[高中数学]简单的线性规划2
人教版高中数学必修5第三章不等式 3.3.2 简单的线性规划问题
钢板张数最少?
分
A规格 B规格 C规格 张数
析: 第一种钢板
2
1
1
x
列 第二种钢板
1
2
3
y
表 成品块数 2x y x 2y x 3y
解:设需截第一种钢板x张,第二种钢板y张,共需截
这两种钢板共z张,则
2x y 15,
x x
2y 3y
18, 27,
x 0,
分析:对应无数个点,即直线与边界线重合时. 作出可行域,结合图形,看直线 l : y ax z
与哪条边界线重合时,可取得最大值.
解:当直线 l : y ax z 与边界
线重合时,有无数个点,
使函数值取得最大值,
此时有 kl kAC .
3
3
k AC
5
, kl
a
ห้องสมุดไป่ตู้. 5
问题的最优解.
(1)在上述问题中,如果每生产一件甲产品
获利3万元,每生产一件乙产品获利2万元,
又当如何安排生产才能获得最大利润?
(2)由上述过程,你能得出最优解与可行域之间的关 系吗?
设生产甲产品x件乙产品y件时,工厂获得的利润为
z,则z=3x+2y.
把z 3x 2 y变形为y 3 x z ,这是斜率为 3 ,
利用平移的方法找出与可行域有公共点 且纵截距最大或最小的直线;
(3)求:通过解方程组求出最优解; (4)答:作出答案. 最优解一般在可行域的顶点处取得.
x 4 y 3, 例2 已知x, y满足 3x 5 y 25,设z ax y(a 0),
简单的线性规划二(使用)
-2≤x-y≤2.若目标函数z=ax+y(其中a>0)仅在
点(3,1)处取得最大值,则a的取值范围为
________.
[ 解 ] 由约束条件画出可行域 ( 如图 6 所示 ) , 为矩形 ABCD(包括边界).点 C的坐标为 (3,1), z最大时,即平移y=-ax时使直线在y轴上的 截距最大, ∴-a<kCD,即-a<-1,∴a>1.
目标函数为 z=200x+150y, 画出可行域如右图 8 所示.
作出直线 l:200x+150y=0,即直线 4x+3y=0.当 l 经过平移过可 20 60 行域上的点 A( 7 , 7 )时,z 有最大值,由于 A 的坐标不是整数, 又因为 x,y∈N,所以 A 不是最优解. 调整最优解: 37-4x 由 x,y∈N,知 z′=4x+3y≤37,令 4x+3y=37,即 y= 3 , 5 代入约束条件①,②,可解得 ≤x≤2,由于 x∈N,得 x=3,但此 2 25 时 y= 3 ∉N.
到直线 ax+by+c=0 距离的 a +b 倍
2
2
.
2x+ y- 2≥ 0, 例 1 已知实数 x, y 满足x- 2y+ 4≥ 0, 3x- y- 3≤ 0, y+1 (1)试求 z= 的最大值和最小值; x+ 1 (2)试求 z= x + y 的最大值和最小值.
变式4 某公司租赁甲、乙两种设备生产A,B两类
产品,甲种设备每天能生产A类产品5件和B类产品10件,
乙种设备每天能生产A类产品6件和B类产品20件.已知 设备甲每天的租赁费为200元,设备乙每天的租赁费为 300元.现该公司至少要生产A类产品50件,B类产品 140件,所需租赁费最少为________元.
斜率 ;
2020高考文科数学(人教版)一轮复习讲义:第43讲简单的线性规划问题含答案 (2)
第43讲简单的线性规划问题1.了解二元一次不等式的几何意义,能用平面区域表示二元一次不等式组.2.会从实际情境中抽象出一些简单的二元线性规划问题,并能加以解决.知识梳理1.二元一次不等式(组)表示平面区域(1)二元一次不等式Ax+By+C>0(或<0)表示直线Ax+By+C=0某一侧所有点组成的平面区域.(2)二元一次不等式组所表示的平面区域是各个不等式所表示的平面点集的交集,即各个不等式所表示的平面区域的公共部分.(3)画或判断二元一次不等式表示的平面区域常采用直线定界,特殊点定“域”.2.线性规划的有关概念(1)线性约束条件——由条件列出的二元一次不等式组;(2)线性目标函数——由条件列出的一次函数表达式;(3)线性规划——求线性目标函数在线性约束条件下的最大值或最小值问题,称为线性规划问题.(4)可行解、可行域、最优解:满足线性约束条件的解(x,y)叫做可行解,由所有可行解组成的集合叫做可行域,使线性目标函数取得最大值和最小值的可行解叫做最优解.3.利用线性规划求最值的一般步骤:(1)根据线性约束条件画出可行域;(2)设z=0,画出直线l0;(3)观察、分析、平移直线l0,从而找到最优解;(4)求出目标函数的最大值或最小值.热身练习1.下列各点中,不在x+y-1≤0表示的平面区域内的点是(C)A.(0,0) B.(-1,1)C.(-1,3) D.(2,-1)将上述各点代入不等式检验,若满足不等式,则点在所表示的平面区域内,否则,不在.因为(0,0),(-1,1),(2,-1)都满足不等式,所以这些点都在所表示的平面区域内,而(-1,3)不满足不等式,故选 C.2.如图所示,不等式2x-y<0表示的平面区域是(B)直线定界,因为2x-y=0不经过(2,1)点排除D,2x-y<0不包括边界,排除A,再取特殊点(1,0)代入得2-0>0,故(1,0)不在2x-y<0表示的区域内,故排除C,选B.3.不等式组x≥0,x+3y≥4,3x+y≤4所表示的平面区域的面积等于(C)A.32B.23C.43D.34不等式组表示的平面区域是各个不等式表示的平面区域的交集,作出不等式组表示的平面区域如右图:所以S阴=12×4-43×1=43.4.目标函数z=x+2y,将其看成直线方程时,z的意义是(C) A.该直线的截距B.该直线的纵截距C.该直线纵截距的2倍D.该直线纵截距的1 2将z=x+2y化为y=-12x+z2,可知z=2b,表示该直线的纵截距的2倍.5.(2015·北京卷)如图,△ABC及其内部的点组成的集合记为D,P(x,y)为D中任意一点,则z=2x+3y的最大值为7.把z=2x+3y变形为y=-23x+13z,通过平移直线y=-23x知,当过点A(2,1)时,z=2x+3y取得最大值且z max=2×2+3×1=7.。
高中数学 第3章 不等式 4.2 简单线性规划讲义教案 北师大版必修5
学习资料4.2 简单线性规划学习目标核心素养1.了解目标函数、约束条件、二元线性规划问题、可行解、可行域、最优解等基本概念.(重点)2.掌握二元线性规划问题的求解过程,特别是确定最优解的方法.(重点、难点)1.通过学习与线性规划有关的概念,培养数学抽象素养.2.通过研究最优解的方法,提升数学运算能力.简单线性规划阅读教材P100~P101“例6”以上部分,完成下列问题(1)线性规划中的基本概念名称意义约束条件关于变量x,y的一次不等式(组)线性约束条件关于x,y的一次不等式(组)目标函数欲求最大值或最小值的关于变量x,y的函数解析式线性目标函数关于变量x,y的一次解析式可行解满足线性约束条件的解(x,y)可行域由所有可行解组成的集合最优解使目标函数取得最大值或最小值的可行解线性规划问题在线性约束条件下求线性目标函数的最大值或最小值问题①目标函数的最值线性目标函数z=ax+by(b≠0)对应的斜截式直线方程是y=-错误!x+错误!,在y轴上的截距是错误!,当z变化时,方程表示一组互相平行的直线.当b>0,截距最大时,z取得最大值,截距最小时,z取得最小值;当b<0,截距最大时,z取得最小值,截距最小时,z取得最大值.②解决简单线性规划问题的一般步骤在确定线性约束条件和线性目标函数的前提下,解决简单线性规划问题的步骤可以概括为:“画、移、求、答"四步,即(ⅰ)画:根据线性约束条件,在平面直角坐标系中,把可行域表示的平面图形准确地画出来,可行域可以是封闭的多边形,也可以是一侧开放的无限大的平面区域.(ⅱ)移:运用数形结合的思想,把目标函数表示的直线平行移动,最先通过或最后通过的顶点(或边界)便是最优解.(ⅲ)求:解方程组求最优解,进而求出目标函数的最大值或最小值.(ⅳ)答:写出答案.思考:(1)在线性约束条件下,最优解唯一吗?[提示]可能唯一,也可能不唯一.(2)若将目标函数z=3x+y看成直线方程时,z具有怎样的几何意义?[提示]由z=3x+y得y=-3x+z,z是直线在y轴上的截距.1.设变量x,y满足约束条件错误!则目标函数z=3x-y的最大值为()A.-4 B.0C.错误!D.4D[作出可行域,如图所示.联立{x+y-4=0,,x-3y+4=0,解得错误!当目标函数z=3x-y移到(2,2)时,z=3x-y有最大值4.]2.若实数x,y满足错误!则s=x+y的最小值为.2[如图所示阴影部分为可行域,由s=x+y得y=-x+s,由图可知,当直线y=-x+s与直线x+y-2=0重合时,s最小,即x=4,y=-2时,s的最小值为4-2=2.]3.如图,点(x,y)在四边形ABCD的内部和边界上运动,那么z=2x-y的最小值为.1[法一:目标函数z=2x-y可变形为y=2x-z,所以当直线y=2x-z在y轴上的截距最大时,z的值最小.移动直线2x-y=0,当直线移动到经过点A时,直线在y轴上的截距最大,即z的值最小,为2×1-1=1.法二:将点A,B,C,D的坐标分别代入目标函数,求出相应的z值,比较大小,得在A点处取得最小值为1.]4.已知点P(x,y)的坐标满足条件错误!点O为坐标原点,那么|PO|的最小值等于,最大值等于.2错误![画出约束条件对应的可行域,如图阴影部分所示,因为|PO|表示可行域上的点到原点的距离,从而使|PO|取得最小值的最优解为点A(1,1);使|PO|取得最大值的最优解为点B(1,3),所以|PO|min=2,|PO|max=错误!.]线性目标函数的最值问题【例1】的最大值为.错误![由题意画出可行域(如图所示),其中A(-2,-1),B错误!,C(0,1),由z=x+y知y=-x+z,当直线y=-x+z经过B错误!时,z取最大值错误!.]用图解法解决线性规划问题的关键和注意点,图解法是解决线性规划问题的有效方法.其关键在于平移目标函数对应的直线ax+by=0,看它经过哪个点(或哪些点)时最先接触可行域和最后离开可行域,则这样的点即为最优解,再注意到它的几何意义,从而确定是取最大值还是最小值.错误!1.若x ,y 满足约束条件错误!则z =x -2y 的最小值为 .-5 [画出可行域,数形结合可知目标函数的最小值在直线x =3与直线x -y +1=0的交点(3,4)处取得,代入目标函数z =x -2y 得到-5.]线性规划问题中的参数问题【例2】 已知变量x ,y 满足的约束条件为错误!若目标函数z =ax +y (其中a >0)仅在点(3,0)处取得最大值,求a 的取值范围.[解] 依据约束条件,画出可行域.∵直线x +2y -3=0的斜率k 1=-错误!, 目标函数z =ax +y (a >0)对应直线的斜率k 2=-a , 若符合题意,则需k 1>k 2.即-12>-a ,得a >错误!.含参数的线性目标函数问题的求解策略(1)约束条件中含有参数:此时可行域是可变的,应分情况作出可行域,结合条件求出不同情况下的参数值。
高中数学必修5:简单的线性规划问题 知识点及经典例题(含答案)
简单的线性规划问题【知识概述】线性规划是不等式应用的一个典型,也是数形结合思想所体现的一个重要侧面.近年的考试中,通常考查二元一次不等式组表示的平面区域的图形形状以及目标函数的最大值或最小值,或求函数的最优解等问题.通过这节课的学习,希望同学们能够掌握线性规划的方法,解决考试中出现的各种问题.解决线性规划的数学问题我们要注意一下几点1.所谓线性规划就是在线性约束条件下求线性目标函数的最值问题;2.解决线性规划问题需要经历两个基本的解题环节(1)作出平面区域;(直线定”界”,特“点”定侧);(2)求目标函数的最值.(3)求目标函数z=ax+by最值的两种类型:①0b>时,截距最大(小),z的值最大(小);②0b>时,截距最大(小),z的值最小(大);【学前诊断】1.[难度] 易满足线性约束条件23,23,0,x yx yxy+≤⎧⎪+≤⎪⎨≥⎪⎪≥⎩的目标函数z x y=+的最大值是()A.1B.32C.2D.32.[难度] 易设变量,x y满足约束条件0,0,220,xx yx y≥⎧⎪-≥⎨⎪--≤⎩则32z x y=-的最大值为( )A.0B.2C.4D.63. [难度] 中设1m >,在约束条件1y x y mx x y ≥⎧⎪≤⎨⎪+≤⎩下,目标函数z x my =+的最大值小于2,则m 的取值范围为( )A.(1,1 B.(1)+∞ C .(1,3) D .(3,)+∞【经典例题】例1. 设变量,x y 满足约束条件1,0,20,y x y x y ≤⎧⎪+≥⎨⎪--≤⎩则2z x y =+的最大值为( )A.5B.4C.1D.8例2. 若变量,x y 满足约束条件1,0,20,y x y x y ≤⎧⎪+≥⎨⎪--≤⎩则2z x y =-的最大值为( )A.4B.3C.2D.1例3. 设,x y 满足约束条件2208400,0x y x y x y -+≥⎧⎪--≤⎨⎪≥≥⎩,若目标函数(0,0)z abx y a b =+>>的最小值为8,则a b +的最小值为____________.例4. 在约束条件下0,0,,24,x y x y s x y ≥⎧⎪≥⎪⎨+≤⎪⎪+≤⎩当35s ≤≤时,目标函数32z x y =+的最大值的变化范围是( )A.[]6,15B.[]7,15 C.[]6,8 D.[]7,8例5. 设不等式组1230x x y y x ≥⎧⎪-+≥⎨⎪≥⎩,所表示平面区域是1,Ω平面区域2Ω与1Ω关于直线3490x y --=对称,对于1Ω中任意一点A 与2Ω中的任意一点B ,AB 的最小值等于( )A.285B.4C.125D.2例6.对于实数,x y ,若11,21,x y -≤-≤则21x y -+的最大值为_________.例7.在约束条件22240x y x y +++≤下,函数32z x y =+的最大值是___________.例8. 已知函数2()2(,)f x x ax b a b =++∈R ,且函数()y f x =在区间()0,1与()1,2内各有一个零点,则22(3)z a b =++的取值范围是( ).A.2⎫⎪⎪⎝⎭B.1,42⎛⎫ ⎪⎝⎭C.()1,2D.()1,4 例9. 奇函数()f x 在R 上是减函数,若,s t 满足不等式22(2)(2)f s s f t t -≤--,则当14s ≤≤时,t s的取值范围是( ). A.1,14⎡⎫-⎪⎢⎣⎭ B.1,14⎡⎤-⎢⎥⎣⎦ C.1,12⎡⎫-⎪⎢⎣⎭ D.1,12⎡⎤-⎢⎥⎣⎦例10. 某加工厂用某原料由甲车间加工出A 产品,由乙车间加工出B 产品.车间加工一箱原料需耗费工时10小时可加工出7千克A 产品,每千克 A 产品获利40元.乙车间加工一箱原料需耗费工时6小时可加工出4千克B 产品,每千克B 产品获利50元.甲、乙两车间每天共能完成至多70多箱原料的加工,每天甲、乙车间耗费工时总和不得超过480小时,甲、乙两车间每天获利最大的生产计划为(A )甲车间加工原料10箱,乙车间加工原料60箱(B )甲车间加工原料15箱,乙车间加工原料55箱(C )甲车间加工原料18箱,乙车间加工原料50箱(D )甲车间加工原料40箱,乙车间加工原料30箱【本课总结】线性规划是不等式和直线与方程的综合应用,是数形结合的和谐载体,也是高考中的重要考点,近几年的高考题中考查的频率较高,一般以考查基本知识和方法为主,属于基础类题,难度一般不高.1. 解决线性规划问题有一定的程序性:第一步:确定由二元一次不等式表示的平面区域;第二步:令z=0画直线0:0l ax by +=;第三步:平移直线0l 寻找使直线a z y x b b=-+截距取最值(最大或最小)的位置(最优解).第四步:将最优解坐标代入线性目标函数z ax by =+求出最值2. 解决线性规划问题要特别关注线性目标函数z ax by =+中b 的符号,若b >0,则使函数a z y x b b=-+的截距取最大(小)值的点,可使目标函数z ax by =+取最大(小)值,若b <0,则使函数a z y x b b=-+的截距取最大(小)值的点,可使目标函数z ax by =+取最小(大)值, b <0的情况是很多同学容易出现的盲点.3. 线性规划问题要重视数形结合思想的运用,善于将代数问题和几何问题相互转化,由线性规划问题引申的其它数形结合题目也要灵活掌握,如:将平面区域条件引申为:22240x y x y +++≤表示圆面等,将目标函数引申为:2224z x y x y =+++表示动点到定点的距离的最值问题;21y z x +=-表示动点与定点连线的斜率的最值问题等. 4. 线性规划问题首先作出可行域,若为封闭区域(即几条直线围成的区域)则一般在区域顶点处取得最大或最小值5. 线性规划中易错点提示(1)忽视平面区域是否包括边界.一般最优解都处于平面区域的边界顶点处,若平面区域不包含边界,则可能不存在最值.(2)忽视对线性目标函数z ax by =+中b 的符号的区分.(3)代数问题向其几何意义的转化困难.【活学活用】1. [难度] 中若不等式组⎪⎪⎩⎪⎪⎨⎧≤+≥≤+≥-ay x y y x y x 0220表示的平面区域是一个三角形,则a 的取值范围是( ) A.4,3⎡⎫+∞⎪⎢⎣⎭ B.(]0,1 C.41,3⎡⎤⎢⎥⎣⎦ D.(]40,1,3⎡⎫+∞⎪⎢⎣⎭2. [难度] 中 设变量x y ,满足约束条件1133x y x y x y ⎧--⎪+⎨⎪-<⎩,,.≥≥则目标函数4z x y =+的最大值为( ) A .4B .11C .12D .143. [难度] 中 已知变量x 、y 满足约束条件 20,1,70,x y y x x x y -+≤⎧⎪≥⎨⎪+-≤⎩则的取值范围是( ) A .9,65⎡⎤⎢⎥⎣⎦ B .9,5⎛⎤-∞ ⎥⎝⎦∪[)6,+∞ C .(],3-∞∪[)6,+∞ D .[3,6]。
高中数学 第三章 不等式 3.3.2 简单的线性规划问题常
线性规划的常见题型及其解法线性规划问题是高考的重点,而线性规划问题具有代数和几何的双重形式,多与函数、平面向量、数列、三角、概率、解析几何等问题交叉渗透,自然地融合在一起,使数学问题的解答变得更加新颖别致.归纳起来常见的命题探究角度有: 1.求线性目标函数的最值. 2.求非线性目标函数的最值. 3.求线性规划中的参数. 4.线性规划的实际应用.本节主要讲解线性规划的常见基础类题型.【母题一】已知变量x ,y 满足约束条件⎩⎪⎨⎪⎧x +y ≥3,x -y ≥-1,2x -y ≤3,则目标函数z =2x +3y 的取值范围为( )A .[7,23]B .[8,23]C .[7,8]D .[7,25]求这类目标函数的最值常将函数z =ax +by 转化为直线的斜截式:y =-ab x +z b,通过求直线的截距z b的最值,间接求出z 的最值.【解析】画出不等式组⎩⎪⎨⎪⎧x +y ≥3,x -y ≥-1,2x -y ≤3,表示的平面区域如图中阴影部分所示,由目标函数z =2x +3y 得y =-23x +z 3,平移直线y =-23x 知在点B 处目标函数取到最小值,解方程组⎩⎪⎨⎪⎧x +y =3,2x -y =3,得⎩⎪⎨⎪⎧ x =2,y =1,所以B (2,1),z min =2×2+3×1=7,在点A 处目标函数取到最大值,解方程组⎩⎪⎨⎪⎧x -y =-1,2x -y =3,得⎩⎪⎨⎪⎧x =4,y =5,所以A (4,5),z max =2×4+3×5=23.【答案】A【母题二】变量x ,y 满足⎩⎪⎨⎪⎧x -4y +3≤0,3x +5y -25≤0,x ≥1,(1)设z =y2x -1,求z 的最小值;(2)设z =x 2+y 2,求z 的取值范围;(3)设z =x 2+y 2+6x -4y +13,求z 的取值范围.点(x ,y )在不等式组表示的平面区域内,y 2x -1=12·y -0⎝ ⎛⎭⎪⎫x -12表示点(x ,y )和⎝ ⎛⎭⎪⎫12,0连线的斜率;x 2+y 2表示点(x ,y )和原点距离的平方;x 2+y 2+6x -4y +13=(x +3)2+(y -2)2表示点(x ,y )和点(-3,2)的距离的平方.【解析】(1)由约束条件⎩⎪⎨⎪⎧x -4y +3≤0,3x +5y -25≤0,x ≥1,作出(x ,y )的可行域如图所示.由⎩⎪⎨⎪⎧x =1,3x +5y -25=0,解得A ⎝⎛⎭⎪⎫1,225.由⎩⎪⎨⎪⎧ x =1,x -4y +3=0,解得C (1,1).由⎩⎪⎨⎪⎧x -4y +3=0,3x +5y -25=0,解得B (5,2).∵z =y 2x -1=y -0x -12×12∴z 的值即是可行域中的点与⎝ ⎛⎭⎪⎫12,0连线的斜率,观察图形可知z min =2-05-12×12=29. (2)z =x 2+y 2的几何意义是可行域上的点到原点O 的距离的平方. 结合图形可知,可行域上的点到原点的距离中,d min =|OC |=2,d max =|OB |=29.∴2≤z ≤29.(3)z =x 2+y 2+6x -4y +13=(x +3)2+(y -2)2的几何意义是: 可行域上的点到点(-3,2)的距离的平方. 结合图形可知,可行域上的点到(-3,2)的距离中,d min =1-(-3)=4,d max =-3-2+-2=8∴16≤z ≤64.1.求目标函数的最值的一般步骤为:一画二移三求.其关键是准确作出可行域,理解目标函数的意义. 2.常见的目标函数有: (1)截距型:形如z =ax +by .求这类目标函数的最值常将函数z =ax +by 转化为直线的斜截式:y =-ab x +z b ,通过求直线的截距z b的最值,间接求出z 的最值.(2)距离型:形一:如z =(x -a )2+(y -b )2,z =x 2+y 2+Dx +Ey +F ,此类目标函数常转化为点(x ,y )与定点的距离;形二:z =(x -a )2+(y -b )2,z =x 2+y 2+Dx +Ey +F ,此类目标函数常转化为点(x ,y )与定点的距离的平方.(3)斜率型:形如z =y x ,z =ay -b cx -d ,z =y cx -d ,z =ay -bx,此类目标函数常转化为点(x ,y )与定点所在直线的斜率.【提醒】 注意转化的等价性及几何意义.角度一:求线性目标函数的最值1.(2014·新课标全国Ⅱ卷)设x ,y 满足约束条件⎩⎪⎨⎪⎧x +y -7≤0,x -3y +1≤0,3x -y -5≥0,则z =2x -y 的最大值为( )A .10B .8C .3D .2【解析】作出可行域如图中阴影部分所示,由z =2x -y 得y =2x -z ,作出直线y =2x ,平移使之经过可行域,观察可知,当直线经过点A (5,2)时,对应的z 值最大.故z max =2×5-2=8.【答案】B2.(2015·高考天津卷)设变量x ,y 满足约束条件⎩⎪⎨⎪⎧x +2≥0,x -y +3≥0,2x +y -3≤0,则目标函数z =x +6y 的最大值为( )A .3B .4C .18D .40【解析】作出约束条件对应的平面区域如图所示 ,当目标函数经过点(0,3)时,z 取得最大值18.【答案】C3.(2013·高考陕西卷)若点(x ,y )位于曲线y =|x |与y =2所围成的封闭区域,则2x -y 的最小值为( )A .-6B .-2C .0D .2【解析】如图,曲线y =|x |与y =2所围成的封闭区域如图中阴影部分,令z =2x -y ,则y =2x -z ,作直线y =2x ,在封闭区域内平行移动直线y =2x ,当经过点(-2,2)时,z 取得最小值,此时z =2×(-2)-2=-6.【答案】A角度二:求非线性目标的最值4.(2013·高考山东卷)在平面直角坐标系xOy 中,M 为不等式组⎩⎪⎨⎪⎧2x -y -2≥0,x +2y -1≥0,3x +y -8≤0所表示的区域上一动点,则直线OM 斜率的最小值为( )A .2B .1C .-13D .-12【解析】已知的不等式组表示的平面区域如图中阴影所示,显然当点M 与点A 重合时直线OM 的斜率最小,由直线方程x +2y -1=0和3x +y -8=0,解得A (3,-1),故OM 斜率的最小值为-13.【解析】C5.已知实数x ,y 满足⎩⎨⎧0≤x ≤2,y ≤2,x ≤2y ,则z =2x +y -1x -1的取值范围 .【解】由不等式组画出可行域如图中阴影部分所示,目标函数z =2x +y -1x -1=2+y +1x -1的取值范围可转化为点(x ,y )与(1,-1)所在直线的斜率加上2的取值范围,由图形知,A 点坐标为(2,1),则点(1,-1)与(2,1)所在直线的斜率为22+2,点(0,0)与(1,-1)所在直线的斜率为-1,所以z 的取值范围为(-∞,1]∪[22+4,+∞).【答案】(-∞,1]∪[22+4,+∞)6.(2015·郑州质检)设实数x ,y 满足不等式组⎩⎪⎨⎪⎧x +y ≤2y -x ≤2,y ≥1,则x 2+y 2的取值范围是( )A .[1,2]B .[1,4]C .[2,2]D .[2,4]【解析】如图所示,不等式组表示的平面区域是△ABC 的内部(含边界),x 2+y 2表示的是此区域内的点(x ,y )到原点距离的平方.从图中可知最短距离为原点到直线BC 的距离,其值为1;最远的距离为AO ,其值为2,故x 2+y 2的取值范围是[1,4].【答案】B7.(2013·高考北京卷)设D 为不等式组⎩⎪⎨⎪⎧x ≥0,2x -y ≤0,x +y -3≤0所表示的平面区域,区域D 上的点与点(1,0)之间的距离的最小值为________.【解析】作出可行域,如图中阴影部分所示,则根据图形可知,点B (1,0)到直线2x -y =0的距离最小,d =|2×1-0|22+1=255,故最小距离为255. 【答案】2558.设不等式组⎩⎪⎨⎪⎧x ≥1,x -2y +3≥0,y ≥x所表示的平面区域是Ω1,平面区域Ω2与Ω1关于直线3x -4y -9=0对称.对于Ω1中的任意点A 与Ω2中的任意点B ,|AB |的最小值等于( )A .285B .4C .125D .2【解析】不等式组⎩⎪⎨⎪⎧x ≥1x -2y +3≥0y ≥x,所表示的平面区域如图所示,解方程组⎩⎪⎨⎪⎧x =1y =x ,得⎩⎪⎨⎪⎧x =1y =1.点A (1,1)到直线3x -4y -9=0的距离d =|3-4-9|5=2,则|AB |的最小值为4.【答案】B角度三:求线性规划中的参数9.若不等式组⎩⎪⎨⎪⎧x ≥0,x +3y ≥4,3x +y ≤4所表示的平面区域被直线y =kx +43分为面积相等的两部分,则k 的值是( )A .73 B .37 C .43D .34【解析】不等式组表示的平面区域如图所示.由于直线y =kx +43过定点⎝ ⎛⎭⎪⎫0,43.因此只有直线过AB 中点时,直线y =kx +43能平分平面区域.因为A (1,1),B (0,4),所以AB 中点D ⎝ ⎛⎭⎪⎫12,52.当y =kx +43过点⎝ ⎛⎭⎪⎫12,52时,52=k 2+43,所以k =73.【解析】A10.(2014·高考北京卷)若x ,y 满足⎩⎪⎨⎪⎧x +y -2≥0,kx -y +2≥0,y ≥0,且z =y -x 的最小值为-4,则k 的值为( )A .2B .-2C .12D .-12【解析】D 作出线性约束条件⎩⎪⎨⎪⎧x +y -2≥0,kx -y +2≥0,y ≥0的可行域.当k >0时,如图①所示,此时可行域为y 轴上方、直线x +y -2=0的右上方、直线kx -y +2=0的右下方的区域,显然此时z =y -x 无最小值.当k <-1时,z =y -x 取得最小值2;当k =-1时,z =y -x 取得最小值-2,均不符合题意.当-1<k <0时,如图②所示,此时可行域为点A (2,0),B ⎝ ⎛⎭⎪⎫-2k,0,C (0,2)所围成的三角形区域,当直线z =y -x 经过点B ⎝ ⎛⎭⎪⎫-2k ,0时,有最小值,即-⎝ ⎛⎭⎪⎫-2k =-4⇒k =-12.【答案】D11.(2014·高考安徽卷)x ,y 满足约束条件⎩⎪⎨⎪⎧x +y -2≤0,x -2y -2≤0,2x -y +2≥0.若z =y -ax 取得最大值的最优解不唯一,则实数a 的值为( )A .12或-1 B .2或12C .2或1D .2或-1【解析】法一:由题中条件画出可行域如图中阴影部分所示,可知A (0,2),B (2,0),C (-2,-2),则z A =2,z B =-2a ,z C =2a -2,要使目标函数取得最大值的最优解不唯一,只要z A =z B >z C 或z A =z C >z B 或z B=z C >z A ,解得a =-1或a =2.法二:目标函数z =y -ax 可化为y =ax +z ,令l 0:y =ax ,平移l 0,则当l 0∥AB 或l 0∥AC 时符合题意,故a =-1或a =2.【答案】D12.在约束条件⎩⎪⎨⎪⎧x ≥0,y ≥0,x +y ≤s ,y +2x ≤4.下,当3≤s ≤5时,目标函数z =3x +2y 的最大值的取值范围是( )A .[6,15]B .[7,15]C .[6,8]D .[7,8]【解析】 由⎩⎪⎨⎪⎧x +y =s ,y +2x =4,得⎩⎪⎨⎪⎧x =4-s ,y =2s -4,,则交点为B (4-s,2s -4),y +2x =4与x 轴的交点为A (2,0),与y 轴的交点为C ′(0,4),x +y =s 与y 轴的交点为C (0,s ).作出当s =3和s =5时约束条件表示的平面区域,即可行域,如图(1)(2)中阴影部分所示.(1) (2)当3≤s <4时,可行域是四边形OABC 及其内部,此时,7≤z max <8; 当4≤s ≤5时,可行域是△OAC ′及其内部,此时,z max =8. 综上所述,可得目标函数z =3x +2y 的最大值的取值范围是[7,8]. 【答案】D13.(2015·通化一模)设x ,y 满足约束条件⎩⎪⎨⎪⎧x ≥0,y ≥0,x 3a +y 4a ≤1,若z =x +2y +3x +1的最小值为32,则a 的值为________.【解析】∵x +2y +3x +1=1+y +x +1,而y +1x +1表示过点(x ,y )与(-1,-1)连线的斜率,易知a >0, ∴可作出可行域,由题意知y +1x +1的最小值是14,即⎝ ⎛⎭⎪⎫y +1x +1min =0--3a --=13a +1=14⇒a =1.【答案】1角度四:线性规划的实际应用14.A ,B 两种规格的产品需要在甲、乙两台机器上各自加工一道工序才能成为成品.已知A 产品需要在甲机器上加工3小时,在乙机器上加工1小时;B 产品需要在甲机器上加工1小时,在乙机器上加工3小时.在一个工作日内,甲机器至多只能使用11小时,乙机器至多只能使用9小时.A 产品每件利润300元,B 产品每件利润400元,则这两台机器在一个工作日内创造的最大利润是________元.【解析】 设生产A 产品x 件,B 产品y 件,则x ,y 满足约束条件⎩⎪⎨⎪⎧3x +y ≤11,x +3y ≤9,x ∈N ,y ∈N ,生产利润为z=300x +400y .画出可行域,如图中阴影部分(包含边界)内的整点,显然z =300x +400y 在点A 处取得最大值,由方程组⎩⎪⎨⎪⎧3x +y =11,x +3y =9,解得⎩⎪⎨⎪⎧x =3,y =2,则z max =300×3+400×2=1 700.故最大利润是1 700元.【答案】1 70015.某玩具生产公司每天计划生产卫兵、骑兵、伞兵这三种玩具共100个,生产一个卫兵需5分钟,生产一个骑兵需7分钟,生产一个伞兵需4分钟,已知总生产时间不超过10小时.若生产一个卫兵可获利润5元,生产一个骑兵可获利润6元,生产一个伞兵可获利润3元.(1)试用每天生产的卫兵个数x 与骑兵个数y 表示每天的利润w (元); (2)怎样分配生产任务才能使每天的利润最大,最大利润是多少?【解析】(1)依题意每天生产的伞兵个数为100-x -y ,所以利润w =5x +6y +3(100-x -y )=2x +3y +300.(2)约束条件为⎩⎪⎨⎪⎧5x +7y +-x -y ,100-x -y ≥0,x ≥0,y ≥0,x ,y ∈N .整理得⎩⎪⎨⎪⎧x +3y ≤200,x +y ≤100,x ≥0,y ≥0,x ,y ∈N .目标函数为w =2x +3y +300. 作出可行域.如图所示:初始直线l 0:2x +3y =0,平移初始直线经过点A 时,w有最大值.由⎩⎪⎨⎪⎧x +3y =200,x +y =100,得⎩⎪⎨⎪⎧x =50,y =50.最优解为A (50,50),所以w max =550元.所以每天生产卫兵50个,骑兵50个,伞兵0个时利润最大,最大利润为550元.一、选择题1.已知点(-3,-1)和点(4,-6)在直线3x -2y -a =0的两侧,则a 的取值范围为( ) A .(-24,7)B .(-7,24)C .(-∞,-7)∪(24,+∞)D .(-∞,-24)∪(7,+∞)【解析】根据题意知(-9+2-a )·(12+12-a )<0.即(a +7)(a -24)<0,解得-7<a <24. 【答案】B2.(2015·临沂检测)若x ,y 满足约束条件⎩⎪⎨⎪⎧x ≥0,x +2y ≥3,2x +y ≤3,则z =x -y 的最小值是( )A .-3B .0C .32D .3【解析】作出不等式组⎩⎪⎨⎪⎧x ≥0,x +2y ≥3,2x +y ≤3表示的可行域(如图所示的△ABC 的边界及内部).平移直线z =x -y ,易知当直线z =x -y 经过点C (0,3)时,目标函数z =x -y 取得最小值,即z min =-3.【答案】A3.(2015·泉州质检)已知O 为坐标原点,A (1,2),点P 的坐标(x ,y )满足约束条件⎩⎪⎨⎪⎧x +|y |≤1,x ≥0,则z =OA →·OP →的最大值为( )A .-2B .-1C .1D .2【解析】如图作可行域,z =OA →·OP →=x +2y ,显然在B (0,1)处z max =2.【答案】D4.已知实数x ,y 满足:⎩⎪⎨⎪⎧x -2y +1≥0,x <2,x +y -1≥0,则z =2x -2y -1的取值范围是( )A .⎣⎢⎡⎦⎥⎤53,5B .[0,5]C .⎣⎢⎡⎭⎪⎫53,5D .⎣⎢⎡⎭⎪⎫-53,5 【解析】画出不等式组所表示的区域,如图阴影部分所示,作直线l :2x -2y -1=0,平移l 可知2×13-2×23-1≤z <2×2-2×(-1)-1,即z 的取值范围是⎣⎢⎡⎭⎪⎫-53,5.【答案】D5.如果点(1,b )在两条平行直线6x -8y +1=0和3x -4y +5=0之间,则b 应取的整数值为( ) A .2 B .1 C .3D .0【解析】由题意知(6-8b +1)(3-4b +5)<0,即⎝ ⎛⎭⎪⎫b -78(b -2)<0,∴78<b <2,∴b 应取的整数为1.【答案】B6.(2014·郑州模拟)已知正三角形ABC 的顶点A (1,1),B (1,3),顶点C 在第一象限,若点(x ,y )在△ABC 内部,则z =-x +y 的取值范围是( )A .(1-3,2)B .(0,2)C .(3-1,2)D .(0,1+3)【解析】如图,根据题意得C (1+3,2).作直线-x +y =0,并向左上或右下平移,过点B (1,3)和C (1+3,2)时,z =-x +y 取范围的边界值,即-(1+3)+2<z <-1+3,∴z =-x +y 的取值范围是(1-3,2).【答案】A7.(2014·成都二诊)在平面直角坐标系xOy 中,P 为不等式组⎩⎪⎨⎪⎧y ≤1,x +y -2≥0,x -y -1≤0,所表示的平面区域上一动点,则直线OP 斜率的最大值为( )A .2B .13C .12D .1【解析】作出可行域如图所示,当点P 位于⎩⎪⎨⎪⎧x +y =2,y =1,的交点(1,1)时,(k OP )max =1.【答案】D8.在平面直角坐标系xOy 中,已知平面区域A ={(x ,y )|x +y ≤1,且x ≥0,y ≥0},则平面区域B ={(x +y ,x -y )|(x ,y )∈A }的面积为( )A .2B .1C .12D .14【解析】不等式⎩⎪⎨⎪⎧x +y ≤1,x ≥0,y ≥0,所表示的可行域如图所示,设a =x +y ,b =x -y ,则此两目标函数的范围分别为a =x +y ∈[0,1],b =x -y ∈[-1,1],又a +b =2x ∈[0,2],a -b =2y ∈[0,2],∴点坐标(x +y ,x -y ),即点(a ,b )满足约束条件⎩⎪⎨⎪⎧0≤a ≤1,-1≤b ≤1,0≤a +b ≤2,0≤a -b ≤2,作出该不等式组所表示的可行域如图所示,由图示可得该可行域为一等腰直角三角形,其面积S =12×2×1=1.【答案】B9.设x ,y 满足约束条件⎩⎪⎨⎪⎧3x -y -2≤0,x -y ≥0,x ≥0,y ≥0,若目标函数z =ax +by (a >0,b >0)的最大值为4,则ab 的取值范围是( )A .(0,4)B .(0,4]C .[4,+∞)D .(4,+∞)【解析】作出不等式组表示的区域如图阴影部分所示,由图可知,z =ax +by (a >0,b >0)过点A (1,1)时取最大值,∴a +b =4,ab ≤⎝⎛⎭⎪⎫a +b 22=4,∵a >0,b >0,∴ab ∈(0,4].【答案】B10.设动点P (x ,y )在区域Ω:⎩⎪⎨⎪⎧x ≥0,y ≥x ,x +y ≤4上,过点P 任作直线l ,设直线l 与区域Ω的公共部分为线段AB ,则以AB 为直径的圆的面积的最大值为( )A .πB .2πC .3πD .4π【解析】作出不等式组所表示的可行域如图中阴影部分所示,则根据图形可知,以AB 为直径的圆的面积的最大值S =π×⎝ ⎛⎭⎪⎫422=4π.【答案】D11.(2015·东北三校联考)变量x ,y 满足约束条件⎩⎪⎨⎪⎧y ≥-1,x -y ≥2,3x +y ≤14,若使z =ax +y 取得最大值的最优解有无穷多个,则实数a 的取值集合是( )A .{-3,0}B .{3,-1}C .{0,1}D .{-3,0,1}【解析】作出不等式组所表示的平面区域,如图所示.易知直线z =ax +y 与x -y =2或3x +y =14平行时取得最大值的最优解有无穷多个,即-a =1或-a =-3,∴a =-1或a =3.【答案】B12.(2014·新课标全国Ⅰ卷)设x ,y 满足约束条件⎩⎪⎨⎪⎧x +y ≥a ,x -y ≤-1,且z =x +ay 的最小值为7,则a=( )A .-5B .3C .-5或3D .5或-3【解析】法一:联立方程⎩⎪⎨⎪⎧x +y =a ,x -y =-1,解得⎩⎪⎨⎪⎧x =a -12,y =a +12,代入x +ay =7中,解得a =3或-5,当a =-5时,z =x +ay 的最大值是7;当a =3时,z =x +ay 的最小值是7.法二:先画出可行域,然后根据图形结合选项求解.当a =-5时,作出不等式组表示的可行域,如图(1)(阴影部分).图(1) 图(2)由⎩⎪⎨⎪⎧ x -y =-1,x +y =-5得交点A (-3,-2),则目标函数z =x -5y 过A 点时取得最大值.z max =-3-5×(-2)=7,不满足题意,排除A ,C 选项.当a =3时,作出不等式组表示的可行域,如图(2)(阴影部分).由⎩⎪⎨⎪⎧x -y =-1,x +y =3得交点B (1,2),则目标函数z =x +3y 过B 点时取得最小值.z min =1+3×2=7,满足题意.【答案】B13.若a ≥0,b ≥0,且当⎩⎪⎨⎪⎧x ≥0,y ≥0,x +y ≤1时,恒有ax +by ≤1,则由点P (a ,b )所确定的平面区域的面积是( )A .12 B .π4C .1D .π2【解析】因为ax +by ≤1恒成立,则当x =0时,by ≤1恒成立,可得y ≤1b(b ≠0)恒成立,所以0≤b ≤1;同理0≤a ≤1.所以由点P (a ,b )所确定的平面区域是一个边长为1的正方形,面积为1.【答案】C14.(2013·高考北京卷)设关于x ,y 的不等式组⎩⎪⎨⎪⎧2x -y +1>0,x +m <0,y -m >0表示的平面区域内存在点P (x 0,y 0),满足x 0-2y 0=2.求得m 的取值范围是( )A .⎝⎛⎭⎪⎫-∞,43B .⎝ ⎛⎭⎪⎫-∞,13C .⎝⎛⎭⎪⎫-∞,-23D .⎝⎛⎭⎪⎫-∞,-53【解析】当m ≥0时,若平面区域存在,则平面区域内的点在第二象限,平面区域内不可能存在点P (x 0,y 0)满足x 0-2y 0=2,因此m <0.如图所示的阴影部分为不等式组表示的平面区域.要使可行域内包含y =12x -1上的点,只需可行域边界点(-m ,m )在直线y =12x -1的下方即可,即m<-12m -1,解得m <-23.【答案】C15.设不等式组⎩⎪⎨⎪⎧x +y -11≥0,3x -y +3≥0,5x -3y +9≤0表示的平面区域为D .若指数函数y =a x的图象上存在区域D 上的点,则a 的取值范围是 ( )A .(1,3]B .[2,3]C .(1,2]D .[3,+∞)【解析】平面区域D 如图所示.要使指数函数y =a x的图象上存在区域D 上的点,所以1<a ≤3. 【解析】A16.(2014·高考福建卷)已知圆C :(x -a )2+(y -b )2=1,平面区域Ω:⎩⎪⎨⎪⎧x +y -7≤0,x -y +3≥0,y ≥0.若圆心C∈Ω,且圆C 与x 轴相切,则a 2+b 2的最大值为( )A .5B .29C .37D .49【解析】由已知得平面区域Ω为△MNP 内部及边界.∵圆C 与x 轴相切,∴b =1.显然当圆心C 位于直线y =1与x +y -7=0的交点(6,1)处时,a max =6.∴a 2+b 2的最大值为62+12=37.【解析】C17.在平面直角坐标系中,若不等式组⎩⎪⎨⎪⎧y ≥0,y ≤x ,y ≤k x --1表示一个三角形区域,则实数k 的取值范围是( )A .(-∞,-1)B .(1,+∞)C .(-1,1)D .(-∞,-1)∪(1,+∞)【解析】已知直线y =k (x -1)-1过定点(1,-1),画出不等式组表示的可行域示意图,如图所示. 当直线y =k (x -1)-1位于y =-x 和x =1两条虚线之间时,表示的是一个三角形区域.所以直线y =k (x -1)-1的斜率的范围为(-∞,-1),即实数k 的取值范围是(-∞,-1).当直线y =k (x -1)-1与y =x 平行时不能形成三角形,不平行时,由题意可得k >1时,也可形成三角形,综上可知k <-1或k >1.【答案】D18.(2016·武邑中学期中)已知实数x ,y 满足⎩⎪⎨⎪⎧x -2y +1≥0,|x |-y -1≤0,则z =2x +y 的最大值为( )A .4B .6C .8D .10【解析】区域如图所示,目标函数z =2x +y 在点A (3,2)处取得最大值,最大值为8.【答案】C19.(2016·衡水中学期末)当变量x ,y 满足约束条件⎩⎪⎨⎪⎧y ≥x x +3y ≤4x ≥m时,z =x -3y 的最大值为8,则实数m 的值是( )A .-4B .-3C .-2D .-1【解析】画出可行域如图所示,目标函数z =x -3y 变形为y =x 3-z3,当直线过点C 时,z 取到最大值,又C (m ,m ),所以8=m -3m ,解得m =-4. 【答案】A20.(2016·湖州质检)已知O 为坐标原点,A ,B 两点的坐标均满足不等式组⎩⎪⎨⎪⎧x -3y +1≤0,x +y -3≤0,x -1≥0,则tan∠AOB 的最大值等于( )A .94 B .47 C .34D .12【解析】如图阴影部分为不等式组表示的平面区域,观察图形可知当A 为(1,2),B 为(2,1)时,tan ∠AOB 取得最大值,此时由于tan α=k BO =12,tan β=k AO =2,故tan ∠AOB =tan (β-α)=tan β-tan α1+tan βtan α=2-121+2×12=34. 【解析】C 二、填空题21.(2014·高考安徽卷)不等式组 ⎩⎪⎨⎪⎧x +y -2≥0,x +2y -4≤0,x +3y -2≥0表示的平面区域的面积为________.【解析】作出不等式组表示的平面区域如图中阴影部分所示,可知S △ABC =12×2×(2+2)=4.【答案】422.(2014·高考浙江卷)若实数x ,y 满足⎩⎪⎨⎪⎧x +2y -4≤0,x -y -1≤0,x ≥1,则x +y 的取值范围是________.【解析】作出可行域,如图,作直线x +y =0,向右上平移,过点B 时,x +y 取得最小值,过点A 时取得最大值.由B (1,0),A (2,1)得(x +y )min =1,(x +y )max =3.所以1≤x +y ≤3. 【答案】[1,3]23.(2015·重庆一诊)设变量x ,y 满足约束条件⎩⎪⎨⎪⎧x ≥1,x +y -4≤0,x -3y +4≤0,则目标函数z =3x -y 的最大值为____.【解析】根据约束条件作出可行域,如图中阴影部分所示,∵z =3x -y ,∴y =3x -z ,当该直线经过点A (2,2)时,z 取得最大值,即z max =3×2-2=4.【答案】424.已知实数x ,y 满足⎩⎪⎨⎪⎧x +y -1≤0,x -y +1≥0,y ≥-1,则w =x 2+y 2-4x -4y +8的最小值为________.【解析】目标函数w =x 2+y 2-4x -4y +8=(x -2)2+(y -2)2,其几何意义是点(2,2)与可行域内的点的距离的平方.由实数x ,y 所满足的不等式组作出可行域如图中阴影部分所示,由图可知,点(2,2)到直线x +y -1=0的距离为其到可行域内点的距离的最小值,又|2+2-1|2=322,所以w min =92.【答案】9225.在平面直角坐标系xOy 中,M 为不等式组⎩⎪⎨⎪⎧2x +3y -6≤0,x +y -2≥0,y ≥0所表示的区域上一动点,则|OM |的最小值是________.【解析】如图所示阴影部分为可行域,数形结合可知,原点O 到直线x +y -2=0的垂线段长是|OM |的最小值,∴|OM |min =|-2|12+12=2.【答案】 226.(2016·汉中二模)某企业生产甲、乙两种产品,已知生产每吨甲产品要用水3吨、煤2吨;生产每吨乙产品要用水1吨、煤3吨.销售每吨甲产品可获得利润5万元,销售每吨乙产品可获得利润3万元,若该企业在一个生产周期内消耗水不超过13吨,煤不超过18吨,则该企业可获得的最大利润是______万元.【解析】设生产甲产品x 吨,生产乙产品y 吨,由题意知⎩⎪⎨⎪⎧x ≥0,y ≥0,3x +y ≤13,2x +3y ≤18,利润z =5x +3y ,作出可行域如图中阴影部分所示,求出可行域边界上各端点的坐标,经验证知当x=3,y=4,即生产甲产品3吨,乙产品4吨时可获得最大利润27万元.【答案】2727.某农户计划种植黄瓜和韭菜,种植面积不超过50亩,投入资金不超过54万元,假设种植黄瓜和韭菜的产量、成本和售价如下表:________亩.【解析】设黄瓜和韭菜的种植面积分别为x亩,y亩,总利润为z万元,则目标函数为z=(0.55×4x-1.2x)+(0.3×6y-0.9y)=x+0.9y.线性约束条件为⎩⎪⎨⎪⎧x+y≤50,1.2x+0.9y≤54,x≥0,y≥0,即⎩⎪⎨⎪⎧x+y≤50,4x+3y≤180,x≥0,y≥0.画出可行域,如图所示.作出直线l0:x+0.9y=0,向上平移至过点A时,z取得最大值,由⎩⎪⎨⎪⎧x+y=50,4x+3y=180,解得A(30,20).【答案】3028.(2015·日照调研)若A为不等式组⎩⎪⎨⎪⎧x≤0,y≥0,y-x≤2表示的平面区域,则当a从-2连续变化到1时,动直线x +y =a 扫过A 中的那部分区域的面积为________.【解析】平面区域A 如图所示,所求面积为S =12×2×2-12×22×22=2-14=74.【答案】7429.(2014·高考浙江卷)当实数x ,y 满足⎩⎪⎨⎪⎧x +2y -4≤0,x -y -1≤0,x ≥1时,1≤ax +y ≤4恒成立,则实数a 的取值范围是________.【解析】画可行域如图所示,设目标函数z =ax +y ,即y =-ax +z ,要使1≤z ≤4恒成立,则a >0,数形结合知,满足⎩⎪⎨⎪⎧1≤2a +1≤4,1≤a ≤4即可,解得1≤a ≤32.所以a 的取值范围是1≤a ≤32.【答案】⎣⎢⎡⎦⎥⎤1,3230.(2015·石家庄二检)已知动点P (x ,y )在正六边形的阴影部分(含边界)内运动,如图,正六边形的边长为2,若使目标函数z =kx +y (k >0)取得最大值的最优解有无穷多个,则k 的值为________.【解析】由目标函数z =kx +y (k >0)取得最大值的最优解有无穷多个,结合图形分析可知,直线kx +y =0的倾斜角为120°,于是有-k =tan 120°=-3,所以k =3.【答案】 331.设m >1,在约束条件⎩⎪⎨⎪⎧y ≥x ,y ≤mx ,x +y ≤1下,目标函数z =x +my 的最大值小于2,则m 的取值范围 .【解析】变换目标函数为y =-1m x +z m ,由于m >1,所以-1<-1m<0,不等式组表示的平面区域如图中的阴影部分所示,根据目标函数的几何意义,只有直线y =-1m x +zm在y 轴上的截距最大时,目标函数取得最大值.显然在点A 处取得最大值,由y =mx ,x +y =1,得A ⎝ ⎛⎭⎪⎫11+m ,m 1+m ,所以目标函数的最大值z max=11+m +m 21+m<2,所以m 2-2m -1<0,解得1-2<m <1+2,故m 的取值范围是(1,1+2).【答案】(1,1+2)32.已知实数x ,y 满足⎩⎪⎨⎪⎧y ≥1,y ≤2x -1,x +y ≤m ,若目标函数z =x -y 的最小值的取值范围是[-2,-1],则目标函数的最大值的取值范围是________.【解析】不等式组表示的可行域如图中阴影部分(包括边界)所示,目标函数可变形为y =x -z ,当z 最小时,直线y =x -z 在y 轴上的截距最大.当z 的最小值为-1,即直线为y =x +1时,联立方程⎩⎪⎨⎪⎧y =x +1,y =2x -1,可得此时点A 的坐标为(2,3),此时m =2+3=5;当z 的最小值为-2,即直线为y =x +2时,联立方程⎩⎪⎨⎪⎧y =x +2,y =2x -1,可得此时点A 的坐标是(3,5),此时m =3+5=8.故m 的取值范围是[5,8].目标函数z =x -y 的最大值在点B (m -1,1)处取得,即z max =m -1-1=m -2,故目标函数的最大值的取值范围是[3,6].【答案】[3,6]33.(2013·高考广东卷)给定区域D :⎩⎪⎨⎪⎧x +4y ≥4,x +y ≤4,x ≥0.令点集T ={(x 0,y 0)∈D |x 0,y 0∈Z ,(x 0,y 0)是z =x +y 在D 上取得最大值或最小值的点},则T 中的点共确定________条不同的直线.【解析】线性区域为图中阴影部分,取得最小值时点为(0,1),最大值时点为(0,4),(1,3),(2,2),(3,1),(4,0),点(0,1)与(0,4),(1,3),(2,2),(3,1),(4,0)中的任何一个点都可以构成一条直线,共有5条 ,又(0,4),(1,3),(2,2),(3,1),(4,0)都在直线x +y =4上,故T 中的点共确定6条不同的直线. 【答案】634.(2011·湖北改编)已知向量a =(x +z,3),b =(2,y -z ),且a ⊥b .若x ,y 满足不等式|x |+|y |≤1,则z 的取值范围为__________.【解析】∵a =(x +z,3),b =(2,y -z ),且a ⊥b ,∴a ·b =2(x +z )+3(y -z )=0,即2x +3y -z =0.又|x |+|y |≤1表示的区域为图中阴影部分,∴当2x +3y -z =0过点B (0,-1)时,z min =-3,当2x +3y -z =0过点A (0,1)时,z min =3. ∴z ∈[-3,3]. 【答案】[-3,3]35.(2016·衡水中学模拟)已知变量x ,y 满足约束条件⎩⎪⎨⎪⎧x +4y -13≤02y -x +1≥0x +y -4≥0且有无穷多个点(x ,y )使目标函数z =x +my 取得最小值,则m =________.【解析】作出线性约束条件表示的平面区域,如图中阴影部分所示.若m =0,则z =x ,目标函数z =x +my 取得最小值的最优解只有一个,不符合题意. 若m ≠0,则目标函数z =x +my 可看作斜率为-1m 的动直线y =-1m x +zm,若m <0,则-1m>0,由数形结合知,使目标函数z =x +my 取得最小值的最优解不可能有无穷多个;若m >0,则-1m<0,数形结合可知,当动直线与直线AB 重合时,有无穷多个点(x ,y )在线段AB 上,使目标函数z =x +my 取得最小值,即-1m=-1,则m =1.综上可知,m =1. 【答案】1。
高中数学线性规划知识总结+练习
(一) 知识内容1.二元一次不等式表示的区域对于直线(A 〉0)当B >0时, 表示直线上方区域; 表示直线的下方区域。
当B <0时, 表示直线下方区域; 表示直线的上方区域。
2.线性规划(1)不等式组是一组对变量x 、y 的约束条件,由于这组约束条件都是关于x 、y 的一次不等式,所以又可称其为线性约束条件。
z =Ax +By 是欲达到最大值或最小值所涉及的变量x 、y 的解析式,我们把它称为目标函数.由于z =Ax +By 又是关于x 、y 的一次解析式,所以又可叫做线性目标函数。
另外注意:线性约束条件除了用一次不等式表示外,也可用一次方程表示。
(2)一般地,求线性目标函数在线性约束条件下的最大值或最小值的问题,统称为线性规划问题.(3)那么,满足线性约束条件的解(x ,y )叫做可行解,由所有可行解组成的集合叫做可行域。
在上述问题中,可行域就是阴影部分表示的三角形区域。
其中可行解()和()分别使目标函数取得最大值和最小值,它们都叫做这个问题的最优解。
线性目标函数的最值常在可行域的顶点处取得;而求最优整数解必须首先要看它们是否在可行(二)主要方法:用图解法解决简单的线性规划问题的基本步骤:1。
首先,要根据线性约束条件画出可行域(即画出不等式组所表示的公共区域)。
2.设z =0,画出直线l 0.3.观察、分析,平移直线l 0,从而找到最优解。
4。
最后求得目标函数的最大值及最小值.(三)典例分析:1。
二元一次不等式(组)表示的平面区域【例1】 画出下列不等式(或组)表示的平面区域⑴⑵求不等式表示的平面区域的面积。
2.区域弧长、面积问题【例2】 若不等式组所表示的平面区域被直线分为面积相等的两部分,则的值是( )A .B .C .D .【例3】 若,,且当时,恒有,则以,为坐标点所形成的平面区域的面积等于 .例题精讲高考要求板块一:线性规划【例4】已知钝角的最长边为,其余两边的长为、,则集合所表示的平面图形面积等于()A.B.C.D.【例5】如图,在平面直角坐标系中,是一个与轴的正半轴、轴的正半轴分别相切于点、的定圆所围成的区域(含边界),、、、是该圆的四等分点.若点、点满足且,则称优于.如果中的点满足:不存在中的其它点优于,那么所有这样的点组成的集合是劣弧()A.B.C.D.【例6】已知是由不等式组所确定的平面区域,则圆在区域内的弧长为( )A. B.C.D.3.线性规划【例7】设变量,满足约束条件:.则目标函数的最小值为()A.6 B.7 C.8 D.23【变式】已知实数、满足,则的最大值是( )A.B.C.D.【例8】已知点的坐标满足条件,点为坐标原点,那么的最小值等于______,最大值等于______.【例9】设变量,满足约束条件,则函数的最大值为()A.B.C.D.【例10】若实数满足,则的最小值为.4。
高中数学线性规划知识复习
高中必修5线性规划最快的方法简单的线性规划问题 一、知识梳理1. 目标函数: P =2x+y是一个含有两个变 量 x 和y 的 函数,称为目标函数.2.可行域:约束条件所表示的平面区域称为可行域.3. 整点:坐标为整数的点叫做整点.4.线性规划问题:求线性目标函数在线性约束条件下的最大值或最小值的问题,通常称为线性规划问题.只含有两个变量的简单线性规划问题可用图解法来解决.5. 整数线性规划:要求量取整数的线性规划称为整数线性规划. 二、疑难知识导析线性规划是一门研究如何使用最少的人力、物力和财力去最优地完成科学研究、工业设计、经济管理中实际问题的专门学科.主要在以下两类问题中得到应用:一是在人力、物力、财务等资源一定的条件下,如何使用它们来完成最多的任务;二是给一项任务,如何合理安排和规划,能以最少的人力、物力、资金等资源来完成该项任务. 1.对于不含边界的区域,要将边界画成虚线.2.确定二元一次不等式所表示的平面区域有多种方法,常用的一种方法是“选点法”:任选一个不在直线上的点,检验它的坐标是否满足所给的不等式,若适合,则该点所在的一侧即为不等式所表示的平面区域;否则,直线的另一侧为所求的平面区域.若 直 线 不 过 原点,通 常 选 择 原 点 代入检验.3. 平 移 直 线 y=-k x +P时,直线必须经过可行域.4.对于有实际背景的线性规划问题,可行域通常是位于第一象限内的一个凸多边形区域,此时变动直线的最佳位置一般通过这个凸多边形的顶点.5.简单线性规划问题就是求线性目标函数在线性约束条件下的最优解,无论此类题目是以什么实际问题提出,其求解的格式与步骤是不变的:(1)寻找线性约束条件,线性目标函数;(2)由二元一次不等式表示的平面区域做出可行域;(3)在可行域内求目标函数的最优解.积储知识:一. 1.点P(x 0,y 0)在直线Ax+By+C=0上,则点P 坐标适合方程,即Ax 0+By 0+C=02. 点P(x 0,y 0)在直线Ax+By+C=0上方(左上或右上),则当B>0时,Ax 0+By 0+C>0;当B<0时,Ax 0+By 0+C<03. 点P(x 0,y 0)在直线Ax+By+C=0下方(左下或右下),当B>0时,Ax 0+By 0+C<0;当B<0时,Ax 0+By 0+C>0 注意:(1)在直线Ax+By+C=0同一侧的所有点,把它的坐标(x,y)代入Ax+By+C,所得实数的符号都相同,(2)在直线Ax+By+C=0的两侧的两点,把它的坐标代入Ax+By+C,所得到实数的符号相反, 即:1.点P(x 1,y 1)和点Q(x 2,y 2)在直线 Ax+By+C=0的同侧,则有(Ax 1+By 1+C )( Ax 2+By 2+C)>02.点P(x 1,y 1)和点Q(x 2,y 2)在直线 Ax+By+C=0的两侧,则有(Ax 1+By 1+C )( Ax 2+By 2+C)<0二.二元一次不等式表示平面区域:①二元一次不等式Ax+By+C>0(或<0)在平面直角坐标系中表示直线Ax+By+C=0某一侧所有点组成的平面区域. 不.包括边界; ②二元一次不等式Ax+By+C ≥0(或≤0)在平面直角坐标系中表示直线Ax+By+C=0某一侧所有点组成的平面区域且包括边界;注意:作图时,不包括边界画成虚线;包括边界画成实线. 三、判断二元一次不等式表示哪一侧平面区域的方法: 方法一:取特殊点检验; “直线定界、特殊点定域原因:由于对在直线Ax+By+C=0的同一侧的所有点(x,y),把它的坐标(x,y)代入Ax+By+C,所得到的实数的符号都相同,所以只需在此直线的某一侧取一个特殊点(x 0,y 0),从Ax 0+By 0+C 的正负即可判断Ax+By+C>0表示直线哪一侧的平面区域.特殊地,当C ≠0时,常把原点作为特殊点,当C=0时,可用(0,1)或(1,0)当特殊点,若点坐标代入适合不等式则此点所在的区域为需画的区域,否则是另一侧区域为需画区域。
高中数学 同步教学 简单的线性规划问题
x (1)
2
率的 2 倍,
因为 kQA= 7 ,kQB= 3 ,所以 z 的取值范围是[ 3 , 7 ].
48
42
方法技巧 与二元一次不等式(组)表示的平面区域有关的非线性目标函数 的最值问题的求解,一般要结合给定代数式的几何意义来完成.
常 见 代 数 式 的 几 何 意 义 :(1) x2 y2 表 示 点 (x,y) 与 原 点 (0,0) 的 距
4.给定下列命题:在线性规划中,
①最优解指的是使目标函数取得最大值的变量x或y的值;
②最优解指的是目标函数的最大值或最小值;
③最优解指的是使目标函数取得最大值或最小值的可行域;
④最优解指的是使目标函数取得最大值或最小值的可行解.
其中正确命题的序号是
.
解析:因为最优解是使目标函数取得最大值或最小值的可行解,即满足 线性约束条件的解(x,y),它是一个有序实数对,所以①②③均错,④正确. 故填④. 答案:④
变式探究:在本例的约束条件下,求z=x2+y2+2x的最大值与最小值.
解:z=x2+y2+2x=(x+1)2+y2-1 表示可行域内任意一点(x,y)与点 D(-1,0)距离的平方减去 1,
如图所示,过 D 作 AB 的垂线 DP,垂足为 P,所以|DP|= | 1 0 4 | = 5 = 5 2 ,
(2)简单线性规划问题的解法 在确定线性约束条件和线性目标函数的前提下,用图解法求最优解的步骤 可概括为“画、移、求、答”,即: ① 画 : 在 平 面 直 角 坐 标 系 中 , 画 出 可 行 域 和 直 线 ax+by=0( 目 标 函 数 为 z=ax+by); ②移:平行移动直线ax+by=0,确定使z=ax+by取得最大值或最小值的点; ③求:求出使z取得最大值或最小值的点的坐标(解方程组)及z的最大值或 最小值; ④答:给出正确答案.
(教师用书)2013-2014学年高中数学 3.3.3 简单的线性规划问题(第2课时)教案 苏教版必
第2课时简单的线性规划的应用(教师用书独具)●三维目标1.知识与技能(1)巩固图解法求线性目标函数的最大、最小值的方法;(2)会用画网格的方法求解整数线性规划问题;(3)能从实际情境中抽象出一些简单的二元线性规划问题,并能给出解答;(4)培养学生的数学应用意识和解决问题的能力,培养学生观察、联想以及作图的能力,渗透化归、数形结合的数学思想,提高学生“建模〞和解决实际问题的能力.2.过程与方法(1)引导学生学会如何使用网格法;(2)通过讲解实例,让学生感受线性规划中的建模问题,培养学生应用数学的能力.3.情感、态度与价值观(1)培养学生学数学、用数学的意识,并进一步提高解决问题的能力;(2)结合教学内容,培养学生学习数学的兴趣和“用数学〞的意识,激励学生创新.●重点、难点重点:将实际问题转化为线性规划问题,并通过最优解的判断予以解决.难点:如何把实际问题转化为简单的线性规划问题,并准确给出解答.解决重点、难点的关键是根据实际问题中的条件,找出约束条件和目标函数,利用图解法求得最优解.为突出重点,突破难点,本节教学应指导学生紧紧抓住化归、数形结合的数学思想方法将实际问题数学化、数学问题几何化.(教师用书独具)●教学建议1.为了激发学生学习的主体意识,应面向全体学生,使学生在获取知识的同时,各方面的能力得到进一步的培养.根据本节课的内容特点,建议采用启发引导、讲练结合的教学方法,着重于培养学生分析、解决实际问题的能力以及良好的学习品质.2.学生在建立数学模型时,应主要分清条件中,哪些属于约束条件,哪些与目标函数有关,列出正确的不等式组.可采用分组讨论、各组竞争、自主总结、部分同学示X画图等方式,让学生更切身地在活动中探索出建模的一般规律,并在交流中找到自己的思维漏洞.●教学流程错误!⇒错误!⇒错误!⇒错误!⇒错误!⇒错误!⇒错误!⇒错误!错误!(对应学生用书第59页)课标解读1.能从实际情境中抽象出一些简单的二元线性规划问题,并能加以解决.(重点) 2.培养应用线性规划的知识,解决实际问题的能力.(难点)实际应用问题的最优解对于有实际背景的线性规划问题,可行域通常是位于第一象限的一个凸多边形区域,此时变动直线的最正确位置一般通过这个凸多边形的顶点.用线性规划解决实际问题的一般步骤线性规划解决实际问题的一般步骤:整数线性规划要求变量取整数的线性规划称为整数线性规划.(对应学生用书第59页)收益最大问题某纺纱厂生产甲、乙两种棉纱,生产甲种棉纱1吨需消耗一级子棉2吨、二级子棉1吨,生产乙种棉纱需消耗一级子棉1吨,二级子棉2吨.每1吨甲种棉纱的利润是600元,每1吨乙种棉纱的利润是900元,工厂在生产这两种棉纱的计划中要求消耗一级子棉不超过300吨、二级子棉不超过250吨.甲、乙两种棉纱应各生产多少吨,才能使利润总额最大?[思路探究] 由数据可列表如下:产品消耗量 资源甲种棉纱(1吨)乙种棉纱(1吨)资源限额(吨)一级子棉(吨) 2 1 300 二级子棉(吨) 1 2 250 利润(元)600900[自主解答] 设生产甲、乙两种棉纱分别为x 吨、y 吨, 那么利润总额z =600x +900y 元, 线性约束条件为⎩⎪⎨⎪⎧2x +y ≤300,x +2y ≤250,x ≥0,y ≥0.作出其可行域如下图.把z =600x +900y 变形为平行直线系l :y =-23x +z900.由图可知当直线l 经过可行域上的点M 时,截距z900最大,即z 取最大值.解方程组⎩⎪⎨⎪⎧2x +y =300,x +2y =250,得交点M (3503,2003).所以应生产甲种棉纱3503吨,乙种棉纱2003吨.1.利用线性规划求最大值,主要是收益最大、效率最高、利润最大等问题,要将求最值的变量设为z ,将z 表示成其它变量的函数,求其最大值.2.对于线性规划问题,由于题干太长,数据太多,为便于理清数据间的关系,不妨用列表法.某公司计划在今年内同时出售某种多功能电子琴和一种智能型洗衣机,由于这两种产品的市场需求量非常大,有多少就能销售多少,因此该公司要根据实际情况(如资金、劳动力等)确定产品的月供应量,以使得总利润达到最大,对这两种产品有直接限制的因素是资金和劳动力,通过调查得到关于这两种产品的有关数据如下表:资金单位产品所需资金(102元)月资金供应量(102元)电子琴 洗衣机成本 30 20 300 劳动力(工资) 5 10 110 单位利润68[解] 设月供应电子琴x 架、洗衣机y 台,依题意得:⎩⎪⎨⎪⎧30x +20y ≤300,5x +10y ≤110,x ≥0,y ≥0,x ,y ∈N .目标函数为z =6x +8y ,不等式组表示的平面区域如下图.作直线l :6x +8y =0,即作直线l :3x +4y =0.把直线l 向右上方平移,当直线l 经过可行域中的点M 时,z 取得最大值.解方程组⎩⎪⎨⎪⎧30x +20y =300,5x +10y =110,得点M 的坐标为(4,9),将M (4,9)代入z =6x +8y ,得z =6×4+8×9=96.所以当月供应量为电子琴4架、洗衣机9台时,才能使总利润最大,最大总利润为9600元.耗费最小问题营养学家指出,成人良好的日常饮食应该至少提供0.075 kg 的碳水化合物,0.06 kg 的蛋白质,0.06 kg 的脂肪.1 kg 食物A 含有0.105 kg 碳水化合物,0.07 kg 蛋白质,0.14 kg 脂肪,且食物A 的价格为28元/kg ;而1 kg 食物B 含有0.105 kg 碳水化合物,0.14 kg 蛋白质,0.07 kg 脂肪,且食物B 的价格为21元/kg.为了满足营养专家指出的日常饮食要求.同时使花费最低,需要同时食用多少食物A 和食物B?[思路探究] 将数据列成下表:食物/kg碳水化合物/kg蛋白质/kg 脂肪/kg A 0.105 0.07 0.14 B0.1050.140.07[自主解答] 设每天食用x kg 食物A ,y kg 食物B ,总成本为z 元,那么⎩⎪⎨⎪⎧0.105x +0.105y ≥0.075,0.07x +0.14y ≥0.06,0.14x +0.07y ≥0.06,x ≥0,y ≥0,①目标函数为z =28x +21y . 二元一次不等式组①等价于⎩⎪⎨⎪⎧7x +7y ≥5,7x +14y ≥6,14x +7y ≥6,x ≥0,y ≥0.②作出二元一次不等式组②所表示的平面区域(如下图),即为可行域.考虑z =28x +21y ,将它变形为y =-43x +z 21,这是斜率为-43且随z 变化的一族平行直线,z 21是直线在y 轴上的截距,当z21取最小值时,z 的值最小.当然直线要与可行域相交,即求在满足约束条件时目标函数z =28x +21y 的最小值.由图可知当直线z =28x +21y 经过可行域上的点M 时,截距z21最小,即z 最小.由⎩⎪⎨⎪⎧14x +7y =6,7x +7y =5,得M (17,47).所以为了满足营养专家指出的日常饮食要求,同时使花费最低,需要同时食用17kg 食物A 和47kg 食物B .1.利用线性规划求最小值,可以用来解决许多实际问题,诸如省钱,省工,省材料等问题.2.利用线性规划解决实际问题,建立约束条件往往是关键的一步,设出未知数后,应特别注意文字语言与符号语言的转换,以免因审题不细或表达不当而出现错误.医院用甲、乙两种原料为手术后的病人配营养餐.甲种原料每10 g 含5单位蛋白质和10单位铁质,售价3元;乙种原料每10 g 含7单位蛋白质和4单位铁质,售价2元.假设病人每餐至少需要35单位蛋白质和40单位铁质.试问:应如何使用甲、乙原料,才能既满足营养,又使费用最省?[解] 设甲、乙两种原料分别用10x g 和10y g ,总费用为z , 那么⎩⎪⎨⎪⎧5x +7y ≥35,10x +4y ≥40,x ≥0,y ≥0,目标函数为z =3x +2y ,作出可行域如图.把z =3x +2y 变形为y =-32x +z 2,得到斜率为-32,在y 轴上的截距为z2,随z 变化的一族平行直线.由图可知,当直线y =-32x +z 2经过可行域上的点A 时,截距z2最小,即z 最小.由⎩⎪⎨⎪⎧10x +4y =40,5x +7y =35,得A (145,3),∴z min =3×145+2×3=14.4.∴甲种原料145×10=28(g),乙种原料3×10=30(g),费用最省.简单的整数线性规划问题要将两种大小不同的钢板截成A ,B ,C 三种规格,每X 钢板可同时截得三种规格的小钢板的块数如下表所示:规格类型钢板类型 A 规格 B 规格 C 规格第一种钢板 2 1 1 第二种钢板123今需要A ,B ,C 三种规格的成品分别为15,18,27块,那么各截这两种钢板多少X 可得所需的三种规格的成品,且使所用钢板的X 数最少?[思路探究] 设截第一种钢板x X ,第二种钢板y X .[自主解答] 设需截第一种钢板x X ,第二种钢板y X ,共使用钢板z X ,那么⎩⎪⎨⎪⎧2x +y ≥15x +2y ≥18,x +3y ≥27,x ≥0,y ≥0,且x ,y 都是整数,求使目标函数z =x +y 取最小值时的x ,y . 作可行域如下图,平移直线z =x +y , 可知直线经过点(185,395)时z 取最小值,此时x +y =575,但185与395都不是整数,所以可行域内的点(185,395)不是最优解.因为非整点最优解为(185,395),z =575,所以z ≥12.令x +y =12,那么y =12-x ,代入约束条件整理得3≤x ≤92,所以x =3或x =4,这时最优整点为(3,9)和(4,8).故有以下两种截法:第一种截法是截第一种钢板3X 、第二种钢板9X ; 第二种截法是截第一种钢板4X 、第二种钢板8X . 最少要截两种钢板共12X .1.当变量为车辆、产品个数、钢板块数等数量时,应为整数,利用线性规划求最值,最优解也应为整数.2.假设按常规方法求出的不是整数解,可按以下方法调整:(1)平移直线法:先在可行域中画网格,再描整点,平移直线l 0,最先经过或最后经过的整点坐标就是最优解.(2)调整优值法:先求非整点最优解,再借助于不定方程知识调整最优值,最后筛选出整点最优解.预计用2 000元购买单价为50元的桌子和单价为20元的椅子,希望使桌子、椅子的总数尽可能多,但椅子数不少于桌子数,且不多于桌子数的1.5倍,那么买桌子、椅子各多少才行?[解] 设买桌子x X 、买椅子y 把.由题意得⎩⎪⎨⎪⎧x ≥0,y ≥0,x ≤y ,y ≤1.5x ,50x +20y ≤2 000,x ,y ∈N ,目标函数为z =x +y ,满足以上不等式组的可行域如下图.由⎩⎪⎨⎪⎧y =1.5x ,50x +20y =2000,得⎩⎪⎨⎪⎧x =25,y =752,∴点B 的坐标为(25,752).作直线l :x +y =0,将直线向右上方平移, 当直线l 经过可行域中的点B 时,z 取得最大值. ∵x ,y ∈N ,∴y =37.∴应买桌子25X 、椅子37把.(对应学生用书第61页)可行域内整点寻找错误有一批钢管,长度都是4000 mm ,要截成500 mm 和600 mm 两种毛坯,且这两种毛坯数量比大于13,要使钢管截得的毛坯最多,怎样截最合理?[错解] 设每根钢管截500 mm 的毛坯x 根,600 mm 的毛坯y 根, 那么x ,y 满足的约束条件为⎩⎪⎨⎪⎧500x +600y ≤4000,x y >13,x>0,y >0,即⎩⎪⎨⎪⎧5x +6y ≤40,y <3x ,x >0,y >0,其中x ,y 均为正整数. 作出可行域,如下图.目标函数为z =x +y .作一族平行线y =-x +z ,经过可行域内的点且和原点距离最大的直线为过A 点的直线,求出A 点的坐标.由⎩⎪⎨⎪⎧y =3x ,5x +6y =40,得⎩⎪⎨⎪⎧x =11723,y =5523.所以A (11723,5523)由于x ,y 均为正整数,故调整为x =2,y =5. 所以x +y =7.经检验,满足条件,所以每根钢管截500 mm 的毛坯两根,600 mm 的毛坯五根最合理. [错因分析] 此题错误的原因是:①没能准确作出一族平行直线y =-x +z ;②可行域内的整点寻找不准确.[防X 措施] 准确作图,充分考虑实际问题的特殊性.当图上的整点不好分辨时,应将几个有可能符合题意的整点的坐标都求出来然后逐一检验,而不能采取“四舍五入〞的办法.[正解] 设每根钢管截500 mm 的毛坯x 根,600 mm 的毛坯y 根.根据题意,得⎩⎪⎨⎪⎧500x +600y ≤4000,x y >13,x >0,y >0,且x ,y 均为正整数.作出可行域,如图3-3-62所示.目标函数为z =x +y ,作一族平行直线y =-x +z ,经过可行域内的点且和原点距离最大的直线必为过点B (8,0)的直线,这时x +y =8.因为x ,y 均为正整数,所以(8,0)不是最优解. 在可行域内找整点,使x +y =7.经验证,可知点(2,5),(3,4),(4,3),(5,2),(6,1)均为最优解.答:每根钢管截500 mm 的毛坯两根,600 mm 的毛坯五根,或截500 mm 的毛坯三根,600 mm 的毛坯四根,或截500 mm 的毛坯四根,600 mm 的毛坯三根,或截500 mm 的毛坯五根,600 mm 的毛坯两根,或截500 mm 的毛坯六根,600 mm 的毛坯一根最合理.1.基础知识:(1)实际应用问题的最优解; (2)整数线性规划;(2)用线性规划解决实际问题的一般步骤. 2.基本技能: (1)收益最大问题; (2)耗费最小问题;(3)简单的整数线性规划问题. 3.思想方法: (1)数形结合思想; (2)转化与化归思想; (3)函数思想.(对应学生用书第62页)1.有5辆载重6吨的汽车,4辆载重4吨的汽车,要运送最多的货物,完成这项运输任务的线性目标函数为________.[解析] 设6吨的有x 辆,4吨的有y 辆,运送货物吨数为z ,那么z =6x +4y . [答案] z =6x +4y2.某厂生产甲产品每千克需用原料A 和原料B 分别为a 1 kg ,b 1 kg ,生产乙产品每千克需用原料A 和原料B 分别为a 2 kg ,b 2 kg ,甲、乙产品每千克可获得的利润分别为d 1元,d 2元,月初一次性购进原料A ,B 各c 1 kg ,c 2 kg ,本月要生产甲产品和乙产品各多少千克才能使月利润总额达到最大;在这个问题中,设全月生产甲、乙两种产品分别为x kg ,y kg ,月利润总额为z 元,那么,用于求使总利润最大的数学模型中,约束条件为________.[解析] 对原料A 的限制:a 1x +a 2y ≤c 1,对原料B 的限制:b 1x +b 2y ≤c 2,另外甲、乙两种产品产量x ≥0,y ≥0.[答案] ⎩⎪⎨⎪⎧a 1x +a 2y ≤c1b 1x +b 2y ≤c2x ≥0y ≥03.某著名品牌汽车零件生产企业生产甲、乙两种汽车配件,生产每万件甲种配件要用A 原料3吨,B 原料2吨,生产每万件乙种配件要用A 原料1吨,B 原料3吨,销售每件甲种配件可获得利润5元,每件乙种配件可获得利润3元.该企业在一年内消耗A 原料不超过13吨,B 原料不超过18吨,那么该企业在一年内可获得的最大利润是________.[解析] 设生产甲种配件x 万件,生产乙种配件y 万件,利润为z 万元.那么根据题意有⎩⎪⎨⎪⎧x >0,y >0,3x +y ≤13,2x +3y ≤18,目标函数为z =5x +3y .作出可行域如下图,那么可知A (133,0),B (0,6),C (3,4).由图形可知,目标函数在点C (3,4)处取得最大值,最大值为5×3+3×4=27.[答案] 27万4.甲、乙两个居民小区的居委会组织本小区的中学生利用双休日去市郊的敬老院参加献爱心活动,两个小区都有同学参加.甲区的每位同学往返车费是3元,每人可为5位老人服务,乙区的每位同学在返车费是5元,每人可为3位老人服务,如果要求乙区参与活动的同学比甲区的同学多,且去敬老院的往返总车费不超过37元,怎样安排甲、乙两区参与活动同学的人数,才能使受到服务的老人最多?受到服务的老人最多是多少?[解] 设甲、乙两区参与活动的人数分别为x ,y ,受到服务的老人的人数为z ,那么z =5x +3y ,应满足的约束条件是⎩⎪⎨⎪⎧y -x ≥1,3x +5y ≤37,x ≥1,y ≥1,x ,y ∈N .根据上述不等式组,作出表示可行域的平面区域中的整点,如下图阴影部分中的点所示. 画直线l 0:5x +3y =0,平行移动l 0到直线l 的位置,使l 过可行域内的点M ,该点到直线l 0的距离最大,那么这一点的坐标使目标函数取得最大值,解方程⎩⎪⎨⎪⎧x -y =-1,3x +5y =37,得点M (4,5).因此当x =4,y =5时,z 取得最大值,并且z max =5×4+3×5=35.答:甲、乙两区参与活动的同学人数分别为4人和5人时,受到服务的老人最多,受到服务的老人最多是35人.(对应学生用书第98页)一、填空题1.车间有男工25人,女工20人,要组织甲、乙两种工作小组,甲组有5名男工,3名女工,乙组有4名男工,5名女工,并且要求甲种组数不少于乙种,乙种组数不少于1,求各自最多组成的工作小组数.要建立的数学模型中,约束条件为________.[解析] 设组成甲种组x 组,乙种组y 组,那么对男工人数的限制为5x +4y ≤25,对女工人数的限制为3x +5y ≤20,组数限制x ≥y ≥1,故约束条件为⎩⎪⎨⎪⎧5x +4y ≤25,3x +5y ≤20,1≤y ≤x ..[答案] ⎩⎪⎨⎪⎧5x +4y ≤25,3x +5y ≤20,1≤y ≤x .2.某同学拿50元钱买纪念邮票,票面8角的每套5X ,票面2元的每套4X ,如果每种至少买两套,共有________种买法.[解析] 设票面8角的买x 套,票面2元的买y 套.由题意得:⎩⎪⎨⎪⎧x ≥2,x ∈N *,y ≥2,y ∈N *,0.8×5x +2×4y ≤50,即⎩⎪⎨⎪⎧x ≥2,y ≥2,2x +4y ≤25,x ,y ∈N *.画出如右图平面区域得y =2时,x =2,3,4,5,6,7,8; y =3时,x =2,3,4,5,6; y =4时,x =2,3,4; y =5时,x =2.共有7+5+3+1=16. [答案] 163.实验室需购某种化工原料106千克,现在市场上该原料有两种包装,一种是每袋35千克,价格为140元;另一种是每袋24千克,价格为120元,在满足需要的条件下,最少要花费________.[解析] 设购买每袋35千克的x 袋,购买每袋24千克的y 袋,那么⎩⎪⎨⎪⎧35x +24y ≥106,x ≥0,y ≥0.求z =140x +120y 的最小值,作出可行域知,当x =1,y =3时费用最少.此时要花费:z =140×1+120×3=500元.[答案] 500元4.一批长400 cm 的条形钢材,需要将其截成518 mm 与698 mm 的两种毛坯,那么钢材的最大利用率为________.[解析] 设518 mm 和698 mm 的毛坯个数分别为x ,y ,最大利用率为z ,那么z =51.8x +69.8y400。
高中数学人教A版必修5第三章3.3.2简单的线性规划问题(二)课件
学段 初中 高中
硬件建设 班级学生数 配备教师数 万元
45
2
26/班
40
3
54/班
教师年薪 万元
2/人 2/人
分别用数学关系式和图形表示上述限制条件。若 根据有关部门的规定,初中每人每年可收学费1600 元,高中每人每年可收学费2700元。那么开设初中 班和高中班多少个?每年收费的学费总额最多?
解:设开设初中班x个,高中班y个。因办学规模以 20~30个班为宜,所以, 20≤x+y≤30
2x+y=15 x+y=12 x+2y=18
x 27
x+3y=27
当直线经过点A时z=x+y=11.4, 但它不是最优整数解. 作直线x+y=12
B(3,9)和C(4,8)在直线上,且在可行域内, 整点是B(3,9)和C(4,8),它们是最优解. 答(略)
{2x+y≥15, x+2y≥18, x+3y≥27, x≥0, x∈N* y≥0 y∈N*
目标函数t = x+y
y 15
B(3,9)
9
C(4,8)
A(18/5,39/5)
打网格线法
x+y =0
2 1 0 12 78
x
18
27
作出直线 x+y=0,
2x+y=15
x+2y=18 x+3y=27
当直线经过点A时t=x+y=11.4,但它不是最优整数解,
在可行域内打出网格线, 将直线x+y=11.4继续向上平移,
7 x 7 y 5
14x 7 y 6
x
1 7
得M点的坐标为:
人教A版高中数学必修五课件3.3.2简单的线性规划问题2.pptx
5.已知线性目标函数 z=3x+2y,在线性约束条件
x+y-3≥0 2x-y≤0 y≤a
下取得最大值时的最优解只有一个,则实数 a
的取值范围是________.
x+y-3≥0
解析: 作出线性约束条件2x-y≤0
y≤a
表示的平面
区域,
如图中阴影部分所示.
• 因为取得最大值时的最优解只有一个,所以目 标函数对应的直线与平面区域的边界线不平行, 根据图形及直线的斜率,可得实数a的取值范 围是[2,+∞).
元.该企业在一个生产周期内消耗A原料不超过 13吨、B原料不超过18吨,那么该企业可获得最 大利润是( )
• A.12万元
B.20万元
• C.25万元D.27万元
解析: 设该企业在一个生产周期内各生产甲、乙产品
x、y 吨,获得利润 z 万元,根据题意,得
3x+y≤13
2x+3y≤18 x≥0
• (3)求:解方程组求最优解,进而求出目标函数的 最大值和最小值.
• [注意] 画可行域时,要特别注意可行域各边 的斜率与目标函数直线的斜率的大小关系,以 便准确判断最优解.
• 2.最优解的确定
• 最优解的确定可有两种方法:
• (1)将目标函数的直线平行移动,最先通过或 最后通过的顶点便是最优解.
交点 A(4,5)时,目标函数 z=200x+300y 取到最小值为 2 300
元,故所需租赁费最少为 2 300 元.
• 答案: 2300
• 2.某企业生产甲、乙两种产品,已知生产每吨 甲产品要用A原料3吨、B原料2吨;生产每吨乙产
品要用A原料1吨、B原料3吨.销售每吨甲产品可 获得利润5万元、每吨乙产品可获得利润3万
规格类型 钢板类型
高中数学第三章不等式2简单线性规划课件必修5高一必修5数学课件
意义.
(1)截距型:形如z=Ax+By(B≠0),即y=-AB
x+Bz
,
z 为该 B
直线在y轴上的截距,z的几何意义就是该直线在y轴上截距的B
倍,至于z与截距能否同时取到最值,还要看B的符号.
12/13/2021
(2)距离型:形如z=(x-a)2+(y-b)2,z表示平面区域内的 动点(x,y)与定点(a,b)的距离的平方.
12/13/2021
(1)若直线y=2x上存在点(x,y)满足约束条件
x+y-3≤0 x-2y-3≤0 x≥m,
A.-1
则实数m的最大值为( B )
B.1
3 C.2
D.2
12/13/2021
x≥1 (2)已知a>0,x,y满足约束条件 x+y≤3 y≥ax-3,
y的最小值为1,则a=( B )
12/13/2021
规律方法 上述三个问题都是非线性目标函数模型,第一个 是两点间的距离模型,第二个是斜率模型,第三个是点到直线 的距离模型,但其本质还是二元函数的最值问题.熟悉这些模 型有助于更好地解决问题.
12/13/2021
x+y-3≥0 已知实数x,y满足 x-y+1≥0
9
x≤2,
__2_.
12/13/2021
【解析】 作出可行域如图阴影部分所示,直线ax+2y=z 仅在点(1,0)处取得最小值,由图像可知-1<-a2<2,即-4<a<2.
12/13/2021
规律方法 对于线性规划的逆向思维问题,解答时必须明确 线性目标函数的最值一般在可行域的顶点或边界取得,运用数 形结合的思想方法求解.同时,要注意边界直线斜率与目标函 数斜率的关系.
则z=x2+y2的最小值为
高中数学3.3.2-2简单的线性规划问题(第二课时)复习试题
课时作业(二十七)1.如果实数x ,y 满足条件⎩⎨⎧x -y +1≥0,y +1≥0,x +y +1≤0,那么2x -y 的最大值为()A .2B .1C .-2D .-3答案 B解析 如图所示可行域中,2x -y 在点C 处取得最大值,即在C(0,-1)处取得最大值,最大值为1.2.若实数x ,y 满足不等式组⎩⎨⎧x +3y -3≥0,2x -y -3≤0,x -my +1≥0且x +y 的最大值为9,则实数m=( ) A .-2 B .-1 C .1 D .2答案 C解析 如图,设x +y =9,显然只有在x +y =9与直线2x -y -3=0的交点处满足要求,解得此时x =4,y =5,即点(4,5)在直线x -my +1=0上,代入得m =1.3.已知x ,y ∈Z ,则满足⎩⎨⎧x -y ≥0,x +y ≤5,y ≥0的点(x ,y)的个数为( ) A .9 B .10 C .11 D .12答案 D解析 画出不等式组对应的可行域,共12个点.4.若实数x 、y 满足⎩⎨⎧x -y +1≤0,x>0,则yx 的取值范围是( )A .(0,1)B .(0,1]C .(1,+∞)D .[1,+∞)答案 C解析 在平面内作出x 、y 满足的可行域,设P(x ,y)为可行域内任一点,则直线PO 的斜率k PO =y x ,由数形结合得,k PO >1,故yx 的取值范围是(1,+∞),选C.5.在如下图所示的可行域内(阴影部分且包括边界),目标函数z =x -y ,则使z 取得最小值的点的坐标为( )A .(1,1)B .(3,2)C .(5,2)D .(4,1)答案 A解析 对直线y =x +b 行平移,注意b 越大,z 越小.6.设变量x ,y 满足约束条件⎩⎨⎧x +2y ≥2,2x +y ≤4,4x -y ≥-1,则目标函数z =3x -y 的取值范围是( ) A .[-32,6]B .[-32,-1]C .[-1,6]D .[-6,32]答案 A解析 利用线性规划的知识求解.作出不等式组表示的可行域,如图阴影部分所示,作直线3x -y =0,并向上、下平移,又直线y =3x -z 的斜率为3.由图像知当直线y =3x -z 经过点A(2,0)时z 取最大值6,当直线y =3x -z 经过点B(12,3)时,z 取最小值-32.∴z =3x -y 的取值范围为[-32,6].故选A.7.某农户计划种植黄瓜和韭菜,种植面积不超过50亩,投入资金不超过54万元,假设种植黄瓜和韭菜的产量、成本和售价如下表菜的种植面积(单位:亩)分别为( ) A .50,0 B .30,20 C .20,30 D .0,50答案 B解析 设黄瓜的种植面积为x 亩,韭菜的种植面积为y 亩,则由题意知其满足的条件为⎩⎨⎧x +y ≤50,1.2x +0.9y ≤54,x ≥0,y ≥0,化简得⎩⎨⎧x +y ≤50,4x +3y ≤180,x ≥0,y ≥0.目标函数z =0.55×4x +0.3×6y -1.2x -0.9y =x +0.9y.目标函数z =x +0.9y 的几何意义是直线x +0.9y -z =0在x 轴上的截距,由图可知当直线经过点B(30,20)时,目标函数z =x +0.9y 取得最大值. 8.已知以x ,y 为自变量的目标函数ω=kx +y(k>0)的可行域如下图阴影部分(含边界),若使ω取最大值时的最优解有无穷多个,则k 的值为( ) A .1B.32C .2D .4答案 A解析 目标函数可变形为y =-kx +ω,又∵k>0,结合图像可知,当ω最大时,-k =k DC =4-22-4=-1.即k =1.9.已知x ,y满足约束条件⎩⎨⎧x ≥0,y ≥0,x +y ≥1,则(x +3)2+y2的最小值为( ) A.10 B .2 2 C .8 D .10答案 D解析 画出可行域(如图所示).(x +3)2+y 2即点A(-3,0)与可行域上点(x ,y)间距离的平方.显然|AC|长度最小,所以|AC|2=(0+3)2+(1-0)2=10.故选D.10.点P(1,a)到直线x -2y +2=0的距离为355,且P 在3x +y -3>0表示的区域内,则a =________. 答案 3 解析|1-2a +2|5=355,∴a =0或3.又点P 在3x +y -3>0表示区域内,∴3+a -3>0,∴a>0,∴a =3.11.在坐标平面内,点的纵、横坐标都是整数时,称该点为整点,则由不等式组⎩⎨⎧x +y ≤2,x -y ≥-2,y ≥0所表示的区域内整点的个数是________.答案 9解析 首先画出不等式组表示的平面区域(如图),再用打网格法找出区域内整点,部分靠近边界的点代入验证,共9个点.12.记不等式组⎩⎨⎧x ≥0,x +3y ≥4,3x +y ≤4所表示的平面区域为D.若直线y =a(x +1)与D 有公共点,则a 的取值范围是________. 答案 [12,4]解析 作出题中不等式组表示的可行域如图中阴影部分所示.∵直线y =a(x +1)过定点C(-1,0),由图并结合题意可知k BC =12,k AC =4,∴要使直线y =a(x +1)与平面区域D 有公共点,则12≤a ≤4.13.已知变量x ,y 满足约束条件⎩⎨⎧x -y +2≥0,x +y -4≥0,2x -y -5≤0,求:(1)z =x 2+y 2-10y +25的最小值; (2)z =2y +1x +1的取值范围. 解析 (1)作出可行域如图,计算得点A(1,3),B(3,1),C(7,9).z =x 2+(y -5)2,表示可行域内任一点(x ,y)到点M(0,5)的距离的平方. 过点M 作AC 的垂线,易知垂足N 在AC 上,故|MN|=|0-5+2|1+(-1)2=32=322, ∴|MN|2=(322)2=92,∴z 的最小值为92. (2)z =2·y -(-12)x -(-1),表示可行域内的点(x ,y)与定点Q(-1,-12)连线的斜率的2倍. 连接QA ,QB.∵k QA =74,k QB =38,∴z 的取值范围是[34,72].14.制订投资计划时,不仅要考虑可能获得的盈利,而且要考虑可能出现的亏损.某投资人打算投资甲、乙两个项目.根据预测,甲、乙项目可能的最大盈利率分别为100%和50%,可能的最大亏损率分别为30%和10%.投资人计划投资金额不超过10万元,要求确保可能的资金亏损不超过1.8万元,问投资人对甲、乙两个项目各投资多少万元,才能使可能的盈利最大? 解析 设投资人分别用x 万元,y 万元投资甲、乙两个项目,由题意知⎩⎨⎧x +y ≤10,0.3x +0.1y ≤1.8,x ≥0,y ≥0.目标函数z =x +0.5y.上述不等式组表示的平面区域如图所示,阴影部分(含边界)即可行域.作直线l 0:x +0.5y =0,并作平行于直线l 0的一组直线x +0.5y =z ,z ∈R ,与可行域相交,其中有一条直线经过可行域上的M 点,且与直线x +0.5y =0的距离最大,这里M 点是直线x +y =10和0.3x +0.1y =1.8的交点. 解方程组⎩⎨⎧x +y =10,0.3x +0.1y =1.8,得x =4,y =6.此时z =1×4+0.5×6=7(万元). ∵7>0,∴当x =4,y =6时z 取得最大值.所以,投资人用4万元投资甲项目,6万元投资乙项目,才能在确保亏损不超过1.8万元的前提下,使可能的盈利最大.15.有一批同规格的钢条,每根钢条有两种切割方式,可截成长度为a 的钢条2根,长度为b 的钢条1根;或截成长度为a 的钢条1根,长度为b 的钢条3根.现长度为a 的钢条至少需要15根,长度为b 的钢条至少需要27根.问:如何切割可使钢条用量最省?解析 设按第一种切割方式需钢条x 根,按第二种切割方式需钢条y 根,根据题意得约束条件是⎩⎨⎧2x +y ≥15,x +3y ≥27,x>0,x ∈N ,y>0,y ∈N ,目标函数是z =x +y ,画出不等式组表示的平面区域如图阴影部分.由⎩⎨⎧2x +y =15,x +3y =27,解得⎩⎨⎧x =3.6,y =7.8. 此时z =11.4,但x ,y ,z 都应当为正整数, 所以点(3.6,7.8)不是最优解.经过可行域内的整点且使z 最小的直线是y =-x +12,即z =12,满足该约束条件的(x ,y)有两个:(4,8)或(3,9),它们都是最优解. 即满足条件的切割方式有两种,按第一种方式切割钢条4根,按第二种方式切割钢条8根;或按第一种方式切割钢条3根,按第二种方式切割钢条9根,可满足要求.1.已知实数x ,y 满足⎩⎨⎧x +2y -5≤0,x ≥1,y ≥0,x +2y -3≥0,则yx 的最大值为________.答案 2解析 画出不等式组⎩⎨⎧x +2y -5≤0,x ≥1,y ≥0,x +2y -3≥0对应的平面区域Ω,y x =y -0x -0表示平面区域Ω上的点P(x ,y)与原点的连线的斜率.A(1,2),B(3,0),∴0≤yx≤2.2.若实数x 、y 满足不等式组⎩⎨⎧y ≥0,x -y ≥0,2x -y -2≥0,则ω=y -1x +1的取值范围是()A .[-1,13]B .[-12,13]C .[-12,+∞)D .[-12,1)答案D解析 所求问题转化为求动点(x ,y)与定点(-1,1)连线的斜率问题.不等式组表示的可行域如图所示.目标函数ω=y -1x +1表示阴影部分的点与定点(-1,1)的连线的斜率,由图可见,点(-1,1)与点(1,0)连线的斜率为最小值,最大值趋近于1,但永远达不到,故-12≤ω<1.3.若目标函数z =x +y +1在约束条件⎩⎨⎧x +y -2≤0,x -y +2≤0,y ≤n ,x ≥-3下取得最大值的最优解有无穷多个,则n 的取值范围是________. 答案 n>2解析先根据⎩⎨⎧x +y -2≤0,x -y +2≤0,x ≥-3作出如图所示阴影部分的可行域,欲使目标函数z=x +y +1取得最大值的最优解有无穷多个,需使目标函数对应的直线平移时达到可行域的边界直线x +y -2=0,且只有当n>2时,可行域才包含x +y -2=0这条直线上的线段BC 或其部分.4.某企业生产甲、乙两种产品,已知生产每吨甲产品要用A 原料3吨,B 原料2吨;生产每吨乙产品要用A 原料1吨,B 原料3吨,销售每吨甲产品可获得利润5万元,每吨乙产品可获得利润3万元.该企业在一个生产周期内消耗A 原料不超过13吨,B 原料不超过18吨.那么该企业可获得最大利润是( ) A .12万元B .20万元C .25万元D .27万元答案 D解析 设生产甲产品x 吨,生产乙产品y 吨,获得利润为z ,则有下列关系:则有⎩⎨⎧ y>0, 3x +y ≤13, 2x +3y ≤18.目标函数z =5x +3y ,作出可行域后(如图所示阴影区域)求出可行域边界上各端点的坐标,可知当x =3,y =4时可获得最大利润为27万元,故选D.。
高中 二元一次不等式(组)与简单的线性规划 知识点+例题 全面
辅导讲义――二元一次不等式(组)与简单的线性规划[例4] 若点A (1,1),B (2,-1)位于直线0=-+a y x 的两侧,则a 的取值范围是___________.)2,1([巩固] 若点A (1,a )与原点在直线l :01=-+y x 的同侧,则实数a 的取值范围是_________.)0,(-∞[例5] 如图所示的平面区域(阴影部分)用不等式表示为_________________.033<--x y[巩固] 能表示图中阴影区域的二元一次不等式组是__________________.⎪⎩⎪⎨⎧-≥≤+≤11y y x x y[例6] 画出不等式组⎪⎩⎪⎨⎧≥>≤-+02042y y x y x 所表示的平面区域.[巩固] 画出不等式0)4)(12(<--++yxyx表示的平面区域.1.基本概念名称意义约束条件由变量x,y组成的不等式组线性约束条件由x,y的一次不等式(或方程)组成的不等式组目标函数关于x,y的解析式,如:22yxz+=线性目标函数关于x,y的一次解析式,如yxz+=2可行解满足线性约束条件的解(x,y)可行域所有可行解组成的集合最优解使目标函数取得最大值或最小值的可行解线性规划问题求线性目标函数在线性约束条件下的最值问题注意:(1)对于实际背景的线性规划问题,可行域通常位于第一象限内的一个凸多边形区域,此时变动直线的最佳位置一般通过这个凸多边形的定点;(2)对于线性规划问题,结果可能有唯一最优解,或是有无穷最优解,或是无最优解.2.应用利用线性规划求最值,一般用图解法求解,其步骤是(1)在平面直角坐标系内作出可行域.(2)考虑目标函数的几何意义,将目标函数进行变形.(3)确定最优解:在可行域内平行移动目标函数变形后的直线,从而确定最优解.(4)求最值:将最优解代入目标函数即可求出最大值或最小值.[例1] 设yxz-=2,其中x,y满足⎪⎩⎪⎨⎧≤≥-+≥+-221xyxyx,则z的取值范围是_________________.]4,21[-知识模块2简单的线性规划精典例题透析[例4] 不等式组⎪⎩⎪⎨⎧≤--≥++≤020220x y y x x 表示的平面区域的面积为__________.3[巩固1] 若不等式组⎪⎩⎪⎨⎧<++>>a y x x y x 11所确定的平面区域的面积为0,则实数a 的取值范围是____________.]3,(-∞[巩固2] 在平面直角坐标系中,不等式组⎪⎩⎪⎨⎧≤≥+-≥+a x y x y x 040(a 为常数)表示的平面区域的面积是9,则实数._____=a 1[巩固3] 在平面直角坐标系中,若不等式组⎪⎪⎨⎧≤-≥-+0101x y x (a 为常数)所表示的平面区域内的面积等于2,则.___=a[例5] 已知x ,y 满足约束条件⎪⎩⎪⎨⎧≤+≥-+≥-18360202y x y x y x ,且y ax z +=取得最大值的最优解恰为)3,23(,则a 的取值范围是______.(-2,2)[巩固] 若直线4=+by ax 与不等式组⎪⎩⎪⎨⎧≥++≤-+≥+-0420420852y x y x y x 表示的平面区域无公共点,则b a +的取值范围是________.(-3,3)[例6] 某公司计划招聘男职工x 名,女职工y 名,要求女职工人数不能多于男职工,女职工的人数不得少于男职工的31,最少10名男职工,则该公司最少能招聘多少名职工.CO的排放量b及每万吨铁矿石的价格c如下表:[巩固] 铁矿石A和B的含铁率a,冶铁每万吨铁矿石的2a b(万吨)c(万吨)A50% 1 3B70% 5.0 6CO的排放量不超过2(万吨),求购买铁矿石的最少费用. 某冶铁厂至少要生产9.1(万吨)铁,若要求2知识模块3经典题型[例](1)若不等式组⎩⎪⎨⎪⎧x ≥0,x +3y ≥4,3x +y ≤4所表示的平面区域被直线y =kx +43分为面积相等的两部分,则k 的值是________.(2)如图阴影部分表示的区域可用二元一次不等式组表示为_____________.答案 (1) 73 (2)⎩⎪⎨⎪⎧x +y -1≥0,x -2y +2≥0解析 (1)不等式组表示的平面区域如图所示.由于直线y =kx +43过定点⎝⎛⎭⎫0,43.因此只有直线过AB 中点时,直线y =kx +43能平分平面区域. 因为A (1,1),B (0,4),所以AB 中点D ⎝⎛⎭⎫12,52.当y =kx +43过点⎝⎛⎭⎫12,52时,52=k 2+43,所以k =73. (2)两直线方程分别为x -2y +2=0与x +y -1=0. 由(0,0)点在直线x -2y +2=0右下方可知x -2y +2≥0, 又(0,0)点在直线x +y -1=0左下方可知x +y -1≥0,即⎩⎪⎨⎪⎧x +y -1≥0,x -2y +2≥0为所表示的可行域. [巩固](1)在平面直角坐标系中,若不等式组⎩⎪⎨⎪⎧x +y -1≥0,x -1≤0,ax -y +1≥0(a 为常数)所表示的平面区域的面积等于4,则a=______.(2)如图所示的平面区域(阴影部分)满足不等式_______________.答案 (1) 7 (2)x +y -1>0解析 (1)直线ax -y +1=0过点(0,1),作出可行域如图知可行域由点A (1,0),B (1,a +1),C (0,1)组成的三角形的内部(包括边界), 且a >-1,则其面积等于12×(a +1)×1=4,解得a =7.(2)边界对应直线方程为x +y -1=0,且为虚线,区域中不含(0,0),由以上可知平面区域(阴影部分)满足x +y -1>0.题型二:求线性目标函数的最值(2)(2013·课标全国Ⅱ)已知a >0,x ,y 满足约束条件⎩⎪⎨⎪⎧x ≥1,x +y ≤3,y ≥a (x -3),若z =2x +y 的最小值为1,则a =________.答案 (1) 6 (2)12解析 (1)画出可行域,如图阴影部分所示. 由z =2x +y ,得y =-2x +z .由⎩⎪⎨⎪⎧ y =x ,y =-1,得⎩⎪⎨⎪⎧x =-1,y =-1, ∴A (-1,-1).由⎩⎪⎨⎪⎧ x +y =1,y =-1,得⎩⎪⎨⎪⎧x =2,y =-1,∴B (2,-1).当直线y =-2x +z 经过点A 时,z min =2×(-1)-1=-3=n .当直线y =-2x +z 经过点B 时,z max =2×2-1=3=m ,故m -n =6.(2)作出不等式组表示的可行域,如图(阴影部分). 易知直线z =2x +y 过交点A 时,z 取最小值,由⎩⎪⎨⎪⎧x =1,y =a (x -3), 得⎩⎪⎨⎪⎧x =1,y =-2a ,∴z min =2-2a =1, 解得a =12.[巩固](1)已知平面直角坐标系xOy 上的区域D 由不等式组⎩⎨⎧0≤x ≤2,y ≤2,x ≤2y给定.若M (x ,y )为D 上的动点,点A的坐标为(2,1),则z =OM →·OA →的最大值为________.(2)(2014·北京)若x ,y 满足⎩⎪⎨⎪⎧x +y -2≥0,kx -y +2≥0,y ≥0,且z =y -x 的最小值为-4,则k 的值为_______.答案 (1) 4 (2) -12解析 (1)由线性约束条件⎩⎨⎧0≤x ≤2,y ≤2,x ≤2y画出可行域如图阴影部分所示,目标函数z =OM →·OA →=2x +y ,将其化为y =-2x +z ,结合图形可知,目标函数的图象过点(2,2)时,z 最大,将点(2,2)代入z =2x +y 得z 的最大值为4.(2)作出可行域,如图中阴影部分所示,直线kx -y +2=0与x 轴的交点为A (-2k,0).∵z =y -x 的最小值为-4,∴2k =-4,解得k =-12,故选D.题型三:线性规划的实际应用[例] 某客运公司用A 、B 两种型号的车辆承担甲、乙两地间的长途客运业务,每车每天往返一次.A 、B 两种车辆的载客量分别为36人和60人,从甲地去乙地的营运成本分别为1 600元/辆和2 400元/辆,公司拟组建一个不超过21辆车的客运车队,并要求B 型车不多于A 型车7辆.若每天运送人数不少于900,且使公司从甲地去乙地的营运成本最小,那么应配备A 型车、B 型车各多少辆?解 设A 型、B 型车辆分别为x 、y 辆,相应营运成本为z 元,则z =1 600x +2 400y .由题意,得x ,y 满足约束条件⎩⎪⎨⎪⎧x +y ≤21,y ≤x +7,36x +60y ≥900,x ,y ≥0,x ,y ∈N .作可行域如图所示,可行域的三个顶点坐标分别为P (5,12),Q (7,14),R (15,6).由图可知,当直线z =1 600x +2 400y 经过可行域的点P 时,直线z =1 600x +2 400y 在y 轴上的截距z 2 400最小,即z 取得最小值.故应配备A 型车5辆、B 型车12辆,可以满足公司从甲地去乙地的营运成本最小. [巩固] 某企业生产甲、乙两种产品,已知生产每吨甲产品要用A 原料3吨、B 原料2吨;生产每吨乙产品要用A 原料1吨、B 原料3吨.销售每吨甲产品可获得利润5万元、每吨乙产品可获得利润3万元,该企业在一个生产周期内消耗A 原料不超过13吨、B 原料不超过18吨,那么该企业可获得的最大利润是________万元.答案 27解析 设生产甲产品x 吨、乙产品y 吨, 则获得的利润为z =5x +3y .由题意得⎩⎪⎨⎪⎧x ≥0,y ≥0,3x +y ≤13,2x +3y ≤18,可行域如图阴影所示.由图可知当x 、y 在A 点取值时,z 取得最大值,此时x =3,y =4,z =5×3+3×4=27(万元).1.在直角坐标平面内,不等式组⎩⎪⎨⎪⎧y ≤x +1,y ≥0,0≤x ≤t所表示的平面区域的面积为32,则t 的值为_______.答案 1夯实基础训练解析 不等式组⎩⎪⎨⎪⎧y ≤x +1,y ≥0,0≤x ≤t所表示的平面区域如图中阴影部分所示.由⎩⎪⎨⎪⎧y =x +1,x =t ,解得交点B (t ,t +1),在y =x +1中,令x =0得y =1,即直线y =x +1与y 轴的交点为C (0,1),由平面区域的面积S =(1+t +1)×t 2=32,得t 2+2t -3=0,解得t =1或t =-3(不合题意,舍去),故选C. 2.x ,y 满足约束条件⎩⎪⎨⎪⎧x +y -2≤0,x -2y -2≤0,2x -y +2≥0.若z =y -ax 取得最大值的最优解不唯一,则实数a 的值为____________.答案 2或-1解析 如图,由y =ax +z 知z 的几何意义是直线在y 轴上的截距, 故当a >0时,要使z =y -ax 取得最大值的最优解不唯一,则a =2; 当a <0时,要使z =y -ax 取得最大值的最优解不唯一,则a =-1. 3.(2014·课标全国Ⅱ)设x ,y 满足约束条件⎩⎪⎨⎪⎧x +y -7≤0,x -3y +1≤0,3x -y -5≥0,则z =2x -y 的最大值为_______.答案 8解析 画出可行域如图所示.由z =2x -y ,得y =2x -z ,欲求z 的最大值,可将直线y =2x 向下平移, 当经过区域内的点,且满足在y 轴上的截距-z 最小时, 即得z 的最大值,如图,可知当过点A 时z 最大,由⎩⎪⎨⎪⎧ x +y -7=0,x -3y +1=0,得⎩⎪⎨⎪⎧x =5,y =2,即A (5,2),则z max =2×5-2=8. 4.在平面直角坐标系中,不等式组⎩⎪⎨⎪⎧x +y -2≥0,x -y +2≥0,x ≤2表示的平面区域的面积为________.答案 4解析 作出可行域为△ABC (如图),则S △ABC =4.5.设z =2x +y ,其中x ,y 满足⎩⎪⎨⎪⎧x +y ≥0,x -y ≤0,0≤y ≤k ,若z 的最大值为6,则k 的值为________,z 的最小值为________.答案 2 -2解析 在坐标平面内画出题中的不等式组表示的平面区域及直线2x +y =z ,结合图形分析可知,要使z =2x +y 的最大值是6,直线y =k 必过直线2x +y =6与x -y =0的交点,即必过点(2,2),于是有k =2;平移直线2x +y =6,当平移到经过该平面区域内的点(-2,2)时,相应直线在y 轴上的截距达到最小,此时z =2x +y 取得最小值,最小值是z =2×(-2)+2=-2.6.在平面直角坐标系中画出不等式组⎩⎪⎨⎪⎧|x |≤|y |,|x |<1所表示的平面区域.解析 |x |=|y |把平面分成四部分,|x |≤|y |表示含y 轴的两个区域; |x |<1表示x =±1所夹含y 轴的带状区域.7.若直线x +my +m =0与以P (-1,-1)、Q (2,3)为端点的线段不相交,求m 的取值范围.解 直线x +my +m =0将坐标平面划分成两块区域,线段PQ 与直线x +my +m =0不相交,则点P 、Q 在同一区域内,于是,⎩⎪⎨⎪⎧ -1-m +m >0,2+3m +m >0,或⎩⎪⎨⎪⎧-1-m +m <0,2+3m +m <0,所以,m 的取值范围是m <-12.8.某玩具生产公司每天计划生产卫兵、骑兵、伞兵这三种玩具共100个,生产一个卫兵需5分钟,生产一个骑兵需7分钟,生产一个伞兵需4分钟,已知总生产时间不超过10小时.若生产一个卫兵可获利润5元,生产一个骑兵可获利润6元,生产一个伞兵可获利润3元.(1)试用每天生产的卫兵个数x 与骑兵个数y 表示每天的利润ω(元); (2)怎样分配生产任务才能使每天的利润最大,最大利润是多少? 解 (1)依题意每天生产的伞兵个数为100-x -y , 所以利润ω=5x +6y +3(100-x -y )=2x +3y +300. (2)约束条件为⎩⎪⎨⎪⎧5x +7y +4(100-x -y )≤600,100-x -y ≥0,x ≥0,y ≥0,x 、y ∈N .整理得⎩⎪⎨⎪⎧x +3y ≤200,x +y ≤100,x ≥0,y ≥0,x 、y ∈N .目标函数为ω=2x +3y +300,作出可行域,如图所示,作初始直线l 0:2x +3y =0,平移l 0,当l 0经过点A 时,ω有最大值,由⎩⎪⎨⎪⎧ x +3y =200,x +y =100,得⎩⎪⎨⎪⎧x =50,y =50.∴最优解为A (50,50),此时ωmax =550元.故每天生产卫兵50个,骑兵50个,伞兵0个时利润最大,且最大利润为550元.9.设变量x 、y 满足约束条件⎩⎪⎨⎪⎧x +y ≤a ,x +y ≥8,x ≥6,且不等式x +2y ≤14恒成立,则实数a 的取值范围是__________.答案 [8,10]解析 不等式组表示的平面区域如图中阴影部分所示,显然a ≥8,否则可行域无意义. 由图可知x +2y 在点(6,a -6)处取得最大值2a -6,由2a -6≤14得,a ≤10.10.(2014·课标全国Ⅰ)设x ,y 满足约束条件⎩⎪⎨⎪⎧x +y ≥a ,x -y ≤-1,且z =x +ay 的最小值为7,则a=________.答案 3解析 当a =-5时,作出不等式组表示的可行域,如图(1)(阴影部分).由⎩⎪⎨⎪⎧ x -y =-1,x +y =-5得交点A (-3,-2), 则目标函数z =x -5y 过A 点时取得最大值.z max =-3-5×(-2)=7,不满足题意,排除A ,C 选项. 当a =3时,作出不等式组表示的可行域,如图(2)(阴影部分). 由⎩⎪⎨⎪⎧x -y =-1,x +y =3得交点B (1,2),则目标函数z =x +3y 过B 点时取得最小值. z min =1+3×2=7,满足题意.11.已知变量x ,y 满足约束条件⎩⎪⎨⎪⎧x +2y -3≤0,x +3y -3≥0,y -1≤0,若目标函数z =ax +y (其中a >0)仅在点(3,0)处取得最大值,则a 的取值范围是__________.答案 ⎝⎛⎭⎫12,+∞ 解析 画出x 、y 满足约束条件的可行域如图所示,要使目标函数z =ax +y 仅在点(3,0)处取得最大值,则直线y =-ax +z 的斜率应小于直线x +2y -3=0的斜率,即-a <-12,∴a >12.12.若函数y =log 2x 的图象上存在点(x ,y ),满足约束条件⎩⎪⎨⎪⎧x +y -3≤0,2x -y +2≥0,y ≥m ,则实数m 的最大值为________.答案 1解析 如图,作出函数的可行域,当函数y =log 2x 过点(2,1)时,实数m 有最大值1.能力提升训练13.一个化肥厂生产甲、乙两种混合肥料,生产1车皮甲种肥料的主要原料是磷酸盐4吨,硝酸盐18吨;生产1车皮乙种肥料需要的主要原料是磷酸盐1吨,硝酸盐15吨.现库存磷酸盐10吨,硝酸盐66吨,在此基础上生产这两种混合肥料.如果生产1车皮甲种肥料产生的利润为10 000元,生产1车皮乙种肥料产生的利润为5 000元,那么适当安排生产,可产生的最大利润是________元.答案 30 000解析 设生产甲种肥料x 车皮,生产乙种肥料y 车皮, 则z =10 000x +5 000y , ⎩⎪⎨⎪⎧4x +y ≤10,18x +15y ≤66,x ≥0,y ≥0,画出图形可知,目标函数在D (2,2)处有最大值, 且z max =10 000×2+5 000×2=30 000(元).。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
课题:_简单的线性规划教案(二)
教学任务
教学目标知识与技能目
标
巩固二元一次不等式和二元一次不等式组所表示的
平面区域,能用此来求目标函数的最值.
过程与方法目
标
围绕着集合、化归、数形结合的数学思想方法
情感,态度与价
值观目标
在探究活动中,培养学生独立的分析、正确的科
学观
重点理解二元一次不等式表示平面区域是教学重点.
难点如何扰实际问题转化为线性规划问题,并给出解答是教学难点
教学流程说明
活动流程图活动内容和目的
活动1问题引入-最值探究巩固二元一次不等式和二元一次不等式组所表示的平面区域,能用此来求目标函数的最值
活动2 讲授新课-深入探究集合、化归、数形结合的数学思想方法
活动3应用提高-实践体会使学生会利用二元一次不等式表示平面区域能用此来求目标函数的最值
活动4归纳小结-感知新知让学生在合作交流的过程总结知识和方法
活动5巩固提高-作业巩固教学、个体发展、全面提高
教学过程设计
问题与情境设计意图
活动1问题引入:先讨论下面的问题设 ,式中变量x、y满足下列条件
我们先画出不等式组①表示的平
面区域,如图中内部且包括
边界.点(0,0)不在这个三角形区
域内,当
时, ,点(0,0)在直线
上.
作一组和平等的直线
①
求z的最大值和最小值.
可知,当l在的右上方时,直
线l上的点满足.
即 ,而且l往右平移时,t
随之增大,在经过不等式组①表示
的三角形区域内的点且平行于l的
直线中,以经过点A(5,2)的直线
l,所对应的t最大,以经过点
的直线 ,所对应的t最小,所以
活动2深入探究→交流归纳
一般地,求线性目标函数在线性约
束条件下的最大值或最小值的问
题,统称为线性规划问题,满足线性
约束条件的解叫做可行解,
由所有可行解组成的集合叫做可行
域,在上述问题中,可行域就是阴影
部分表示的三角形区域,其中可行
解(5,2)和(1,1)分别使目标函
数取得最大值和最小值,它们都叫
做这个问题的最优解.
活动3实践提高→资源展示
资源1:解下列线性规划问题:求
的最大值和最小值,使式中
的x、y满足约束条件
资源2:解线性规划问题:求
的最大值,使式中的x、y满
足约束条件.
资源3:.求的最小值,
使式中的满足约束条件
时,.
资源4:求的最大值,使
式中满足约束条件
时,.
活动4回顾小结→整体感知
活动5布置作业
线性规划(2)
一、选择题
1.不等式所表示的平面区域在直线的()
A.右上方 B .右下方 C.左上方 D.左下方
2.点在下面不等式表示的哪个区域中()
A. B. C. D.
3.表示的平面区域内,整数点个数为()
A.2 B .4 C.5 D.6
4.已知、满足线性约束条件则的最大值和最小值是()
A.16和1 B.18和0 C.20和-1 D.22和-2
5.给出平面区域如图所示,若使目标函数取得最大值的最优解有无穷多个,则
值为()
A. B. C.4 D.
6.一批长为4000m的条形钢材要将其截成长为518mm与698mm的两种毛坯,则钢材的最大利润
率为()
A.99.75% B.99.65% C.94.85% D.95.70%
二、填空题
1.点到直线的距离等于4,且在不等式表示的平面区域内,则
点的坐标为_____.
2.性约束条件的可行域共有________________个整数点.
3.当时,使目标函数取得最大值时, =______, =_______
4.当和满足时,当目标函数的最大值为________,最小值为________
5.设为平面内以三点为顶点的三角形区域(包括边界),当
在上变动时,的最小值是____________.
三、解答题
1.用图形表示出不等式组所表示的平面区域.
2.设 ,式中变量满足求的最大值和最小值.
3.已知、满足不等式组 ,求目标函数的最大值.
4.有一批钢管,长度都是4000mm,要截成500mm和600mm两种毛坯,且这两种毛坯数量比大于配套,怎样截最合理?
5.某工厂生产甲、乙两种产品,其产量分别为45个和55个,所用原料为A、B两种规格金属板每张面积分别为2m和3m ,用A种规格金属板可造甲种产品3个,乙种产品5个,用B种规格金属板可造甲、乙品种各6个,问两种规格金属板各取多少张才能完成计划,并能使总的用料面积最省?
6.某个体玩具厂在每天能工作10小时的机器上制造甲、乙两种玩具,造一个甲玩具需要8秒,80克塑料;造一个乙玩具需要6秒,160克塑料,每天可用的塑料只有640千克,如果造一个甲玩具的利润是0.5元,造一个乙玩具的利润是0.6元.试问,每种玩具各生产多少个,才能获得最大利润.
7.某基金会准备进行两种组合投资,稳健型组合投资每份是由金融投资70万元,房地产投资90万元,电脑投资75万元,进取型组合投资是由每份是由金融投资40万元,房地产投资90万元,电脑投资90万元组成,已知每份稳健型组合投资每年获得25万元,每份进取型投资每年获得30万元,若可用资金中,金融资金不超过290万元,房地产投资不超过450万元,电脑投资不超过600万元,
那么这两种组合投资各注入多少份,能使一年获得总额最多?
8.某人需要补充维生素,现在甲、乙两种维生素胶囊,这两种胶囊、、、和最新发现的 ,甲种胶囊每粒含有维生素、、、、分别是1毫克、1毫克、4毫克、4毫克、5毫克;乙种胶囊每粒含有维生素、、、、、分别是3毫克、2毫克、3毫克、2毫克.
如果此人每天摄入维生素至多19毫克,维生素至多13毫克,维生素至多24毫克,维生素至少12毫克,那么他每天应服用这两种胶囊各多少粒才能满足维生素的需要量,并能得到
最大量的维生素 .
参考答案:
一、1. C 2.A 3.C 4.C 5.B 6.B
二、
1. 2.4 3., 4.17,11 5.
三、1.如右图
2. ,
3.解:取最大值,即直线截距取最小值.
平移得,时,.
4.设500mm的根,600mm 的根,约束条件为、、、 ,目标函数为 ,画图可求出最优整数解为
5.设A、B 两种规格金属板各取张,用料面积为 ,则约束条件为
,
, , ,目标函数为 ,用图解法可求出最优解6.解:甲种玩具数为 ,乙种玩具数为 ,机器每天工作时间为(秒),因
此有;又每天可用塑料640千克
(角)
画出可行域,由平行线移动法可求得(元)
7.解:设稳健型、进取型投资各份、份,
利润总额为(万元),则
解方程组
作直线 ,平移可知,当过时,取最大值.
应在稳健型组合投资2份,进取型组合投资3份,能使一年获得总额取得最大值.
8.解:设该人每天服用甲种胶囊粒,
乙种胶囊
粒,则
作出以上不等式组所表示的平面区域,作直线 ,并将其平移,即可求得最大值.
当 ,时,
即每天服用5粒甲种胶囊,4粒乙种胶囊能满足维生素需求量,且能得到最大量的维生素 .。