDB,你补充的条件是()A、AO=COB、DO=BOC、AB=CDD、∠A=∠C2.在下图所示的四个汽车标志图案中,属于轴对称图案的有()A.1个B.2个C.3个D.4个3.一个三角形任意一边上的高都是这边上的中线,则对这个三角形最准确的判断是()A.等腰三角形B.直角三角形C.正三角形D.等腰直角三角形4.如图,AB=AC,BD=BC,若∠A=40°,则∠ABD的度数是()A.20°B.30°C.35°D.40°5.下列各组数中互为相反数的是()A.B.C.D.6.如图是某蓄水池的横断面示意图,分为深水池和浅水池,如果这个蓄水池以固定的流量注水,下面能大致表示水的最大深度h与时间t之间的关系的图象是()7.的平方根是()A.4B.±4C.±2D.28.下列运算正确的是()A.x6÷x2=x3B.x6-x2=x4C.x2•x3=x5D.(x3)2=x59.如果一次函数y=kx+(k-1)的图象经过第一、三、四象限,则k的取值范围是()A.k>0B.k<0C.0<k<1D.k>110.+mxy+16是一个完全平方式,则m的值是()A.4B.8C.±4D.±8二、填空题1.已知△ABC≌△DEF,且AB=3,BC=4,AC=5,则EF= 。

2.点P关于x轴对称的点是(3,-4),则点P的坐标是。

3.如图:Rt△ABC中,∠C=90°,∠A=30°,BD平分∠ABC,且CD=5,则AD的长为。

4.如图,AB=AC,AB的垂直平分线MN交AC于点D,AB=6cm,BC=3cm,则△DBC的周长是 cm。

广东初二初中数学期末考试带答案解析

广东初二初中数学期末考试带答案解析

广东初二初中数学期末考试班级:___________ 姓名:___________ 分数:___________一、选择题1.正比例函数y=﹣2x的图象经过的点是()A.(1,2)B.(1,﹣2)C.(﹣2,1)D.(﹣2,﹣1)2.计算的结果是()A.12B.C.D.43.要使有意义,则x的取值范围是()A.x≥0B.x≥4C.x≤4D.x≥﹣44.下列命题中正确的是()A.有一组邻边相等的四边形是菱形B.有一个角是直角的平行四边形是矩形C.对角线垂直的平行四边形是正方形D.一组对边平行的四边形是平行四边形5.我市某中学举办了一次以“我的中国梦”为主题的演讲比赛,最后确定7名同学参加决赛,他们的决赛成绩各不相同,其中李华已经知道自己的成绩,但能否进前四名,他还必须清楚这七名同学成绩的()A.众数B.平均数C.中位数D.方差6.如图,已知在▱ABCD中,∠A+∠C=140°,则∠B的度数是()A.110°B.120°C.140°D.160°7.以下列长度(单位:cm)为边长的三角形是直角三角形的是()A.5,6,7B.7,8,9C.6,8,10D.5,7,98.下列根式中,属于最简二次根式的是()A.B.C.D.9.已知过点(2,﹣3)的直线y=ax+b(a≠0)不经过第一象限,设s=a+2b,则s的取值范围是()A.﹣5≤s≤﹣B.﹣6<s≤﹣C.﹣6≤s≤﹣D.﹣7<s≤﹣二、填空题1.化简:= .2.直线y=kx+3经过点(1,2),则k= .3.在Rt △ABC 中,∠C=90°,AB=15,AC=12,则BC= .4.如图,菱形ABCD 中,∠A=60°,BD=7,则菱形ABCD 的周长为 .5.已知一次函数y=﹣2x+1的图象经过A (x 1,y 1),B (x 2,y 2)两点,若x 1<x 2,则y 1 y 2.(填“>”、“<”或“=”)三、解答题1.如图,在平面直角坐标系中,四边形OABC 是边长为2的正方形,顶点A 、C 分别在x ,y 轴的正半轴上.点Q 在对角线OB 上,且QO=OC ,连接CQ 并延长CQ 交边AB 于点P .则点P 的坐标为 .2.5分)八(2)班组织了一次环保知识竞赛,甲乙两队各5人的成绩如下表所示(10分制).甲981069(1)指出甲队成绩的中位数; (2)指出乙队成绩的众数;(3)若计算出方差为:=1.84,=1.04,判断哪队的成绩更整齐?3.(5分)如图,在Rt △ABC 中,∠C=90°,∠B=60°,AB=8,求AC 的长.4.(7分)已知一次函数的图象经过点A (1,1)和点B (2,﹣1),求这个一次函数的解析式.5.(7分)如图,已知四边形ABCD 是平行四边形.(1)作∠A 的平分线交BC 于点E .(用尺规作图,保留作图痕迹,不用写作法) (2)在(1)中,若AD=6,EC=2,求平行四边形ABCD 的周长.6.(7分)某公司招聘人才,对应聘者分别进行阅读能力,思维能力和表达能力三项测试,其中甲、乙两人的成绩如下表:(单位:分)项目 阅读思维表达(1)若根据三项测试的平均成绩在甲、乙两人中录用一人,那么谁将能被录用?(2)根据实际需要,公司将阅读、思维和表达能力三项测试得分按3:5:2的比确定每人的最后成绩,若按此成绩在甲、乙两人中录用一人,谁将被录用?7.(8分)如图,在矩形ABCD中,对角线BD的垂直平分线MN与AD相交于点M,与BC相交于点N,连接BM,DN.(1)求证:四边形BMDN是菱形;(2)若AB=4,AD=8,求MD的长.8.已知甲、乙两地相距90km,A,B两人沿同一公路从甲地出发到乙地,A骑摩托车,B骑电动车,图中DE,OC 分别表示A,B离开甲地的路程s(km)与时间t(h)的函数关系的图象,根据图象解答下列问题.(1)A比B后出发几个小时?B的速度是多少?(2)在B出发后几小时,两人相遇?四、计算题(5分)计算:.广东初二初中数学期末考试答案及解析一、选择题1.正比例函数y=﹣2x的图象经过的点是()A.(1,2)B.(1,﹣2)C.(﹣2,1)D.(﹣2,﹣1)【答案】B.【解析】由y=﹣2x可得(x≠0),这四个选项中只要纵坐标与横坐标的比值等于-2,说明这个点在正比例函数y=﹣2x的图象上,四个选项中只有选项B的纵坐标与横坐标的比值等于-2,所以只有点B在正比例函数y=﹣2x的图象上,故答案选B.【考点】正比例函数图象上点的坐标特征.2.计算的结果是()A.12B.C.D.4【答案】B.【解析】根据二次根式的乘法法则可得.故答案选B.【考点】二次根式的乘法法则.3.要使有意义,则x的取值范围是()A.x≥0B.x≥4C.x≤4D.x≥﹣4【答案】C.【解析】要使有意义,必须满足4-x≥0,即x≤4,故答案选C.【考点】二次根式有意义的条件.4.下列命题中正确的是()A.有一组邻边相等的四边形是菱形B.有一个角是直角的平行四边形是矩形C.对角线垂直的平行四边形是正方形D.一组对边平行的四边形是平行四边形【答案】B.【解析】选项A,根据菱形的判定定理可得一组邻边相等的平行四边形是菱形,选项A错误;选项B,根据矩形的判定定理可得有一个角是直角的平行四边形是矩形,选项B正确;选项C,根据菱形的判定定理可得对角线垂直的平行四边形是菱形,选项C错误;选项D,根据平行四边形的判定定理可得两组对边平行的四边形是平行四边形,选项D错误.故答案选B.【考点】特殊四边形的判定定理.5.我市某中学举办了一次以“我的中国梦”为主题的演讲比赛,最后确定7名同学参加决赛,他们的决赛成绩各不相同,其中李华已经知道自己的成绩,但能否进前四名,他还必须清楚这七名同学成绩的()A.众数B.平均数C.中位数D.方差【答案】C.【解析】由题意可知,总共有7个人,且他们的分数互不相同,第4的成绩是中位数,李华要想知道自己是否能进入前4名,只需要了解自己的成绩以及全部成绩的中位数,进行比较即可知能否进前四名.故答案选C.【考点】中位数.6.如图,已知在▱ABCD中,∠A+∠C=140°,则∠B的度数是()A.110°B.120°C.140°D.160°【答案】A.【解析】根据平行四边形的性质可得∠A=∠C,又因∠A+∠C=140°,即可知∠A=∠C=70°.再由平行线的性质可得∠A+∠B=180°即可得∠B=110°,故答案选A.【考点】平行四边形的性质;平行线的性质.7.以下列长度(单位:cm)为边长的三角形是直角三角形的是()A.5,6,7B.7,8,9C.6,8,10D.5,7,9【答案】C.【解析】选项A中,52+62≠72;选项B中,72+82≠92;选项D中,52+72≠92;根据勾股定理的逆定理可得,选项A、B、D中的三条线段都不能组成直角三角形;选项C中,62+82=102,根据勾股定理的逆定理可得,选项C中三条线段能组成直角三角形.故答案选C.【考点】勾股定理的逆定理.8.下列根式中,属于最简二次根式的是()A .B .C .D .【答案】D .【解析】最简二次根式必须满足两个条件:•被开方数中不含有未开尽方的因数或因式;‚被开方数中不含有分母.选项A 、B 、C 不符合条件,只有选项D 符合条件,故答案选D . 【考点】最简二次根式.9.已知过点(2,﹣3)的直线y=ax+b (a≠0)不经过第一象限,设s=a+2b ,则s 的取值范围是( ) A .﹣5≤s≤﹣ B .﹣6<s≤﹣ C .﹣6≤s≤﹣D .﹣7<s≤﹣【答案】B .【解析】由直线y=ax+b (a≠0)不经过第一象限可得a <0,b≤0,又因直线y=ax+b (a≠0)经过点(2,﹣3),可得2a+b=—3,所以,b=—2a —3,因此 s=a+2b=a+2(—2a —3)=—3a —6,由a <0可得s >—6,‚s=a+2b=+2b=,由b≤0可得s≤—,所以s 的取值范围是﹣6<s≤﹣.故答案选B .【考点】一次函数图象与系数的关系.二、填空题1.化简:= . 【答案】5.【解析】由二次根式的性质可得=5. 【考点】二次根式的性质.2.直线y=kx+3经过点(1,2),则k= . 【答案】-1.【解析】把(1,2)代入直线y=kx+3,即可得方程k+3=2,解得k=-1. 【考点】一次函数图象上点的坐标特征.3.在Rt △ABC 中,∠C=90°,AB=15,AC=12,则BC= . 【答案】9.【解析】在Rt △ABC 中,∠C=90°,AB=15,AC=12,根据勾股定理可得,BC=.【考点】勾股定理.4.如图,菱形ABCD 中,∠A=60°,BD=7,则菱形ABCD 的周长为 .【答案】28.【解析】根据菱形四条边都相等的性质可得AB=AD ,又因∠A=60°,根据有一个角是60°的等腰三角形是等边三角形即可判定△ABD 为等边三角形,所以AB=AD=BD=7,再根据菱形的性质即可得菱形ABCD 的周长为7×4=28. 【考点】菱形的性质;等边三角形的判定及性质.5.已知一次函数y=﹣2x+1的图象经过A (x 1,y 1),B (x 2,y 2)两点,若x 1<x 2,则y 1 y 2.(填“>”、“<”或“=”) 【答案】>【解析】一次函数y=﹣2x+1中,k=﹣2<0,根据一次函数的性质可得y 随x 的增大而减小,又因x 1<x 2,即可判定y 1>y 2.【考点】一次函数的性质.三、解答题1.如图,在平面直角坐标系中,四边形OABC 是边长为2的正方形,顶点A 、C 分别在x ,y 轴的正半轴上.点Q 在对角线OB 上,且QO=OC ,连接CQ 并延长CQ 交边AB 于点P .则点P 的坐标为 .【答案】(2,4﹣2).【解析】已知正方形OABC 是边长为2,根据勾股定理可求得OB=2,由QO=OC 可得BQ=OB ﹣OQ=2﹣2,再由AB ∥OC 可判定△BPQ ∽△OCQ ,根据相似三角形的性质可得,即,解得BP=2﹣2,所以AP=AB ﹣BP=2﹣(2﹣2)=4﹣2,即可得点P 的坐标为(2,4﹣2). 【考点】相似三角形的判定与性质;正方形的性质.2.5分)八(2)班组织了一次环保知识竞赛,甲乙两队各5人的成绩如下表所示(10分制).甲981069(1)指出甲队成绩的中位数; (2)指出乙队成绩的众数;(3)若计算出方差为:=1.84,=1.04,判断哪队的成绩更整齐?【答案】(1)9;(2)8;(3)乙队.【解析】(1)把甲队成绩由高到低排列为10,9,9,8,6,中间的数是9,即为中位数为9;(2)乙队数据中出现次数最多的数为8,即众数8;(3)方差反映了一组数据的稳定程度,方差越小,成绩越整齐. 试题解析:解:(1)甲队成绩由高到低排列为:10,9,9,8,6,由此可知甲队成绩的中位数是9; (2)乙队成绩中8出现的次数最多,所以乙队成绩的众数是8; (3)因为=1.84>=1.04,所以成绩更整齐的是乙队. 【考点】中位数;众数;方差.3.(5分)如图,在Rt △ABC 中,∠C=90°,∠B=60°,AB=8,求AC 的长.【答案】.【解析】在Rt △ABC 中,利用直角三角形的两锐角互余可得∠A=30°,再根据30°的锐角所对的直角边等于斜边的一半可得BC 的长,最后利用勾股定理即可求AC 得长. 试题解析:解:如图所示, 在Rt △ABC 中,∠C=90°,∠B=60°, ∴∠A=30°, 又∵AB=8, ∴BC=4, ∴AC=. 【考点】直角三角形的性质;勾股定理.4.(7分)已知一次函数的图象经过点A (1,1)和点B (2,﹣1),求这个一次函数的解析式.【答案】y=﹣2x+3.【解析】把A(1,1)和点B(2,﹣1),代入一次函数y=kx+b,可得到一个关于k、b的方程组,再解方程组即可得到k、b的值,即可得到一次函数的解析式.试题解析:解:设一次函数y=kx+b的图象经过两点A(1,1)和点B(2,﹣1)∵A(1,1)和点B(2,﹣1),∴,解得:,∴一次函数解析式为:y=﹣2x+3.【考点】用待定系数法求一次函数解析式.5.(7分)如图,已知四边形ABCD是平行四边形.(1)作∠A的平分线交BC于点E.(用尺规作图,保留作图痕迹,不用写作法)(2)在(1)中,若AD=6,EC=2,求平行四边形ABCD的周长.【答案】(1)详见解析;(2)20.【解析】(1)以点A为圆心,任意长为半径画弧,交AD,AB于两点,分别以这两点为圆心,大于这两点的距离为半径画弧,两弧交于一点O,作射线AO,交BC于点E;(2)根据在平行四边形ABCD中,AD∥CB,∠DAE=∠BEA,由(1)知,∠DAE=∠BAE,∠BEA=∠BAE,得到AB=EB,在平行四边形ABCD中,BC=AD=6,由EC=2,所以EB=BC﹣EC=6﹣2=4=AB,所以平行四边形ABCD的周长为:2×(6+4)=20.试题解析:解:(1)如图所示:(2)∵在平行四边形ABCD中,AD∥CB,∴∠DAE=∠BEA,由(1)知,∠DAE=∠BAE,∴∠BEA=∠BAE,∴AB=EB,在平行四边形ABCD中,BC=AD=6,∵EC=2,∴EB=BC﹣EC=6﹣2=4=AB,∴平行四边形ABCD的周长为:2×(6+4)=20.【考点】作已知角的角平分线;平行四边形的性质;等腰三角形的判定.6.(7分)某公司招聘人才,对应聘者分别进行阅读能力,思维能力和表达能力三项测试,其中甲、乙两人的成绩如下表:(单位:分)项目阅读思维表达(1)若根据三项测试的平均成绩在甲、乙两人中录用一人,那么谁将能被录用?(2)根据实际需要,公司将阅读、思维和表达能力三项测试得分按3:5:2的比确定每人的最后成绩,若按此成绩在甲、乙两人中录用一人,谁将被录用?【答案】(1)乙将被录用;(2)甲将被录用.【解析】(1)根据平均数的计算公式分别进行计算后比较大小即可判定谁将能被录用;(2)根据加权平均数的计算公式分别计算后比较大小即可判定谁将能被录用.=(93+86+73)÷3=84(分),试题解析:解:(1)∵甲的平均成绩是:x甲乙的平均成绩为:x 乙=(95+81+79)÷3=85(分), ∴x 乙>x 甲, ∴乙将被录用; (2)根据题意得:=85.5(分),=84.8(分); ∴x 甲>x 乙, ∴甲将被录用.【考点】算术平均数;加权平均数.7.(8分)如图,在矩形ABCD 中,对角线BD 的垂直平分线MN 与AD 相交于点M ,与BC 相交于点N ,连接BM ,DN .(1)求证:四边形BMDN 是菱形; (2)若AB=4,AD=8,求MD 的长.【答案】(1)详见解析;(2)MD 长为5.【解析】(1)根据矩形性质可知AD ∥BC ,从而得∠MDO=∠NBO ,∠DMO=∠BNO ,利用AAS 可证△DMO ≌△BNO ,根据全等三角形的对应角相等可得OM=ON ,再由对角线互相平分的四边形是平行四边形可得平行四边形BMDN ,根据对角线互相垂直的平行四边形是菱形即可判定菱形BMDN ;根据菱形性质可知DM=BM ,设MD 长为x ,则MB=DM=x ,AM=8-x ,在Rt △AMB 中,根据勾股定理得出BM 2=AM 2+AB 2,即x 2=x 2﹣16x+64+16,解得x 的值即可. 试题解析:(1)证明:∵四边形ABCD 是矩形, ∴AD ∥BC ,∠A=90°,∴∠MDO=∠NBO ,∠DMO=∠BNO , ∵在△DMO 和△BNO 中,,∴△DMO ≌△BNO (AAS ), ∴OM=ON , ∵OB=OD ,∴四边形BMDN 是平行四边形, ∵MN ⊥BD ,∴平行四边形BMDN 是菱形.(2)解:∵四边形BMDN 是菱形, ∴MB=MD ,设MD 长为x ,则MB=DM=x , 在Rt △AMB 中,BM 2=AM 2+AB 2 即x 2=(8﹣x )2+42, 解得:x=5,所以MD 长为5.【考点】矩形的性质;勾股定理;平行四边形的判定;菱形的性质及判定.8.已知甲、乙两地相距90km ,A ,B 两人沿同一公路从甲地出发到乙地,A 骑摩托车,B 骑电动车,图中DE ,OC 分别表示A ,B 离开甲地的路程s (km )与时间t (h )的函数关系的图象,根据图象解答下列问题.(1)A 比B 后出发几个小时?B 的速度是多少?(2)在B出发后几小时,两人相遇?【答案】(1)A比B后出发1小时,B的速度为20km/h;(2)B出发小时后两人相遇.【解析】(1)观察图象即可得出A比B后出发1小时;由点C的坐标为(3,60)即可求出B的速度;(2)根据图象确定有关点的坐标,然后利用待定系数法求出OC、DE的解析式,联立两函数解析式建立方程求解即可得答案.试题解析:解:(1)由图可知,A比B后出发1小时,B的速度:60÷3=20(km/h);(2)由图可知点D(1,0),C(3,60),E(3,90),设OC的解析式为y=kx,则3k=60,解得k=20,所以,y=20x,设DE的解析式为y=mx+n,则,解得,所以,y=45x﹣45,由题意得,解得,所以,B出发小时后两人相遇.【考点】一次函数的应用.四、计算题(5分)计算:.【答案】原式=.【解析】先化简二次根式后再合并同类二次根式即可.试题解析:解:原式=.【考点】二次根式的加减法.。

初二下册数学证明题及答案

初二下册数学证明题及答案
AC.
D
A ( 1)求证: BG FG;
(2)若 AD DC 2,求 AB 的长.
B
G
C
E
2016 全新精品资料 - 全新公文范文 -全程指导写作 –独家原创 1 / 48
精品文档
二:如图,已知矩形 ABCD,延长 CB 到 E,使 CE=CA,连结 AE 并取中点 F,连结 AE 并取中点 F,连结 BF、DF,求证 BF ⊥ DF。
2016 全新精品资料 - 全新公文范文 -全程指导写作 –独家原创 4 / 48
精品文档 k 的图象过点 D,则其 x
于点 F, 一:解:( 1
, DE⊥ AC ABC 90°
ABC AFE.
A AC AE EAF
CAB,
ABC≌△ AFE AB AF. 连接 AG,
AG= AG,AB= AF, B D F
2016 全新精品资料 - 全新公文范文 -全程指导写作 –独家原创 10 / 48
G
E 篇二 : 《初二数学下册证明题 ( 中等难题 _含答案 ) 》
一.计算题
21
66 ( 6)6
(6x
40 39(简便计算)
4)(3x
2)
2016 全新精品资料 - 全新公文范文 -全程指导写作 –独家原创 7 / 48
精品文档 33
( a b)( a b)
(a
(a b c)2
b c)(a b c)
六、 (6 分 ) 、如图, P 是正方形 ABCD对角线 BD上一点, PE ⊥DC,PF⊥ BC,E、F 分别为垂足, 若 CF=3,CE=4,求 AP的长 .
七、 (8 分 ) 如图,等腰梯形 ABCD中, AD∥ BC,M、 N 分别是 AD、 BC的中点, E、 F 分别是 BM、

陕西初二初中数学期末考试带答案解析

陕西初二初中数学期末考试带答案解析

陕西初二初中数学期末考试班级:___________ 姓名:___________ 分数:___________一、选择题1.下列式子中,属于最简二次根式的是( )A .B .C .D .2.若式子在实数范围内有意义,则x 的取值范围是( ) A .x≥ B .x > C .x≥ D .x >3.如果下列各组数是三角形的三边,那么不能组成直角三角形的一组数是( )A .7,24,25B .,,C .3,4,5D .4,,4.在四边形ABCD 中,O 是对角线的交点,能判定这个四边形是正方形的条件是( )A .AC=BD ,AB ∥CD ,AB=CDB .AD ∥BC ,∠A=∠CC .AO=BO=CO=DO ,AC ⊥BDD .AO=CO ,BO=DO ,AB=BC5.已知点(﹣2,y 1),(﹣1,y 2),(1,y 3)都在直线y=﹣3x+b 上,则y 1,y 2,y 3的值的大小关系是( )A .y 1>y 2>y 3B .y 1<y 2<y 3C .y 3>y 1>y 2D .y 3<y 1<y 26.一次函数y=mx+n 与正比例函数y=mnx (m ,n 是常数,且mn≠0),在同一平面立角坐标系的图象是( )A .B .C .D .7.某班第一小组7名同学的毕业升学体育测试成绩(满分30分)依次为:25,23,25,23,27,30,25,这组数据的中位数和众数分别是( )A .23,25B .23,23C .25,23D .25,258.在方差公式中,下列说法不正确的是( )A .n 是样本的容量B .x n 是样本个体C .是样本平均数D .S 是样本方差9.如图,在△ABC 中,AB=3,AC=4,BC=5,P 为边BC 上一动点,PE ⊥AB 于E ,PF ⊥AC 于F ,M 为EF 中点,则AM 的最小值为( )A .B .C .D .二、填空题1.计算:(+1)2016(﹣1)2016= .2.平行四边形ABCD 的周长为20cm ,对角线AC 、BD 相交于点O ,若△BOC 的周长比△AOB 的周长大2cm ,则CD= cm .3.某一次函数的图象经过点(﹣1,3),且函数y 随x 的增大而减小,请你写出一个符合条件的函数解析式 .4.已知在平面直角坐标系中,点O 为坐标原点,过O 的直线OM 经过点A (6,6),过A 作正方形ABCD ,在直线OA 上有一点E ,过E 作正方形EFGH ,已知直线OC 经过点G ,且正方形ABCD 的边长为2,正方形EFGH 的边长为3,则点F 的坐标为 .5.如图,在平面直角坐标系中,已知点A (﹣3,0),B (0,4),对△OAB 连续作旋转变换,依次得到△1、△2、△3、△4…,则△2015的直角顶点的纵坐标为 .三、计算题计算(1)9+7﹣5+2 (2)(﹣1)(+1)﹣(1﹣2)2.四、解答题1.已知,且x 为偶数,求的值.2.已知一个正比例函数和一个一次函数的图象相交于点A (1,4),且一次函数的图象与x 轴交于点B (3,0)(1)求这两个函数的解析式;(2)画出它们的图象.3.如图,圆柱形无盖玻璃容器,高18cm ,底面周长为60cm ,在外侧距下底1cm 的点C 处有一蜘蛛,与蜘蛛相对的圆柱形容器的上口外侧距开口1cm 的F 处有一苍蝇,试求急于捕获苍蝇充饥的蜘蛛所走的最短路线的长度.4.为了从甲、乙两名同学中选拔一个参加比赛,对他们的射击水平进行了测验,两个在相同条件下各射靶10次,命中的环数如下(单位:环)甲:7,8,6,8,6,5,9,10,7,4乙:9,5,7,8,6,8,7,6,7,7(1)求甲,乙,S甲2,S乙2;(2)你认为该选拔哪名同学参加射击比赛?为什么?5.如图,点E、F分别是▱ABCD的边BC、AD上的点,且BE=DF.(1)试判断四边形AECF的形状;(2)若AE=BE,∠BAC=90°,求证:四边形AECF是菱形.6.某市的A县和B县春季育苗,急需化肥分别为90吨和60吨.该市的C县和D县分别储存化肥100吨和50吨,全部调配给A县和B县,已知C、D两县运化肥到A、B两县的运费(元/吨)如下列表所示:(1)设C县到A县的化肥为x吨,求总运费W(元)与x(吨)的函数关系式,并写出自变量x的取值范围;(2)求最低总运费,并说明总运费最低时的运送方案.7.如图,直线y=kx+6分别与x轴、y轴相交于点E和点F,点E的坐标为(﹣8,0),点A的坐标为(0,3).(1)求k的值;(2)若点P(x,y)是第二象限内的直线上的一个动点,当点P运动过程中,试写出△OPA的面积S与x的函数关系式,并写出自变量x的取值范围;(3)探究:当P运动到什么位置时,△OPA的面积为,并说明理由.8.如图,△ABC中,点O是边AC上一个动点,过O作直线MN∥BC.设MN交∠ACB的平分线于点E,交∠ACB的外角平分线于点F.(1)求证:OE=OF;(2)若CE=12,CF=5,求OC的长;(3)当点O在边AC上运动到什么位置时,四边形AECF是矩形?并说明理由.陕西初二初中数学期末考试答案及解析一、选择题1.下列式子中,属于最简二次根式的是()A.B.C.D.【答案】B【解析】判断一个二次根式是否为最简二次根式主要方法是根据最简二次根式的定义进行,或直观地观察被开方数的每一个因数(或因式)的指数都小于根指数2,且被开方数中不含有分母,被开方数是多项式时要先因式分解后再观察.解:A、=3,故A错误;B、是最简二次根式,故B正确;C、=2,不是最简二次根式,故C错误;D、=,不是最简二次根式,故D错误;故选:B.2.若式子在实数范围内有意义,则x的取值范围是()A.x≥B.x>C.x≥D.x>【答案】A【解析】根据二次根式的性质和分式的意义,被开方数大于或等于0,可以求出x的范围.解:根据题意得:3x﹣4≥0,解得:x≥.故选:A.3.如果下列各组数是三角形的三边,那么不能组成直角三角形的一组数是()A.7,24,25B.,,C.3,4,5D.4,,【答案】B【解析】依次计算每个选项中两个较小数的平方的和是否等于较大数的平方,等于则能组成直角三角形,不等于则不能组成直角三角形.解:A、因为72+242=252,所以该组数能组成直角三角形;B、因为≠,所以该组数不能组成直角三角形;C、因为32+42=52,所以该组数能组成直角三角形;D、因为42+=,所以该组数能组成直角三角形;故选B.4.在四边形ABCD中,O是对角线的交点,能判定这个四边形是正方形的条件是()A.AC=BD,AB∥CD,AB=CDB.AD∥BC,∠A=∠CC.AO=BO=CO=DO,AC⊥BDD.AO=CO,BO=DO,AB=BC【答案】C【解析】根据正方形的判定:对角线互相垂直平分且相等的四边形是正方形进行分析从而得到最后的答案. 解:A ,不能,只能判定为矩形;B ,不能,只能判定为平行四边形;C ,能;D ,不能,只能判定为菱形.故选C .5.已知点(﹣2,y 1),(﹣1,y 2),(1,y 3)都在直线y=﹣3x+b 上,则y 1,y 2,y 3的值的大小关系是( )A .y 1>y 2>y 3B .y 1<y 2<y 3C .y 3>y 1>y 2D .y 3<y 1<y 2【答案】A【解析】先根据直线y=﹣3x+b 判断出函数图象的增减性,再根据各点横坐标的大小进行判断即可.解:∵直线y=﹣3x+b ,k=﹣3<0,∴y 随x 的增大而减小,又∵﹣2<﹣1<1,∴y 1>y 2>y 3.故选A .6.一次函数y=mx+n 与正比例函数y=mnx (m ,n 是常数,且mn≠0),在同一平面立角坐标系的图象是( )A .B .C .D .【答案】A【解析】根据一次函数与正比例函数的性质对四个选项进行逐一分析即可.解:A 、由一次函数的图象可知,m <0,n >0,故mn <0;由正比例函数的图象可知mn <0,两结论一致,故本选项正确;B 、由一次函数的图象可知,m <0,n >0,故mn <0;由正比例函数的图象可知mn >0,两结论不一致,故本选项不正确;C 、由一次函数的图象可知,m >0,n >0,故mn >0;由正比例函数的图象可知mn <0,两结论不一致,故本选项不正确;D 、由一次函数的图象可知,m >0,n <0,故n >0,mn <0;由正比例函数的图象可知mn >0,两结论不一致,故本选项不正确.故选A .7.某班第一小组7名同学的毕业升学体育测试成绩(满分30分)依次为:25,23,25,23,27,30,25,这组数据的中位数和众数分别是( )A .23,25B .23,23C .25,23D .25,25【答案】D【解析】找中位数要把数据按从小到大的顺序排列,位于最中间的一个数(或两个数的平均数)为中位;众数是一组数据中出现次数最多的数据,注意众数可以不止一个.解:在这一组数据中50是出现次数最多的,故众数是25;将这组数据从小到大的顺序排列后,处于中间位置的那个数是25,这组数据的中位数是25.故选D .8.在方差公式中,下列说法不正确的是( )A .n 是样本的容量B .x n 是样本个体C .是样本平均数D .S 是样本方差【答案】D【解析】根据方差公式中各个量的含义直接得到答案.解;A、n是样本的容量,故本选项正确;是样本个体,故本选项正确;B、xnC、是样本平均数,故本选项正确;D、S2是样本方差,故本选项错误;故选D.9.如图,在△ABC中,AB=3,AC=4,BC=5,P为边BC上一动点,PE⊥AB于E,PF⊥AC于F,M为EF中点,则AM的最小值为()A.B.C.D.【答案】D【解析】根据勾股定理的逆定理可以证明∠BAC=90°;根据直角三角形斜边上的中线等于斜边的一半,则AM= EF,要求AM的最小值,即求EF的最小值;根据三个角都是直角的四边形是矩形,得四边形AEPF是矩形,根据矩形的对角线相等,得EF=AP,则EF的最小值即为AP的最小值,根据垂线段最短,知:AP的最小值即等于直角三角形ABC斜边上的高.解:∵在△ABC中,AB=3,AC=4,BC=5,∴AB2+AC2=BC2,即∠BAC=90°.又∵PE⊥AB于E,PF⊥AC于F,∴四边形AEPF是矩形,∴EF=AP.∵M是EF的中点,∴AM=EF=AP.因为AP的最小值即为直角三角形ABC斜边上的高,即等于,∴AM的最小值是.故选D.二、填空题1.计算:(+1)2016(﹣1)2016= .【答案】1【解析】先根据积的乘方得到原式=[(+1)•(﹣1)]2016,然后利用平方差公式计算.解:原式=[(+1)•(﹣1)]2016=(2﹣1)2016=1.故答案为1.2.平行四边形ABCD的周长为20cm,对角线AC、BD相交于点O,若△BOC的周长比△AOB的周长大2cm,则CD= cm.【答案】4【解析】根据平行四边形的性质可知,平行四边形的对角线互相平分,由于△BOC的周长比△AOB的周长大2cm,则BC比AB长7cm,所以根据周长的值可以求出AB,进而求出CD的长.解:∵平行四边形的周长为20cm,∴AB+BC=10cm;又△BOC的周长比△AOB的周长大2cm,∴BC﹣AB=2cm,解得:AB=4cm,BC=6cm.∵AB=CD,∴CD=4cm故答案为:4.3.某一次函数的图象经过点(﹣1,3),且函数y 随x 的增大而减小,请你写出一个符合条件的函数解析式 . 【答案】y=﹣x+2(答案不唯一). 【解析】设该一次函数的解析式为y=kx+b (k <0),再把(﹣1,3)代入即可得出k+b 的值,写出符合条件的函数解析式即可.解:该一次函数的解析式为y=kx+b (k <0),∵一次函数的图象经过点(﹣1,3), ∴﹣k+b=3, ∴当k=﹣1时,b=2, ∴符合条件的函数关系式可以是:y=﹣x+2(答案不唯一).4.已知在平面直角坐标系中,点O 为坐标原点,过O 的直线OM 经过点A (6,6),过A 作正方形ABCD ,在直线OA 上有一点E ,过E 作正方形EFGH ,已知直线OC 经过点G ,且正方形ABCD 的边长为2,正方形EFGH 的边长为3,则点F 的坐标为 .【答案】(9,6).【解析】先利用待定系数法确定直线OA 的解析式为y=mx ,根据坐标与图形变换由点A (6,6),正方形ABCD 的边长为2得到D 点坐标为(8,6),C 点坐标为(8,4),再利用待定系数法确定直线OC 的解析式为y=x ,则可设G 点坐标为(t ,t ),由于正方形EFGH 的边长为3,所以H 点坐标为(t ,t+3),从而得到E 点坐标为(t ﹣3,t+3),然后把把E 点坐标代入y=x 求出t=12,得到E 点坐标为(9,9),再把E 点向下平移3个单位即可得到F 点的坐标.解:设直线OA 的解析式为y=mx ,把A (6,6)代入得6m=6,解得m=1,∴直线OA 的解析式为y=x , ∵点A (6,6),正方形ABCD 的边长为2, ∴D 点坐标为(8,6),C 点坐标为(8,4).设直线OC 的解析式为y=kx ,把C (8,4)代入y=kx得8k=4,解得k=,∴直线OC 的解析式为y=x ,设G 点坐标为(t ,t ),∵正方形EFGH 的边长为3,∴H 点坐标为(t ,t+3),E 点坐标为(t ﹣3,t+3),把E (t ﹣3,t+3)代入y=x得t ﹣3=t+3,解得t=12,∴E 点坐标为(9,9), ∴F 点的坐标为(9,6).故答案为:(9,6).5.如图,在平面直角坐标系中,已知点A (﹣3,0),B (0,4),对△OAB 连续作旋转变换,依次得到△1、△2、△3、△4…,则△2015的直角顶点的纵坐标为 . 【答案】. 【解析】根据前四个图形的变化寻找旋转规律,得到△2015的直角顶点的坐标. 解:由图可知,每3个三角形为一个循环组依次循环, ∵2015÷3=671余2, ∴△2015的直角顶点是第672组的第二个三角形的直角顶点, ∵A (﹣3,0),B (0,4), ∴OA=3,OB=4,由勾股定理得,AB==5,∴其纵坐标是.故答案为:.三、计算题计算(1)9+7﹣5+2 (2)(﹣1)(+1)﹣(1﹣2)2.【答案】(1);(2)﹣11+4. 【解析】(1)首先化简二次根式,进而合并同类二次根式求出答案;(2)直接利用乘法公式化简,进而求出答案.解:(1)9+7﹣5+2 =9+14﹣20+ =;(2)(﹣1)(+1)﹣(1﹣2)2 =3﹣1﹣(1+12﹣4) =2﹣13+4=﹣11+4.四、解答题1.已知,且x 为偶数,求的值.【答案】当x=8时,原式=.【解析】首先根据二次根式有意义的条件即可求得x 的范围,然后根据x 是偶数即可确定x 的值,然后对所求的式子进行化简,然后代入求解即可.解:由题意得, 解得:6<x≤9,∵x 为偶数, ∴x=8.原式=(1+x )=(x+1)=.∴当x=8时,原式=.2.已知一个正比例函数和一个一次函数的图象相交于点A(1,4),且一次函数的图象与x轴交于点B(3,0)(1)求这两个函数的解析式;(2)画出它们的图象.【答案】(1)y=﹣2x+6;(2)见解析【解析】(1)利用待定系数法求两个函数解析式;(2)利用描点法画出两函数图象.解:(1)设正比例函数解析式为y=kx,把A(1,4)代入得k=4,所以正比例函数解析式为y=4x;设一次函数解析式为y=ax+b,把A(1,4),B(3,0)代入得,解得,所以一次函数解析式为y=﹣2x+6;(2)如图:3.如图,圆柱形无盖玻璃容器,高18cm,底面周长为60cm,在外侧距下底1cm的点C处有一蜘蛛,与蜘蛛相对的圆柱形容器的上口外侧距开口1cm的F处有一苍蝇,试求急于捕获苍蝇充饥的蜘蛛所走的最短路线的长度.【答案】34cm.【解析】要求不在同一个平面内的两点之间的最短距离,首先要把两个点展开到一个平面内,然后分析展开图形中的数据,根据勾股定理即可求解.解:将曲面沿AB展开,如图所示,过C作CE⊥AB于E,在Rt△CEF中,∠CEF=90°,EF=18﹣1﹣1=16(cm),CE=×60=30(cm),由勾股定理,得CF==34(cm).答:蜘蛛所走的最短路线是34cm.4.为了从甲、乙两名同学中选拔一个参加比赛,对他们的射击水平进行了测验,两个在相同条件下各射靶10次,命中的环数如下(单位:环)甲:7,8,6,8,6,5,9,10,7,4乙:9,5,7,8,6,8,7,6,7,7(1)求甲,乙,S甲2,S乙2;(2)你认为该选拔哪名同学参加射击比赛?为什么?【答案】(1)甲=7;乙=7;S甲2=3;S乙2=1.2;(2)选拔乙同学参加射击比赛.【解析】(1)根据平均数的计算公式先求出平均数,再根据方差公式进行计算即可;(2)根据方差的意义,方差越小越稳定,即可得出答案.解:(1)甲=(7+8+6+8+6+5+9+10+7+4)÷10=7;乙=(9+5+7+8+6+8+7+6+7+7)÷10=7;S甲2=[2(7﹣7)2+2(8﹣7)2+2(6﹣7)2+(5﹣7)2+(9﹣7)2+(10﹣7)2+(4﹣7)2]=3;S乙2=[4(7﹣7)2+2(8﹣7)2+2(6﹣7)2+(5﹣7)2+(9﹣7)2]=1.2;(2)∵甲=乙,S甲2>S乙2,∴乙较稳定,∴该选拔乙同学参加射击比赛.5.如图,点E、F分别是▱ABCD的边BC、AD上的点,且BE=DF.(1)试判断四边形AECF的形状;(2)若AE=BE,∠BAC=90°,求证:四边形AECF是菱形.【答案】(1)四边形AECF为平行四边形;(2)见解析【解析】(1)四边形AECF为平行四边形.通过平行四边形的判定定理“有一组对边平行且相等的四边形是平行四边形”得出结论:四边形AECF为平行四边形.(2)根据直角△BAC中角与边间的关系证得△AEC是等腰三角形,即平行四边形AECF的邻边AE=EC,易证四边形AECF是菱形.(1)解:四边形AECF为平行四边形.∵四边形ABCD是平行四边形,∴AD=BC,AD∥BC,又∵BE=DF,∴AF=CE,∴四边形AECF为平行四边形;(2)证明:∵AE=BE,∴∠B=∠BAE,又∵∠BAC=90°,∴∠B+∠BCA=90°,∠CAE+∠BAE=90°,∴∠BCA=∠CAE,∴AE=CE,又∵四边形AECF为平行四边形,∴四边形AECF是菱形.6.某市的A县和B县春季育苗,急需化肥分别为90吨和60吨.该市的C县和D县分别储存化肥100吨和50吨,全部调配给A县和B县,已知C、D两县运化肥到A、B两县的运费(元/吨)如下列表所示:(1)设C县到A县的化肥为x吨,求总运费W(元)与x(吨)的函数关系式,并写出自变量x的取值范围;(2)求最低总运费,并说明总运费最低时的运送方案.【答案】(1)W=10x+4800,(40≤x≤90);(2)运送方案为C县的100吨化肥40吨运往A县,60吨运往B 县,D县的50吨化肥全部运往A县.【解析】(1)可设由C县运往A县的化肥为x吨,则C县运往B县的化肥为(100﹣x)吨,D县运往A县的化肥为(90﹣x)吨,D县运往B县的化肥为(x﹣40)吨,所以W=35x+40(90﹣x)+30(100﹣x)+45(x﹣40).其中40≤x≤90;(2)由函数解析式可知,W随着x的增大而增大,所以当x=40时,W最小.因此即可解决问题.解:(1)由C县运往A县的化肥为x吨,则C县运往B县的化肥为(100﹣x)吨,D县运往B县的化肥为(x﹣40)吨依题意W=35x+40(90﹣x)+30(100﹣x)+45(x﹣40)=10x+4800,40≤x≤90;∴W=10x+4800,(40≤x≤90);(2)∵10>0,∴W随着x的增大而增大,当x=40时,W=10×40+4800=5200(元),最小即运费最低时,x=40,∴100﹣x=60,90﹣x=50,x﹣40=0,运送方案为C县的100吨化肥40吨运往A县,60吨运往B县,D县的50吨化肥全部运往A县.7.如图,直线y=kx+6分别与x轴、y轴相交于点E和点F,点E的坐标为(﹣8,0),点A的坐标为(0,3).(1)求k的值;(2)若点P(x,y)是第二象限内的直线上的一个动点,当点P运动过程中,试写出△OPA的面积S与x的函数关系式,并写出自变量x的取值范围;(3)探究:当P运动到什么位置时,△OPA的面积为,并说明理由.【答案】(1)k=;(2)S=×3×(﹣x)=﹣x(﹣8<x<0);(3)P坐标为(﹣,).【解析】(1)把E的坐标为(﹣8,0)代入y=kx+6中即可求出k的值;(2)如图,OA的长度可以根据A的坐标求出,PE就是P的横坐标的相反数,那么根据三角形的面积公式就可以求出△OPA的面积S与x的函数关系式,自变量x的取值范围可以利用点P(x,y)是第二象限内的直线上的一个动点来确定;(3)可以利用(2)的结果求出P的横坐标,然后就可以求出P的纵坐标.解:(1)∵直线y=kx+6分别与x轴、y轴相交于点E和点F,点E的坐标为(﹣8,0),∴0=﹣8k+6,∴k=;(2)如图,过P作PH⊥OA于H,∵点P(x,x+6)是第二象限内的直线上的一个动点,∴PH=|x|=﹣x,而点A的坐标为(0,3),∴S=×3×(﹣x)=﹣x(﹣8<x<0);(3)当S=时,x=﹣,∴y=.∴P坐标为(﹣,).8.如图,△ABC中,点O是边AC上一个动点,过O作直线MN∥BC.设MN交∠ACB的平分线于点E,交∠ACB的外角平分线于点F.(1)求证:OE=OF;(2)若CE=12,CF=5,求OC的长;(3)当点O在边AC上运动到什么位置时,四边形AECF是矩形?并说明理由.【答案】(1)见解析;(2)6.5;(3)见解析【解析】(1)根据平行线的性质以及角平分线的性质得出∠1=∠2,∠3=∠4,进而得出答案;(2)根据已知得出∠2+∠4=∠5+∠6=90°,进而利用勾股定理求出EF的长,即可得出CO的长;(3)根据平行四边形的判定以及矩形的判定得出即可.(1)证明:∵MN交∠ACB的平分线于点E,交∠ACB的外角平分线于点F,∴∠2=∠5,∠4=∠6,∵MN∥BC,∴∠1=∠5,∠3=∠6,∴∠1=∠2,∠3=∠4,∴EO=CO,FO=CO,∴OE=OF;(2)解:∵∠2=∠5,∠4=∠6,∴∠2+∠4=∠5+∠6=90°,∵CE=12,CF=5,∴EF==13,∴OC=EF=6.5;(3)解:当点O在边AC上运动到AC中点时,四边形AECF是矩形.证明:当O为AC的中点时,AO=CO,∵EO=FO,∴四边形AECF是平行四边形,∵∠ECF=90°,∴平行四边形AECF是矩形.。

初二数学证明题(精选多篇)

初二数学证明题(精选多篇)

初二数学证明题(精选多篇)第一篇:初二数学证明题初二数学证明题1、如图,ab=ac,∠bac=90°,bd⊥ae于d,ce⊥ae于e.且bd>ce,证明bd=ec+ed.解答:证明:∵∠bac=90°,ce⊥ae,bd⊥ae,∴∠abd+∠bad=90°,∠bad+∠dac=90°,∠adb=∠aec=90°.∴∠abd=∠dac.又∵ab=ac,∴△abd≌△cae(aas).∴bd=ae,ec=ad.∵ae=ad+de,∴bd=ec+ed.2、△abc是等要直角三角形。

∠acb=90°,ad是bc边上的中线,过c 做ad的垂线,交ab于点e,交ad于点f,求证∠adc=∠bde解:作ch⊥ab于h交ad于p,∵在rt△abc中ac=cb,∠acb=90°,∴∠cab=∠cba=45°.∴∠hcb=90°-∠cba=45°=∠cba.又∵中点d,∴cd=bd.又∵ch⊥ab,∴ch=ah=bh.又∵∠pah+∠aph=90°,∠pcf+∠cpf=90°,∠aph=∠cpf,∴∠pah=∠pcf.又∵∠aph=∠ceh,在△aph与△ceh中∠pah=∠ech,ah=ch,∠pha=∠ehc,∴△aph≌△ceh(asa).∴ph=eh,又∵pc=ch-ph,be=bh-he,∴cp=eb.在△pdc与△edb中pc=eb,∠pcd=∠ebd,dc=db,∴△pdc≌△edb(sas).∴∠adc=∠bde.2证明:作oe⊥ab于e,of⊥ac于f,∵∠3=∠4,∴oe=of.(问题在这里。

理由是什么埃我有点不懂)∵∠1=∠2,∴ob=oc.∴rt△obe≌rt△ocf(hl).∴∠5=∠6.∴∠1+∠5=∠2+∠6.即∠abc=∠acb.∴ab=ac.∴△abc是等腰三角形过点o作od⊥ab于d过点o作oe⊥ac于e再证rt△aod≌rt△aoe(aas)得出od=oe就可以再证rt△dob≌rt△eoc(hl)得出∠abo=∠aco再因为∠obc=∠ocb得出∠abc=∠abc得出等腰△abc41.e是射线ab的一点,正方形abcd、正方形defg有公共顶点d,问当e在移动时,∠fbh的大小是一个定值吗?并验证(过f作fm⊥ah于m,△ade全等于△mef证好了)2.三角形abc,以ab、ac为边作正方形abmn、正方形acpq1)若de⊥bc,求证:e是nq的中点2)若d是bc的中点,∠bac=90°,求证:ae⊥nq3)若f是mp的中点,fg⊥bc于g,求证:2fg=bc3.已知ad是bc边上的高,be是∠abc的平分线,ef⊥bc于f,ad与be交于g求证:1)ae=ag(这个证好了)2)四边形aefg是菱形第二篇:初二数学证明题测试例1、如图,ab∥cd,且∠abe=120°,∠cde=110°,求∠bed的度数。

初二证明题考试题及答案

初二证明题考试题及答案

初二证明题考试题及答案一、选择题1. 已知在△ABC中,AB=AC,点D在BC上,且BD=DC,那么下列说法正确的是:A. AD是△ABC的中线B. AD是△ABC的角平分线C. AD是△ABC的高线D. AD是△ABC的中线、角平分线和高线答案:D2. 在等腰三角形中,如果顶角的角平分线也是底边的高线,那么这个三角形是:A. 等边三角形B. 等腰三角形C. 直角三角形D. 不能确定答案:A二、填空题1. 在平行四边形ABCD中,若∠A=60°,则∠B的度数为______。

答案:120°2. 已知等腰三角形的底边长为6cm,腰长为5cm,那么它的高线长度为______。

答案:4cm三、解答题1. 已知在△ABC中,AB=AC,点D在BC上,且BD=DC,求证:AD是△ABC的中线、角平分线和高线。

证明:因为AB=AC,所以△ABC是等腰三角形。

又因为BD=DC,所以D是BC的中点,故AD是△ABC的中线。

在△ABD和△ACD中,有AB=AC,BD=DC,AD=AD,根据SSS(边边边)全等条件,可得△ABD≌△ACD。

因此,∠BAD=∠CAD,所以AD是△ABC的角平分线。

又因为△ABD≌△ACD,所以∠ADB=∠ADC,即AD是△ABC的高线。

综上所述,AD是△ABC的中线、角平分线和高线。

2. 在等腰三角形ABC中,AB=AC,点D是底边BC上的一点,使得AD 是底边BC的高线,求证:BD=DC。

证明:因为AB=AC,所以△ABC是等腰三角形。

又因为AD是底边BC的高线,根据等腰三角形的性质,底边的高线也是底边的中线,所以BD=DC。

因此,BD=DC得证。

初二数学证明试题答案及解析

初二数学证明试题答案及解析

初二数学证明试题答案及解析1.如图的算式中字母ABC分别表示各不相同的一个数字,则B= .【答案】6【解析】利用竖式左侧5+5+9=19,结果下面为1,也就是前面7+8+B相加后进位是2,故C=2,2+4+4=10,则7+8+B=21.解:∵竖式左侧5+5+9=19,结果下面为1,∴C=2,∵2+4+4=10,应进位1,∴7+8+1+B=22,∴B=6.故答案为:6.点评:此题主要考查了推理与论证,根据加法法则分别分析得出C的值是解题关键.2.元旦联欢会上,林老师跟同学们玩猜匣游戏,礼物放在一只匣子中,谁猜中谁就可以得到这个礼物.三只匣子上都各有一句话.红匣子:礼物不在黄匣中;黄匣子:礼物不在此匣中;绿匣子:礼物在此匣中.林老师向同学们交了底:这三句话中,至少有一句是真的,而且至少有一句是假的.你猜猜看,礼物放在匣子中.【答案】红【解析】根据这三句话中,至少有一句是真的,而且至少有一句是假的,可以分别分析假设正确与否得出答案.解:根据红匣子:礼物不在黄匣中;黄匣子:礼物不在此匣中可以认为是对的,则绿匣子:礼物在此匣中,可以认为是错的.所以答案就是在红匣子.故答案为:红.点评:此题主要考查了推理论证,根据已知假设命题的真伪是解题关键.3.小明同学每天早上6:00钟起床,穿衣需要5min,煮早饭需要7min,他洗脸刷牙需要5min,吃早饭需要8min,吃完早饭就去上学,小明同学从开始起床到吃完早饭仅需要min.【答案】18【解析】本题需先根据题意得出最节省时间的方法,然后即可求出最少需要多少时间.解:小明起床后先煮饭需要7分钟,在煮饭的同时穿衣服需要5分钟、再刷牙需要5分钟,这时饭已煮完,在吃早饭需要8分钟所以小明同学从开始起床到吃完早饭仅需要18分钟.故答案为18.点评:本题主要考查了推理与论证,在解题时要注意统筹方法的应用.4.甲乙两个布袋中各有12个大小一样的小球,且都是红、白、蓝各4个.从甲袋中拿出尽可能少且至少两个颜色一样的球放入乙袋中,再从乙袋中拿出尽可能少的球放入甲袋中,使甲袋中每种颜色的球不少于3个,这时甲袋中有个球,乙袋中有个球(拿出时不能看).【答案】19球,5球【解析】注意满足题中的要求:从甲袋中拿出尽可能少且至少两个颜色一样的球放入乙袋中,则从甲袋拿出最少要4个;再从乙袋中拿出尽可能少的球放入甲袋中,使甲袋中每种颜色的球不少于3个,则最少要拿11个,据此求解.解:从甲袋拿出最少要4个,才可以保证至少有两个颜色一样的球.不妨设是白球拿了两个,红蓝各拿了一个,现在乙袋中有5红,5蓝,6白,一袋中有3红3蓝2白;再从乙袋中拿球保证至少有一个白球就可以保证一袋每种颜色球都不少于3个,而乙袋5红,5蓝,6白,保证至少拿到一个白球,最少要拿11个,即刚好是5红,5蓝,1白.这样最后甲袋有12﹣4+11=19球,乙袋12+4﹣11=5球.点评:解决问题的关键是读懂题意,尽量满足题中的要求,即是求解的途径.5.如图,电路中有4个电阻和一个电流表A,若没有电流通过电流表A,问电阻器断路的可能情况共有种.【答案】8+3=11种【解析】要使没有电流通过电流表A,则若总路上的电阻是断开的,其它的三个电阻无论是断开,还是通的都可以,共有23=8种情况;若总路上的电阻是通的,则每一个支路都不能是通的,所以下面的电阻一定是断开的,上面的两个电阻只要有一个是断开的即可,有3种情况.故共有11种情况.解:本题分两种情况:①若主路的电阻不通,那么这个电路必为断路.因此共有2×2×2=8种可能;②若主路的电阻通电,那么两条支路必须同时为断路,因此共有3种可能.故电阻器断路的可能情况共有8+3=11种.点评:此题的学科综合性较强,能够结合物理中的知识进行分析求解是解答本题的关键.6.有一地球同步卫星A与地面四个科研机构B、C、D、E,它们两两之间可以互相接发信息,由于功率有限,卫星及每个科研机构都不能同时向两处发送信息(如A不能同时给B、C发信息,它可先发给B,再发给C),它们彼此之间一次接发信息的所需时间如右图所示.则一个信息由卫星发出到四个科研机构都接到该信息时所需的最短时间为.【答案】4【解析】首先卫星A传递信息给B用时1(秒),然后B传给C(3秒);同时卫星传给E(1秒),信息传给D和C的时候同时进行,所有动作在4秒钟内结束.解:开始的时候,时间0秒,卫星传给B(1秒)第1秒钟时候,B传给C(3秒);同时卫星传给E(1秒),第2秒钟的时候,E传给D,所有动作在4秒钟内结束,故接到该信息时所需的最短时间为4秒,故答案为4.点评:本题主要考查推理与论证的知识点,解答本题的关键是注意卫星传递信息的同时性,此题难度不大.7.某学生连续观察了n天的天气情况,观察结果是:①共有5个下午是晴天;②共有7个上午是晴天;③共有8个半天是雨天;④下午下雨的那天上午是晴天,则该学生观察的天数n= .【答案】10【解析】他们每天上午、下午各测一次,七次上午晴,五次下午晴,共下八次雨,所以共测了20次,所以这个学生工观察了10天.解:由题意,知:这位学生每天测两次,总共测的次数为7+5+8=20;因此x=20÷2=10(天).故答案为:10.点评:此题主要考查了推理论证,解决本题的关键是得到学生观察天气的规律:每天上午、下午各测一次.8.为了从500只外形相同的鸡蛋中找到唯一的一只双黄蛋,检查员将这些鸡蛋按1﹣500的顺序排成一列,第一次先从中取出序号为单数的蛋,发现其中没有双黄蛋,他将剩下的蛋的原来位置上又按1﹣250编号(即原来的2号变为1号,原来的4号变成2号,…,原来的500号变成250号).又从中取出新序号为单数的蛋进行检查,任没有发现双黄蛋,…,如此下去,检查到最后的一个是双黄蛋,问这只双黄蛋最初的序号是.【答案】256【解析】根据题意,知第一次剩下的是原来编号中的偶数,有250个,第二次剩下的4的倍数,即22的倍数,剩下125个,第三次剩下的是23的倍数,剩下62个,以此类推,最后剩下1个,则需取8次,即剩下28=256.解:根据分析,知最后剩下的是号是28=256.点评:此题要能够正确分析每一次取走的是原来的什么号数以及每一次剩下的个数.9.甲、乙、丙、丁和小强五位同学单循环比赛象棋,到现在为止甲已经赛了四盘,乙赛了三盘,丙赛了二盘,丁赛了一盘,则小强赛了盘.【答案】2【解析】根据甲赛的盘数,可知甲与乙、丙、丁和小强4人各赛了一盘.然后探究乙、丙、丁和小强4人之间赛的盘数(设小强赛的盘数为x),进而得到小强赛的总盘数.解:乙、丙、丁和小强除去与甲赛的一盘后,在他们之间赛的盘数分别是:2、1、0、x.即丁只和甲赛了一盘,没与乙、丙、小强比赛,则乙、丙、小强之间赛的盘数分别为2、1、x,假设丙与小强赛了一盘,那么乙赛的两盘都是与小强赛的,这与单循环比赛相矛盾,是不可能的,所以丙与乙赛了一场,乙又与小强赛了一盘,小强与甲也赛了一盘,故小强共赛了2盘.故填2.点评:解决问题的关键是读懂题意,将实际问题转化为数学问题,利用数学知识进行探讨、解答实际问题.10.10位小运动员,他们着装的运动服号码分别是1﹣10,能否将这10位运动员按某种顺序站成一排,使得每相邻3名运动员号码数之和都不大于15?【答案】不可能【解析】首先计算所有的号码之和是55,若每相连的3个号码数都不大于15,则前9个号码数的和不大于3×15=45,这样导致第10个号码必须为10;同理,后9个号码的和不大于45,可得出第一个号码必须为10,显然这是不可能的.解:不能.理由如下:因为所有号码的总和为55,如果每相连的3个号码数都不大于15,则前9个号码数的和不大于3×15=45,故第10个号码数不小于10,即只能为10.同理,后9个号码数的和不大于45,故第1个号码数不小于10,因此,也必须为10,显然这是不可能的.点评:解决本题的关键是能够根据总数的和以及每相连的3个号码数都不大于15,进行综合分析.11.问:在8×8的国际象棋盘上最多可以放多少个“+”字形(其中每个“+”字形占据棋盘的5个小方格),使得任意两个“+”字形不重叠,且每个“+”字形都不超出棋盘的边界?证明你的结论.【答案】8个【解析】本题可根据小“+”字形的中心来求,那么小“+”字形的中心应该在6×6的方格中,每3×3的方格中最多可放2个因此“+”字形的最多的个数为8个. 解:8个.证明:设“+”字形的中心为中间的那个方格,显然所有的中心在6×6的方格内,而每个3×3的方格内最多放2个中心, 6×6的棋盘内够有3×3的个数为6×6÷(3×3)=4, 因此最多的个数应该是4×2=8个.点评:解决问题的关键是读懂题意,找到所求的量的等量关系.12. 10名棋手参加比赛,规定:每两名棋手间都要比赛一次,胜者得2分,下和各得1分,输者得0分.比赛结果表明:棋手们所得分数各不相同,前两名棋手没输过,前两名的总分之和比第三名多20分,第四名得分与后四名得分总和相等,那么前六名得分分别是多少? 【答案】17,16,13,12,11,9【解析】先设第k 名选手的得分为a k (1≤k≤10),得出a 1、a 2的值,再根据得出a 4≥12,求出a 3,再根据a 1≤a 3﹣1=12,求出a 4,最后根据a 1+a 2+a 3+…a 8+a 9+a 10=90分别求出a 5、a 6的值.解:设第k 名选手的得分为a k (1≤k≤10),依题意得:a 1>a 2>a 3>…a 9>a 10a 1≤1+2×(9﹣1)=17,a 2≤a 1﹣1=16,a 3+20=a 1+a 2,∴a 3≤13 ①,又后四名棋手相互之间要比赛=6场,每场比赛双方的得分总和为2分,∴a 7+a 8+a 9+a 10≥12,∴a 4≥12而a 3≥a 4+1≥13,②∴由①②得:a 3=13,∴a 1+a 2=33,∴a 1=17,a 2=16,又∵a 1≤a 3﹣1=12,∴a 4=12, ∵a 1+a 2+a 3+…a 8+a 9+a 10=×2=90,∴17+16+13+12+a 5+a 6+12=90,而a 5+a 6≤a 5+a 5﹣1,即:a 5≥10\frac{1}{2},又a5<a 4=12, ∴a 5=11,a 6=9,故前六名得分分别是:17,16,13,12,11,9.点评:本题考查了推理与论证;解决问题的关键是读懂题意,找到所求的量的等量关系是解题的关键.13. 我们的数学教材中有一个“抢30的游戏”,现在改为“甲、乙二人抢20”的游戏.游戏规则是:甲先说“1”或“1、2”乙接着甲的数往下说一个或两个数,然后又轮到甲再接着乙的数往下说一个或两个数,甲、乙反复轮流说,每次每人说一个或两个数都可以,但不能连续说三个数,也不能一个数也不说.谁先抢到20,谁就获胜.因为甲先说,你认为谁会获胜?请你分析获胜策略、推理说明获胜的道理. 【答案】第一个人必胜【解析】第一个人可以两个两个的说,也可以一个一个的说,还可以有时说一个,有时说两个,但不论第二个人怎样变化,2,5,8,11,17,20这些数的主动权都在第一个人手中. 解:第一个人必胜;因为是第一个人先说,所以主动权在第一个人,他肯定按2,5,8,11,17,20,报数,故第一个人必胜.点评:此题考查的知识点是推理与论证,解答此题需要逆向思维,因为是抢20,故应先从20倒推,20,17,11,8,5,2的顺序.14. 成都七中学生网站是由成都七中四大学生组织共同管理的网站,该网站是成都七中历史上首次由四大学生组织共同合作建成的一个学生网站,其内容囊括了成都七中学生学习及生活的各个方面.某学生在输入网址“http :∥www .cdqzstu .com”中的“cdqzstu .com”时,不小心调换了两个字母的位置,则可能出现的错误种数是( ) A .90 B .45 C .88 D .44【答案】D【解析】“cdqzstu .com”中字母有10个.相同字母有2个.若第一个错误的字母是第一个字母c ,那么c 和它后面除c 外任何一个字母调换后都可能出现错误,则错误的种类可能有8种.若第1个错误的字母是第二个字母d ,排除和第一个字母已经计算过的错误后,可能出现的错误应该有8种,按照此种方法,错误的种类依次为:7,6,5,4,3,2,1;共有:16+7+6+5+4+3+2+1=44种.解:“cdqzstu.com”中共有10个字母;若c与后面的字母分别调换,则有:10﹣1=9种调换方法;依此类推,调换方法共有:9+8+7+…+1=45种;由于10个字母中,有两个字母相同,因此当相同字母调换时,不会出现错误.因此出现错误的种数应该是:45﹣1=44种.故选D.点评:解答本题时需注意:相同字母调换后结果不会出现错误.15.图中小圆圈表示网络的结点,结点之间的连接表示它们有网线相连,相连标注的数字表示该段网线单位时间内可以通过的最大信息量.现从结点A向结点B传递信息,若信息可以分开沿不同路线同时传递,则单位时间内传递的最大信息量为()A.11B.10C.8D.7【答案】C【解析】先找出从结点A向结点B传递信息可沿A﹣C﹣B和A﹣D﹣B路线同时传递,再找出每条路线通过的最大信息量,然后相加即可得到答案.解:由于信息可以分开沿不同路线同时传递,所以从结点A向结点B传递信息可经过结点D和结点B;又因为从结点A到结点D的最大信息量为5,从结点C到结点B的最大信息量为3,所以从结点A向结点B传递信息,若信息可以分开沿不同路线同时传递,则单位时间内传递的最大信息量为5+3=8.故选C.点评:本题考查了推理与论证的方法:先分析题目所给的条件或要求,然后通过推理得到相关的结论.16.在一次1500米比赛中,有如下的判断:甲说:丙第一,我第三;乙说:我第一,丁第四;丙说:丁第二,我第三.结果是每人的两句话中都只说对了一句,则可判断第一名是()A.甲B.乙C.丙D.丁【答案】B【解析】假设甲说的前半句话是正确的,即丙第一,则乙的后半句是正确的,即丁第四,则丙说的后半句应是正确的,出现矛盾,所以必须是甲说的后半句是正确的,即甲第三,所以丙说的前半句是正确的,即丁第二,所以乙说的前半句是正确的,即乙第一.解:根据分析,知第一名应是乙.故选B.点评:此类题应从假设出发,经过推理,如果得到矛盾,则假设错误,再进一步推理即可.17.某市初中12支排球队进行比赛,如果采用单循环赛制,一共举行几场比赛()A.11B.12C.66D.72【答案】C【解析】一共有12支球队,每支队伍要比赛的场数为11场,因此共需比赛(12×11)场,由于采用单循环赛制,因此需将重复的比赛场数去掉,即比赛的场数为(12×11)÷2=66场.解:由于采用单循环赛制,则一共举行的比赛场数为:(12×11)÷2=66(场).故选C.点评:解答本题的关键是理解单循环赛的规则,即:每两个队只比赛一场.18.用锯锯木,锯会发热;用锉锉物,锉会发热;在石头上磨刀,刀会发热,所以物体摩擦会发热.此结论的得出运用的方法是()A.观察B.实验C.归纳D.类比【答案】C【解析】由多种现象得到一个规律属于归纳.解:由多种现象得到一个规律属于归纳.故选C.点评:本题考查归纳的形成.所谓归纳,是指通过对特例的分析来引出普遍结论的一种推理形式.它由推理的前提和结论两部分构成:前提是若干已知的个别事实,是个别或特殊的判断、陈述,结论是从前提中通过推理而获得的猜想,是普遍性的陈述、判断.19.甲、乙、丙、丁四位同学猜测自己的数学成绩,甲说:“如果我得优,那么乙也得优”;乙说:“如果我得优,那么丙也得优”;丙说:“如果我得优,那么丁也得优”,大家都没有说错,但只有三个人得优,请问甲、乙、丙、丁中谁没有得优()A.甲B.乙C.丙D.丁【答案】A【解析】此题含有一个隐含条件,也就是丁没有说:如果我得优,那么甲也得优…解题可以从这里突破.也就是丁得优,而甲不得优.由此进行推理即可得到结论.解:∵这个题还有一个隐含条件,也就是丁没有说:如果我得优,那么甲也得优…,也就是丁得优,而甲不得优.如果甲不得优,乙可得可不得优;如果乙不得优,而丁可以得优也可以不得优;如果丁一定要得优,因为题中说有3人得优,所以按反推法,有丙也得优;如果问题是1人得优,那肯定是丁,如果2人得优,那肯定是丁、丙.如果3人得优,那肯定是丁、丙、乙.故选A.点评:此题比较麻烦,首先要找出题目的隐含条件,然后利用隐含条件进行推理才能正确得出结论.20. A、B、C、D、E五支球队进行单循环比赛(每两支球队间都要进行一场比赛),当比赛进行到一定阶段时,统计A、B、C、D四个球队已赛过的场数,依次为A队4场,B队3场,C队2场,D队1场,这时,E队已赛过的场数是()A.1B.2C.3D.4【答案】B【解析】首先利用已知得出A队必须和B、C、D、E这四个球队各赛一场,进而得出B队只能和C、D、E中的两个队比赛,再利用D队只赛过一场,得出B队必须和C、E各赛1场,即可得出E队赛过2场.解:A、B、C、D、E五支球队进行单循环比赛,已知A队赛过4场,所以A队必须和B、C、D、E这四个球队各赛一场,已知B队赛过3场,B队已和A队赛过1场,那么B队只能和C、D、E中的两个队比赛,又知D队只赛过一场(也就是和A队赛过的一场),所以B队必须和C、E各赛1场,这样满足C队赛过2场,从而推断E队赛过2场.故选:B.点评:此题主要考查了推理论证,利用A队比赛场数得出B队、D队比赛过的对应球队是解题关键.。

黑龙江初二初中数学期末考试带答案解析

黑龙江初二初中数学期末考试带答案解析

黑龙江初二初中数学期末考试班级:___________ 姓名:___________ 分数:___________一、填空题1.函数中,自变量x的取值范围是_____________.2.9的平方根是_____.3.在平面直角坐标系中.点P(-2,3)关于x轴的对称点坐标是4.等腰三角形的一个角是80°,则它的底角是_____________5.如图,∠A=36°,∠DBC=36°,∠C=72°,则图中等腰三角形有_________个.6..7.如图,AB,CD相交于点O,AD=CB,请你补充一个条件,使得△AOD≌△COB.你补充的条件是______.8.如图,已知OC平分∠AOB,P为OC上一点,PM⊥OA于M,PN⊥OB于N,PN="3" .则PM=_______。

9.已知直线y=x-3与y=2x+2的交点为(-5,-8),则方程组的解是________。

10.如图,在△ABC中,∠ACB为直角,∠A=30°,CD⊥AB于D。

若BD=1,则AB=_____11.将直线y=4x+1的图象向下平移3个单位长度,得到直线_____________.12.对于数a,b,c,d,规定一种运算=ad-bc,如=1×(-2)-0×2=-2,那么当=27时,则x= .二、选择题1.下列图形中,不是轴对称图形的是()。

2.已知正比例函数的函数值y随x的增大而增大,则一次函数的图象大致是 ( )3.下列算式中,运算结果为负数的是()A.-(-3)B.C.-32D.(-3) 24.已知点(-4,y 1),(2,y 2)都在直线y="-" x+2上,则y 1、y 2大小关系是 ( )A . y 1 > y 2B . y 1 = y 2C .y 1 < y 2D .不能比较5.下列运算正确的是 ( )A .x 2+x 2=2x 4B .a 2·a 3= a 5C .(-2x 2)4=16x 6D .a 7÷a 4÷a 3=a6.关于函数,下列结论正确的是 ( )A .函数图像必经过点(1,2)B .函数图像经过二、四象限C .y 随x 的增大而增大D .y 随x 的增大而减小7.如图,把矩形纸片ABCD 纸沿对角线折叠,设重叠部分为△EBD ,那么,下列说法错误的是( )A .△EBD 是等腰三角形,EB=EDB .折叠后∠ABE 和∠CBD 一定相等C .折叠后得到的图形是轴对称图形D .△EBA 和△EDC 一定是全等三角形8.下列各命题中,假命题的个数为( )①面积相等的两个三角形是全等三角形;②三个角对应相等的两个三角形是全等三角形;③全等三角形的周长相等④有两边及其中一边的对角对应相等的两个三角形是全等三角形. A .1 B .2 C .3 D .4三、解答题1.先化简,再求值:,其中,.2.在平面直角坐标系中的位置如图所示.(1)作出与关于轴对称的;并写出A 1、B 1、C 1坐标。

2023-2024学年全国初中八年级上数学人教版期末考卷(含答案解析)

2023-2024学年全国初中八年级上数学人教版期末考卷(含答案解析)

20232024学年全国初中八年级上数学人教版期末考卷一、选择题(每题2分,共20分)1. 下列各数中,是整数的是()A. 0.5B. 2C. 3.14D. 5/32. 若a、b是实数,且a+b=0,则下列选项中正确的是()A. a和b互为相反数B. a和b互为倒数C. a和b互为平方根D. a和b互为对数3. 已知a、b是实数,且a²=b²,则下列选项中正确的是()A. a=bB. a=bC. a+b=0D. a²+b²=04. 下列各数中,是无理数的是()A. 2B. 3.14C. √9D. √55. 已知a、b是实数,且a²+b²=0,则下列选项中正确的是()A. a=0,b≠0B. a≠0,b=0C. a=0,b=0D. a≠0,b≠06. 若a、b是实数,且a²+b²=1,则下列选项中正确的是()A. a=1,b=0B. a=0,b=1C. a²+b²=0D. a²+b²=27. 已知a、b是实数,且a²+b²=0,则下列选项中正确的是()A. a=0,b≠0B. a≠0,b=0C. a=0,b=0D. a≠0,b≠08. 若a、b是实数,且a²+b²=1,则下列选项中正确的是()A. a=1,b=0B. a=0,b=1C. a²+b²=0D. a²+b²=29. 已知a、b是实数,且a²+b²=0,则下列选项中正确的是()A. a=0,b≠0B. a≠0,b=0C. a=0,b=0D. a≠0,b≠010. 若a、b是实数,且a²+b²=1,则下列选项中正确的是()A. a=1,b=0B. a=0,b=1C. a²+b²=0D. a²+b²=2二、填空题(每题2分,共20分)1. 若a、b是实数,且a²+b²=0,则a=______,b=______。

最新初中数学命题与证明的经典测试题及答案解析(3)

最新初中数学命题与证明的经典测试题及答案解析(3)

最新初中数学命题与证明的经典测试题及答案解析(3)一、选择题1.下列命题中真命题是()A.若a2=b2,则a=b B.4的平方根是±2C.两个锐角之和一定是钝角 D.相等的两个角是对顶角【答案】B【解析】【分析】利用对顶角的性质、平方根的性质、锐角和钝角的定义分别判断后即可确定正确的选项.【详解】A、若a2=b2,则a=±b,错误,是假命题;B、4的平方根是±2,正确,是真命题;C、两个锐角的和不一定是钝角,故错误,是假命题;D、相等的两个角不一定是对顶角,故错误,是假命题.故选B.【点睛】考查了命题与定理的知识,解题的关键是了解对顶角的性质、平方根的性质、锐角和钝角的定义,难度不大.2.下列命题是真命题的是()A.如果一个数的相反数等于这个数本身,那么这个数一定是0B.如果一个数的倒数等于这个数本身,那么这个数一定是1C.如果一个数的平方等于这个数本身,那么这个数一定是0D.如果一个数的算术平方根等于这个数本身,那么这个数一定是0【答案】A【解析】【分析】根据相反数是它本身的数为0;倒数等于这个数本身是±1;平方等于它本身的数为1和0;算术平方根等于本身的数为1和0进行分析即可.【详解】A、如果一个数的相反数等于这个数本身,那么这个数一定是0,是真命题;B、如果一个数的倒数等于这个数本身,那么这个数一定是1,是假命题;C、如果一个数的平方等于这个数本身,那么这个数一定是0,是假命题;D、如果一个数的算术平方根等于这个数本身,那么这个数一定是0,是假命题;故选A.【点睛】此题主要考查了命题与定理,关键是掌握正确的命题为真命题,错误的命题为假命题.3.下列命题中真命题是()A 2一定成立B .位似图形不可能全等C .正多边形都是轴对称图形D .圆锥的主视图一定是等边三角形【答案】C【解析】【分析】根据二次根式的性质、位似图形的定义、正多边形的性质及三视图的概念逐一判断即可得.【详解】A )2,当a <0时不成立,假命题;B 、位似图形在位似比为1时全等,假命题;C 、正多边形都是轴对称图形,真命题;D 、圆锥的主视图不一定是等边三角形,假命题,故选C .【点睛】本题考查了真命题与假命题,涉及到二次根式的性质、位似图形、正多边形、视图等知识,熟练掌握相关知识是解题的关键.4.已知:ABC ∆中,AB AC =,求证:90O B ∠<,下面写出可运用反证法证明这个命题的四个步骤:①∴180O A B C ∠+∠+∠>,这与三角形内角和为180O 矛盾,②因此假设不成立.∴90O B ∠<,③假设在ABC ∆中,90O B ∠≥,④由AB AC =,得90O B C ∠=∠≥,即180O B C ∠+∠≥.这四个步骤正确的顺序应是( )A .③④②①B .③④①②C .①②③④D .④③①②【答案】B【解析】【分析】根据反证法的证明步骤“假设、合情推理、导出矛盾、结论”进行分析判断即可.【详解】题目中“已知:△ABC 中,AB=AC ,求证:∠B <90°”,用反证法证明这个命题过程中的四个推理步骤:应该为:(1)假设∠B ≥90°,(2)那么,由AB=AC ,得∠B=∠C ≥90°,即∠B+∠C ≥180°,(3)所以∠A+∠B+∠C >180°,这与三角形内角和定理相矛盾,(4)因此假设不成立.∴∠B <90°,原题正确顺序为:③④①②,故选B .【点睛】本题考查反证法的证明步骤,弄清反证法的证明环节是解题的关键.5.下列结论中,不正确的是()A.两点确定一条直线B.两点之间,直线最短C.等角的余角相等D.等角的补角相等【答案】B【解析】【分析】根据直线线段的性质和余角、补角的定义逐项分析可得出正确选项.【详解】A.两点确定一条直线,正确;B.两点之间,线段最短,所以B选项错误;C.等角的余角相等,正确;D.等角的补角相等,正确.故选B考点:定理6.现给出下列四个命题:①等边三角形既是轴对称图形,又是中心对称图形;②相似三角形的面积比等于它们的相似比;③菱形的面积等于两条对角线的积;④三角形的三个内角中至少有一内角不小于60°.其中不正确的命题的个数是()A.1个 B.2个 C.3个 D.4个【答案】C【解析】①根据等边三角形的性质知,等边三角形是轴对称图形,不是中心对称图形,错误;②由相似三角形的性质知相似三角形的面积比等于它们的相似比的平方,错误;③根据菱形的面积公式,错误;④根据三角形内角和定理可知,三角形的三个内角中至少有一内角不小于60°,正确.综合以上分析,不正确的命题包括①②③.故选C.7.下列命题是假命题的是( )A.对顶角相等B.两直线平行,同旁内角相等C.平行于同一条直线的两直线平行D.同位角相等,两直线平行【答案】B【解析】解:A.对顶角相等是真命题,故本选项正确,不符合题意;B.两直线平行,同旁内角互补,故本选项错误,符合题意;C.平行于同一条直线的两条直线平行是真命题,故本选项正确,不符合题意;D.同位角相等,两直线平行是真命题,故本选项正确,不符合题意.故选B.8.下列命题正确的是( )A.在同一平面内,可以把半径相等的两个圆中的一个看成是由另一个平移得到的.B.两个全等的图形之间必有平移关系.C.三角形经过旋转,对应线段平行且相等.D.将一个封闭图形旋转,旋转中心只能在图形内部.【答案】A【解析】【分析】根据平移的性质:平移后图形的大小、方向、形状均不发生改变结合选项即可得出答案.【详解】解:A、经过旋转后的图形两个图形的大小和形状也不变,半径相等的两个圆是等圆,圆还具有旋转不变性,故本选项正确;B、两个全等的图形位置关系不明确,不能准确判定是否具有平移关系,错误;C、三角形经过旋转,对应线段相等但不一定平行,所以本选项错误;D、旋转中心可能在图形内部,也可能在图形边上或者图形外面,所以本选项错误.故选:A.【点睛】本题考查平移、旋转的基本性质,注意掌握①平移不改变图形的形状和大小;②经过平移,对应点所连的线段平行且相等,对应线段平行且相等,对应角相等.9.下列定理中,逆命题是假命题的是()A.在一个三角形中,等角对等边B.全等三角形对应角相等C.有一个角是60度的等腰三角形是等边三角形D.等腰三角形两个底角相等【答案】B【解析】【分析】先把一个命题的条件和结论互换就得到它的逆命题,再进行判断即可.【详解】解:A、逆命题为:在一个三角形中等边对等角,逆命题正确,是真命题;B、逆命题为:对应角相等的三角形是全等三角形,逆命题错误,是假命题;C、逆命题为:如果一个三角形是等边三角形,那么它是一个等腰三角形而且有一个内角等于60°,逆命题正确,是真命题;D、逆命题为:两个角相等的三角形是等腰三角形,逆命题正确,是真命题;故选:B .【点睛】本题考查了命题与定理的知识,解题的关键是能够正确的写出原命题的逆命题.10.下列命题:①直角三角形的两个锐角互余;②同旁内角互补;③如果直线12l l P ,直线23l l P ,那 么13l l P .其中真命题的序号是( ) A .①②B .①③C .②③D .①②③【答案】B【解析】【分析】利用直角三角形的性质、平行线的性质等知识分别判断后即可确定正确的选项.【详解】解:①直角三角形的两个锐角互余,正确,是真命题;②两直线平行,同旁内角互补,故错误,是假命题; ③如果直线12l l P ,直线23l l P ,那 么13 l l P ,正确,是真命题; 故选:B .【点睛】本题主要考查了命题与定理,掌握命题与定理是解题的关键.11.下列命题中哪一个是假命题( )A .8的立方根是2B .在函数y =3x 的图象中,y 随x 增大而增大C .菱形的对角线相等且平分D .在同圆中,相等的圆心角所对的弧相等【答案】C【解析】【分析】利用立方根的定义、一次函数的性质、菱形的性质及圆周角定理分别判断后即可确定正确的选项.【详解】A 、8的立方根是2,正确,是真命题;B 、在函数3y x 的图象中,y 随x 增大而增大,正确,是真命题;C 、菱形的对角线垂直且平分,故错误,是假命题;D 、在同圆中,相等的圆心角所对的弧相等,正确,是真命题,故选C .【点睛】考查了命题与定理的知识,能够了解立方根的定义、一次函数的性质、菱形的性质及圆周角定理等知识是解题关键.12.下列命题中,其中真命题的个数是()①平面直角坐标系内的点与实数对一一对应;②内错角相等;③平行于同一条直线的两条直线互相平行;④对顶角相等A.1个B.2个C.3个D.4个【答案】B【解析】【分析】正确的命题是真命题,根据真命题的定义依次进行判断.【详解】①平面直角坐标系内的点与有序实数对一一对应,是假命题;②两直线平行,内错角相等,是假命题;③平行于同一条直线的两条直线不一定相互平行,是真命题;④对顶角相等,是真命题;故选:B.【点睛】此题考查真命题的定义,正确掌握坐标与图形,平行线的性质,平行公理,对顶角性质是解题的关键.13.下列命题中正确的有()个①平分弦的直径垂直于弦;②经过半径的外端且与这条半径垂直的直线是圆的切线;③在同圆或等圆中,圆周角等于圆心角的一半;④平面内三点确定一个圆;⑤三角形的外心到三角形的各个顶点的距离相等.A.1 B.2 C.3 D.4【答案】B【解析】【分析】根据垂径定理的推论对①进行判断;根据切线的判定定理对②进行判断;根据圆周角定理对③进行判断;根据确定圆的条件对④进行判断;根据三角形外心的性质对⑤进行判断.【详解】①平分弦(非直径)的直径垂直于弦,错误;②经过半径的外端且与这条半径垂直的直线是圆的切线,正确;③在同圆或等圆中,同弧所对的圆周角等于圆心角的一半,错误;④平面内不共线的三点确定一个圆,错误;⑤三角形的外心到三角形的各个顶点的距离相等,正确;故正确的命题有2个故答案为:B .【点睛】本题考查了判断命题真假的问题,掌握垂径定理的推论、切线的判定定理、圆周角定理、确定圆的条件、三角形外心的性质是解题的关键.14.39.下列命题中,是假命题的是( )A .同旁内角互补B .对顶角相等C .直角的补角仍然是直角D .两点之间,线段最短【答案】A【解析】同旁内角不一定互补,同旁内角互补的条件是两直线平行,故选A.15.能说明命题“关于x 的方程240x x m -+=一定有实数根”是假命题的反例为( ) A .1m =-B .0m =C .4m =D .5m =【答案】D【解析】【分析】利用m=5使方程x 2-4x+m=0没有实数解,从而可把m=5作为说明命题“关于x 的方程x 2-4x+m=0一定有实数根”是假命题的反例.【详解】当m=5时,方程变形为x 2-4x+m=5=0,因为△=(-4)2-4×5<0,所以方程没有实数解,所以m=5可作为说明命题“关于x 的方程x 2-4x+m=0一定有实数根”是假命题的反例. 故选D .【点睛】本题考查了命题与定理:命题的“真”“假”是就命题的内容而言.任何一个命题非真即假.要说明一个命题的正确性,一般需要推理、论证,而判断一个命题是假命题,只需举出一个反例即可.16.利用反证法证明命题“四边形中至少有一个角是钝角或直角”时,应假设( ) A .四边形中至多有一个内角是钝角或直角B .四边形中所有内角都是锐角C .四边形的每一个内角都是钝角或直角D .四边形中所有内角都是直角【答案】B【解析】【分析】先假设命题中的结论不成立,然后由此经过推理,引出矛盾,判定所做的假设不正确,从而得到原命题成立,这种证明方法叫做反证法.【详解】假设命题中的结论不成立,即命题“四边形中至少有一个角是钝角或直角”不成立,即“四边形中的四个角都不是钝角或直角”,即“四边形中的四个角都是锐角”故选B.【点睛】本题考查反证法,要注意命题“至少有一个是”不成立,对应的命题应为“都不是”.17.下列命题的逆命题不正确...的是()A.相等的角是对顶角B.两直线平行,同旁内角互补C.矩形的对角线相等D.平行四边形的对角线互相平分【答案】C【解析】【分析】首先写出各个命题的逆命题,然后进行判断即可.【详解】A、逆命题是:对顶角相等.正确;B、逆命题是:同旁内角互补,两直线平行,正确;C、逆命题是:对角线相等的四边形是矩形,错误;D、逆命题是:对角线互相平分的四边形是平行四边形,正确.故选:C.【点睛】本题主要考查了写一个命题的逆命题的方法,首先要分清命题的条件与结论.18.下列五个命题:①如果两个数的绝对值相等,那么这两个数的平方相等;②内错角相等;③在同一平面内,垂直于同一条直线的两条直线互相平行;④两个无理数的和一定是无理数;⑤坐标平面内的点与有序数对是一一对应的.其中真命题的个数是()A.2个B.3个C.4个D.5个【答案】B【解析】【分析】根据平面直角坐标系的概念,在两直线平行的条件下,内错角相等,两个无理数的和可以是无理数也可以是有理数,进行判断即可.【详解】①正确;②在两直线平行的条件下,内错角相等,②错误;③正确;④反例:两个无理数π和-π,和是0,④错误;⑤坐标平面内的点与有序数对是一一对应的,正确;故选:B .【点睛】本题考查实数,平面内直线的位置;牢记概念和性质,能够灵活理解概念性质是解题的关键.19.已知:在ABC V 中,AB AC ≠,求证:.B C ∠≠∠若用反证法来证明这个结论,可以假设( )A .AB ∠=∠B .AB BC = C .B C ∠=∠D .A C ∠=∠【答案】C【解析】【分析】反证法的步骤:1、假设命题反面成立;2、从假设出发,经过推理得出和反面命题矛盾,或者与定义、公理、定理矛盾;3、得出假设命题不成立是错误的,即所求证命题成立.【详解】已知:在ABC V 中,AB AC ≠,求证:.B C ∠≠∠若用反证法来证明这个结论,可以假设B C ∠=∠,由“等角对等边”可得AB=AC,这与已知矛盾,所以.B C ∠≠∠故选C【点睛】本题考核知识点:反证法. 解题关键点:理解反证法的一般步骤.20.以下说法中:(1)多边形的外角和是360︒;(2)两条直线被第三条直线所截,内错角相等;(3)三角形的3个内角中,至少有2个角是锐角.其中真命题的个数为() A .0B .1C .2D .3【答案】C【解析】【分析】利用多边形的外角和定理、平行线的性质及三角形的内角和定理分别判断后即可确定正确的选项.【详解】解:(1)多边形的外角和是360°,正确,是真命题;(2)两条平行线被第三条直线所截,内错角相等,故错误,是假命题;(3)三角形的3个内角中,至少有2个角是锐角,正确,是真命题,真命题有2个,故选:C .【点睛】考查了命题与定理的知识,解题的关键是了解多边形的外角和定理、平行线的性质及三角形的内角和定理,难度不大.。

福建初二初中数学期末考试带答案解析

福建初二初中数学期末考试带答案解析

福建初二初中数学期末考试班级:___________ 姓名:___________ 分数:___________一、选择题1.的值等于()A.0B.1C.2013D.﹣20132.在平面直角坐标系中,点(1,2)所在的象限是()A.第一象限B.第二象限C.第三象限D.第四象限3.已知函数y=3x﹣1,当x=3时,y的值是()A.6B.7C.8D.94.已知一组数据:9,9,8,8,7,6,5,则这组数据的中位数是()A.9B.8C.7D.65.下列式子成立的是()A.B.C.D.6.如图,已知∠1=∠2,则不一定能使△ABD≌△ACD的条件是()A.BD=CD B.AB=AC C.∠B=∠C D.∠BAD=∠CAD二、填空题1.= .2.用科学记数法表示:0.000004= .3.数据2,4,5,7,6的极差是.4.在平面直角坐标系中,点(﹣3,4)关于原点对称的点的坐标是.5.命题“同位角相等,两直线平行”的逆命题是:.6.甲、乙两同学近期4次数学单元测试的平均分相同,甲同学的方差=3.2,乙同学的方差=4.1,则成绩较稳定的同学是(填“甲”或“乙”).7.已知某个反比例函数,它在每个象限内,y随x增大而增大,则这个反比例函数可以是(写出一个即可).8.如图,正方形ABCD中,M是BC上的中点,连结AM,作AM的垂直平分线GH交AB于G,交CD于H,若CM=2,则AG= .9.如图,在直角坐标系中,已知点A(﹣4,0),B(0,3),对△OAB连续作旋转变换,依次得到三角形(1),三角形(2),三角形(3),三角形(4),…,(1)△AOB的面积是;(2)三角形(2013)的直角顶点的坐标是.10.(8分)某学习小组10名学生的某次数学测验成绩统计表如下:成绩(分)60708090(1)填空:①x= ;②此学习小组10名学生成绩的众数是;(2)求此学习小组的数学平均成绩.11.(8分)某校举行英语演讲比赛,准备购买30本笔记本作为奖品,已知A、B两种笔记本的价格分别是12元和8元.设购买A种笔记本x本.(1)购买B种笔记本本(用含x的代数式表示);(2)设购买这两种笔记本共花费y元,求y元与x的函数关系式,并求出y的最大值和最小值.三、解答题1.(16分)①计算:②解方程:.2.(8分)如图,已知△ABC.(1)作边BC的垂直平分线;(2)作∠C的平分线.(要求:不写作法,保留作图痕迹)3.(8分)已知一次函数y=kx+b的图象经过点(1,3)和点(2,5),求k和b的值.4.(8分)已知正比例函数y=x和反比例函数的图象都经过点A(3,3).(1)直接写出反比例函数的解析式;(2)把直线OA向下平移后与反比例函数的图象交于点B(6,m),求平移的距离.5.(12分)如图1,四边形ABCD,AEFG都是正方形,E、G分别在AB、AD边上,已知AB=4.(1)求正方形ABCD的周长;(2)将正方形AEFG绕点A逆时针旋转θ(0°<θ<90°)时,如图2,求证:BE=DG.(3)将正方形AEFG绕点A逆时针旋转45°时,如图3,延长BE交DG于点H,设BH与AD的交点为M.①求证:BH ⊥DG ;②当AE=时,求线段BH 的长(精确到0.1).6.(13分)已知:直线l 1与直线l 2平行,且它们之间的距离为2,A 、B 是直线l 1上的两个定点,C 、D 是直线l 2上的两个动点(点C 在点D 的左侧),AB=CD=5,连接AC 、BD 、BC ,将△ABC 沿BC 折叠得到△A 1BC .(1)求四边形ABDC 的面积.(2)当A 1与D 重合时,四边形ABDC 是什么特殊四边形,为什么? (3)当A 1与D 不重合时①连接A 1、D ,求证:A 1D ∥BC ;②若以A 1,B ,C ,D 为顶点的四边形为矩形,且矩形的边长分别为a ,b ,求(a+b )2的值.四、计算题(8分)如图,在△ABC 中,AB=AC ,点D 、E 在BC 上,且BD=CE .求证:△ABE ≌△ACD .福建初二初中数学期末考试答案及解析一、选择题1.的值等于() A .0B .1C .2013D .﹣2013【答案】B【解析】本题根据任何非0数的0次幂都等于1进行计算. 【考点】零指数幂2.在平面直角坐标系中,点(1,2)所在的象限是() A .第一象限 B .第二象限 C .第三象限D .第四象限【答案】A【解析】本题考查了各象限内点的坐标的符号特征,四个象限的符号特点分别是:第一象限(+,+);第二象限(﹣,+);第三象限(﹣,﹣);第四象限(+,﹣). 【考点】点的坐标3.已知函数y=3x ﹣1,当x=3时,y 的值是() A .6 B .7 C .8 D .9【答案】C【解析】本题只需要把x=3代入函数关系式就可以求出y 的值. 【考点】函数值4.已知一组数据:9,9,8,8,7,6,5,则这组数据的中位数是() A .9 B .8 C .7D .6【答案】B【解析】中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数).9,9,8,8,7,6,5是从大到小排列的,处于最中间的数是8,则这组数据的中位数是8.点评:此题考查了中位数,.【考点】中位数5.下列式子成立的是()A.B.C.D.【答案】D【解析】利用分式的基本性质,以及分式的乘方法则即可判断.A、,选项错误;B、当m=1时,=4,故选项错误;C、,故选项错误;D、正确.【考点】分式的混合运算.6.如图,已知∠1=∠2,则不一定能使△ABD≌△ACD的条件是()A.BD=CD B.AB=AC C.∠B=∠C D.∠BAD=∠CAD【答案】B【解析】∵∠1=∠2,AD为公共边,若BD=CD,则△ABD≌△ACD(SAS);B、∵∠1=∠2,AD为公共边,若AB=AC,不符合全等三角形判定定理,不能判定△ABD≌△ACD;C、∵∠1=∠2,AD为公共边,若∠B=∠C,则△ABD≌△ACD(AAS);D、∵∠1=∠2,AD为公共边,若∠BAD=∠CAD,则△ABD≌△ACD(ASA);【考点】全等三角形的判定二、填空题1.= .【答案】【解析】根据幂的负整数指数运算法则计算.原式==.【考点】负整数指数幂.2.用科学记数法表示:0.000004= .【答案】4×【解析】科学记数法表示较小的数,一般形式为a×10﹣n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.【考点】科学记数法—表示较小的数3.数据2,4,5,7,6的极差是.【答案】5【解析】极差就是用这组数据的最大值减去最小值.【考点】极差.4.在平面直角坐标系中,点(﹣3,4)关于原点对称的点的坐标是.【答案】(3,-4)【解析】关于原点对称的点,两点的横坐标与纵坐标都互为相反数.根据这个性质可以得出答案.【考点】关于原点对称的点的坐标5.命题“同位角相等,两直线平行”的逆命题是:.【答案】两直线平行,同位角相等.【解析】两个命题中,如果第一个命题的条件是第二个命题的结论,而第一个命题的结论又是第二个命题的条件,那么这两个命题叫做互逆命题.命题:“同位角相等,两直线平行.”的题设是“同位角相等”,结论是“两直线平行”.所以它的逆命题是“两直线平行,同位角相等.”【考点】命题与定理.6.甲、乙两同学近期4次数学单元测试的平均分相同,甲同学的方差=3.2,乙同学的方差=4.1,则成绩较稳定的同学是(填“甲”或“乙”).【答案】甲【解析】方差是用来衡量一组数据波动大小的量,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.本题4.1>3.2,则甲比较稳定.【考点】方差.7.已知某个反比例函数,它在每个象限内,y随x增大而增大,则这个反比例函数可以是(写出一个即可).【答案】y=-【解析】对于反比例函数y=,当k>0时,在每个象限内,y随着x的增大而减小;当k<0时,在每个象限内,y随着x的增大而增大.【考点】反比例函数的性质8.如图,正方形ABCD中,M是BC上的中点,连结AM,作AM的垂直平分线GH交AB于G,交CD于H,若CM=2,则AG= .【答案】2.5【解析】M为BC中点,CM=2,∴BC=4,BM=2,∵四边形ABCD是正方形,∴∠B=90°,AB=BC=4,在Rt△ABM中,由勾股定理得:AM==2,∵AM的垂直平分线GH,∴AO=OM=AM=,∠AOG=∠B=90°,∵∠GAO=∠MAB,∴△GAO∽△MAB,∴=,∴=,∴AG=2.5,【考点】正方形的性质;线段垂直平分线的性质;勾股定理.9.如图,在直角坐标系中,已知点A(﹣4,0),B(0,3),对△OAB连续作旋转变换,依次得到三角形(1),三角形(2),三角形(3),三角形(4),…,(1)△AOB的面积是;(2)三角形(2013)的直角顶点的坐标是.【答案】6;(8052,0).【解析】根据点A、B的坐标求出OA、OB,再根据三角形的面积列式计算即可得解;观察不难发现,每3个三角形为一个循环组依次循环,用2013除以3,根据商是671可知三角形是第671个循环组的最后一个三角形,直角顶点在x轴上,再根据一个循环组的距离为12,进行计算即可得解.【考点】坐标与图形变化-旋转;三角形的面积10.(8分)某学习小组10名学生的某次数学测验成绩统计表如下:(1)填空:①x= ;②此学习小组10名学生成绩的众数是;(2)求此学习小组的数学平均成绩.【答案】(1)①2;②90;(2)79分.【解析】用总人数减去得60分、70分、90分的人数,即可求出x的值;根据众数的定义即一组数据中出现次数最多的数,即可得出答案;根据平均数的计算公式分别进行计算即可.试题解析:(1)①∵共有10名学生,∴x=10﹣1﹣3﹣4=2;②∵90出现了4次,出现的次数最多,∴此学习小组10名学生成绩的众数是90;(2)此学习小组的数学平均成绩是:=(60+3×70+2×80+4×90)=79(分).【考点】众数;加权平均数11.(8分)某校举行英语演讲比赛,准备购买30本笔记本作为奖品,已知A、B两种笔记本的价格分别是12元和8元.设购买A种笔记本x本.(1)购买B种笔记本本(用含x的代数式表示);(2)设购买这两种笔记本共花费y元,求y元与x的函数关系式,并求出y的最大值和最小值.【答案】(1)30-x;(2)y=4x+240;最大值为360,最小值为240.【解析】根据一共准备购买30本笔记本作为奖品,可知购买B种笔记本的数量=30﹣购买A种笔记本的数量;先由购买这两种笔记本共花费的钱数=购买A种笔记本花费的钱数+购买B种笔记本花费的钱数,求出y元与x的函数关系式,再由自变量的取值范围,根据一次函数的增减性,即可求得答案.试题解析:(1)∵某校举行英语演讲比赛,准备购买30本笔记本作为奖品,其中购买A种笔记本x本,(2)y=12x+8(30﹣x)=4x+240,∵k=4>0,∴y随x的增大而增大,又∵0≤x≤30,∴当x=0时,y的最小值为240,当x=30时,y的最大值为360.【考点】一次函数的应用三、解答题1.(16分)①计算:②解方程:.【答案】2;x=-4【解析】利用同分母分式的减法法则计算,约分即可得到结果;分式方程首先进行去分母转化为整式方程,求出整式方程的解得到x的值,然后将解代入分式方程进行检验,得出分式方程的解.试题解析:①原式===2;②方程两边同乘以5x(x﹣6),得10x=4x﹣24,解得x=﹣4,经检验x=﹣4是分式方程的解.【考点】解分式方程;分式的加减法2.(8分)如图,已知△ABC.(1)作边BC的垂直平分线;(2)作∠C的平分线.(要求:不写作法,保留作图痕迹)【答案】见解析【解析】分别以B、C为圆心,大于BC的一半为半径画弧,两弧交于点M、N,MN就是所求的直线;以点C为圆心,任意长为半径画弧,交AC,BC于两点,以这两点为圆心,大于这两点的距离为半径画弧,交于一点E,作射线CE交AB于D即可.试题解析:如图所示:【考点】作图—复杂作图3.(8分)已知一次函数y=kx+b的图象经过点(1,3)和点(2,5),求k和b的值.【答案】k=2,b=1【解析】把已知点的坐标代入函数y=kx+b解析式,可以列出关于系数k、b的二元一次方程组,通过解该方程组可以求得它们的值.试题解析:设该一次函数解析式为y=kx+b(k≠0).由题意,得解得,即k和b的值分别是2和1.【考点】待定系数法求一次函数解析式4.(8分)已知正比例函数y=x和反比例函数的图象都经过点A(3,3).(1)直接写出反比例函数的解析式;(2)把直线OA向下平移后与反比例函数的图象交于点B(6,m),求平移的距离.【答案】(1)y=;(2)4.5【解析】把A的坐标代入反比例函数的解析式求出即可;把B的坐标代入反比例函数的解析式求出B的坐标,设平移后的直线的解析式为y=x+b,把B的坐标代入求出即可.试题解析:(1)y=;(2)点B(6,m)在反比例函数的图象上,m=1.5,平移后的直线的解析式为y=x+b,y=x+b的图象过点B,把B的坐标代入得:1.5=6+b,解得:b=﹣4.5,∴平移的距离为4.5.【考点】反比例函数与一次函数的交点问题;一次函数图象与几何变换5.(12分)如图1,四边形ABCD,AEFG都是正方形,E、G分别在AB、AD边上,已知AB=4.(1)求正方形ABCD的周长;(2)将正方形AEFG绕点A逆时针旋转θ(0°<θ<90°)时,如图2,求证:BE=DG.(3)将正方形AEFG绕点A逆时针旋转45°时,如图3,延长BE交DG于点H,设BH与AD的交点为M.①求证:BH⊥DG;②当AE=时,求线段BH的长(精确到0.1).【答案】(1)16;(2)见解析;(3)①见解析;②5.1【解析】根据正方形的周长定义求解;根据正方形的性质得AB=AD,AE=AG,在根据旋转的性质得∠BAE=∠DAG=θ,然后根据“SAS”判断△BAE≌△DAG,则BE=DG;①由BAE≌△DAG得到∠ABE=∠ADG,而∠AMB=∠DMH,根据三角形内角和定理即可得到∠DHM=∠BAM=90°,则BH⊥DG;②连结GE交AD于点N,连结DE,由于正方形AEFG绕点A逆时针旋转45°,AF与EG互相垂直平分,且AF在AD上,由AE=可得到AN=GN=1,所以DN=4﹣1=3,然后根据勾股定理可计算出DG=,则BE=,解着利用S=△DEG GE•ND=DG•HE可计算出HE=,所以BH=BE+HE=≈5.1.试题解析:(1)解:正方形ABCD 的周长=4×4=16;(2)证明:∵四边形ABCD ,AEFG 都是正方形, ∴AB=AD ,AE=AG , ∵将正方形AEFG 绕点A 逆时针旋转θ(0°<θ<90°),∴∠BAE=∠DAG=θ, 在△BAE 和△DAG ,, ∴△BAE ≌△DAG (SAS ), ∴BE=DG ;(3)①证明:∵△BAE ≌△DAG ,∴∠ABE=∠ADG ,又∵∠AMB=∠DMH ,∴∠DHM=∠BAM=90°,∴BH ⊥DG ;②解:连结GE 交AD 于点N ,连结DE ,如图,∵正方形AEFG 绕点A 逆时针旋转45°, ∴AF 与EG 互相垂直平分,且AF 在AD 上,∵AE=,∴AN=GN=1, ∴DN=4﹣1=3, 在Rt △DNG 中,DG==; ∴BE=, ∵S △DEG =GE•ND=DG•HE , ∴HE==,∴BH=BE+HE=+=≈5.1.【考点】四边形综合题6.(13分)已知:直线l 1与直线l 2平行,且它们之间的距离为2,A 、B 是直线l 1上的两个定点,C 、D 是直线l 2上的两个动点(点C 在点D 的左侧),AB=CD=5,连接AC 、BD 、BC ,将△ABC 沿BC 折叠得到△A 1BC .(1)求四边形ABDC 的面积.(2)当A 1与D 重合时,四边形ABDC 是什么特殊四边形,为什么? (3)当A 1与D 不重合时①连接A 1、D ,求证:A 1D ∥BC ;②若以A 1,B ,C ,D 为顶点的四边形为矩形,且矩形的边长分别为a ,b ,求(a+b )2的值. 【答案】(1)10;(2)菱形;(3)①见解析;②45或49.【解析】根据平行四边形的判定方法可得到四边形ABCD 为平行四边形,然后根据平行四边形的面积公式计算;根据折叠的性质得到AC=CD ,然后根据菱形的判定方法可判断四边形ABDC 是菱形;①连结A 1D ,根据折叠性质和平行四边形的性质得到CA 1=CA=BD ,AB=CD=A 1B ,∠1=∠CBA=∠2,可证明△A 1CD ≌△A 1BD ,则∠3=∠4,然后利用三角形内角和定理得到得到∠1=∠4,则根据平行线的判定得到A 1D ∥BC ;②讨论:当∠CBD=90°,则∠BCA=90°,由于S △A1CB =S △ABC =5,则S 矩形A1CBD =10,即ab=10,由BA 1=BA=5,根据勾股定理得到a 2+b 2=25,然后根据完全平方公式进行计算;当∠BCD=90°,则∠CBA=90°,易得BC=2,而CD=5,从而得出答案. 试题解析:(1)∵AB=CD=5,AB ∥CD ,∴四边形ABCD 为平行四边形,∴四边形ABDC 的面积=2×5=10; (2)∵四边形ABDC 是平行四边形,∵A 1与D 重合时,∴AC=CD ,∵四边形ABDC 是平行四边形, ∴四边形ABDC 是菱形;(3)①连结A 1D ,如图,∵△ABC 沿BC 折叠得到△A 1BC ,∴CA 1=CA=BD ,AB=CD=A 1B , 在△A 1CD 和△A 1BD 中∴△A 1CD ≌△A 1BD (SSS ),∴∠3=∠4,又∵∠1=∠CBA=∠2,∴∠1+∠2=∠3+∠4, ∴∠1=∠4, ∴A 1D ∥BC ;②当∠CBD=90°,∵四边形ABDC 是平行四边形,∴∠BCA=90°,∴S △A1CB =S △ABC =×2×5=5, ∴S 矩形A1CBD =10,即ab=10,而BA 1=BA=5,∴a 2+b 2=25,∴(a+b )2=a 2+b 2+2ab=45; 当∠BCD=90°时,∵四边形ABDC 是平行四边形,∴∠CBA=90°,∴BC=2,而CD=5,∴(a+b )2=(2+5)2=49,∴(a+b)2的值为45或49.【考点】四边形综合题四、计算题(8分)如图,在△ABC中,AB=AC,点D、E在BC上,且BD=CE.求证:△ABE≌△ACD.【答案】见解析【解析】由AB=AC可得∠B=∠C,然后根据BD=CE可证BE=CD,根据SAS即可判定三角形的全等.试题解析:证明∵AB=AC,∴∠B=∠C,∵BD=EC,∴BE=CD,在△ABE与△ACD中,,∴△ABE≌△ACD(SAS).【考点】全等三角形的判定.。

八年级证明题及答案

八年级证明题及答案

八年级证明题及答案【篇一:初二数学下册证明题(中等难题含答案)】da (1)求证:bg?fg;(2)若ad?dc?2,求ab的长.bgce二:如图,已知矩形abcd,延长cb到e,使ce=ca,连结ae并取中点f,连结ae并取中点f,连结bf、df,求证bf⊥df。

三:已知:如图,在矩形abcd中,e、f分别是边bc、ab上的点,且ef=ed,ef⊥ed.求证:ae平分∠bad.(第23题)四、(本题7分)如图,△abc中,m是bc的中点,ad是∠a的平分线,bd⊥ad于d,ab=12,ac=18,求dm的长。

五、(本题8分)如图,四边形abcd为等腰梯形,ad∥bc,ab=cd,对角线ac、bd交于点o,且ac⊥bd,dh⊥bc。

⑴求证:dh=1(ad+bc) 2⑵若ac=6,求梯形abcd的面积。

六、(6分) 、如图,p是正方形abcd对角线bd上一点,pe⊥dc,pf⊥bc,e、f分别为垂足,若cf=3,ce=4,求ap的长.七、(8分)如图,等腰梯形abcd中,ad∥bc,m、n分别是ad、bc 的中点,e、f分别是bm、cm的中点.(1)在不添加线段的前提下,图中有哪几对全等三角形?请直接写出结论;(2)判断并证明四边形menf是何种特殊的四边形?(3)当等腰梯形abcd的高h与底边bc满足怎样的数量关系时?四边形menf是正方形(直接写出结论,不需要证明).amd选择题:15、如图,每一个图形都是由不同个数的全等的小等腰梯形拼成的,梯形上、下底及腰长如图,依此规律第10个图形的周长为。

……第一个图第二个图第三个图16、如图,矩形abcd对角线ac经过原点o,b点坐标为(―1,―3),若一反比例函数y?解析式为。

bnk的图象过点d,则其 x??abc??afe.a ?ac?ae,?eaf??cab,?△abc≌△afe ?ab?af.连接ag,ag=ag,ab=af, b d fc?rt△abg≌rt△afg. ?bg?fg.(2)解:∵ad=dc,df⊥ac,?af?112ac?2?af??ab?af?二:证明:∵ce=ca af=ef ∴cf⊥ae ∠afc=∠efc=90在直角三角形aeb中,bf是斜边上中线∴bf=af又: ad=bc cf=cf ∴△bcf≌△adf ∠bfc=∠afd 而∠afd+∠dfc=afc=90 ∴∠bfc+∠dfc=∠bfd=90 ∵bf⊥df三:证明:∵四边形abcd是矩形ge【篇二:八年级上数学几何证明练习题】txt>1、已知:在⊿abc中,∠a=90,ab=ac,在bc上任取一点p,作pq∥ab交ac于q,作pr∥ca交ba于r,d是bc的中点,求证:⊿rdq是等腰直角三角形。

初二数学图形与证明试题答案及解析

初二数学图形与证明试题答案及解析

初二数学图形与证明试题答案及解析1.如图,已知∠1=∠2,∠3=∠4,AB与CD相等吗?请你说明理由.【答案】解:AB=CD,理由如下:∵∠1=∠2,,∠3=∠4∴∠1+∠3=∠2+∠4∴∠ABC=∠DCB又∵ BC=CB∴△ABC≌△DCB(ASA)∴ AB=CD【解析】略2.(8分)图3.1、图3.2、图3.3均是单位为1的方格图.(1)请把方格图3.1中的带阴影的图形适当剪开,重新拼成正方形;(画出分割线,在图3.2中画出拼成正方形的草图)(2)所拼成正方形的边长为多少?周长为多少?(3)利用这个事实,在图3.3的数轴上画出表示的点A.(要求保留画图痕迹)(4)在图3.3的数轴上画出表示的点B.(要求保留画图痕迹)【答案】略【解析】(1)如图1、图2 (2)边长为,周长为4(3)(4)如图33.(8分)已知:如图,E是正方形ABCD对角线BD上一点,EM⊥BC,EN⊥CD,垂足分别是M、N.求证:AE=MN【答案】见解析【解析】先证四边形MENC为矩形,得MN=EC.再证△ABE≌△CBE,可得AE=EC.因此AE=MN试题解析:证明:连接EC.∵四边形ABCD是正方形,EM⊥BC,EN⊥CD,∴∠NCM=∠CME=∠CNE=90°,∴四边形EMCN为矩形.∴MN=CE.又∵BD为正方形ABCD的对角线,∴∠ABE=∠CBE.在△ABE和△CBE中∴△ABE≌△CBE(SAS).∴AE=EC.∴AE=MN.【考点】1.正方形的性质;2.全等三角形的判定与性质.4.菱形的周长为4,两个相邻的内角的度数之比为1:2,则较短的对角线长为().A.2B.C.1D.【答案】C.【解析】因为菱形邻角互补,所以x+2x=180,x=60,较短的对角线和菱形的两条边构成等边三角形,菱形边长是1,所以较短对角线长是1,故选C.【考点】菱形性质.5.如图,Rt△ABC中,∠C=90°,∠ABC的平分线BD交AC于D,若CD=3cm,则点D到AB 的距离DE是()A.5cm B.4cm C.3cm D.2cm【答案】C【解析】如图:过D作DE⊥AB于E,∵BD是∠ABC的平分线,∠C=90°,DE⊥AB,∴DE=CD,∵CD=3cm,∴DE=3cm.故选:C.【考点】角平分线的性质.6.如图,已知∠1=∠2,则不一定能使△ABD≌△ACD的条件是()A.BD=CD B.AB=AC C.∠B=∠C D.∠BAD=∠CAD【答案】B【解析】∵∠1=∠2,AD为公共边,若BD=CD,则△ABD≌△ACD(SAS);B、∵∠1=∠2,AD为公共边,若AB=AC,不符合全等三角形判定定理,不能判定△ABD≌△ACD;C、∵∠1=∠2,AD为公共边,若∠B=∠C,则△ABD≌△ACD(AAS);D、∵∠1=∠2,AD为公共边,若∠BAD=∠CAD,则△ABD≌△ACD(ASA);【考点】全等三角形的判定7.直角三角形的两直角边长分别是3cm和4cm,则连接两直角边的中点的线段长是.【答案】2.5cm【解析】根据勾股定理可求得斜边为5cm,然后根据连接两直角边的中点的线段是其中位线可求得线段的长为2.5cm.【考点】勾股定理,三角形的中位线8.如图,菱形ABCD的对角线的长分别为2和5,P是对角线AC上任一点(点P不与点A、C 重合)且PE∥BC交AB于E,PF∥CD交AD于F,则阴影部分的面积是()A.2 B. C.3 D.【答案】B【解析】根据PE∥CB,PF∥CD可得四边形AFPE是平行四边形,因此可得△AOE≌△POF,因此阴影部分的面积为菱形面积的一半,然后根据菱形ABCD可知菱形的面积=×2×5=5,即阴影部分的面积为.故选B【考点】菱形的面积,三角形全等9.以下列各组数为边长的三角形是直角三角形的是().A.1、2、3B.5、12、13C.1、1、D.6、7、8【答案】B.【解析】运用勾股定理的逆定理判定一个三角形是直角三角形,∵,故选B.【考点】勾股定理逆定理的应用.10.(3分)如图,已知四边形ABCD是平行四边形,下列结论中,不一定正确的是()A.AB=CDB.当AC⊥BD时,它是菱形C.AB=ACD.当∠ABC=90°时,它是矩形【答案】C.【解析】选项A,根据平行四边形对边相等可得AB=CD,选项A正确;选项B,根据菱形的判定定理可得对角线相互垂直的平行四边形是菱形,选项B正确;选项C,无法得到AB=AC,选项C错误;选项D,根据矩形的判定定理可得有一个角是90°的平行四边形是矩形,选项D正确.故答案选C.【考点】平行四边形的性质;菱形的判定;矩形的判定.11.如图,在▱ABCD中,对角线AC,BD相交于点O,AC+BD=36,△ABO的周长为30,求AB的长.【答案】12【解析】根据平行四边形的性质:对角线互相平分和已知条件AC+BD=36,可求出AO+BO的长,再由△ABO的周长为30,即可求出AB的长.试题解析:∵四边形ABCD是平行四边形,∴AO=CO=AC,BO=DO=BD,∴AO+B0=(AC+BD)=18,∵△ABO的周长为30,∴AB=30﹣18=12.【考点】平行四边形的性质12.如图,王大伯家屋后有一块长12m,宽8m的矩形空地,他在以长边BC为直径的半圆内种菜,他家养的一只羊平时拴在A处的一棵树上,为了不让羊吃到菜,拴羊的绳长可以选用().A.9m B.7m C.5m D.3m【答案】D.【解析】为了不让羊吃到菜,必须小于等于点A到圆的最小距离.连接OA,交半圆O于E点,在Rt△OAB中,OB=6,AB=8,所以OA==10;又OE=OB=6,所以AE=OA﹣OE=4.因此选用的绳子应该不大于4m,故选:D.【考点】勾股定理的应用.13.如图,矩形ABCD中,AB=3,BC=4,点E是BC边上一点,连接AE,把∠B沿AE折叠,使点B落在点B′处.当△CEB′为直角三角形时,BE的长为 _________.【答案】或3【解析】①∠B′EC=90°时,根据翻折变换的性质求出∠AEB=45°,然后判断出△ABE是等腰直角三角形,从而求出BE=AB;②∠EB′C=90°时,∠AB′E=90°,判断出A、B′、C在同一直线上,利用勾股定理列式求出AC,再根据翻折变换的性质可得AB′=AB,BE=B′E,然后求出B′C,设BE=B′E=x,表示出EC,然后利用勾股定理列出方程求解即可.【考点】翻折变换,等腰直角三角形的判断与性质,勾股定理的应用14.如图,△ABC是等腰三角形,D,E分别是腰AB及AC延长线上的一点,且BD=CE,连接DE交底BC于G.求证GD=GE.【答案】证明见解析【解析】过E作EF∥AB交BC延长线于F,根据等腰三角形的性质及平行线的性质可推出∠F=∠FCE,从而可得到BD=CE=EF,再根据AAS判定△DGB≌△EGF,根据全等三角形的性质即可证得结论.试题解析:证明:过E作EF∥AB交BC延长线于F.∵AB=AC,∴∠B=∠ACB,∵EF∥AB,∴∠F=∠B,∵∠ACB=∠FCE,∴∠F=∠FCE,∴CE=EF,∵BD=CE,∴BD=EF,在△DBG与△GEF中,,∴△DGB≌△EGF(AAS),∴GD=GE.【考点】1.等腰三角形的性质;2.全等三角形的判定与性质.15.如果一个多边形的每一个外角都是45°,那么这个多边形的内角和是()A.540°B.720°C.1080°D.1260°【答案】C【解析】用多边形的外角和除以一个外角的度数可得多边形的,即多边形的边数为360°÷45°=8,再根据多边形的内角和公式可得多边形的内角和是(8-2)×180°=1080°.故答案选C.【考点】多边形的内外角和.16.如图,AB∥ED,点F、C在AD上,AB=DE,AF=DC,试说明BC=EF.【答案】详见解析.【解析】由已知AB∥ED,AF=DC可以得出∠A=∠D,AC=DF,又因为AB=DE,根据SAS可得△ABC≌△DEF,再由全等三角形的对应边相等即可得出BC=EF.试题解析:证明:∵AB∥ED,∴∠A=∠D,又∵AF=DC,∴AC=DF.在△ABC与△DEF中,∴△ABC≌△DEF.∴BC=EF.【考点】全等三角形的判定及性质.17.如图,菱形ABCD的边长为8cm,∠BAD=60°,则对角线AC的长为.【答案】8cm【解析】如图,连接BD与AC交于点O,∵四边形ABCD是菱形,∴AB=BD,∵∠BAD=60°,∴△ABD是等边三角形,∴BD=AB=8cm,∴AO=AD×sin∠ADB=8×=4,∴AC=2AO=8.故答案为8cm【考点】菱形的性质.18.(3分)如图,菱形ABCD的周长为16cm,BC的垂直平分线EF经过点A,则对角线BD长为_____________cm.【答案】4.【解析】连接AC,∵菱形ABCD的周长为16cm,∴AB=4cm,AC⊥BD,∵BC的垂直平分线EF经过点A,∴AC=AB=4cm,∴OA=AC=2cm,∴OB==2cm,∴BD=2OB=4cm.故答案为:4.【考点】菱形的性质;线段垂直平分线的性质.19.已知:如图,四边形ABCD是平行四边形,AE∥CF,且分别交对角线BD于点E,F.(1)求证:△AEB≌△CFD;(2)连接AF,CE,若∠AFE=∠CFE,求证:四边形AFCE是菱形.【答案】见试题分析【解析】(1)利用平行四边形的性质结合全等三角形的判定方法(AAS),得出即可;(2)利用全等三角形的性质得出AE=CF,进而求出四边形AFCE是平行四边形.,再利用菱形的判定方法得出答案.试题解析:证明:(1)如图1.∵四边形ABCD是平行四边形,∴AB∥DC,AB="DC."∴∠1=∠2.∵AE∥CF,∴∠3=∠4.在△AEB和△CFD中,∴△AEB≌△CFD.(2)如图2.∵△AEB≌△CFD,∴AE=CF.∵AE∥CF,∴四边形AFCE是平行四边形.∵∠5=∠4,∠3=∠4,∴∠5=∠3.∴AF=AE.∴四边形AFCE是菱形.【考点】平行四边形的性质以及菱形的判定和全等三角形的判定与性质20.如图,若∠A=27°,∠B=45°,∠C=38°,则∠DFE等于()A.120°B.115°C.110°D.105°【答案】C【解析】∵∠ADB=∠B+∠C,∠AEB=∠A+∠C,∴∠ADB=45°+38°=83°,∠AEB=27°+38°=65°,∴∠BDC=97°,∠AEC=115°,∵∠DFE+∠AEC+∠BDC+∠C=360°,∴∠DFE=110°,故选C.【考点】1.三角形外角性质;2.四边形的内角和.21.如图,已知∠C=∠D,∠CAB=∠DBA,AD交BC于点O,请写出图中一组相等的线段________(填一组即可).【答案】答案不唯一,如AC=BD【解析】答案不唯一,如AC=BD;∵∠C=∠D,∠CAB=∠DBA,AB=BA,∴△CAB≌△DBA,∴AC=BD.【考点】三角形全等的判定与性质.22.等腰三角形的两边长分别为25cm和13cm,则它的周长是()A.63cm B.51cm C.63cm或51cm D.以上都不正确【答案】C.【解析】试题解析:若腰长为25cm,底边长为13cm,则周长为:25+25+13=63(cm);若腰长为13cm,底边长为15cm,则周长为:25+13+13=51(cm);故它的周长是:63cm或51cm.故选C.【考点】1.等腰三角形的性质,2.三角形三边关系23.已知△ABC中,∠A、∠B、∠C三个角的比例如下,其中能说明△ABC是直角三角形的是()A、2:3:4B、1:2:3C、4:3:5D、1:2:2【答案】B.【解析】选项A,当∠A、∠B、∠C三个角之比为2:3:4,根据三角形的内角和定理可求得∠A=40°,∠B=60°,∠C=80°;选项B,当∠A、∠B、∠C三个角之比为1:2:3,根据三角形的内角和定理可求得∠A=30°,∠B=60°,∠C=90°;选项C,当∠A、∠B、∠C三个角之比为4:3:5,根据三角形的内角和定理可求得∠A=60°,∠B=45°,∠C=75°;选项D,当∠A、∠B、∠C三个角之比为1:2:2,根据三角形的内角和定理可求得∠A=36°,∠B=72°,∠C=72°.四个选项能说明△ABC是直角三角形只有选项B,故答案选B.【考点】三角形的内角和定理.24.(8分)在△ABC中,∠A=∠C=∠ABC,BD是∠ABC的平分线,求∠A及∠BDC的度数.【答案】∠A=36°,∠BDC=72°.【解析】设∠A为x,根据已知可得∠C=∠ABC=2x,由三角形的内角和定理可得x+2x+2x=180°,解方程即可得∠A=36°.再由角平分线的性质及三角形的内角和定理即可求得∠BDC的度数.试题解析:解:设∠A为x,∵∠A=∠C=∠ABC,所以∠C=∠ABC=2x,∴x+2x+2x=180°解得,x=36°.即∠A=36°.又∵BD是角平分线,∠ABC=72°,∴∠DBC=36°,∴∠BDC=180°-∠DBC-∠C=72°.【考点】三角形的内角和定理.25.(本题10分)如图,已知△ABC中,AB=AC=6cm,∠B=∠C,BC=4cm,点D为AB的中点.(1)如果点P在线段BC上以1cm/s的速度由点B向点C运动,同时,点Q在线段CA上由点C向点A运动.①若点Q的运动速度与点P的运动速度相等,经过1秒后,△BPD与△CQP是否全等,请说明理由;②若点Q的运动速度与点P的运动速度不相等,当点Q的运动速度为多少时,能够使△BPD与△CQP全等?(2)若点Q以②中的运动速度从点C出发,点P以原来的运动速度从点B同时出发,都逆时针沿△ABC三边运动,则经过秒后,点P与点Q第一次在△ABC的AC边上相遇?(在横线上直接写出答案,不必书写解题过程)【答案】(1)①全等,理由见解析②1.5cm/s理由见解析(2)24s后在AC边相遇【解析】(1)①首先根据时间和速度分别求出BP、CQ和BD、PC边的长,然后根据SAS判定两个三角形全等.②首先判断出,然后利用全等三角形的性质得出边BP=CP,BD=CQ以及它们的长,再先求得点P运动的时间t,然后求得点Q的运动速度;(2)根据题意结合图形分析发现:由于点Q的速度快,且在点P的前边,所以要想第一次相遇,则应该比点P 多走等腰三角形的两个边长.试题解析:(1)①全等,理由如下:∵t=1秒,∴BP=CQ=1×1=1cm,∵AB=6cm,点D为AB的中点,∴BD=3cm.又∵PC=BC-BP,BC=4cm,∴PC=4-1=3cm,∴PC=BD.又∵AB=AC,∴∠B=∠C,∴△BPD≌△CQP;②假设△BPD≌△CQP,∵,∴BP≠CQ,又∵△BPD≌△CQP,∠B=∠C,则BP=CP=2,BD=CQ=3,∴点P,点Q运动的时间t==2,∴ =1.5cm/s;(2)24秒点P与点Q第一次在边AC上相遇.【考点】全等三角形的判定与性质、等腰三角形的性质.26.如图,△ABC中,AB=5,AC=8,BD,CD分别平分∠ABC,∠ACB,过点D作直线平行于BC,交AB,AC于E,F,则△AEF的周长为()A.12B.13C.14D.18【答案】B.【解析】∵EF∥BC,∴∠EDB=∠DBC,∠FDC=∠DCB,∵△ABC中,∠ABC和∠ACB的平分线相交于点D,∴∠EBD=∠DBC,∠FCD=∠DCB,∴∠EDB=∠EBD,∠FDC=∠FCD,∴ED=EB,FD=FC,∵AB=5,AC=8,∴△AEF的周长为:AE+EF+AF=AE+ED+FD+AF=AE+EB+FC+AF=AB+AC=5+8=13.故选B.【考点】1.等腰三角形的判定与性质;2.平行线的性质.27.如图,在3×3的正方形网格中标出了∠1和∠2.则∠1+∠2= .【答案】45°.【解析】连接AC,BC.由勾股定理,AC=BC=,AB=.∵,∴∠ACB=90°,∠CAB=45°.∵AD∥CF,AD=CF,∴四边形ADFC是平行四边形,∴AC∥DF,∴∠2=∠DAC(两直线平行,同位角相等),在Rt△ABD中,∠1+∠DAB=90°(直角三角形中的两个锐角互余);又∵∠DAB=∠DAC+∠CAB,∴∠1+∠CAB+∠DAC=90°,∴∠1+∠DAC=45°,∴∠1+∠2=∠1+∠DAC=45°.故答案为:45°.【考点】1.特殊角的三角函数值;2.网格型.28.一个多边形截去一个角后,形成另一个多边形的内角和为720°,那么原多边形的边数为()A.5B.5或6C.5或7D.5或6或7【答案】D【解析】设内角和为720°的多边形的边数是n,则(n﹣2)•180=720,解得:n=6,若截去一个角的多边形的直线经过两个顶点,则原多边形是七边形;若截去一个角的多边形的直线经过一个顶点,则原多边形是六边形;若截去一个角的多边形的直线不经过顶点,则原多边形是五边形,∴原多边形的边数为5或6或7,故选D.【考点】多边形29.已知△ABC≌△DEF,且△DEF的周长为12,若AB=5,BC=4,AC= .【答案】3.【解析】试题解析:∵△ABC≌△DEF,∴BC=EF=4,∵△ABC的周长为12,AB=5,∴AC=12-5-4=3.【考点】全等三角形的性质.30.已知:如图,点A、F、C、D在同一直线上,点B和点E分别在直线AD的两侧,且AB=DE,∠A=∠D,AF=DC.求证:△ABC≌△DEF.【答案】证明见解析.【解析】求出AC=DF,根据SAS推出两三角形全等即可;试题解析:证明:∵AF=DC,∴AF+CF=DC+CF,∴AC=DF,∵在△ABC和△DEF中,∴△ABC≌△DEF.【考点】1.全等三角形的判定与性质;2.平行线的判定.31.若直角三角形的三边长为6,8,m,则的值为().A.10B.100C.28D.100或28【答案】D.【解析】由题意分析可得,m为斜边或m为直角边.根据勾股定理计算:当m为斜边时,m2=62+82,所以m2=100;当m为直角边时,m2=82-62=64-36=28,所以的值为100或28.故本题选D.【考点】勾股定理.32.作图题:(不写作法,但必须保留作图痕迹,6分)如图,OM,ON是两条公路,A,B是两个工厂,现欲建一个仓库P,使其到两条公路距离相等且到两工厂距离相等,请你确定该仓库P的位置..【答案】答案见试题解析.【解析】由线段垂直平分线上的点到线段两端点的距离相等,角平分线上的点到角的两边的距离相等的性质,分别作出AB的垂直平分线,∠MON的平分线,相交于点P,则点P即为所要求作的仓库的位置.试题解析:解:如图所示,点P即为所要求在的仓库的位置.【考点】1.作图—应用与设计作图;2.作图题.33.如图,,,,,.则阴影部分的面积= .【答案】24【解析】因为,,.所以由勾股定理可得AB=,又,所以∠ABD=90°,所以24.【考点】勾股定理及其逆定理.34.一个等腰三角形的两边长分别为3和7,那么这个三角形的周长是.【答案】17.【解析】(1)若3为腰长,7为底边长,由于3+3<7,则三角形不存在;(2)若7为腰长,则符合三角形的两边之和大于第三边.所以这个三角形的周长为7+7+3=17.故答案为:17.【考点】1.等腰三角形的性质;2.三角形三边关系.35.若直角三角形的斜边长为10 cm,则斜边上的中线长为 cm.【答案】5.【解析】∵直角三角形斜边长为10cm,∴斜边上的中线长为5cm.故答案为:5.【考点】直角三角形斜边上的中线.36.如图,在等边三角形ABC中,点D,E分别在边BC,AC上,DE∥AB,过点E作EF⊥DE,交BC的延长线于点F.(1)求∠F的度数;(2)若CD=2,求DF的长.【答案】30°;4.【解析】根据等边三角形的性质得出∠B=60°,根据DE∥AB得出∠EDC=60°,根据垂直得出∠DEF=90°,根据三角形内角和定理可得∠F的度数;根据∠ACB=∠EDC=60°得出△EDC为等边三角形,则ED=DC=2,根据∠DEF=90°,∠F=30°得出DF=2DE=4.试题解析:(1)∵△ABC是等边三角形,∴∠B=60°,∵DE∥AB,∴∠EDC=∠B=60°∵EF⊥DE,∴∠DEF=90°,∴∠F=90°﹣∠EDC=30°(2)∵∠ACB=60°,∠EDC=60°,∴△EDC是等边三角形.∴ED=DC=2,∵∠DEF=90°,∠F=30°∴DF=2DE=4.【考点】等边三角形的性质37.如图,△ABC中,AB=AC,∠A=36°,BD平分∠ABC交AC于点D,DE∥AB交BC于E,EF∥BD交CD于F,则图中等腰三角形的个数为()A.5个B.6个C.7个D.8个【答案】C.【解析】∵AB=AC,∴△ABC为等腰三角形,∵DE∥AB∴△DEC为等腰三角形,∵∠A=36°∴∠ABC=∠ACB=72°,∵BD平分∠ABC,所以∠ABD=∠DBC=36°=∠A,∴BD=AD,∴△ABD为等腰三角形,△BCD为等腰三角形,∵EF∥BD,∴△DEF为等腰三角形,△EFC为等腰三角形,△BED为等腰三角形.所以共有七个等腰三角形.故选C.【考点】1.三角形内角和定理;2.角平分线的性质;3.等腰三角形的判定与性质.38.如图,△ABC中,∠A = 40°,∠B = 72°,CE平分∠ACB,CD⊥AB于D,DF⊥CE,求∠CDF度数.【答案】74°.【解析】首先由三角形的内角和定理求得∠ACB的度数,再由CE平分∠ACB求得∠ACE的度数,则由三角形的外角的性质就可求得∠CED=∠A+∠ACE,再结合CD⊥AB,DF⊥CE就可求解.试题解析:解:∵∠A=40°,∠B=72°,∴∠ACB=180°﹣40°﹣72°=68°,∵CE平分∠ACB,∴∠ACE=∠BCE=34°,∴∠CED=∠A+∠ACE=74°,∴∠CDE=90°,DF⊥CE,∴∠CDF+∠ECD=∠ECD+∠CED=90°,∴∠CDF=74°.【考点】1.三角形的外角性质;2.角平分线的定义;3.三角形内角和定理.39.已知:如图,,点是的中点,,、分别交于点、.(1)图中有几组全等三角形,请把它们直接表示出来;(2)求证:.【答案】(1)△OBA≌△OCD,△OBE≌△OCF,△ABE≌△DCF;(见解析)【解析】(1)利用AAS可证△OBA≌△OCD,利用AAS可证△OBE≌△OCF,利用SAS可证△ABE≌△DCF;(2)根据和可得∠A=∠D,∠BEO=∠CFO,然后得到∠AEB=∠DFC,然后根据AAS定理判定△ABE≌△DCF,即可得EB=CF.试题解析:(1)△OBA≌△OCD,△OBE≌△OCF,△ABE≌△DCF(每个1分,共3分)(2)证明:∵AB∥CD,∴∠A=∠D,∵BE∥CF,∴∠BEO=∠CFO,∴∠AEB=∠DFC,在△EBA和△FCD中∴△ABE≌△DCF(AAS).∴EB=CF.【考点】全等三角形的判定与性质.40.点P、Q分别是边长为4cm的等边△ABC的边AB、BC上的动点,点P从点A出发向点B运动,点Q从点B出发向点C运动,它们同时出发,且速度都是1cm/s.(1)连接AQ、CP交于点M,则在P、Q运动的过程中,∠CMQ变化吗?若变化,则说明理由,若不变,则求出它的度数;(2)何时△PBQ是直角三角形?【答案】(1) 60°.(2)当第秒或第秒时,△PBQ为直角三角形.【解析】(1)首先利用边角边定理证得△PBC≌△QCA,再利用全等三角形的性质定理得到∠BPC=∠MQC.再运用三角形角间的关系求得∠CMQ的度数.(2)设时间为t,则AP=BQ=t,PB=4-t.分别就①当∠PQB=90°时;②当∠BPQ=90°时利用直角三角形的性质定理求得t的值.试题解析:(1)∠CMQ=60°不变.∵等边三角形中,AB=AC,∠B=∠CAP=60°又由条件得AP=BQ,∴△ABQ≌△CAP(SAS),∴∠BAQ=∠ACP,∴∠CMQ=∠ACP+∠CAM=∠BAQ+∠CAM=∠BAC=60°.(2)设时间为t,则AP=BQ=t,PB=4-t①当∠PQB=90°时,∵∠B=60°,∴PB=2BQ,得4-t=2t,t=;②当∠BPQ=90°时,∵∠B=60°,∴BQ=2BP,得t=2(4-t),t=;∴当第秒或第秒时,△PBQ为直角三角形.【考点】1.等边三角形的性质;2.全等三角形的判定与性质;3.直角三角形的性质.41.如图,△ABC中,AD⊥BC于D,BE⊥AC于E,AD交BE于F,若BF=AC,则∠ABC等于()A.45°B.48°C.50°D.60°【答案】A.【解析】根据三角形全等的判定可以证明,得到,.故选A.【考点】三角形全等的判定和性质.42.盖房子时,木工师傅常常先在窗框上斜钉一根木条,这是利用三角形的_________性.【答案】稳定【解析】三角形具有稳定性,在我们的实际生活中的很多地方都能用到,固定窗框就是一种应用.【考点】三角形的稳定性.43.如图,已知∠A=∠D,CO=BO,求证:△AOC≌△DOB.【答案】证明见解析【解析】根据∠A=∠D,CO=BO以及∠AOC=∠DOB利用AAS判定定理得出三角形全等.试题解析:在△AOC和△DOB中,∴△AOC≌△DOB(AAS).【考点】三角形全等的判定44.如图,△ABC为等边三角形,AE=CD,AD、BE相交于点P,BQ⊥AD于Q,PQ=4,PE=1.(1)求证:∠BPQ=60°(提示:利用三角形全等、外角的性质)(2)求BE的长.【答案】(1)证明见解析;(2)9.【解析】(1)由于△ABC是等边三角形,那么有AB=AC,∠BAE=∠ACD=60°,而AE=CD,利用SAS可证△BAE≌△ACD,从而有∠1=∠2,由∠BAE=∠1+∠BAD=60°,等量代换则有∠2+∠BAD=60°,再利用三角形外角性质可得∠BPQ=60°;(2)在Rt△BPQ,易求∠PBQ=30°,于是可求BP,进而可求BE,而△BAE≌△ACD,那么有AD=BE=9.试题解析:(1)∵△ABC是等边三角形,∴AB=AC,∠BAE=∠ACD=60°,又∵AE=CD,∴△BAE≌△ACD,∴∠1=∠2,∵∠BAE=∠1+∠BAD=60°,∴∠BAE=∠2+∠BAD=60°,∴∠BPQ=60°;(2)∵BQ⊥AD,∴∠BQP=90°,又∵∠BPQ=60°,∴∠PBQ=30°,∴BP=2PQ=2×4=8,∴BE=BP+PE=8+1=9.【考点】1.等边三角形的性质;2.全等三角形的判定与性质.45.如图,在四边形ABCD中,AB=DC,延长线段CB到E,使BE=AD,连接AE、AC,且AE=AC,求证:(1)△ABE≌△CDA;(2)AD∥EC.【答案】(1)证明见解析;(2)证明见解析.【解析】(1)直接根据SSS就可以证明△ABE≌△CDA;(2)由△ABE≌△CDA可以得出∠E=∠CAD,就可以得出∠ACE=∠CAD,从而得出结论.试题解析:(1)在△ABE和△CDA中∵△ABE≌△CDA(SSS);(2)∵△ABE≌△CDA,∴∠E=∠CAD.∵AE="AC,"∴∠E="∠ACE"∴∠ACE="∠CAD,"∴AD∥EC.【考点】全等三角形的判定与性质.46.如图,要测量河岸相对的两点间的距离,先在的垂线上取两点,使得,再定出的垂线,使点在同一条直线上,测得的的长就是的长,根据的原理是()A.B.C.D.【答案】B.【解析】试题解析:因为证明在△ABC≌△EDC用到的条件是:CD=BC,∠ABC=∠EDC,∠ACB=∠ECD,所以用到的是两角及这两角的夹边对应相等即ASA这一方法.故选B.【考点】全等三角形的应用.47.如下图,在四边形ABCD中,对角线AC、BD相交于点O,下列条件不能判定四边形ABCD 为平行四边形的是()A.AB∥CD,AD∥BCB.OA=OC,OB=ODC.AD=BC,AB∥CDD.AB=CD,AD=BC【答案】C【解析】本题主要根据平行四边形的判定方法进行判定就可以得到答案.A、两组对边分别平行的四边形是平行四边形;B、对角线互相平分的四边形是平行四边形;D、两组对边分别相等的四边形是平行四边形.【考点】平行四边形的判定48.(2015秋•句容市月考)如图,点P是∠ABC的平分线上一点,PM⊥AB,PN⊥BC,垂足分别是M、N.求证:(1)∠PMN=∠PNM;(2)BM=BN.【答案】见解析【解析】(1)根据角平分线的性质得到PM=PN,根据等腰三角形的性质证明即可;(2)根据同角的余角相等解出证明.证明:(1)∵PB是∠ABC的平分线,PM⊥AB,PN⊥BC,∴PM=PN,∴∠PMN=∠PNM;(2)∵PM⊥AB,PN⊥BC,∴∠PMB=∠PNB=90°,又∠PMN=∠PNM,∴∠BMN=∠BNM,∴BM=BN.【考点】角平分线的性质.49.下列命题:①如果,,为一组勾股数,那么,,仍是勾股数;②如果直角三角形的两边是5、12,那么斜边必是13;③如果一个三角形的三边是12、25、21,那么此三角形必是直角三角形;④一个等腰直角三角形的三边是,,,且,那么。

初二数学证明试题

初二数学证明试题

初二数学证明试题1.老李到办公室后,他总要完成以下事情:烧开水10分钟,洗茶杯1分钟,准备茶叶和冲茶1分钟,打扫办公室9分钟,收听新闻10分钟,问老李做好以上事情至少需要分钟时间.【答案】11分钟【解析】可以同时进行的项目为:烧开水10分钟,洗茶杯1分钟,打扫办公室9分钟,收听新闻10分钟,用时10分;再加上准备茶叶和冲茶1分钟,至少需要11分钟.解:在烧水的过程种,可以同时收听新闻,洗茶杯,打扫办公室,这个过程需要10分钟;然后再准备茶叶和冲茶需1分钟;因此至少需要10+1=11分钟.点评:解决本题的关键是找到可以同时进行的项目及所用时间.2. A、B、C、D四人参加某一期的体育彩票兑奖活动,现已知:如果A中奖,那么B也中奖;如果B中奖,那么C中奖或A不中奖;如果D不中奖,那么A中奖,C不中奖;如果D中奖,那么A也中奖,则这四个人中,中奖的人数是人.【答案】4【解析】从最后一句话出发:如果D中奖,那么A也中奖;返回到第一句,如果A中奖,那么B 也中奖;继续判断,A已经中奖,那么“如果B中奖,那么C中奖或A不中奖”的条件中,应只考虑C中将的情况.可得到如果B中奖,那么C中奖.所以一共有4个人中奖.解:根据题意,可将已知条件大致分为三类:(为叙述方便,将中奖简写为“中”)①如果A中,则B中;②如果B中,则C中或A不中;③如果D不中,则A中且C不中;已知了A中且D中,当A中时,由①知:B也中;当B中时,由②知C也中(由于A已中奖,因此A不中的条件可以舍去);因此A、B、C、D四人都中奖了,由此可得出中奖的人数为4人.故答案为:4.点评:此题主要考查了推理论证,解决本题应从所给的假设入手,然后依据题目所给的条件逐步分析判断.3.甲、乙、丙、丁和小强五位同学单循环比赛象棋,到现在为止甲已经赛了四盘,乙赛了三盘,丙赛了二盘,丁赛了一盘,则小强赛了盘.【答案】2【解析】根据甲赛的盘数,可知甲与乙、丙、丁和小强4人各赛了一盘.然后探究乙、丙、丁和小强4人之间赛的盘数(设小强赛的盘数为x),进而得到小强赛的总盘数.解:乙、丙、丁和小强除去与甲赛的一盘后,在他们之间赛的盘数分别是:2、1、0、x.即丁只和甲赛了一盘,没与乙、丙、小强比赛,则乙、丙、小强之间赛的盘数分别为2、1、x,假设丙与小强赛了一盘,那么乙赛的两盘都是与小强赛的,这与单循环比赛相矛盾,是不可能的,所以丙与乙赛了一场,乙又与小强赛了一盘,小强与甲也赛了一盘,故小强共赛了2盘.故填2.点评:解决问题的关键是读懂题意,将实际问题转化为数学问题,利用数学知识进行探讨、解答实际问题.4.有12名游客要赶往离住地40千米的一个火车站去乘火车,离开车时间只有3小时了,他们步行的速度为每小时6千米,靠走路是来不及了,唯一可以利用的交通工具只有一辆小汽车,但这辆小汽车连司机在内最多能乘5人,汽车的速度为每小时60千米.(1)甲游客说:我们肯定赶不上火车;(2)乙游客说:只要我们肯吃苦,一定能赶上火车;(3)丙游客说:赶上或赶不上火车,关键取决于我们自己.亲爱的同学,当你身处其境,一定也有自己的想法,请你就某位游客的说法,用数学知识以理其人,由于难度不同,请你慎重选择.选择(1)答对只能给3分,选择(2)答对可以给4分,选择(3)答对我们奖赏你满分6分.【答案】见解析【解析】(1)因为共有12人,这辆小汽车连司机在内最多能乘5人.所以当汽车首先载4位乘客时,其余乘客在原地不动,12位乘客分3批,计算所需要的时间和3小时进行比较即可;(2)在汽车每接送一批顾客的时候,剩下的顾客也要同时往前赶,计算所需的时间和3小时进行比较即可.解:选择(1)当汽车首先载4位乘客时,其余乘客在原地不动,12位乘客分3批,汽车共需时间:40×5=200千米,200÷60=>3,故肯定赶不上火车;选择(2)当汽车首先载4位乘客时,其余乘客以每小时6千米的速度前进,当汽车接第二批4位乘客,共需时:(40+40)÷(60+6)=,此时,乘客已走6×==≈7.7千米,当司机接走第二批4位乘客时,余下4位乘客在原地不动,汽车共走4×(40﹣7.7)+40=169.2千米<3小时×60千米/小时=180千米,说明能赶上火车.当司机接走第二批4位乘客时,余下4位乘客以每小时6千米的速度前进,由上可知,汽车走更少的路,说明更能赶上火车;选择(3):将选择(1)和选择(2)综合即可.点评:此题的难点在于计算第二种选择,注意在汽车所走的时间内,剩下的顾客一直在走,从而得到每一次汽车接送顾客时所走的路程.5.甲,乙,丙,丁,戊与小强六位同学参加乒乓球比赛,每两人都要比赛一场,到现在为止,甲已经赛了5场,乙已经赛了4场,丙已经赛了3场,丁已经赛了2场,戊已经赛了1场,小强已经赛了()A.1场B.2场C.3场D.4场【答案】C【解析】根据甲参赛了5场,则甲和每人参赛了一场,所以根据戊已经赛了1场,戊只和甲比赛了一场;再根据乙已经赛了4场,则乙和甲、丙、丁、小强各参赛了一场.根据丁已经赛了2场,则丁只和甲、乙进行了比赛;再根据丙已经赛了3场,则丙和甲、乙、小强各比赛了一场.所以小强比赛了3场.解:由于每两人比赛一场,因此每个人最多比5场.甲已经赛了5场,则说明甲和其他5人都比了一场;由此可知:甲与小强比了一场,戊只和甲赛了一场;乙赛了4场,除去和甲赛的一场外,还和其他三人各赛一场,因此这三人必为:丙、丁和小强;丁赛了2场,由上面两个人的比赛情况可知:丁只与甲、乙进行了比赛;丙赛了3场,除去和甲、丁的两场比赛,还剩下一场,而丁和戊都没有和丙比赛,因此丙剩下的一场比赛必为和小强的比赛.因此小强赛了三场,且对手为甲、乙、丙.故选C.点评:本题要首尾结合进行逐步推理.6.在一次1500米比赛中,有如下的判断:甲说:丙第一,我第三;乙说:我第一,丁第四;丙说:丁第二,我第三.结果是每人的两句话中都只说对了一句,则可判断第一名是()A.甲B.乙C.丙D.丁【答案】B【解析】假设甲说的前半句话是正确的,即丙第一,则乙的后半句是正确的,即丁第四,则丙说的后半句应是正确的,出现矛盾,所以必须是甲说的后半句是正确的,即甲第三,所以丙说的前半句是正确的,即丁第二,所以乙说的前半句是正确的,即乙第一.解:根据分析,知第一名应是乙.故选B.点评:此类题应从假设出发,经过推理,如果得到矛盾,则假设错误,再进一步推理即可.7.已知4个矿泉水空瓶可以换矿泉水一瓶,现有12个矿泉水空瓶,若不交钱,最多可以喝矿泉水瓶()A.2瓶B.3瓶C.4瓶D.5瓶【答案】C【解析】4个矿泉水空瓶可以换矿泉水一瓶,12个矿泉水空瓶可换3瓶矿泉水,喝完后借1个空矿泉水瓶又得4个空矿泉水瓶,又可换一瓶,喝完后得一空瓶归还.所以最多可以喝矿泉水4瓶.解:12个空瓶可换12÷4=3瓶矿泉水;3瓶矿泉水喝完后借1个空矿泉水瓶又可得到4个空瓶子,可换4÷4=1瓶矿泉水,喝完后得一空瓶归还;因此最多可以喝矿泉水3+1=4瓶.故选C.点评:考查了推理与论证,本题需注意喝完3瓶矿泉水后,借1个空矿泉水瓶又可得到4个空瓶即1瓶矿泉水.8.甲、乙、丙3人从图书馆各借了一本书,他们相约在每个星期天相互交换读完的书.经过数次交换后,他们都读完了这3本书.若乙读的第三本书是丙读的第二本书,则乙读的第一本书是甲读的()A.第一本书B.第二本书C.第三本书D.不能确定【答案】B【解析】根据甲、乙、丙3人从图书馆各借了一本书,在每个星期天相互交换读完的书,得出3人交换书的所有情况,进而得出乙读的第一本书是甲读的第二本书.解:设3人分别读了a,b,c三本书,则甲:a b c乙:b c a丙:c a b,∵乙读的第三本书是丙读的第二本书,∴乙读的第一本书是甲读的第二本书.故选:B.点评:此题主要考查了推理与论证,根据已知得出交换书的所有情况是解题关键.9.你们曾经玩过“两人‘抢30’游戏”(游戏规则中规定每次每人只能说一个或两个数,谁先抢到30,谁得胜),若将“抢30”换成“抢20”.下列说法正确的个数是()(1)“抢20”游戏不公平;(2)第一个报数人一开始报“1”,就掌握获胜的主动权;(3)第一个报数人,一定能抢到20;(4)第二个报数人,一定能抢到20.A.1B.2C.3D.4【答案】A【解析】因为两人都可以说1个数或2个数,所以,甲只要保证从第二次开始所说的数与乙的数的个数的和是3,第一次所说的数的个数是20除以3的余数,即可一定抢到20.解:∵20÷3=6…2,∴只要是第一个人先说2个数,然后保证下一次所说的数的个数与第二个人所说的数的个数的和是3,就一定能抢到20;所以,游戏不公平,偏向第一个人;故选:A.点评:本题考查了游戏的公平性,读懂题意,确定出甲从第二次开始保证与乙所说的数的个数的和是3是确定出第一次所说的数的关键.10.甲、乙、丙、丁四个小朋友正在教室里玩耍,忽听“砰”的一声,讲台上的花盆被打破了.甲说:“是乙不小心闯的祸.”乙说:“是丙闯的祸.”丙说:“乙说的不是实话.”丁说:“反正不是我闯的祸.”如果刚才四个小朋友中只有一个人说了实话,那么这个小朋友是()A.甲B.乙C.丙D.丁【答案】C【解析】运用反证法的方法先分别假设甲说的是实话、乙说的是实话、丁说的是实话,然后推理都得出与题设相矛盾的结论,则只有丙只有一个人说了实话.解:假设甲说的是实话,“是乙不小心闯的祸.”,则丁说的也应该是实说,这与四个小朋友中只有一个人说了实话相矛盾;假设乙说的是实话,则丁说的也应该是实说,这与四个小朋友中只有一个人说了实话相矛盾;假设丁说的是实话,乙说的是假话,则丙说:“乙说的不是实话.”应该是实话,这与四个小朋友中只有一个人说了实话相矛盾;所以四个小朋友中只有一个人说了实话,这个小朋友是丙.故选C.点评:本题考查了运用反证法的方法进行推理与论证.。

初二数学证明(含答案_证明题有过程)

初二数学证明(含答案_证明题有过程)

18-9AB E FC D23.(本题8分).如图,已知:△ABC 中,AD 是∠BAC 的平分线,AD 的垂直平分线交AD 于E,交BC 的延长线于F.求证:FD 2=FB.FC.24.(本题8分)已知ABC △,延长BC 到D ,使CD BC =.取AB 的中点F ,连结FD 交AC 于点E .(1)求AE AC的值; (2)若AB a FB EC ==,,求AC 的长.25.(本题8分)如图:已知△ABC 中,AB=5,BC=3,AC=4,PQ ∥AB ,P 点在AC 上(与A 、C 不重合),Q 在BC 上.(1) 当△PQC 的面积等于四边形PABQ 面积的31,求CP 的长. (2)当△PQC 的周长与四边形PABQ 的周长相等时,求CP 的长.(3)试问:在AB 上是否存在一点M ,使得△PQM 为等腰直角三角形,若不存在,请简要说明理由:若存在,请求出PQ 的长.23、连接FA,证明FAC Δ∽FBA Δ,由于FD FA ,命题获证。

24、法一:连接AD FC ,;法二:过F E 或者 做平行线,命题获证,在命题获证的基础上第二问求出。

25、(1)用相似CPQ Δ∽CAB Δ(2)设出x PC 表示出CQ ,利用周长列出方程,求出PC(3)当∠PQM=90°时(画图)过P 作PN ⊥AB 于N设PQ=QM=PN=MN=a∠QMB=∠ANP=90°∠B=90°-∠A=∠APN∴△MQB ∽△NAP ∽△CAB∴AN:PN=AC:BC ,BM:QM=BC:BC∴MB=3/4a ,AN=4/3a∵AB=AN+NM+MB∴3/4a+4/3a+a=5∴PQ=a=60/37当∠QPM=90°时同理有PQ=60/37当∠PMQ=90°时过P 作PN ⊥AB 于N,过Q 作QR ⊥AB 于R,过M 作MS ⊥PQ 于S设PN=QR=a则PQ=MN=2a类似前两种情况可得△RQB ∽△NAP ∽△CAB∴RB=3/4a,AN=4/3a∵AB=AN+NM+MB∴3/4a+4/3a+2a=5∴a=60/49 ∴PQ=2a=120/4926、(1)1 ::0.8=X :4.08 求出甲树高X=5.1米(2)先求墙壁上的影长展开在地上的距离 1 :0.8=1.2:X 求出X=0.96米得出落在地面上的影长一共为0.96+2.4=3.36米则 1:0.8=X:3.36 求出乙树高X=4.2米(3)台阶高0.3米投影到地面则影长为1:0.8=0.3:X 求出X=0.24 则在水平面上的总影长为0.24+0.2+4.4=4.84米则1:0.8=X:4.84求出丙树高X=6.05米(4)1.6:2=X:3.2求出X=2.56米则1:0.8=2.56:X 求出斜面上的影子落在水平面上的影长X=2.048米则丁树在水平面上的总影长为2.048+2.4=4.448 则1:0.8=X:4.448 求出丁树高X=5.56米。

初二数学图形与证明试题答案及解析

初二数学图形与证明试题答案及解析

初二数学图形与证明试题答案及解析1.如图,在一张矩形纸片ABCD中,AB=4,BC=8,点E,F分别在AD,BC上,将纸片ABCD沿直线EF折叠,点C落在AD上的一点H处,点D落在点G处,有以下四个结论:①四边形CFHE是菱形;②EC平分∠DCH;③线段BF的取值范围为3≤BF≤4;④当点H与点A重合时,EF=2.以上结论中,你认为正确的有()个.A.1B.2C.3D.4【答案】C【解析】∵FH与CG,EH与CF都是矩形ABCD的对边AD、BC的一部分,∴FH∥CG,EH∥CF,∴四边形CFHE是平行四边形,由翻折的性质得,CF=FH,∴四边形CFHE是菱形,∴①正确;∴∠BCH=∠ECH,∴只有∠DCE=30°时EC平分∠DCH,∴②错误;点H与点A重合时,设BF=x,则AF=FC=8-x,在Rt△ABF中,,即,解得x=3,点G与点D重合时,CF=CD=4,∴BF=4,∴线段BF的取值范围为3≤BF≤4,∴③正确;过点F作FM⊥AD于M,则ME=(8-3)-3=2,由勾股定理得EF=2,∴④正确;【考点】图形的翻折、勾股定理.2.如图,沿折叠后,点落在边上的处,DE∥BC,,则的度数为.【答案】80°.【解析】先根据折叠的性质可得∠ADE=∠ED,再由平行线的性质可得∠B=∠ADE=50°,由平角的性质即可求=180°-∠ADE-∠ED=180°-50°-50°=80°.【考点】折叠的性质;平行线的性质;平角的性质.3.如图,在□ABCD中,DB=DC,∠C=70°,AE⊥BD于E,则∠DAE=_____度.【答案】20.【解析】∵ DB=DC,∴∠DBC=∠C=70°,∵是□ABCD,∴AD∥BC,∴∠ADB=∠DBC=70º,∵AE⊥BD于E,∴∠AED=90º,∴∠DAE=90-70=20º.【考点】平行四边形性质.4.如图,△ABC为等腰三角形,如果把它沿底边BC翻折后,得到△DBC,那么四边形ABDC为().A.菱形B.正方形C.矩形D.一般平行四边形【答案】A.【解析】此题先判定四边形ABDC为平行四边形,再通过邻边相等判定四边形ABDC为菱形,∵△ABC为等腰三角形,∴∠ABC=∠ACB,又∵折叠角相等,∴∠ABC=∠DBC,∠ACB=∠DCB,∴∠ABC=∠DCB,∠ACB=∠DBC,∴AB∥DC,AC∥BD,∴四边形ABDC为平行四边形,又∵折叠边相等,AB=BD,∴四边形ABDC为菱形.【考点】菱形的判定.5.将四根木条钉成的长方形木框变形为平行四边形ABCD的形状,并使其面积为长方形面积的倍(木条宽度忽略不计),则这个平行四边形的最小内角为度.【答案】45【解析】如图所示:过点C作AB的垂线垂足是E,∵将四根木条钉成的矩形木框变形为平行四边形木框ABCD的形状,并使其面积为矩形木框的,∴BC=CE,∵sin∠CBE==,∴∠CBE=∠A=45°.【考点】1.矩形的性质;2.平行四边形的性质.6.(本题10分)如图1,正方形ABCD的边长为6cm,点F从点B出发,沿射线AB方向以1cm/秒的速度移动,点E从点D出发,向点A以1cm/秒的速度移动(不到点A).设点E,F 同时出发移动t秒.(1)在点E,F移动过程中,连接CE,CF,EF,则△CEF的形状是,始终保持不变;(2)如图2,连接EF,设EF交BD于点M,当t=2时,求AM的长;(3)如图3,点G,H分别在边AB,CD上,且GH=cm,连接EF,当EF与GH的夹角为45°,求t的值.【答案】(1)等腰直角三角形;(2);(3)3.【解析】(1)判断三角形CDE和三角形CBF全等是解题的关键;(2)此题过点E作EN∥AB,交BD于点N,证明△EMN≌△FMB,得出EM=FM,于是AM是直角三角形AEF斜边EF中线,只要求出EF长,AM长就求出来了;(3)设EF与GH交于P,连接CE,CF,若∠EPH=45°,前面已证∠EFC=45º,显然GH∥CF,又有AF∥DC,可判断四边形GFCH是平行四边形,CF=GH=,在Rt△CBF中,用勾股定理求出BF长,即t值求出.试题解析:(1)∵点E,F的运动速度相同,且同时出发移动t秒,∴DE=BF=t,又∵CD=CB,∠CDE=∠CBF,∴△CDE≌△CBF,∴CE=CF,∠DCE=∠BCF,∠ECF=∠ECB+∠BCF=∠ECB+∠DCE=90º,∴△CEF的形状是等腰直角三角形;(2)先证△EMN≌△FMB,过点E作EN∥AB,交BD于点N,∴∠END=∠ABD=∠EDN=45°,∴EN="ED=BF=2" ,可证△EMN≌△FMB(AAS),∴EM=FM,Rt△AEF中,AE=4,AF=6+2=8,EF=,∴AM=EF=.(3)连接CE,CF,设EF与GH交于P,由(1)得∠CFE=45°,又∠EPH=45°,∴GH∥CF,又AF∥DC,∴四边形GFCH是平行四边形,∴CF=GH=,在Rt△CBF中,得BF=3,∴t=3.【考点】1.正方形性质;2.三角形全等及勾股定理的运用;3.平行四边形的判定与性质.7.下列命题中是真命题的有()个.①相等的角是对顶角;②两直线被第三条直线所截,内错角相等;③若m2=n2,则m=n;④平行四边形的对角线互相平分;⑤一组对边平行,一组对边相等的四边形是平行四边形.A.0B.1C.2D.3【答案】B.【解析】命题①相等的角是对顶角,如两个直角相等,但两个直角不一定是对顶角,命题①错误;命题②两直线被第三条直线所截,内错角相等,命题②错误,正确的为两条平行线被第三条直线所截,所得的内错角相等;命题③若m2=n2,则m=n,如,但2≠-2,命题③错误;命题④平行四边形的对角线互相平分,根据平行四边形的性质可得,命题④正确;命题⑤一组对边平行,一组对边相等的四边形是平行四边形,根据平行四边形的判定可得一组对边平行且相等的四边形是平行四边形,命题⑤错误.故答案选B.【考点】命题与定理.8.已知,如图,点B、E、C、F四点在同一条直线上,AB∥DE,AB=DE,AC、DE相交于点O,BE=CF.求证:AC=DF.【答案】详见解析.【解析】已知AB∥DE,根据平行线的性质可得∠B=∠E,再由BE=CF可得BC=EF,根据SAS可判定△ABC≌△DEF,即可得AC=DF.试题解析:证明:∵AB∥DE,∴∠B=∠DEF,∵BE=CF,∴BC=EF,在△ABC和△DEF中,,∴△ABC≌△DEF(SAS),∴AC=DF.【考点】平行线的性质;全等三角形的判定及性质.9.(3分)下列各组数据中,不可以构成直角三角形的是()A.7,24,25B.1.5,2,2.5C.,1,D.40,50,60【答案】D【解析】本题考查勾股定理的逆定理的应用.判断三角形是否为直角三角形,已知三角形三边的长,只要利用勾股定理的逆定理加以判断即可.由勾股定理的逆定理,只要验证两小边的平方和是否等于最长边的平方即可.解:A、72+242=625=252,故是直角三角形,不符合题意;B、1.52+22=6.25=2.52,故是直角三角形,不符合题意;C、12+()2==()2,故是直角三角形,不符合题意;D、402+502=4100≠602,故不是直角三角形,符合题意.故选:D.【考点】勾股定理的逆定理.10.已知一直角三角形的木板,三边的平方和为1800,则斜边长为.【答案】30.【解析】∵在直角三角形中斜边的平方等于两直角边的平方和,又∵已知三边的平方和为1800,则斜边的平方为三边平方和的一半,即斜边的平方为=900,∴斜边长==30.故斜边长为30.【考点】勾股定理.11.顺次连接四边形各边中点所得的四边形是()A.平行四边形B.矩形C.菱形D.以上都不对【答案】A.【解析】如图四边形ABCD,E、N、M、F分别是DA,AB,BC,DC中点,连接AC,DE,根据三角形中位线定理可得:EF平行且等于AC的一半,MN平行且等于AC的一半,根据平行四边形的判定,可知四边形为平行四边形.故选A.【考点】三角形中位线定理.12.已知三组数据:①2,3,4;②3,4,5;③1,,2.分别以每组数据中的三个数为三角形的三边长,构成直角三角形的有()A.②B.①②C.①③D.②③【答案】D.【解析】①∵22+32=13≠42,∴以这三个数为长度的线段不能构成直角三角形,故不符合题意;②∵32+42=52,∴以这三个数为长度的线段能构成直角三角形,故符合题意;③∵12+()2=22,∴以这三个数为长度的线段能构成直角三角形,故符合题意.故构成直角三角形的有②③.故选D.【考点】勾股定理的逆定理.13.如图,矩形ABCD的对角线AC,BD相交于点O,CE∥BD,DE∥AC.若AC=4,则四边形CODE的周长是.【答案】8【解析】∵CE∥BD,DE∥AC,∴四边形CODE是平行四边形,∵四边形ABCD是矩形,∴OC=AC=2,OD=BD,AC=BD,∴OC=OD=2,∴四边形CODE是菱形,∴DE=CE=OC=OD=2,∴四边形CODE的周长=2×4=8;【考点】1.菱形的判定与性质;2.矩形的性质.14.一个零件的形状如图所示,按规定这个零件中∠A和∠DBC都应为直角,工人师傅量出了这个零件各边尺寸,那么这个零件符合要求吗?求出四边形ABCD的面积.【答案】36.【解析】根据勾股定理的逆定理,判断出△ABD、△BDC的形状,从而判断这个零件是否符合要求;这个零件的面积=△ABD的面积+△BDC的面积,再根据三角形面积公式即可求解.试题解析:∵AD=4,AB=3,BD=5,DC=13,BC=12,∴AB2+AD2=BD2,BD2+BC2=DC2,∴△ABD、△BDC是直角三角形,∴∠A=90°,∠DBC=90°,∴这个零件的面积=△ABD的面积+△BDC的面积=3×4÷2+5×12÷2,=6+30,=36.故这个零件的面积是36.【考点】1.勾股定理的逆定理;2.勾股定理.15.等腰△ABC的腰长AB=10cm,底BC为16cm,面积为 .【答案】48cm2.【解析】如图所示,∵AB=AC=10cm,AD⊥BC,∴BD=CD=BC=8cm,在Rt△ABD中,根据勾股定理得:AD=cm.∴S△ABC=BC•AD=×16×6=48cm2.【考点】1.勾股定理;2.等腰三角形的性质.16.如图,在△ABC中,∠ACB=90°,CD是AB边上的高,∠BAC的平分线AE交C于F,EG⊥AB于G,请判断四边形GECF的形状,并证明你的结论.【答案】四边形GECF是菱形,理由详见解析.【解析】根据全等三角形的判定定理HL进行证明Rt△AEG≌Rt△AEC(HL),得到GE=EC;根据平行线EG∥CD的性质、∠BAC平分线的性质以及等量代换推知∠FEC=∠CFE,易证CF=CE;从而根据邻边相等的平行四边形是菱形进行判断.试题解析:四边形GECF是菱形,理由如下:∵∠ACB=90°,∴AC⊥EC.又∵EG⊥AB,AE是∠BAC的平分线,∴GE=CE.在Rt△AEG与Rt△AEC中,,∴Rt△AEG≌Rt△AEC(HL),∴GE=EC,∵CD是AB边上的高,∴CD⊥AB,又∵EG⊥AB,∴EG∥CD,∴∠CFE=∠GEA,∵Rt△AEG≌Rt△AEC,∴∠GEA=∠CEA,∴∠CEA=∠CFE,即∠CEF=∠CFE,∴CE=CF,∴GE=EC=FC,又∵EG∥CD,即GE∥FC,∴四边形GECF是菱形.【考点】菱形的判定.17.将一副常规的三角尺如图放置,则图中∠AOB的度数是()A.75°B.95°C.105°D.120°【答案】C【解析】由已知可得∠ACO=45°-30°=15°,根据三角形外角的性质可得∠AOB=∠A+∠ACO=90°+15°=105°.故答案选C.【考点】三角形外角的性质.18.下列说法错误的是()A.一个三角形中至少有一个角不少于60°B.三角形的中线不可能在三角形的外部C.三角形的中线把三角形的面积平均分成相等的两部分D.直角三角形只有一条高【答案】D【解析】选项A,根据三角形的内角和定理可知一个三角形中至少有一个角不少于60°,选项A正确;选项B,三角形的中线都在三角形的内部,不可能在三角形的外部,选项B正确;选项C,根据等底同高的两个三角形的面积相等可知三角形的中线把三角形的面积平均分成相等的两部分,选项C正确;选项D,直角三角形由三条高,其中两条是直角边,选项D错误.故答案选D.【考点】三角形的内角和定理;三角形的高线、中线.19.如图,若△ABC≌△ADE,∠EAC=35°,则∠BAD=_______.【答案】35°.【解析】已知△ABC≌△ADE,根据全等三角形的性质可得∠CAB=∠EAD,所以∠EAC=∠CAB-∠EAB,∠BAD=∠EAD-∠EAB,即∠BAD=∠EAC=35°.【考点】全等三角形的性质.20.如图,AB∥ED,点F、C在AD上,AB=DE,AF=DC,试说明BC=EF.【答案】详见解析.【解析】由已知AB∥ED,AF=DC可以得出∠A=∠D,AC=DF,又因为AB=DE,根据SAS可得△ABC≌△DEF,再由全等三角形的对应边相等即可得出BC=EF.试题解析:证明:∵AB∥ED,∴∠A=∠D,又∵AF=DC,∴AC=DF.在△ABC与△DEF中,∴△ABC≌△DEF.∴BC=EF.【考点】全等三角形的判定及性质.21.(3分)如图,菱形ABCD的周长为16cm,BC的垂直平分线EF经过点A,则对角线BD 长为_____________cm.【答案】4.【解析】连接AC,∵菱形ABCD的周长为16cm,∴AB=4cm,AC⊥BD,∵BC的垂直平分线EF经过点A,∴AC=AB=4cm,∴OA=AC=2cm,∴OB==2cm,∴BD=2OB=4cm.故答案为:4.【考点】菱形的性质;线段垂直平分线的性质.22.如果三角形满足一个角是另一个角的3倍,那么我们称这个三角形为“智慧三角形”.下列各组数据中,能作为一个智慧三角形三边长的一组是()A.1,2,3B.1,1,C.1,1,D.1,2,【答案】D.【解析】A、∵1+2=3,不能构成三角形,故选项错误;B、∵12+12=()2,是等腰直角三角形,故选项错误;C、底边上的高是,可知是顶角120°,底角30°的等腰三角形,故选项错误;D、解直角三角形可知是三个角分别是90°,60°,30°的直角三角形,其中90°÷30°=3,符合“智慧三角形”的定义,故选项正确.故选:D.【考点】解直角三角形.23.下列说法正确的是()A.全等三角形是指形状相同的两个三角形B.全等三角形的周长和面积分别相等C.全等三角形是指面积相等的两个三角形D.所有的等边三角形都是全等三角形【答案】B.【解析】试题解析:A、全等三角形的形状相同,但形状相同的两个三角形不一定是全等三角形.故该选项错误;B、全等三角形是指能够完全重合的两个三角形,则全等三角形的周长和面积一定相等,故B正确;C、全等三角形面积相等,但面积相等的两个三角形不一定是全等三角形.故该选项错误;D、两个等边三角形,形状相同,但不一定能完全重合,不一定全等.故错误.故选B.【考点】全等三角形的应用.24.如果等腰三角形的一个角为80°,那么它的一个底角为__________.【答案】50°或80°.【解析】试题解析:由题意知,分两种情况:(1)当这个80°的角为顶角时,则底角=(180°-80°)÷2=50°;(2)当这个80°的角为底角时,则另一底角也为80°.【考点】等腰三角形的性质25.一圆柱高8cm,底面半径2cm,一只蚂蚁从点A爬到点B处吃食,要爬行的最短路程(取3)是_________.【答案】10cm.【解析】如图,可以把A和B展开到一个平面内,即圆柱的半个侧面是矩形:矩形的长是圆柱底面周长的一半即2π=6.矩形的宽是圆柱的高8.根据勾股定理可得,爬行的最短路程是矩形的对角线的长为10cm.【考点】最短路径问题;勾股定理.26.在等腰三角形中有一个角是50°,它的顶角是()或().【答案】50°,80°.【解析】因为题目中没有指明该角是顶角还是底角,所以要分两种情况进行分析.①50°是底角,则顶角为:180°-50°×2=80°;②50°为顶角;所以顶角的度数为50°或80°.【考点】三角形内角和定理、等腰三角形的性质.27.(12分)如图,在五角星ABCDE中,试说明:∠A+∠B+∠C+∠D+∠E=180°.【答案】详见解析.【解析】如图,根据三角形外角的性质可得∠B+∠D=∠1,∠A+∠C=∠2,在由三角形内角和定理可知∠1+∠2+∠E=180°,即可得∠B+∠D+∠A+∠C+∠E=180°.试题解析:解:如图∵∠1是△BDF的外角,∴∠B+∠D=∠1,同理∠A+∠C=∠2,由三角形内角和定理可知∠1+∠2+∠E=180°,即,∠B+∠D+∠A+∠C+∠E=180°.【考点】三角形外角的性质;三角形内角和定理.28.如图,△ABC中,AB=5,AC=8,BD,CD分别平分∠ABC,∠ACB,过点D作直线平行于BC,交AB,AC于E,F,则△AEF的周长为()A.12B.13C.14D.18【答案】B.【解析】∵EF∥BC,∴∠EDB=∠DBC,∠FDC=∠DCB,∵△ABC中,∠ABC和∠ACB的平分线相交于点D,∴∠EBD=∠DBC,∠FCD=∠DCB,∴∠EDB=∠EBD,∠FDC=∠FCD,∴ED=EB,FD=FC,∵AB=5,AC=8,∴△AEF的周长为:AE+EF+AF=AE+ED+FD+AF=AE+EB+FC+AF=AB+AC=5+8=13.故选B.【考点】1.等腰三角形的判定与性质;2.平行线的性质.29.如图,Rt△ABC中,∠C=90°,D是AB的中点,若AB=10,则CD的长等于.【答案】5.【解析】∵Rt△ABC中,∠ACB=90°,D是AB的中点,∴CD=AB,∵AB=10,∴CD=×10=5.故答案为:5.【考点】直角三角形斜边上的中线.30.等腰三角形中有一个角等于70º,则它的底角度数是()A.70ºB.55ºC.40º或55ºD.70º或55º【答案】D.【解析】①当这个角是顶角时,底角=(180°﹣70°)÷2=55°;②当这个角是底角时,另一个底角为70°,因为70°+70°<180°,符合三角形内角和定理;故选D.【考点】1.等腰三角形的性质;2.分类讨论.31.到三角形三边距离相等的点是()A.三角形三边垂直平分线的交点B.三角形有三条高的交点C.三角形三条角平分线的交点D.三角形三条中线的交点【答案】C.【解析】∵OG⊥AB,OF⊥AC,OG=OF,∴O在∠A的平分线上,同理O在∠B的平分线上,O在∠C的平分线上,即O是三条角平分线的交点,故选C.【考点】1.角平分线的性质;2.三角形的角平分线、中线和高.32.若等腰三角形一个外角等于100,则它的顶角度数为().A.20°B.80°C.20°或80°D.无法确定【答案】C.【解析】①若100°是顶角的外角,则顶角=180°﹣100°=80°;②若100°是底角的外角,则底角=180°﹣100°=80°,那么顶角=180°﹣2×80°=20°.故选C.【考点】1.等腰三角形的性质;2.分类讨论.33.下列说法中,错误的有()①周长相等的两个三角形全等;②周长相等的两个等边三角形全等;③有三个角对应相等的两个三角形全等;④有两边及一角对应相等的两个三角形全等.A.1个B.2个C.3个D.4个【答案】C.【解析】①全等三角形的周长相等,但周长相等的两个三角形不一定全等,故①错误;②周长相等的等边三角形,边长也相等,根据SSS可判定两三角形全等,故②正确;③判定全等三角形的过程中,必须有边的参与,故③错误;④有两边对应相等,且两边的夹角对应相等的两三角形全等(SAS),故④错误;所以错误的结论有①③④,故选C.【考点】全等三角形的判定.34.(本题7分)△ABC中,∠C是最小内角.若过顶点B的一条直线把这个三角形分成两个三角形,其中一个为等腰三角形,另一个为直角三角形,则称这条直线为△ABC的关于点B的伴侣分割线.例如:如图1,△ABC中,∠A=90°,∠C=20°,若过顶点B的一条直线BD交AC于点D,且∠DBC=20°,则直线BD是△ABC的关于点B的伴侣分割线.(1)如图2,△ABC中,∠C=20°,∠ABC=110°.请在图中画出△ABC关于点B 的伴侣分割线,并注明角度;(2)△ABC中,设∠B的度数为y,最小内角∠C的度数为x.试探索y与x应满足什么要求时,△ABC存在关于点B的伴侣分割线.【答案】(1)答案见试题解析;(2)当y=90°﹣x或y=90°+x或x=45°且y>x或y=135°﹣或y=135°﹣x时△ABC存在伴侣分割线.【解析】(1)首先了解伴侣分割线的定义,然后把角ABC分成90°角和20°角即可;(2)设BD为△ABC的伴侣分割线,分以下两种情况.第一种情况:△BDC是等腰三角形,△ABD是直角三角形;第二种情况:△BDC是直角三角形,△ABD是等腰三角形分别进行分析.试题解析:(1)如图所示:(2)设BD为△ABC的伴侣分割线,分以下两种情况.第一种情况:△BDC是等腰三角形,△ABD是直角三角形,易知∠C和∠DBC必为底角,∴∠DBC=∠C=x.当∠A=90°时,△ABC存在伴侣分割线,此时y=90°﹣x,当∠ABD=90°时,△ABC存在伴侣分割线,此时y=90°+x,当∠ADB=90°时,△ABC存在伴侣分割线,此时x=45°且y>x;第二种情况:△BDC是直角三角形,△ABD是等腰三角形,当∠DBC=90°时,若BD=AD,则△ABC存在伴侣分割线,此时180°﹣x﹣y=y﹣90°,∴y=135°﹣,当∠BDC=90°时,若BD=AD,则△ABC存在伴侣分割线,此时∠A=45°,∴y=135°﹣x.综上所述,当y=90°﹣x或y=90°+x或x=45°且y>x或y=135°﹣或y=135°﹣x时△ABC存在伴侣分割线.【考点】1.作图—应用与设计作图;2.分类讨论.35.如图,正方形ABCD的对角线相交于点O,△OEF是正三角形,且AE=BF,则∠AOE= .【答案】15°.【解析】试题解析:∵四边形ABCD是正方形,∴OA=OB,∠AOB=90°.∵△OEF是正三角形,∴OE=OF,∠EOF=60°.在△AOE和△BOF中,,∴△AOE≌△BOF(SSS),∴∠AOE=∠BOF,∴∠AOE=(∠AOB﹣∠EOF)÷2=(90°﹣60°)÷2=15°.【考点】1.全等三角形的判定与性质;2.等边三角形的性质;3.正方形的性质.36.如图,△ABC中,∠C=90°.(1)在BC边上作一点P,使得点P到点C的距离与点P到边AB的距离相等(尺规作图,不写作法,保留作图痕迹);(2)在(1)的条件下,若AC=4,BC=3,求CP的长.【答案】(1)作图见解析;(2)CP的长为.【解析】(1)作∠CAB的平分线,交BC于点P,过点P作PD⊥AB于D,则PC=PD;(2)先利用HL证明Rt△ADP≌Rt△ACP,得出AD=AC=3,再设PC=x,则PD=x,BP=4-x,在Rt△BDP中,由勾股定理得出(4-x)2=x2+12,解出x的值即可.试题解析:(1)如图,点P即为所求;(2)∵AP平分∠CAB,PD⊥AB于D,∠C=90°,∴PD=PC.在Rt△ADP和Rt△ACP中,∴Rt△ADP≌Rt△ACP(HL).∴AD=AC=4.在Rt△ABC中,由勾股定理,得AB=5.∴BD=5﹣4=1.设PC=x,则PD=x,BP=3﹣x,在Rt△BDP中,由勾股定理,得PD2+BD2=PB2,即(3﹣x)2=x2+12,解得:x=.答:CP的长为.【考点】1.角平分线的性质;2.勾股定理;3.作图—基本作图.37.若等腰三角形底角为72°,则顶角为()A.108°B.72°C.54°D.36°【答案】D【解析】根据三角形内角和以及等腰三角形的性质可得:顶角的度数为:180-72×2=36°.【考点】等腰三角形38.(10分)如图,在等腰RT△中,,,点是斜边的中点,点、分别为、边上的点,且.(1)判断与的大小关系,并说明理由;(2)若,,求△的面积.【答案】(1)(1分)连接,证明全等(其它方法酌情给分);(2)【解析】(1)连接AD,利用三线合一可得到AD⊥BC,AD=CD=BD,从而得到∠CDF=∠ADE,然后利用ASA证得△DCF≌△ADE后即可证得DF=DE;(2)根据(1)中结论可证:△EDF为等腰直角三角形,在Rt△AEF中,利用勾股定理可将EF的值求出,进而可求出DE、DF的值,代入三角形面积公式计算即可.试题解析:(1)连接AD,∵AB=AC,D为BC的中点,∴AD⊥BC,AD=CD=BD,∵DE⊥DF,∴∠CDF+∠ADF=∠EDA+∠ADF,即∠CDF=∠ADE,在△DCF和△ADE中,∠C=∠DAE,∠CDF=∠ADE,CD=AD,∴△DCF≌△ADE(AAS),∴DF=DE;(2)解:由(1)知:AE=CF=6,同理AF=BE=8.∵∠EAF=90°,∴.∴EF=10,又∵由(1)知:△AED≌△CFD,∴DE=DF,∴△DEF为等腰直角三角形,,,【考点】等腰三角形的性质、勾股定理、全等三角形的判定与性质.39.如图,△ABC中,∠BAC=100°,EF, MN分别为AB,AC的垂直平分线,如果BC="12" cm,那么△FAN的周长为 cm,∠FAN= .【答案】12,20°.【解析】∵EF,MN分别为AB,AC的垂直平分线,∴AF=BF,AN=CN,∴△FAN的周长为:AF+FN+AN=BF+FN+CN=BC=12cm;∴∠BAF=∠B,∠CAN=∠C,∵△ABC中,∠BAC=100°,∴∠BAF+∠CAN=∠B+∠C=180°﹣∠BAC=80°,∴∠FAN=∠BAC﹣(∠BAF+∠CAN)=20°.故答案为:12,20°.【考点】线段垂直平分线的性质.40.一个三角形的两边长为3和8,第三边长为奇数,则第三边长为()A.5或7B.7或9C.7D.9【答案】B【解析】根据三角形的三边关系,得:第三边大于8-3=5,而小于两边之和8+3=11.又第三边应是奇数,则第三边等于7或9.故选B.【考点】三角形三边关系41.如图,△ABC为等边三角形,D为射线BC上一点,∠ADE=60°,DE与∠ACB的外角平分线交于点E.(1)如图1,点D在BC上,求证:CA=CD+CE;(2)如图2,若D在BC的延长线上,直接写出CA、CD、CE之间的数量关系.【答案】(1)证明见试题解析;(2)CA=CE-CD.【解析】(1)首先在AC上截取CM=CD,由△ABC为等边三角形,易得△CDM是等边三角形,继而可证得△ADM≌△EDC,即可得AM=EC,则可证得CA=CD+CE;(2)首先在AC延长线上截取CM=CD,由△ABC为等边三角形,易得△CDM是等边三角形,继而可证得△ADM≌△EDC,即可得AM=EC,则可证得CA=CE﹣CD.试题解析:证明:(1)在AC上截取CM=CD,∵△ABC是等边三角形,∴∠ACB=60°,∴△CDM是等边三角形,∴MD=CD=CM,∠CMD=∠CDM=60°,∴∠AMD=120°,∵∠ADE=60°,∴∠ADE=∠MDC,∴∠ADM=∠EDC,∵DE与∠ACB的外角平分线交于点E,∴∠ACE=60°,∴∠DCE=120°=∠AMD,在△ADM和△EDC中,∵∠ADM=∠EDC,MD=CD,∠AMD=∠ECD,∴△ADM≌△EDC(ASA),∴AM=EC,∴CA=CM+AM=CD+CE;(2)CA=CE﹣CD.证明:在AC的延长线上截取CM=CD,∵△ABC是等边三角形,∴∠ACB=60°,∴∠DCM=60°,∴△CDM是等边三角形,∴MD=CD=CM,∠CMD=∠CDM=60°,∵DE与∠ACB的外角平分线交于点E,∴∠ACE=∠DCE=60°,∴∠ECD=∠AMD,∵∠ADE=60°,∴∠ADE=∠CDM,∴∠ADM=∠EDC,在△ADM和△EDC中,∵∠ADM=∠EDC,MD=CD,∠AMD=∠ECD,∴△ADM≌△EDC(ASA),∴AM=EC,∴CA=AM﹣CM=CE﹣CD.【考点】1.等边三角形的性质;2.全等三角形的判定与性质.42.下列三条线段,能组成三角形的是()A.3,3,3B.3,3,6C.3,2,5D.3,2,6【答案】A.【解析】选项B, 3+3=6;选项C, 3+2=5;选项D, 3+2<6.根据三角形的三边关系可得选项B、C、D不能构成三角形,故答案选A.【考点】三角形的三边关系.43.如图所示,AB=AC,AD=AE,∠BAC=∠DAE,∠1=25°,∠2=30°,则∠3= .【答案】55°.【解析】试题分析:在△ABD与△ACE中,因∠BAC=∠DAE,即∠1+∠CAD=∠CAE+∠CAD,可得∠1=∠CAE.又因为AB=AC,AD=AE,根据SAS可判定△ABD≌△ACE,根据全等三角形的对应角相等可得∠2=∠ABD.再由三角形外角的性质可得∠3=∠1+∠ABD=∠1+∠2 =25°+30°=55°.【考点】全等三角形的判定及性质.44.将等边三角形、正方形、正五边形按如图所示的位置摆放,如果∠1=41°,∠2=51°,那么∠3的度数等于.【答案】10°.【解析】等边三角形的内角的度数是60°,正方形的内角度数是90°,正五边形的内角的度数是:(5﹣2)×180°=108°,则∠3=360°﹣60°﹣90°﹣108°﹣∠1﹣∠2=10°.故答案为:10°.【考点】1.多边形内角与外角;2.三角形内角和定理.45.如图,将长AB=5cm,宽AD=3cm的矩形纸片ABCD折叠,使点A与C重合,折痕为EF,则AE长为 cm.【答案】3.4【解析】根据矩形的性质可得:BC=AD=3cm,设AE=xcm,则BE=(5-x)cm,根据折叠图形的性质可得CE=AE=xcm,根据Rt△BCE的勾股定理可得:,解得:x=3.4【考点】折叠图形的性质、勾股定理46.计算:如图,点B、F、C、E在一条直线上,FB=CE,AB∥ED,AC∥FD.求证:AC=DF.【答案】见解析【解析】根据FB=CE得出BC=EF,根据平行得出∠B=∠E,∠ACB=∠DFE,从而得出三角形全等.试题解析:∵FB=CE ∴BC=EF ∵ AB∥ED ∴∠B=∠E ∵ AC∥EF ∴∠ACB=∠DFE∴△ABC≌△DEF ∴AC=DF【考点】三角形全等的判定及性质47.已知等腰三角形的两条边长分别是3和7,则它的周长是()A.17B.15C.13D.13或17【答案】A【解析】当3为腰时,则3+3=6<7,不能构成三角形,则等腰三角形的腰长为7,底为3,则周长为:7+7+3=17.【考点】等腰三角形的性质48.如图,∠AOP=∠BOP=15°,PC∥OA,PQ⊥OA,若PC=4,则PQ=___ __.【答案】2【解析】过点P作PE⊥OB,根据题意可得:∠COP=∠CPO=15°,根据外角的性质可得:∠ECP=30°,根据直角三角形的性质可得:PE=2,根据角平分线的性质可得:PQ=PE=2.【考点】角平分线的性质、直角三角形49.下列判定直角三角形全等的方法,不正确的是()A.两条直角边对应相等B.斜边和一锐角对应相等C.斜边和一条直角边对应相等D.两锐角相等【答案】D【解析】A可利用SAS来判定全等,故正确;B可利用AAS来判定全等,故正确;C可利用HL判定全等,故正确;D面积相等不一定退出两直角三角形全等,没有相关的判定方法,故不正确.故选D【考点】直角三角形全等的判定50.在△ABC中,若∠B=∠C=2∠A,则∠A的度数为()A.72°B.45°C.36°D.30°【答案】C【解析】根据三角形的内角和可知∠A+∠B+∠C=180°,即5∠A=180°,解得∠A=36°.故选C【考点】三角形的内角和51.如图,∠1=∠2,要使△ABE ≌△ACE,则还需添加一个条件是.【答案】∠B=∠C等【解析】根据题意,易得∠AEB=∠AEC,又由AE公共边,所以根据全等三角形的判定方法容易寻找添加条件为:当∠B=∠C时,△ABE≌△ACE(AAS);或BE=CE时,△ABE≌△ACE(SAS);或∠BAE=∠CAE时,△ABE≌△ACE(ASA).【考点】全等三角形的判定52.△ABC中,AB=AC,D为AB上一点,且AD=CD=BC,则∠A的度数为()A.30°B.36°C.40°D.45°【答案】B.【解析】试题解析:∵AB=AC,AD=CD=BC,∴∠A=∠ACD,∠B=∠ACB=∠CDB,设∠A=x°,则∠ACD=∠A=x°,∴∠B=∠ACB=∠CDB=∠A+∠ACD=2x°∵∠A+∠B+∠ACB=180°,∴x+2x+2x=180,∴x=36,∴∠A=36°.故选B.【考点】等腰三角形的性质.53.如图,AB=AE,∠ABC=∠AED,BC=ED,点F是CD的中点.试说明:AF⊥CD.【答案】参见解析.【解析】连接AC、AD.利用已知条件证明△ABC≌△AED(SAS).得出AC=AD.因为点F 是CD的中点.所以利用等腰三角形性质即可得出AF⊥CD.试题解析:连接AC、AD.在△ABC和△AED中,∵AB=AE,∠B=∠E,BC=ED,∴△ABC≌△AED(SAS).∴AC=AD.∴△ACD为等腰三角形.∵F为CD的中点,∴AF⊥CD.【考点】1.全等三角形的判定与性质;2.等腰三角形性质.54.(2015秋•句容市月考)已知△ABC中,∠BAC=150°,AB、AC的垂直平分线分别交BC 于E、F.求∠EAF的度数.【答案】120°.【解析】根据三角形内角和定理可求∠B+∠C;根据垂直平分线性质,EA=EB,FA=FC,则∠EAB=∠B,∠FAC=∠C,∠EAF=∠BAC﹣∠EAB﹣∠FAC=140°﹣(∠B+∠C).解:设∠B=x,∠C=y.∵∠BAC+∠B+∠C=180°,∠BAC=150°∴x+y=30°.∵AB、AC的垂直平分线分别交BC于E、F,∴EA=EB,FA=FC,∴∠EAB=∠B,∠FAC=∠C.∴∠EAF=∠BAC﹣(x+y)=150°﹣30°=120°.【考点】线段垂直平分线的性质.55.下面每一组数据中的三个数值分别为三角形的三边长,不能构成直角三角形的是()A.3、4、5B.6、8、10C.D.5、12、13【答案】C【解析】能构成直角三角形则说明两条短的边的平方和等于长的边的平方.3²+4²=5²;6²+8²=10²;5²+12²=13².【考点】直角三角形的判定56.已知:如图,点D是△ABC内一点,AB=AC,∠1=∠2.求证:AD平分∠BAC.【答案】证明见解析.【解析】先根据∠1=∠2得出BD=CD,再由SSS定理得出△ABD≌△ACD,由全等三角形的性质即可得出结论.试题解析:∵∠1=∠2,∴BD=CD,在△ABD与△ACD中,∵,∴△ABD≌△ACD(SSS),∴∠BAD=∠CAD,即AD平分∠BAC.【考点】全等三角形的判定与性质.57.如图,已知一块四边形的草地ABCD,其中∠A=60°,∠B=∠D=90°,AB=20米,CD=10米,求这块草地的面积.【答案】150.【解析】所求四边形ABCD的面积=S△ABE -S△CED.分别延长AD,BC交于点E,在直角三角形中解题,根据角的正弦值与三角形边的关系,可求出各边的长,然后代入三角函数进行求解.。

初二数学《证明》期末测试题答案及解析

初二数学《证明》期末测试题答案及解析
解答:解:由题可知α=180°﹣β+γ,所以有180°﹣α+γ+180°﹣β=180°,即α+β﹣γ=180°.故选B.
点评:本题考查三角形内角与外角的关系,平行线的性质.
19.一学员在广场上练习驾驶汽车,两次拐弯后,行驶的方向与原来的方向相同,这两次拐弯的角度可能是( )
A.第一次向左拐40°,第二次向右拐40°B.第一次向右拐140°,第二次向左拐40°C.第一次向右拐140°,第二次向右拐40°D.第一次向左拐140°,第二次向左拐40°
专题:计算题。
分析:根据两直线平行,内错角相等求出∠ADB=∠CAE=95°,再根据三角形的一个外角等于和它不相邻的两个内角的和即可求出∠C.
解答:解:∵AE∥BD,∠CAE=95°,
∴∠ADB=∠CAE=95°,
∵∠CBD=28°,
∴∠C=∠ADB﹣∠CBD=95°﹣28°=67°.
点评:本题主要利用两直线平行,内错角相等的性质和三角形的外角性质求解.
10.如图是一个破损的梯形零件,只有上底一部分,已经量得∠A=115°,∠D=100°,则梯形的另外两个角∠B=65°,∠C=80°.
考点:梯形。
分析:两条直线平行,可利用其同旁内角互补进行求解.
解答:解:∵AD∥BC,
∴∠A+∠B=180°,
又∵∠A=115°,
∴∠B=65°,
同理∠C=80°.
点评:本题考查了梯形的知识,熟练掌握平行线的性质是解题的关键.
考点:三角形的外角性质;三角形内角和定理。
分析:先根据平角的性质求出∠AED的度数,再根据三角形内角和定理求出∠ADB的度数即可;
根据∠ADB是△BCD的外角直接解答即可.
解答:解:∵∠2=50°,∴∠AED=180°﹣∠2=180°﹣50°=130°,

初二数学证明期末测试题答案及解析

初二数学证明期末测试题答案及解析

初二数学证明期末测试题答案及解析一、解答题1.如图,线段AB=8,射线BG⊥AB,P为射线BG 上一点,以AP为边作正方形APCD,且点C、D与点B在AP两侧,在线段DP上取一点E,使∠EAP=∠BAP,直线CE与线段AB 相交于点F(点 F与点A、 B不重合).(1)求证:△AEP≌△CEP;(2)判断CF与AB的位置关系,并说明理由:(3)求△AEF的周长.【答案】(1)详见解析:(2)CF⊥AB,理由详见解析:(3)16.【解析】(1)四边形APCD正方形,则DP平分∠APC,PC=PA,∠APD=∠CPD=45°,即可求解:(2)△AEP≌△CEP,则∠EAP=∠ECP,而∠EAP=∠BAP,则∠BAP=∠FCP,又∠FCP+∠CMP=90°,则∠AMF+∠PAB=90°即可求解:(3)证明△PCN≌△APB(AAS).则CN=PB=BF,PN=AB,即可求解.(1)证明:∵四边形APCD正方形.△DP平分∠APC,PC=PA,:∠APD=∠CPD=45°,∴△AEP≌△CEP(SAS);(2)CF⊥AB,理由如下:∴△AEP≌△CEP,∴∠EAP=∠ECP,∵∠EAP=∠BAP,∴∠BAP=∠FCP,∵∠FCP+∠CMP=90°,∠AMF=∠CMP.∴∠AMF+∠PAB=90°,△∠AFM=90°,△CF⊥AB,(3)如图,过点C和CN⟂PB,:CF⊥AB,BG⊥AB,△FC∥BN,∴∠CPN=∠PCF=∠EAP=∠PAB.又AP=CP,∴△PCN≌△APB(AAS).∴CN=PB=BF,PN=AB,∵△AEP≌△CEP,∴AE=CE,∴AE+EF+AF=CE+EF+AF=BN+AF=PN+PB+AF=AB+CN+AF=AB+BF+AF=2AB=16.【点睛】本题为四边形综合题,涉及到正方形的性质、三角形全等等知识点,其中(3),证明△PCN≌△APB(AAS).是本题的关键.2.如图1,已知菱形ABCD的边长为6,∠B=60°,点E、F分别是边BC、CD上的动点(不与端点重合),且∠EAF=60°.(1)求证:△AEF是等边三角形:(2)点E、F在运动过程中,四边形AECF的面积是否变化,如果变化,请说明理由:如果不变,请求出面积:(3)当点E在什么位置时,△E CF的面积最大,并求出此时面积的最大值:(4)如图2,连接BD分别与边AE、AF交于M、N,当∠DAF=15°时,求证:4MN²+DN²=BM².【答案】(1)见解析:(2)四边形AECF的面积不变.四边形AECF的面积为;(4)见解析9√3;(3)E是BC的中点时△ECF的面积最大,最大面积为9√34【解析】(1)利用证明△ACE和△ADF全等得AE=AF,结合∠EAF=60°,便得△EAF是等边三角形:(2)根据△ACE≌△ADF,得四边形AECF的面积等于△ACD的面积等于菱形ABCD面积的一半;(3)要使三角形ECF的面积最大,只要等边三角形AEF的面积最小即AE⊥BC时即可;(4)将△ADN绕点A顺时针旋转120°得到△ABP,连接PM.证明MN=PM,∠BPM=90°即可解决问题.(1)证明:在菱形ABCD中,。

八年级全等三角形简单证明题及解答(5道)

八年级全等三角形简单证明题及解答(5道)
八年级全等三角形简单证明题及解 答(5道)
汇报人:XX
目 录
• 题目一:基本的全等三角形证明 • 题目二:利用角平分线性质证明 • 题目三:通过边边边条件证明 • 题目四:结合中线性质进行证明 • 题目五:综合应用多种性质证明 • 总结与拓展
01
题目一:基本的全等三角形证明
题目描述
• 已知三角形$ABC$和三角形$DEF$,其中$AB = DE$,$AC = DF$,$\angle BAC = \angle EDF$。求证:$\triangle ABC \cong \triangle DEF$。
由第二步可知,△BDE∽△CFD。
详细解答
4. 第四步,根据相似三角形的性质,对应边成比例,所以BD/CF=DE/DF。
5. 第五步,因为BD=AD(已知),所以AD/CF=DE/DF。又因为AE/EC=DE/EF(已知), 所以AD/CF=AE/EC。
6. 第六步,交叉相乘得AD*EC=AE*CF,即AE/AD=EC/CF。又因为∠A=∠ACF(对顶角相 等),所以△ADE∽△ACF。
第三步,根据相似三 角形的性质,有 AB/AC = BD/DC。
综上,我们证明了 AB/AC = BD/DC。
03
题目三:通过边边边条件证明
题目描述
已知
△ABC和△DEF中,AB = DE,BC = EF,AC = DF。
求证
△ABC ≌ △DEF。
题目描述
【分析】
本题主要考察全等三角形的判定方法——边边边条件。根据已知条件,我们可以 直接应用边边边定理来证明两个三角形全等。
题目描述
01
【解答】
02
证明
03
04
∵ 在△ABC和△DEF中,AB = DE,BC = EF,AC = DF(已
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2010年期末复习水平测试(二)参考答案与试题解析一、填空题(共10小题,每小题3分,满分30分)1.命题“垂直于同一条直线的两条直线平行”的条件是两条直线垂直于同一条直线,结论是这两条直线互相平行.考点:命题与定理。

分析:命题由题设和结论两部分组成,题设是已知事项,结论是由已知事项推出的事项.解答:解:“垂直于同一条直线的两条直线平行”的条件是两条直线垂直于同一条直线,结论是这两条直线互相平行.点评:本题考查了命题的条件和结论的叙述.2.一个人从A地出发沿北偏东60°方向走到B地,再从B地出发沿南偏西20°方向走到C地,那么∠ABC=40度.考点:方向角;三角形内角和定理;三角形的外角性质。

分析:根据方位角的概念,画图正确表示出行驶的过程,再根据已知转向的角度结合三角形的内角和与外角的关系求解.解答:解:如图,A沿北偏东60°的方向行驶到B,则∠BAC=90°﹣60°=30,B沿南偏西20°的方向行驶到C,则∠BCO=90°﹣20°=70°,又∵∠ABC=∠BCO﹣∠BAC,∴∠ABC=70°﹣30°=40°.点评:解答此类题需要从运动的角度,正确画出方位角,再结合三角形的内角和与外角的关系求解.3.如果直角三角形的一个外角为130°,则它的两个锐角是40°,50°.考点:三角形的外角性质。

分析:先根据三角形内角与外角的关系求出与已知外角不相邻的一个锐角的度数,再根据直角三角形的性质求出另一个内角的度数即可.解答:解:∵直角三角形的一个外角为130°,∴与已知外角不相邻的一个锐角的度数为130°﹣90°=40°,∴另一个锐角的度数为90°﹣40°=50°,∴它的两个锐角是40°,50°.点评:本题考查的是三角形内角与外角的性质,即三角形的外角等于与之不相邻的两个内角的和.4.如图,AD∥BC,∠A=110°,∠C=40°,则∠B+∠D=210 度.考点:平行线的性质。

专题:计算题。

分析:两直线平行,同旁内角互补.所以,由AD∥BC可得∠A+∠B=∠C+∠D=180°,又知∠A、∠C的值即可求出∠B、∠D的值,让其相加,求出∠B+∠D的值即可.解答:解:∵AD∥BC,∴∠A+∠B=∠C+∠D=180°,又∵∠A=110°,∠C=40°,∴∠B=70°,∠D=140°,∴∠B+∠D=70°+140°=210°.点评:本题主要考查平行线的性质:两直线平行,同旁内角互补.5.如图,BC⊥ED于点O,∠A=50°,∠D=20°,则∠B=20度.考点:三角形的外角性质;三角形内角和定理。

分析:已知∠A=50°,∠D=20°,根据三角形的一个外角等于与其不相邻的两内角和,可知∠BED=70°,又BC⊥ED于点O,根据三角形的内角和为180°即可得出∠B的度数.解答:解:根据题意,在△AEO中,∠A+∠D=∠BEO=70°.在△BEO中,BC⊥ED,即得∠B=20°.点评:本题考查的是三角形的一个外角等于与其不相邻的两内角和,和三角形的内角和为180°.6.如图,△ABC中,D在AC上,E在BD上,∠1=20°,∠2=50°,∠C=20°,则∠ADB=30°,∠DBC=10°.考点:三角形的外角性质;三角形内角和定理。

分析:先根据平角的性质求出∠AED的度数,再根据三角形内角和定理求出∠ADB的度数即可;根据∠ADB是△BCD的外角直接解答即可.,°=130°50﹣°2=180﹣∠°AED=180,∴∠°2=50解:∵∠解答:∴∠ADB=180°﹣∠AED﹣∠1=180°﹣130°﹣20°=30°;∵∠ADB是△BCD的外角,∠C=20°,∴∠DBC=∠ADB﹣∠C=30°﹣20°=10°.点评:此题比较简单,解答此题的关键是熟知以下知识:(1)三角形的外角等于与之不相邻的两个内角的和;(2)三角形的内角和为180°.7.如图,AE∥BD,∠CAE=95°,∠CBD=28°,则∠C=67°.考点:平行线的性质;三角形的外角性质。

专题:计算题。

分析:根据两直线平行,内错角相等求出∠ADB=∠CAE=95°,再根据三角形的一个外角等于和它不相邻的两个内角的和即可求出∠C.解答:解:∵AE∥BD,∠CAE=95°,∴∠ADB=∠CAE=95°,∵∠CBD=28°,∴∠C=∠ADB﹣∠CBD=95°﹣28°=67°.点评:本题主要利用两直线平行,内错角相等的性质和三角形的外角性质求解.8.在△ABC中,若∠A+∠B=100°,∠C=2∠A,则∠A=40°,∠B=60°,∠C=80°.考点:三角形内角和定理。

分析:根据∠C=2∠A及三角形内角和定理及∠A+∠B=100°列出方程组,求出各角的度数即可.解答:解:∵∠A+∠B+∠C=180°,∠C=2∠A,∴3∠A+∠B=180°…①,∵∠A+∠B=100°…②,∴①﹣②得,2∠A=80°,∴∠A=40°,∠C=2∠A=2×40°=80°.∴∠B=180°﹣∠A﹣∠B=180°﹣40°﹣80°=60°.点评:本题考查的是三角形内角和定理.解答此题的关键是根据题意列出方程组求解,体现了方程的思想.B=∠C,则∠A=30°,∠B=60°,∠C=90°.中,若∠△9.在ABCA=∠考点:三角形内角和定理。

B=∠C设出∠∠分析:根据∠A=A的度数,再根据三角形内角和定理求出各角的度数即可.B=∠C∠,解:∵∠解答:A=∴设∠A=x,则∠B=2x,∠C=3x.∴x+2x+3x=180°,∴x=30°.∴∠A=30°,∠B=60°,∠C=90°.点评:本题比较简单,考查的是三角形内角和定理.解答此题的关键是的关键是根据三角形内角和定理列出方程,求出各角的度数.10.如图是一个破损的梯形零件,只有上底一部分,已经量得∠A=115°,∠D=100°,则梯形的另外两个角∠B=65°,∠C=80°.考点:梯形。

分析:两条直线平行,可利用其同旁内角互补进行求解.解答:解:∵AD∥BC,∴∠A+∠B=180°,又∵∠A=115°,∴∠B=65°,同理∠C=80°.点评:本题考查了梯形的知识,熟练掌握平行线的性质是解题的关键.二、选择题(共10小题,每小题3分,满分30分)11.如图,AD⊥BC于D,DE∥AB,那么∠B和∠ADE的关系是()A.互余B.互补C.相等D.不能确定考点:平行线的性质;垂线。

专题:探究型。

分析:DE∥AB?∠B=∠CDE,∠CDE与∠ADE互余,可知∠B和∠ADE的关系.解答:解:∵DE∥AB,∴∠B=∠CDE,又∠CDE与∠ADE互余,∴∠B和∠ADE互余.故选A.点评:考查了平行线的性质,两直线平行,同位角相等及垂线的定义.12.(2004?淄博)如图,下列条件中,不能判断直线l∥l )的是(21.A.∠1=∠3 B.∠2=∠3 C.∠4=∠5 D.∠2+∠4=180°考点:平行线的判定。

分析:在复杂的图形中具有相等关系或互补关系的两角首先要判断它们是否是同位角、内错角或同旁内角,被判断平行的两直线是否由“三线八角”而产生的被截直线.解答:解:∠1与∠3是l与l形成的内错角,所以能判断直线l∥l;2211∠4与∠5是l与l形成的同位角,所以能判断直线l∥l;2121∠2与∠4是l与l形成的同旁内角,所以能判断直线l∥l;2121∠2与∠3不是l与l形成的角,故不能判断直线l∥l.2211故选B.点评:正确识别“三线八角”中的同位角、内错角、同旁内角是正确答题的关键,不能遇到相等或互补关系的角就误认为具有平行关系,只有同位角相等、内错角相等、同旁内角互补,才能推出两被截直线平行.13.下列语句中,不是命题的是()A.同位角相等B.对顶角不相等C.作∠A的平分线D.同角的补角相等考点:命题与定理。

分析:命题就是判断一件事情的语句.根据定义找不符合条件的答案.解答:解:A、B、D都是判断一件事情,只有C是陈述一件事情.故选C.点评:本题考查命题的概念,关键知道命题是判断一件事情.14.如图,下列推理及所论述理由正确的是()A.因为DE∥BC,所以∠1=∠C.理由是:同位角相等,两直线平行B.因为∠2=∠3,所以DE∥BC.理由是:同位角相等,两直线平行C.因为DE∥BC,所以∠2=∠3.理由是:两直线平行,内错角相等D.因为∠1=∠C,所以DE∥BC.理由是:两直线平行,同位角相等考点:平行线的判定与性质。

分析:此题考查平行线的性质及判定定理,可由同位角,内错角,同旁内角判定其平行,又有平行可得角之间的关系.解答:解:A、DE∥BC,所以∠1=∠C,即两直线平行,同位角相等,题中理由叙述错误,故错误;B、∠2=∠3,可得DE∥BC,即内错角相等,两直线平行,而不是同位角,故错误;C、DE∥BC,所以∠2=∠3,即两直线平行,内错角相等,故正确;D、∠1=∠C,所以DE∥BC,即同位角相等,两直线平行,故错误.故选C.点评:熟练掌握平行线的判定及性质,不要将性质与判定混淆.15.(2011?泸州)如图,∠1与∠2互补,∠3=135°,则∠4的度数是()A.45°B.55°C.65°D.75°考点:平行线的判定与性质;对顶角、邻补角。

专题:计算题。

分析:因为∠1与∠2互补,所以a∥b,又因为∠3=∠5,所以∠4与∠5互补,则∠4的度数可求.解答:解:∵∠1与∠2互补,∴a∥b,∵∠3=∠5,∴∠5=135°,∵a∥b,∴∠4与∠5互补,∴∠4=180°﹣135°=45°.故选A.点评:本题考查平行线的判定与性质,正确识别“三线八角”中的同位角、内错角、同旁内角是正确答题的关键.16.在三角形中,最大的内角不小于()A.30°B.45°C.60°D.90°考点:三角形内角和定理。

相关文档
最新文档