高数 定积分的应用
高数6—定积分应用
高数复习题6——定积分应用1. 从原点向曲线x y ln 1-=作切线,计算由切线、曲线和x 轴所围图形的面积. 2. 求曲线θcos 3=r 所围图形和曲线θcos 1+=r 所围图形的公共部分面积及边界曲线周长. 3. 摆线的一拱的方程为⎩⎨⎧-=-=)cos 1()sin (t a y t t a x ,π20≤≤t ,(1)求摆线一拱的弧长;(2)求摆线一拱与x 轴所围图形的面积;(3)求摆线一拱与x 轴所围图形绕x 轴旋转一周所成立体的体积. 4.若曲线 )1(-=x x y 与 x 轴所围成平面图形的面积等于曲线 xy 1=与 x = 1, x = λ,x 轴所围成平面图形的面积,求λ。
5.求曲线x y sin =(π≤≤x 0)和x 轴所围图形绕y 轴旋转一周所成立体的体积. 6.设20π<<t (t 为参数),曲线x y sin =与三条直线0,2,===y t x t x 所围平面图形绕x 轴旋转一周所成的旋转体体积为)(t V ,求 t 的值使)(t V 取得最大值。
7.质点以速度 2sin )(t t t v =(米/秒)作直线运动,求质点从时间11=t 秒到时间π=2t秒内所经过的路程。
8.半圆形闸门半径为R (米),将其垂直放入水中,且直径与水面齐,设水密度1=ρ;设 坐标原点放在圆心,x 轴正向朝下,求闸门一侧所受的水压力。
9.一容器的边界曲面是由抛物线2x y =绕y 轴旋转而成的,其容积为π72)(3m ,容器中盛满水,问将水抽去π64)(3m 至少需作多少功.参考答案1. 从原点向曲线x y ln 1-=作切线,计算由切线、曲线和x 轴所围图形的面积. 解:设切点为),(00y x ,00001)(x y x x y =-=' 10-=y ,20e x = 所以切线方程为 x ee x e y 22211)(1-=---=,曲线与x 轴的交点为)0,(e面积22220111[(1ln )()]2ee e A x dx x x dx e e e e =-+---=-⎰⎰2. 求曲线θcos 3=r 所围图形和曲线θcos 1+=r 所围图形的公共部分面积及边界曲线周长.解:先求曲线的交点⎩⎨⎧+==θθcos 1cos 3r r 消r 得21cos =θ 所以3πθ±=面积2232031152[(1cos )(3cos )]224A d d πππθθθθπ=++=⎰⎰弧长2[]4l θθπ=+=+3. 摆线的一拱的方程为⎩⎨⎧-=-=)cos 1()sin (t a y t t a x ,π20≤≤t ,(1)求摆线一拱的弧长;222002sin 82tl a a dt a πππ====⎰⎰⎰(2)求摆线一拱与x 轴所围图形的面积;222220(1cos )3aA ydx a t dt a πππ==-=⎰⎰(3)求摆线一拱与x 轴所围图形绕x 轴旋转一周所成立体的体积.22233230(1cos )5aV y dx a t dt a πππππ==-=⎰⎰4.若曲线 )1(-=x x y 与 x 轴所围成平面图形的面积等于曲线 xy 1=与 x = 1, x =λ,x 轴所围成平面图形的面积,求λ。
高等数学(上册)-第5章第6讲(定积分的几何应用)[22页]
5
二、 平面图形的面积
1. 直角坐标系中的平面图形的面积
在平面直角坐标系中求由曲线y f (x),y g(x)和直线x a,x b围成图
形的面积A,其中函数f (x),g(x)在区间[a,b]上连续,且f (x) g(x),如图所示.
在区间[a,b] 上任取代表区间[x, x dx],在区间两个端点处做垂直于x 轴的
A 1 r2 ( )d.
2
β
O
α
ρ 10
本讲内容
01 微元法 02 平面图形的面积 03 体积 04 平面曲线的弧长
11
三、 体积
1.旋转体的体积.
由一个平面图形绕这平面内一条直线旋转一 y 周而成的立体称为旋转体,这条直线称为旋转轴.
如圆柱、圆锥、圆台、球体都是旋转体. 设一旋转体由连续曲线 y f (x),直线x a, O a
直线,由于 dx 非常小,这样介于两条直线之间的图形可以近似看成矩形,因
此面积微元可表示为
[ f (x) g(x)]dx,
于是,所求面积A为
b
A a [ f (x) g(x)]dx.
若f (x) g(x),则有
A
b
[ f (x) g(x)]dx.
a
综合以上两种情况,由曲线 y f (x),y g(x)
y x 1(y)
d
c O
x 2(y) x
7
二、 平面图形的面积 例 1 求由两抛物线y x2与x y2 所围成图形的面积A .
解
解方程组
y x
x2,得到两抛物线的交点为(0,0),(1,1), y 2,
y
两抛物线围成的图形如图所示.
则所求面积 A 为
A
高数6.3 定积分应用案例
F 1121.9767 0.91442 12.7, 37407.031(kg )
比较可知,此时租用客机比购买客机合算. 当 r 6% 时,
600 P (1 e 0.0615 ) 5934.3 (万美元), 0.06
此时购买客机比租用客机合算.
高等数学 第6章 定积分的应用
§6.3
定积分应用案例
二. 转售机器的最佳时间
(周)的减函数 由于折旧等因素,某机器转售价格 R( t )是时间 t
因此,加在整个窗面上的压力为
z0 z
dz
F d F 2 z l ( z ) dz
z0 z0
z1
z1
z1
图 5 -21
因为 A 2
z1 z0
l ( z )dz
2 z1 z l(z) d z 形心 z A z0
因此
F z A
高等数学 第6章 定积分的应用
§6.3
t 3 A ln 32 A 96ln 32 48 f (333) e e dt 12.01 A (元) 0 4 4
因此,
最大总利润
P f (333) A 11.01 A,
3A 机器卖了 (元 ) 128
高等数学 第6章 定积分的应用
§6.3
定积分应用案例
三. 潜艇的观察窗问题
第6章 定积分的应用
§6.3 定积分应用案例
高等数学 第6章 定积分的应用
§6.3
定积分应用案例
一、租客机还是买客机 某航空公司为了发展新航线的航运业务, 需要增加5架
波音747客机,如果购进一架客机需要一次支付5000万
美元现金, 客机的使用寿命为15年. 如果租用一架客机, 每年需要支付600万美元的租金,租金以均匀货币流的方
高数课件第六章定积分的应用:第二节定积分的几何应用
y
c
b O
x
bx
x
x x 1 sh dx ch dx c c b x xb s 2 ch dx 2c sh 0 c c 0 x b 1 x 2c sh ( c ch ) c sh c c c c
2
e e ch x 2 x x e e sh x 2 (ch x) sh x
Hale Waihona Puke 2 (t ) 2 (t ) d t
因此所求弧长
s
2 (t ) 2 (t ) d t
(3) 曲线弧由极坐标方程给出:
令 x r ( ) cos , y r ( ) sin , 则得
dx [r ( ) cos r ( ) sin ]d dy [r ( ) sin r ( ) cos ]d
2
选 x 为积分变量 (1) x [2, 0], dA1 ( x 3 6 x x 2 )dx 于是所求面积 A A1 A2
特别注意:
各积分区间 A ( x 3 6 x x 2 )dx 0 (x x 6 x)dx 上被积函数的 2 253 形式不同. . 12
0
3
2
3
x2 1 练习:1.求曲线 y , y 与直线 x 3 2 1 x 2
x 3 所围成的图形的面积。
2.求曲线 xy 1 与直线
x y 0 y 2
x y 2
P1
2
所围成的图形的面积。 2014考研题
提示:1
P2
y
1
32 1 0 2 1 1 3 x 1 x 1 1 s 2[ ( )d x ( ( 3 3 2) ) d x ] 2 0 1 x 1 3 2 2 1 x2
高数二 6.2定积分的几何应用
2
3 2
2 sin
1 s、旋转体的体积
旋转体就是由一个平面图形饶这平面内 一条直线旋转一周而成的立体.这直线叫做 旋转轴.
圆柱
圆锥
圆台
一般地,如果旋转体是由连续曲线 y f ( x) 、
直线x a 、x b 及x 轴所围成的曲边梯形绕
x 轴旋转一周而成的立体,体积为多少?
可看作平面图OABC 与OBC
x x1( y) o
A
2a x
分别绕y 轴旋转构成旋转体的体积之差.
Vy
2a
x
2
2
(
y
)dt
0
2a
x
2
1
(
y
)dt
0
a2 (t sin t)2 a sin tdt 2 a2 (t sin t)2 a sin tdt 0
a3 2 (t sin t)2 sin tdt 63a3 . 0
取积分变量为x ,
y
y f (x)
x [a,b]
在[a,b]上任取小区 o
x x dx
x
间[ x, x dx],
取以dx 为底的窄边梯形绕x 轴旋转而成的薄
片的体积为体积元素, dV [ f ( x)]2 dx
旋转体的体积为 V b [ f ( x)]2 dx a
例 1 连接坐标原点O 及点P(h, r)的直线、直线
V
aa
a
2 3
2
x3
3
dx
32 105
a3 .
类似地,如果旋转体是由连续曲线
x ( y)、直线 y c 、 y d 及y 轴所围
成的曲边梯形绕y 轴旋转一周而成的立体,
体积为
高数三:函数平均值和定积分的经济学应用
三、平均值在实际问题中,常常用一组数据的算术平均值来描述这组数据的概貌。
例如:对某一零件的长度进行n 次测量,每次测得的值为。
通常用算术平均值作为这个零件长度的近似值。
然而,有时还需要计算一个连续函数在区间上的一切值的平均值。
我们已经知道,速度为的物体作直线运动,它在时间间隔上所经过的路程为用去除路程s ,即得它在时间间隔上的平均速度,为一般地,设函数在区间上连续,则它在上的平均值,等于它在上的定积分除以区间的长度b-a ,即图 5-34这个公式叫做函数的平均值公式。
它可变形为它的几何解释是:以为底、为曲边的曲边梯形面积,等于高为的同底矩形的面积(见图5-33)图 5-33例6 求从O到T这段时间内自由落体的平均速度。
解:自由速度为。
所以要计算的平均速度(见图5-34)为例7 计算纯电阻电路中正弦交流电在一个周期内功率的平均值。
解设电阻为R,那么电路中R两端的电压为而功率因为交流电的周期为,所以在一个周期上,P的平均值为就是说,纯电阻电路中正弦交流电的平均功率等于电流和电压的峰值乘积的一半。
通常交流电器上标明的功率是平均功率。
四、定积分在经济上的应用举例定积分在经济活动中应用很广泛。
如,已知某经济函数的边际函数的条件下,求原经济函数的改变量时,就需用定积分来解决。
例8 设某工厂生产某产品,边际产量为时间t的函数,已知求从t=1到t=3这两个小时的总产量。
解:因为总产量是它的边际产量的原函数。
所以,从t=1到t=3这两小时的总产量是(千件)例9 已知生产某产品x件的边际收入是( 元/件)求生产此产品1000件时的总收入,平均收入,及生产1000件到2000件时所增加的收入和平均收入。
解:设总收入函数为,总产量为1000件时的总收入R(1000),为平均收入产量从1000件到2000件所增加的收入为,其平均收入为例10 设某产品的总成本C(单位:万元)的边际成本是产量x(单位:百台)的函数,;总收入(单位:万元)的边际收入是产量x的函数,求:1)产量由1百台增加到5百台总成本,总收入各增加多少?2)已知固定成本C(0)为1万元,分别求出总成本、总收入,总利润与产量的关系式。
高等数学第六章第二节定积分在几何学上的应用课件.ppt
解:
cos x 0,
2
x
2
s
2
2
2 2 0
1 y2 dx 1 ( cos x)2 dx
2 2
2 cos x dx
0
2
2
2
2
sin
x 2
2
0
4
的弧长.
例11. 计算摆线
一拱
的弧长 .
y
解: ds
(dd
x t
)2
(
d d
y t
)
2
d
t
o
a2 (1 cos t)2 a2 sin2 t d t
1 y2 dx
因此所求弧长
s b 1 y2 dx a
b
a
1 f 2(x) dx
y
y f (x)
ds
o a xxdxb x
(2) 曲线弧由参数方程给出:
弧长元素(弧微分) :
ds (dx)2 (dy)2
2 (t) 2 (t) dt
因此所求弧长
s
2 (t) 2 (t) d t
(3) 曲线弧由极坐标方程给出:
y b
o x ax
则 V 2 a y2 dx 0
(利用对称性)
2
b2 a2
a
(a
2
x2
)
dx
0
2
b2 a2
a2 x
1 3
x3
a 0
4 ab2
3
方法2 利用椭圆参数方程
则 V 20a y2 dx 2 ab2 sin3t d t
2 ab2 2 1
3
4 ab2
3
特别当b
=
a
大一高数定积分的应用知识点
大一高数定积分的应用知识点大一高数课程中,定积分是一个重要的概念和工具。
它在数学和其他领域中有着广泛的应用。
通过对定积分的学习和理解,我们可以更好地理解和应用高数的知识。
下面将介绍一些大一高数定积分的应用知识点。
一、定积分的定义和基本性质定积分的定义是通过极限的思想得出的。
在闭区间[a, b]上,将函数f(x)的每一个小区间[a, x]上的面积(可以是正数、负数或零)都加起来,这个和就是函数f(x)在闭区间[a, b]上的定积分,记作∫[a, b]f(x)dx。
定积分有以下的基本性质:1. 定积分的可加性:∫[a, b]f(x)dx + ∫[b, c]f(x)dx等于∫[a, c]f(x)dx。
2. 定积分的线性性质:若f(x)和g(x)在闭区间[a, b]上可积,则有∫[a, b](f(x) + g(x))dx = ∫[a, b]f(x)dx + ∫[a, b]g(x)dx。
3. 定积分的估值定理:若f(x)在闭区间[a, b]上是连续的,则存在一个点c∈[a, b],使得∫[a, b]f(x)dx = f(c)(b - a)。
二、定积分的几何意义和物理意义定积分的几何意义是函数图像和x轴以及闭区间[a, b]所围成的图形的面积。
当函数图像在x轴上方时,定积分为正数;当函数图像在x轴下方时,定积分为负数;当函数图像与x轴相交时,定积分为零。
定积分的物理意义是函数图像和x轴所围成的部分的面积与某物理量的关系。
例如,若f(x)表示一个速度函数,那么∫[a, b]f(x)dx就表示从时间a到时间b内物体所走过的路程。
三、定积分的基本应用1. 函数曲线所围图形的面积计算:通过定积分可以求解函数曲线所围图形的面积,如矩形、三角形、梯形、圆形等。
例如,若要求解函数y = x^2在区间[0, 1]上的面积,可以计算∫[0, 1]x^2dx = [x^3/3]0^1 = 1/3。
2. 曲线的弧长计算:通过定积分可以求解曲线的弧长。
高数例题 第六章 定积分的应用
s
t t dt
例17. 计算摆线
x a sin y a 1 cos
的
一拱
(0 2 ) 的长度。
2、直角坐标情形 设曲线弧由直角坐标方程
y f x a x b 给出 f x 在a, b
球体体积的一半,试求该圆孔的直径.
(二)平行截面面积为已知的立体的体积
已知立体在过点 x a, x b且垂直于x 轴的两个平面之间,且垂直于轴的截面 面积为 A x , A x 为连续函数, 则
V A x dx
a
b
例14.一平面经过半径为R的圆柱体 的底圆中心,并与底面交成角
,计
算这平面截圆柱体所得立体的体积.
例15.求以半径为R的圆为底,平行 且等于底圆直径的线段为顶,高为h
的正劈锥体的体积。
例16. 证明由平面图形
0 a x b 0 y f ( x)
绕
y
轴旋转所成的旋转体的体积
b
为
V 2 xf x dx
a
三、平面曲线的弧长 (一)平面曲线弧长的概念 1、定义:设A,B是曲线弧上的两个端 点,在弧 AB 上依次任取分点
把区间 a, b 分成许多部分区间,则所求 量相应地分成许多部分量 ui ,而所求 量等于所有部分量之和,这一性质称为 所求量对于区间 a, b 具有可加性。
三.用定积分来表达的量 u 应具备的条件 1. 是与一个变量 x 的变化区间 a, b 有关的量。 2.量 对于区间 a, b 具有数量的可 加性。 3.部分量 ui 的近似值可表示为
在 , 上 , 围成,
大学高数定积分及其应用思维导图
定积分及其应⽤定积分的概念与性质定积分问题实例曲边梯形的⾯积把区间分为n 份在闭区间内插⼊n-1个分点将区间分为n 份⼩区间记各个⼩区间⻓度为ΔXi近似替代在每个⼩区间内任意取⼀点,以该点函数值为⾼,⼩区间⻓度为宽的窄矩形⾯积近似替代第i 个曲边梯形⾯积求和取极限确保把整个闭区间分的⾜够细(注意:分割份数⾜够多不能保证误差⼀定变⼩,必须要分的够细)每个⼩区间区间⻓度⾜够⼩n →∞记λ= ΔXi 中最⼤值当λ→0刻画了区间的⽆限细分过程得结果曲边梯形⾯积A= λ→0时对∑(上标n ,下标i=1)f (ζ i )ΔXi 求极限单位产品的可变成本变化的总成本问题定积分定义条件:函数在闭区间内有界具体步骤:同曲边梯形⾯积求法记法:f (x )在闭区间[a ,b ]上的定积分(简称积分),记作∫(上b 下a )f (x )dx其中a 为积分下限,b 为积分上限按照区间形式时规定了a 与b 的⼤⼩关系,但是实际上积分上限不⼀定⼤于积分下限关于可积:f (x )在闭区间上定积分存在,说明f ;x )在闭区间可积在闭区间上连续则可积在闭区间有界且只有有限个间断点则可积注意定积分的⼤⼩只与被积函数和积分区间有关,与积分变量使⽤的符号⽆关(⽤x ⽤t 都⼀样)但若积分变量与函数中变量形式[如f (t )与x]不对应,则将函数看成常数处理∑上n 下i=1表示从1起⼀共到n (右端点);∑上n-1下i=0表示从o 起⼀共到n-1(左端点)已知f(x)在闭区间定积分存在,则积分值与积分区间划分、取点都⽆关,可以进⾏特殊分割与特殊取点将区间闭区间n 等分,即有f[a+(b-a )i/n](b-a )/n将闭区间特殊取值为[0,1]应⽤:⽤定积分表示和式极限从原式中提1/n 出来并在此基础上对原式变形定积分⼏何意义在闭区间上f (x )⼤于等于0表示曲边梯形⾯积⼩于等于0表示曲边梯形⾯积的负值有正有负表示各部分⾯积的代数和定积分性质积分上限等于积分下限时,定积分=0积分下限⼤于积分上限时,定积分等于积分上下限颠倒后定积分的相反数函数和差的定积分等于它们定积分的和差被积函数的常数因⼦可以提到积分号外⾯积分区间具有可加性(⽆论a ,b ,c 相对位置如何总是成⽴)被积函数相同时,若积分区间满⾜⼦⺟区间关系可以直接⽤积分区间相减在闭区间上函数恒等于1,其定积分等于闭区间⻓度引申:不等于1等于其他常数同理函数在闭区间上⼤于等于0,其定积分⼤于等于0推论在闭区间上⼀个函数⼤于等于另⼀个函数,则其定积分也⼤于另⼀个函数的定积分⼀个函数定积分的绝对值⼩于等于|该函数|的定积分M ,m 分别是函数在闭区间上的最⼤值和最⼩值,则m (b-a )⼩于等于该函数定积分⼩于等于M (b-a )其中a ⼩于b如果函数在闭区间连续,则在积分区间上⾄少存在⼀点ζ 使函数在积分区间上的定积分等于f (ζ )(b-a )⼏何:⾯积近似推论:f (ζ )=定积分/b-a 为函数在闭区间上的平均值⼏何:f (ζ )可看作是图中曲边梯形的平均⾼度求定积分⽅法定义法:和式极限⼏何法:函数的图像⽜顿莱布尼茨公式法:找原函数微积分基本公式积分上限函数(变上限积分函数)定义条件:函数在闭区间上连续记法性质定理1函数在闭区间连续,则它的积分上限函数在闭区间可导且导数为f (x )→即将积分上限直接代⼊f (对于变上限积分函数我们只知道求导)证明过程类举特殊的变上限积分上限还可以是关于积分变量的⼀个函数f[v(x)]v‘(x)变下限与变上限函数结果为相反数(变下限,先负号)⼀般特殊变限⼀般情况积分上下限都是关于积分变量的函数先将积分区间分为只变上限与只变下限的形式积分区间的可加性再按照特殊变上下限的⽅法进⾏原函数存在定理积分上限函数是f (x )在闭区间上的⼀个原函数⼏何意义表示[a ,x]上曲边梯形⾯积应⽤常与“0/0”型求极限使⽤洛必达法则结合能⽤洛必达先⽤洛必达∫下0上x xf (t )dt=x ∫下0上x f (t )dt⼀定要看清题⽬要求(如求导的变量是否是x ,不是x 才能把x 当作常数提出来)与分段函数利⽤积分区间的可加性拆积分区间与分段函数分段区间对应⽜顿莱布尼茨公式内容如果函数F (x )是连续函数f (x )在闭区间上的⼀个原函数,则它的定积分等于F (b )-F (a )证明积分上限函数和f (x )的原函数只相差⼀个常数(都是它的原函数)函数在闭区间连续则它的积分上限函数是它在此闭区间上的⼀个原函数再令x=a 得c=__再令x=b 并将c=__代⼊并把积分变量换成x 表明⼀个连续函数在闭区间上的定积分等于它的任⼀原函数在闭区间上的增量适⽤条件被积函数在积分区间上是连续的被积函数在积分区间上是分段连续且有界时把积分区间分为若⼲个⼦区间,使得被积函数在每个⼦区间上均连续定积分的换元积分法和分部积分法定积分的换元积分法定理函数f (x )在[a,b]连续,函数x= φ(t )满⾜φ(α)=a ,φ(β)=bφ(t )在[α, β](或两者调换顺序)上具有连续导数,且φ(t )值域属于[a,b]复合函数内层函数值域为外层函数的定义域则可把x= φ(t )直接代⼊(必要时换限)定积分换元公式使⽤注意正⽤为第⼆换元,逆⽤为凑微分换元必换限,凑微分不换限换元得出含新元函数不必再换为原元,只要把新元的积分上下限分别代⼊新元函数相减即可⼏个结论f (x )在关于原点对称的区间内连续该函数为奇函数则函数在该区间内的的定积分等于0该函数为偶函数则函数在该区间内的的定积分等于2倍函数在区间(该区间左/右端点与0)内的定积分证明⽅法积分区间可加性令x=-t 后代⼊最后结果⽤x 代替t 表示积分变量即可f (x )在[0,1]上连续f (sinx )在[0, π/2]上的定积分=f (cosx )在[0, π/2]上的定积分f (sinx )表示函数由sinx 构成直接⽤cosx 替换sinx记sinx 的n 次⽅在[0, π/2]上的定积分结论(分奇偶)xf (sinx )在[0, π]上的定积分= π/2乘f (sinx )在[0, π]上的定积分只需要判断x 所乘后⾯的那个函数可以写成f (sinx )的形式就可以⽤此结论后⾯那个函数并不是⾮要全部换成sinx 的形式,谁好算保留谁的形式设f (x )是周期为T 的周期函数f (x )在[a,a+T]上的定积分=f (x )在[0,T]上的定积分=f (x )在[-T/2,T/2]上的定积分f (x )在[a,a+nT]上的定积分等于n 倍f (x )在[0,T]上的定积分等于f (x )在[0,nT]上的定积分保证积分区间是T/nT 即可定积分的分部积分法同不定积分中分部积分法⼀致,只是需要带上积分区间定积分的应⽤定积分的元素法选取积分变量并明确变量范围近似得定积分平⾯图形的⾯积表示图形某⼀特征的形式不同时需要分类讨论(分积分变量在不同区间)善于⽤⼏何意义解题如根号下a ⽅-x ⽅极坐标系下的⾯积计算扇形的⾯积公式1/2 αr 平⽅1/2lr求体积求交⾯⽤什么切就把什么代进去。
高数大一定积分知识点总结
高数大一定积分知识点总结大一学习高数,定积分是必不可少的一个重要知识点。
定积分是微积分的重要内容,具有广泛的应用价值。
下面就来总结一下高数大一定积分的知识点。
一、定积分的概念定积分是对函数在给定区间上的值进行求和的一种运算。
它可以用来求函数曲线与坐标轴之间的面积,解决一些几何问题,也可以用来计算物理问题中的一些重要量。
定积分可以看作是对无限个微小的小矩形面积的求和,它的值代表了函数在给定区间上的总体变化情况。
二、定积分的计算方法1. 基本积分法通过基本积分法可以求解一些初等函数的定积分。
例如,通过查表或者掌握一些基本的积分公式,可以直接求出一些常见函数的定积分。
对于一般的函数,可以通过将其转化为一些已知函数的积分形式,再进行计算。
2. 牛顿-莱布尼兹公式牛顿-莱布尼兹公式是定积分与不定积分之间的重要关系。
它指出,一个函数在一个区间上的定积分等于该函数的原函数在该区间的两个端点处的函数值之差。
这个公式可以简化定积分的计算,将其转化为不定积分的计算。
3. 分部积分法当被积函数是两个函数的乘积时,可以使用分部积分法进行求解。
分部积分法的基本思想是将一个积分转化为两个函数的乘积形式,通过对其中一个函数求导,对另一个函数进行积分,从而求解原始的积分问题。
4. 替换变量法有时候,为了简化定积分的计算,可以通过进行变量替换将原来的积分转化为新的积分形式。
这样一来,可以减少计算的复杂度,简化求解的过程。
常见的变量替换方法有三角代换、指数代换等。
5. 积分换元法积分换元法是一种重要的定积分计算方法,它通过引入新的变量进行变换,将原积分转化为新变量的积分表达式。
这样一来,可以通过对新变量的积分求解,再通过转换回原变量,得到原来的定积分结果。
三、定积分的几何应用定积分的一个重要应用就是求解函数曲线与坐标轴之间的面积。
通过定积分,可以计算出函数曲线与坐标轴之间的有界曲边梯形或者曲边三角形的面积。
这个应用在计算几何和物理学中有着广泛的应用。
高数三:函数平均值和定积分的经济学应用
三、平均值在实际问题中,常常用一组数据的算术平均值来描述这组数据的概貌。
例如:对某一零件的长度进行n 次测量,每次测得的值为。
通常用算术平均值作为这个零件长度的近似值。
然而,有时还需要计算一个连续函数在区间上的一切值的平均值。
我们已经知道,速度为的物体作直线运动,它在时间间隔上所经过的路程为用去除路程s ,即得它在时间间隔上的平均速度,为一般地,设函数在区间上连续,则它在上的平均值,等于它在上的定积分除以区间的长度b-a ,即图 5-34这个公式叫做函数的平均值公式。
它可变形为它的几何解释是:以为底、为曲边的曲边梯形面积,等于高为的同底矩形的面积(见图5-33)图 5-33例6 求从O到T这段时间内自由落体的平均速度。
解:自由速度为。
所以要计算的平均速度(见图5-34)为例7 计算纯电阻电路中正弦交流电在一个周期内功率的平均值。
解设电阻为R,那么电路中R两端的电压为而功率因为交流电的周期为,所以在一个周期上,P的平均值为就是说,纯电阻电路中正弦交流电的平均功率等于电流和电压的峰值乘积的一半。
通常交流电器上标明的功率是平均功率。
四、定积分在经济上的应用举例定积分在经济活动中应用很广泛。
如,已知某经济函数的边际函数的条件下,求原经济函数的改变量时,就需用定积分来解决。
例8 设某工厂生产某产品,边际产量为时间t的函数,已知求从t=1到t=3这两个小时的总产量。
解:因为总产量是它的边际产量的原函数。
所以,从t=1到t=3这两小时的总产量是(千件)例9 已知生产某产品x件的边际收入是( 元/件)求生产此产品1000件时的总收入,平均收入,及生产1000件到2000件时所增加的收入和平均收入。
解:设总收入函数为,总产量为1000件时的总收入R(1000),为平均收入产量从1000件到2000件所增加的收入为,其平均收入为例10 设某产品的总成本C(单位:万元)的边际成本是产量x(单位:百台)的函数,;总收入(单位:万元)的边际收入是产量x的函数,求:1)产量由1百台增加到5百台总成本,总收入各增加多少?2)已知固定成本C(0)为1万元,分别求出总成本、总收入,总利润与产量的关系式。
高数第五章 定积分的应用
第五章 定积分的应用在本章中,我们将利用学过的定积分理论来解决一些实际问题.首先介绍建立定积分数学模型的方法——微分元素法;再利用这一方法求一些几何量(如面积、体积、弧长等)和一些物理量(如功、液体静压力、引力等);并介绍定积分在经济学中的简单应用.第一节 微分元素法实际问题中,哪些量可用定积分计算?如何建立这些量的定积分表达式?本节中我们将回答这两个问题.由定积分定义知,若()f x 在区间,a b ⎡⎤⎣⎦上可积,则对于,a b ⎡⎤⎣⎦的任一划分:1<<<0n a x x x b == ,及1,i i x x -⎡⎤⎣⎦中任意点i ξ,有d Δ01()lim()nb i i aλi f x x f ξx →==∑⎰,(5-1-1)这里()-=-= 11,2,,i i i Δx x x i n ,}{≤≤=1m ax i i nλΔx . (5-1-1)式表明定积分的本质是一类特定和式的极限,此极限值与,a b ⎡⎤⎣⎦的分法及点i ξ的取法无关,只与区间,a b ⎡⎤⎣⎦及函数()f x 有关.基于此,我们可以将一些实际问题中有关量的计算归结为定积分来计算.例如,曲边梯形的面积、变速直线运动的位移等均可用定积分来表达.由上一章中分析曲边梯形面积用定积分来表示的过程,我们可概括地将此过程描述为“划分找近似,求和取极限”.也就是说,将所求量整体转化为部分之和,利用整体上变化的量在局部近似于不变这一辩证关系,局部上以“不变”代替“变”,这是利用定积分解决实际问题的基本思想.根据定积分的定义,如果某一实际问题中所求量U 符合下列条件:(1)建立适当的坐标系和选择与U 有关的变量x 后,U 是一个与定义在某一区间,a b ⎡⎤⎣⎦上的可积函数()u x 有关的量; (2)U 对区间,a b ⎡⎤⎣⎦具有可加性,即如果把,a b ⎡⎤⎣⎦任意划分成n 个小区间()-=-= 11,2,,i i i Δx x x i n ,则U 相应地分成n 个部分量i ΔU ,且1nii U U Δ==∑;(3) 部分量i ΔU 可近似地表示成()()1,i i i i i u ξΔx ξx x -∈⎡⎤⎣⎦,且i ΔU 与()i i u ξΔx 之差是iΔx 的高阶无穷小,即()()i i i i ΔU u ξΔx o Δx -=,那么,我们可得到所求量U 的定积分数学模型d ()b au x U x =⎰. (5-1-2)在实际建模过程中,为简便起见,通常将具有代表性的第i 个小区间1,i i x x -⎡⎤⎣⎦的下标略去,记为[,d ]x x x +,称其为典型小区间,相应于此小区间的所求量的部分量记作ΔU .因此,建立实际问题的定积分模型可按以下步骤进行:(1) 建立坐标系,根据所求量U 确定一个积分变量x 及其变化范围,a b ⎡⎤⎣⎦;(2) 考虑典型小区间[,d ]x x x +,求出U 相应于这一小区间的部分量ΔU ,将ΔU 近似地表示成,a b ⎡⎤⎣⎦上的某个可积函数()ux 在x 处的取值与小区间长度d Δx x =的积,即 d (d )()ΔU u x x o x =+, (5-1-3)我们称d ()u x x 为所求量U 的微分元素(简称微元或元素),记作d d ()U u x x=;(3) 计算所求量U ,即d =d ()b b aau x U x =⎰⎰U .上述建立定积分数学模型的方法称为微分元素法,这一方法的关键是步骤(2)中微分元素d U 的取得.第二节 平面图形的面积在上一章开头讨论过由连续曲线()()()0y =f x f x ≥,以及直线()x=a ,x =b a <b 和x 轴所围成的曲边梯形的面积()d baA f x x =⎰.如果()f x 在,a b ⎡⎤⎣⎦上不都是非负的,由定积分对区间的可加性,则所围图形的面积为()d b aA f x x =⎰.本节将讨论一般平面图形的问题,如果其边界曲线是由两条连续曲线()1y f x =, ()2y f x =()()21f x f x ⎡⎤≥⎣⎦及直线x =a ,x =b 所围成的平面图形,其面积便可用定积分来计算.下面我们运用定积分的微分元素法,建立不同坐标系下平面图形的面积计算公式.一、 直角坐标情形设一平面图形由曲线()()12,y f x y f x ==及直线x =a 和()x =b a b <围成(见图5-1).图5-1为求其面积A ,我们在,a b ⎡⎤⎣⎦上取典型小区间[,d ]x x x +,相应于该小区间的平面图形面积ΔA 近似地等于高为()()12f x f x -、宽为d x 的窄矩形的面积,从而得到面积微元()()d d 12A f x f xx =-.所以,此平面图形的面积为()()d 12b aA f x f xx =-⎰. (5-2-1)类似地,若平面图形由12(),()x φy x φy ==及直线y c =和()y d d c =>围成(见图5-2),则其面积为()()d 12d cA φy φy y =-⎰. (5-2-2)图5-2例1 计算由抛物线21y x =-+与2y x =所围图形的面积A . 解 解方程组221y x y x⎧=-+⎪⎨=⎪⎩得两抛物线的交点为122⎛⎫ ⎪⎝⎭和122⎫⎪⎝⎭,于是图形位于2x =-与2x =之间,如图5-3所示,取x 为积分变量,由(5-2-1)式得d 22222)A xxx x=--=-32022()3x x =-=图5-3例2 计算由直线4y x =-和抛物线22y x =所围平面图形的面积A . 解 解方程组224y xy x ⎧=⎪⎨=-⎪⎩得两线的交点为(2,-2)和(8,4),平面图形,如图5-4所示,位于直线2y =-和4y =之间,于是取y 为积分变量,由(5-2-2)式得d 24242yA y y -=+-⎰3242(4)26yyy -=+-18=.图5-4注意:若在例1中取y 为积分变量,在例2中取x 为积分变量,则所求面积的计算会较为复杂.例如在例2中,若选x 为积分变量,则积分区间是[0,8].当(,2)0x ∈时,典型小区间(,d )x x x +所对应的面积微元是(d d A x=⎤⎦;而当(2,8)x ∈时,典型小区间所对应的面积微元是()d d 4A x x ⎤-⎦=. 故所求面积为(()d d 28024A x x x⎤⎤+-⎦=⎦⎰⎰.显然,上述做法较例2中的解法要复杂.因此,在求平面图形的面积时,恰当地选择积分变量可使计算简便.当曲边梯形的曲边为连续曲线,其方程由参数方程(),(),x φt y ψt =⎧⎨=⎩12t t t ≤≤ 给出时,若其底边位于x 轴上,()φt 在12[,]t t 上可导,则其面积微元为 ()()d d d A y x ψt φt t ==' d (0)t >. 从而面积为()()d 21t t A ψt φt t ='⎰. (5-2-3)同理,若其底边位于y 轴上,且()ψt 在12[,]t t 上可导,则其面积微元为 ()()d d d A x y φt ψt t ==' d (0)t > 从而面积为()()d 21t t A φt ψt t ='⎰. (5-2-4)例3 设椭圆方程为12222y x ab+= (,a b 为正的常数),求其面积A .解 椭圆的参数方程为cos ,sin ,x a t y b t =⎧⎨=⎩20t π≤≤. 由对称性知d 204sin (cos )A b t a t tπ'=⋅⎰d d 22201cos 24sin 42ta b t t a b t ππ-==⎰⎰a b=π.二、 极坐标情形设一平面图形,在极坐标系下由连续曲线()r r θ=及射线,θαθβ==所围成(称为曲边扇形,如图5-5所示.)为求其面积,我们在θ的变化区间[,]αβ上取一典型小区间[,d ]θθθ+,相应于此区间上的面积近似地等于中心角为d θ、半径为()r θ的扇形面积,从而得到面积微元()d d 212A r θθ=, 所以d 21()2βαA r θθ=⎰. (5-2-5)图5-5例4 计算阿基米德(Archimedes)螺线(>)0r a θa =上相应于θ从0到2π的一段弧与极轴所围成图形如图5-6所示的面积.解 由式(5-2-5)得d 22232302114()2630A a θθa θa ππ⎛⎫===π ⎪⎝⎭⎰.图5-6 图5-7例5 求由双纽线()()2222222x y a x y +=-所围成,且在半径为a 的圆内部的图形如图5-7所示的面积.解 由对称性,所求面积应等于第一象限部分面积的4倍,极坐标下双纽线在第一象限部分的方程为222co 2r a s θ=, 04θ≤≤π.圆的方程为r a =. 由 222cos 2r a θr a ⎧=⎪⎨=⎪⎩解得两曲线在第一象限交点为6,a ⎛⎫⎪⎝⎭π,由式(5-2-5)得所求面积d cos d 2264061142222A a θa θθπππ⎡⎤=+⎢⎥⎣⎦⎰⎰42262sin 23a a θπππ=+2(23aπ=+-.第三节 几何体的体积一、 平行截面面积为已知的立体体积考虑介于垂直于x 轴的两平行平面x a =与x b =之间的立体如图5-8所示,若对任意的[,]x a b ∈,立体在此处垂直于x 轴的截面面积可以用x 的连续函数()A x 来表示,则此立体的体积可用定积分表示.图5-8在[,]a b 内取典型小区间[,d ]x x x +,对应于此小区间的体积近似地等于以底面积为()Ax ,高为d x 的柱体的体积,故体积元素为()d d V A x x =, 从而d ()b aA x V x =⎰. (5-3-1)例1 一平面经过半径为R 的圆柱体的底圆中心,并与底面交成角α,如图5-9所示,计算此平面截圆柱体所得楔形体的体积V .解法1 建立坐标系如图5-9,则底面圆方程为222x y R +=.对任意的[,]x R R ∈-,过点x 且垂直于x 轴的截面是一个直角三角形,两直角边的长度分别为y =和tan y αα=,故截面面积为()()tan 2212x R x A α-=.于是立体体积为tan d 221()2R RV R x αx -=-⎰tan d tan 22302()3RαR x x R α=-=⎰.图5-9 图5-10解法2 在楔形体中过点y 且垂直于y 轴的截面是一个矩形如图5-10所示,其长为2x =tan y α,故其面积为()2A yy α=.从而,楔形体的体积为()d tan 322222an 3R R V αy αR y==--⎰tan 323R α=. 二、旋转体的体积由一平面图形绕这平面内一条定直线旋转一周而成的立体称为旋转体. 设一旋转体是由连续曲线()y f x =,直线x a =和x b =及x 轴所围成的曲边梯形绕x 轴旋转一周而形成的(图5-11),则对任意的[,]x a b ∈,相应于x 处垂直于x 轴的截面是一个圆盘,其面积为2()πf x ,于是旋转体的体积为 ()d 2ba V f x x =π⎰. (5-3-2)图5-11例2 计算由椭圆22221y x ab+=(,a b 为正的常数)所围图形绕x 轴旋转而成的旋转体(称之为旋转椭球体,见图5-12)的体积.图5-12解 这个旋转体实际上就是半个椭圆y =及x 轴所围曲边梯形绕x 轴旋转一周而成的立体,于是由式(5-3-2)得()2222a ab V axa-=π-⎰()d 22222a b axxa=π-⎰2322230ab x a x a ⎛⎫=π⋅- ⎪⎝⎭243a b =π.特别地,当a b =时便得到球的体积343πa .例3 求圆域222()()x b a y b a +-≤>绕x 轴旋转而成的圆环体的体积如图5-13所示.图5-13解 如图5-13,上半圆周的方程为2y b +=1y b -=对应于典型区间[,d ]x x x +上的体积微元为d d 2221()V y y x =π-πd 22((b b x ⎡⎤=π+--⎢⎥⎣⎦4x =π.所以4a aV x -=π⎰8b x =π⎰284ab π=π⋅22a b =2π.第四节 曲线的弧长和旋转体的侧面积一、 平面曲线的弧长首先,我们建立平面曲线弧长的概念.设有平面曲线 A B ,在其上任取分点:11,,,,0n n A M M M M B -== ,连接相邻的两个分点得到n 条线段1i i MM-,1,2,,i n = .以()1,i i iρρM M-=表示线段1i i M M -的长度(见图5-14),记1m ax{}i i nρλ≤≤=,若极限01lim niλi ρ→=∑存在,则定义此极限值为曲线 A B 的长度(即弧长),并称曲线 AB 是可求长的.图5-14下面用微分元素法来推导弧长的计算公式.设 A B 的方程为()y f x =,[,]x a b ∈,且()f x 在[,]a b 上有一阶连续导数.考虑[,]a b 内的典型小区间[,]x x Δx +,相应于此区间的弧长记为Δs ,Δs 近似地等于弦长,即22222()()()()[()()]Δs Δx Δy Δx f x Δx f x ≈+=++-.由微分中值定理,得,222()()[()]),(Δs ξx x Δx Δx f ξΔx ∈'+≈++,此处>0Δx ,故得弧长的微分元素(简称弧微分)为d s ==x =. (5-4-1)从而, AB 的长为as x =⎰. (5-4-2)若曲线弧 AB 的方程由参数方程 (),(),x φt y ψt =⎧⎨=⎩ αt β≤≤,给出,设()(),φt ψt 在[,]αβ上具有连续导数,由于()()d d d d ,x φt t y ψt t ='=',因此对于任意的[,]t αβ∈,典型小区间d []t t t +,上相应弧长元素为d s t =. (5-4-3)所以,曲线弧 AB 的弧长为αs t =⎰. (5-4-4)式(5-4-1)和(5-4-3)即为弧微分公式,这和第二章第五节所推导的弧微分公式是一致的.例1 两端固定于空中的线缆,由于其自身的重量而下垂成曲线形,称之为悬链线.设一悬链线的方程为e +e ()2sh xxa a y a x a a -== (a为正的常数),求其在[,]0a 上一段的长.解 d ds x x == =e +e d 1()2xxa a x -,故 e +e d e+e ee 101()()()2x xxx a a a aaas x a a ---===⎰-. 例2 如图5-15所示,计算摆线(sin ),(1cos ),x a t t y a t =-⎧⎨=-⎩()0a > 的一拱(20t π≤≤)的长度.图5-15解 由于d s t =t=d 2sin2ta t =, 所以d d 2202sin2sin22tts a t a t ππ==⎰⎰22(2cos )820t a a π=-=.如果曲线方程由极坐标方程()()r r θαθβ=≤≤给出,且()r θ存在一阶连续导数,则由 ()cos ,()sin ,x r θθy r θθ=⎧⎨=⎩()αθβ≤≤ 可得()[()cos ]()cos ()sin ,φθr θθr θθr θθ'''==- ()[()sin ]()sin ()cos ,ψθr θθr θθr θθ'''==+从而 ()()()()2222φθψθrθr θ'+'=+'. 所以αs θ=⎰. (5-4-5)例3 求心形线1 (cos )(0)r a θa =+>的全长(见图5-16).图5-16解 由(5-4-5)式有d s θ=θ=θ=.由对称性知02s θπ=⎰d 022cos2θa θπ=⎰ 8sin820θa a π==. *二、 旋转体的侧面积设一旋转体的侧面由一段曲线()()y f x a x b =≤≤绕x 轴旋转一周而得(图5-17).为求其面积A ,我们在[,]a b 上取典型小区间[,d ]x x x +,相应于此区间上的窄带形侧面(图5-17中的阴影部分)可近似地看成弧微分d s 绕x 轴旋转一周而成.于是这一窄带形侧面可以用一个半径为()f x ,高为d s 的圆柱面来近似代替,从而得侧面积的微分元素()(d πd π22A f xs f x x ==.所以2(b aA f x x =π⎰.此处假设()f x 在[,]a b 上可导.图5-17例4 求半径为R 的球的表面积.解 以球心为原点建立一平面直角坐标系,则该球是平面上半圆盘0y ≤≤绕x 轴旋转一周而成的旋转体,其表面积为π2R RA x-=⎰πd π244R Rx -==⎰R R .第五节 定积分在物理学中的应用一、 变力沿直线所做的功由物理学知,若一个大小和方向都不变的恒力F 作用于一物体,使其沿力的方向作直线运动,移动了一段距离s ,则F 所做的功为·W F s =.下面用微分元素法来讨论变力做功问题.设有大小随物体位置改变而连续变化的力()F F x =作用于一物体上,使其沿x 轴作直线运动,力F 的方向与物体运动的方向一致,从x a =移至至>x b a = (见图5-18).在[,]a b 上任一点x 处取一微小位移d x ,当物体从x 移到d x x +时,()F x 所做的功近似等于d ()F x x ,即功元素d d ()W F x x =,于是d ()b aW F x x =⎰. (5-5-1)图5-18例1 一汽缸如图5-19所示,直径为0.20m ,长为1.00m ,其中充满了气体,压强为5981.0⨯Pa.若温度保持不变,求推动活塞前进0.5m 使气体压缩所作的功.图5-19解 根据波义耳(Boyle )定律,在恒温条件下,气体压强p 与体积V 的乘积是常数,即p V k =.由于压缩前气体压强为5981.0⨯Pa ,所以ππ52981198.00000k =⨯⋅⋅=.建立坐标系如图5-19所示,活塞位置用x 表示,当活塞处于x 处时汽缸中气体体积π211()(0.)V x =-,于是压强为2()(1)(0.1)k p x x =-π,从而活塞上的压力为()1k F x p S x==-.故推动活塞所作功为d 05ln 10.50.9800980010W x x π==-π(-)-⎰x 980000ln2 2.13104(J )=π≈⨯.例2 从地面垂直向上发射一质量为m 的火箭,求将火箭发射至离地面高H 处所作的功.解 发射火箭需要克服地球引力做功,设地球半径为R ,质量为M ,则由万有引力定律知地球对火箭的引力为2GM m F =r,其中r 为地心到火箭的距离,G 为引力常数.当火箭在地面时,r R =,引力为2G M m R.另一方面,火箭在地面时,所受引力应为m g ,其中g 为重力加速度,因此2m g =GM m R, 故有 2=gR G M,于是22=m gR F r.从而,将火箭从r R =发射至r R H =+处所做功为d 111222R H RW r RR H +⎛⎫==- ⎪+⎝⎭⎰m gRm gR r .例3 地面上有一截面面积为20A =m 2,深为4 m 的长方体水池盛满水,用抽水泵把这池水全部抽到离池顶3m 高的地方去,问需做多少功?图5-20解 建立坐标系如图5-20所示.设想把池中的水分成很多薄层,则把池中全部水抽出所做的功W 等于把每一薄层水抽出所做的功的总和.在[0,4]上取小区间[x ,x +d x ],相应于此小区间的那一薄层水的体积为2d 0x m 3,设水的密度1310ρ=⨯kg ·m -3,故这层水重为d 4210g x ⨯ kg ,将它抽到距池顶3m 高处克服重力所做功为d d 4210(3)x g x W ⨯⋅⋅=+.从而,将全部水抽到离池顶3m 高处所做的功为4023 1.9632424510()d 10x W x g x x ⎛⎫=⨯⋅+⋅=⨯⋅⨯+ ⎪⎝⎭⎰639210J .()=⨯ (其中-29.8m s g =⋅)二、液体静压力由帕斯卡(Pascal )定律,在液面下深度为h 的地方,液体重量产生的压强为p ρg h =,其中ρ为液体密度,g 为重力加速度.即液面下的物体受液体的压强与深度成正比,同一深度处各方向上的压强相等.面积为A 的平板水平置于水深为h 处,平板一侧的压力为p ρg h A =. 下面考虑一块与液面垂直没入液体内的平面薄板,我们来求它的一面所受的压力.设薄板为一曲边梯形,其曲边的方程为,()()y f x a x b =≤≤,建立坐标系如图5-21所示,x 轴铅直向下,y轴与液面相齐.当薄板被设想分成许多水平的窄条时,相应于典型小区间d [,]x x x +的小窄条上深度变化不大,从而压强变化也不大,可近似地取为ρg x ,同时小窄条的面积用矩形面积来近似,即为d ()f x x ,故小窄条一面所受压力近似地为d d ()p ρg x f x x=⋅.图5-21从而d ()b ap ρgx f x x =⎰. (5-5-2)例4 一横放的圆柱形水桶,桶内盛有半桶水,桶端面半径为0.6m ,计算桶的一个端面上所受的压力.图5-22解 建立坐标系如图5-22所示,桶的端面圆的方程为22360.x y +=.相应于[,d ]x x x +的小窄条上的压力微元d 2p ρg xx =,所以桶的一个端面上所受的压力为060.p x xx =⎰20633(.)ρg =314110N .≈⨯()其中3110ρ=⨯kg·m -3,98-2m s .g ⋅=. 三、引力由物理学知,质量分别为12,m m ,相距为r 的两质点间的引力的大小为122m m F Gr=,其中G 为引力系数,引力的方向沿着两质点的连线方向.对于不能视为质点的两物体之间的引力,我们不能直接利用质点间的引力公式,而是采用微元法,下面举例说明.例5 一根长为l 的均匀直棒,其线密度为ρ,在它的一端垂线上距直棒a 处有质量为m 的质点,求棒对质点的引力.图5-23解 建立坐标系如图5-23所示,对任意的[,0)x l ∈,考虑直棒上相应于d [,]x x x +的一段对质点的引力,由于d x 很小,故此一小段对质点的引力可视为两质点的引力,其大小为d d G 22m ρx F a x=+,其方向是沿着两点,(0)a 与(),0x 的连线的,当x 在(),0l 之间变化时,d F 的方向是不断变化的.故将引力微元d F 在水平方向和铅直方向进行分解,分别记为d ,d x y F F ,则d 32G d 22()x m ρxF F x x a ==+,d 32G d 22()y m ρa F F x xa =-=-+.于是,直棒对质点的水平方向引力为32d 022()l x x F G m ρx xa =+⎰32d 2222()()2l G m ρa x a x -=++⎰1222()0l G m ρa x -=-+1(G m ρa=-.铅直方向引力为d 30222()l y x F G m ρa a x =-+⎰12l G m ρa -=-G m ρl =.注意 此例如果将直棒的线密度改为()ρρx =,即直棒是非均匀的,当()ρx 为已知时,直棒对质点的引力仍可按上述方法求得. 四、平均值我们知道,n 个数值12,,,n y y y 的算术平均值为121()n y y y y n=+++ . 在许多实际问题中,需考连续函数在一个区间上所取值的平均值,如一昼夜间的平均温度等.下面将讨论如何规定和计算连续函数()f x 在[,]a b 上的平均值. 先将区间[,]a b n 等分,分点为1<<<0n a x x x b == ,每个小区间的长度为Δx b an=-,()f x 在各分点处的函数值记为1,2,,()()i i y f x i n == .当Δx 很小(即n 充分大)时,在每个小区间上函数值视为相等,故可以用12,,,n y y y 的平均值121()n y y y n+++ 来近似表达()f x 在[,]a b 上的所有取值的平均值.因此,称极限值121lim()n n y y y y n→∞=+++为函数()f x 在[,]a b 上的平均值.由于12lim n n y y y b ay b a n →∞+++-=-120limnx y y y x b a∆→+++=∆-011lim ()ni x i f x x b a ∆→==∆-∑,故1()d bay f x x b a =-⎰.(5-5-3)式(5-5-3)就是连续函数()f x 在[,]a b 上的平均值的计算公式.例6 计算纯电阻电路中正弦交流电sin m i I ωt =在一个周期π2T =ω上的功率的平均值(简称平均功率).解 设电阻为R ,则电路中的电压为m U iR I R tω==sin ,功率为2sin 2m N Ui t I R ω==.一个周期上的平均功率为d d 2221sin sin 2T ωI R ωN R ωt t ωt I t Tπ==π⎰⎰22m md()0220sin 2(1cos 2)442ωωR R ωt ωt ωt ωt I I ππ⎡⎤=-=-⎢⎥ππ⎣⎦⎰22m m22mU I R I ==2m m ,其中m m U I R =表示最大电压,也称为电压峰值,即纯电阻电路中正弦交流电的平均功率等于电流与电压的峰值的乘积的一半.通常交流电器上标明的功率就是平均功率,而交流电器上标明的电流值都是另一种特定的平均值,常称为有效值.一般地,周期性非恒定电流i 的有效值是这样规定的:当电流()i t 在一个周期T 内在负载电阻R 上消耗的平均功率等于取固定值I 的恒定电流在R 上消耗的功率时,称这个固定值为()i t 的有效值.电流()i t 在电阻R 上消耗的功率为()()()()N t U t i t i t R =⋅=2.它在[0,T )上的平均值为d d 221()()T T R N i t R t i t tTT==⎰⎰.而固定值为I 的电流在R 上消耗的功率为2N I R =,因此d 22()T R I R i t t T =⎰, 即I =.例7 求正弦电流s (n )i m i I t t ω=的有效值.解12221s i n 2ωI ωt ωπ⎛⎫ ⎪=⎪π ⎪⎝⎭⎰2m I122sin 242ωωt ωt π⎡⎤⎡⎤⎢⎥=-⎢⎥π⎣⎦⎢⎥⎣⎦2mI=.叫做函数()f x 在[,]a b 上的均方根.第六节 定积分在经济学中的应用一、 最大利润问题设利润函数()()()πx =R x C x -,其中x 为产量,()R x 是收益函数,()C x 是成本函数,若()π,(),()x R x C x 均可导,则使()πx取得最大值的产量x 应满足()()()π0x R x C x '='-'=,即()().R x C x '='因此总利润的最大值在边际收入等于边际成本时取得.例1 设某公司产品生产的边际成本2181()00C x x x '=-+,边际收益为23()00R x x '=-,试求公司的最大利润.解 由于d ππd ()()()()x x R x C x x'''==-223181(00)(00)x x x =---+215100x x=-+,故利润微分元素为d πd 2151()(00)x x xx =-+.产量为0x 时,利润为πd 0200()(15100)x x x xx =-+⎰.另一方面,令π()0x '=,得21525x ±==(负值舍去). 又当20x =时,()π152<0x x "=-,故20x =时,利润取得最大值,最大利润为πd 202(20)(15100)x xx =-+⎰322015(100)230x xx =-+ 23333.≈.二、资金流的现值与终值1. 连续复利概念设有一笔数量为0A 元的资金存入银行,若年利率为r ,按复利方式每年计息一次,则该笔资金t 年后的本利和为0(1)(1,2,)tt A A r t =+= .如果每年分n 次计息,每期利率为r n,则t 年后的本利和为*01(1,2,)n tt r A A t n ⎛⎫=+= ⎪⎝⎭ .当n 无限增大时,由于e lim (1)n r n r n→∞+=,故e *00lim lim (1)n t r t t n n r A A A n→∞→∞=+=.称公式e 0r tt A A = (5-6-1)为0A 元的现值(即现在价值)在连续复利方式下折算为t 年后的终值(将来价值)的计算公式.公式(5-6-1)可变形为e0r tt A A -= (5-6-2)称(5-6-2)式为t 年末的t A 元的资金在连续复利方式下折算为现值的计算公式.建立资金的现值和终值概念,是为了对不同时点的资金进行比较,以便进行投资决策. 2. 资金流的现值与终值.将流出企业的资金(如成本、投资等)视为随时间连续变化,称之为支出流.类似地,将流入企业的资金(如收益等)视为随时间连续变化,称之为收入流.资金的净流量为收入流与支出流之差.企业单位时间内,资金的净流量称为收益率.设某企业在时段[]0T ,内的t 时刻的收益率为连续函数()f t ,下面我们按连续复利(年利率为r )方式来求该时段内的收益总现值和总终值. 在[]0T ,上取典型小区间[,d ]t t t +,该时段内收益近似为d ()f t t ,其t 时刻现值为 ed ()r tf t t -.这就是收益总现值的微分元素,故收益总现值为ed 0()T r tP f t t -=⎰. (5-6-3)又由于[,d ]t t t +时段内收益d ()f t t 折算为t T =时刻的终值为 ed ()()T t rf t t -,故收益总终值为ed ()0()T T t rF f t t -=⎰. (5-6-4)当收益率()f t k =(k 为常数)时,该资金流称为稳定资金流或均匀流.例2 某公司投资100万元建成1条生产线,并于1年后取得经济效益,年收入为30万元,设银行年利率为10%,问公司多少年后收回投资.解 设T 年后可收回投资,投资回收期应是总收入的现值等于总投资的现值的时间长度,因此有ed 0.1030100T tt -=⎰,即 0.1300(1e )100t --=. 解得455.0T =,即在投资后的4.055年内可收回投资.习 题 五1.求下列各曲线所围图形的面积:(1)212y x =与228x y += (两部分都要计算); (2)1y x=与直线y x =及2x =;(3)e e ,x x y y -==与直线1x =;(4)ln y x =,y 轴与直线()ln ,ln 0y a y b b a ==>>; (5)抛物线2y x =和22y x =-+;(6)sin ,cos y x y x ==及直线,44x x ππ=9=;(7)抛物线243y x x =-+-及其在3(0,)-和3,(0)处的切线;(8)摆线sin 1cos (),()x a t t y a t =-=-的一拱2(0)t π≤≤与x 轴; (9)极坐标曲线3ρa si n φ=; (10)极坐标曲线2cos ρa φ=.2.求下列各曲线所围成图形的公共部分的面积: (1)()1cos r a θ=+及2cos r a θ=;(2)r θ=及22in r θ=.3.已知曲线2()f x x x =-与()g x ax =围成的图形面积等于29,求常数a .4.设有一截锥体,其高为h ,上、下底均为椭圆,椭圆的轴长分别为2a ,2b 和2A ,2B 求这截锥体的体积.5.计算底面是半径为R 的圆,而垂直于底面一固定直径的所有截面都是等边三角形的立体体积.6.求下列旋转体的体积:(1)由2y x =与23y x =围成的平面图形绕x 轴旋转;(2)由3,2,0y x x y ===所围图形分别绕x 轴及y 轴旋转; (3)星形线222333x y a +=绕x 轴旋转. 7.求下列曲线段的弧长: (1)22,20y x x =≤≤;(2)ln ,y x x =≤≤(3)2,22x y t x π-π-≤=≤π⎰, . 8.设星形线的参数方程为33,,cos sin 0x a t y a t a ==>,求(1)星形线所围面积;(2)绕x 轴旋转所得旋转体的体积; (3)星形线的全长.9.求对数螺线e a θr =相应于0θ=到θφ=的一段弧长.10.求半径为R ,高为h 的球冠的表面积.11.求曲线段31(0)y x x =≤≤绕x 轴旋转一周所得旋转曲面的面积:12.把长为10m ,宽为6m ,高为5m 的储水池内盛满的水全部抽出,需做多少功? 13.有一等腰梯形闸门,它的两条底边各长10m 和6m ,高为20m ,较长的底边与水面相齐,计算闸门的一侧所受的水压力.14.半径为R 的球沉入水中,球的顶部与水面相切,球的密度与水相同,现将球从水中取离水面,问做功多少.15.设有一半径为R ,中心角为φ的圆弧形细棒,其线密度为常数ρ,在圆心处有一质量为m 的质点,试求细棒对该质点的引力.16.求下列函数在[,]a a -上的平均值.(1)()f x =(2)()2f x x =. 17.求正弦交流电sin 0i I ωt =经过半波整流后得到电流00sin 0.I ωt t ωi t ωωπ⎧≤≤⎪=⎨π2π⎪≤≤⎩,,, 的平均值和有效值.18.已知电压3sin2()u t t =,求(1)()u t 在02π⎡⎤⎢⎥⎣⎦,上的平均值; (2)电压的均方根值.19.设某企业固定成本为50,边际成本和边际收入分别为2()14111,()1002C x x x R x x ''=-+=-.试求最大利润.20.设某工厂生产某种产品的固定成本为零,生产x (百台)的边际成本为2()C x '=(万元/百台),边际收入为72()R x x '=-(万元/百台)):(1)求生产量为多少时总利润最大?(2)在总利润最大的基础上再生产100台,总利润减少多少?21.某企业投资800万元,年利率为5%,按连续复利计算,求投资后20年中企业均匀收入率为200万元/年的收入总现值及该投资的投资回收期.22.某父母打算连续存钱为孩子攒学费,设银行连续复利为5%(每年),若打算10年后攒够5万元,问每年应以均匀流方式存入多少钱.。
大一上 高数A 定积分的几何应用
x = b 所围成。 所围成。
bdx
面积表示为定积分的步骤如下
) 的小区间, (1)把区间[a , b]分成n 个长度为 ∆x i 的小区间, 个小窄曲边梯形, 相应的曲边梯形被分为n 个小窄曲边梯形, i 第 小窄曲边梯形的面积为∆Ai ,则 A = ∑ ∆Ai .
三、某些立体的体积
1. 平行截面面积为已知的立体的体积 已知平行截面面积为 A(x)的立体 dV=A(x)dx 的立体
.
V =
∫
b
a
A ( x )d x
A(x)
a
x
V
V =
b
x
已知平行截面面积为 A(y)的立体 的立体
∫
d
c
A ( y )d x
半径为R的正圆柱体被通过其底的直径并与底面成 例7. 半径为 的正圆柱体被通过其底的直径并与底面成α角的 平面所截,得一圆柱楔。求其体积。 平面所截,得一圆柱楔。求其体积。
1
3
1
2
例 2
计算由曲线 y = x 3 − 6 x 和 y = x 2 所围成
y = x3 − 6x
的图形的面积. 的图形的面积
解 两曲线的交点
y = x3 − 6x y = x2
⇒ (0,0), ( −2,4), ( 3,9).
y = x2
− 选 x 为积分变量 x ∈ [−2, 3] (1) x ∈ [−2, 0], dA1 = ( x 3 − 6 x − x 2 )dx ( 2) x ∈ [0,3], dA2 = ( x 2 − x 3 + 6 x )dx
o a x x + dx x b
) (1)U 是与一个变量 x 的变化区间[a, b ]有关 的量; 的量;
大学高数定积分应用1(6-1--6-5)课后参考答案及知识总结
第六章定积分的应用内容概要课后习题全解习题6-2★ 1.求由曲线xy =与直线x y =所围图形的面积。
知识点:平面图形的面积思路:由于所围图形无论表达为X-型还是Y-型,解法都较简单,所以选其一做即可 解: 见图6-2-1∵所围区域D 表达为X-型:⎩⎨⎧<<<<x y x x 10, (或D 表达为Y-型:⎩⎨⎧<<<<y x y y 210)∴⎰-=10)(dx x x S D61)2132(1223=-=x x (⎰=-=1261)(dy y y S D) ★ 2.求在区间[0,π/2]上,曲线x y sin =与直线0=x 、1=y 所围图形的面积知识点:平面图形面积思路:由于所围图形无论表达为X-型还是Y-型,解法都较简单,所以选其一做即可 解:见图6-2-2∵所围区域D 表达为X-型:⎪⎩⎪⎨⎧<<<<1sin 20y x x π, (或D 表达为Y-型:⎩⎨⎧<<<<y x y arcsin 010) ∴12)cos ()sin 1(202-=+=-=⎰πππx x dx x S D( 12arcsin 1-==⎰πydy S D)★★3.求由曲线x y =2与42+-=x y 所围图形的面积知识点:平面图形面积思路:由于所围图形表达为Y-型时解法较简单,所以用Y-型做 解:见图6-2-3∵两条曲线的交点:⎩⎨⎧±==⇒⎩⎨⎧+-==22422y x x y x y , ∴所围区域D 表达为Y-型:⎩⎨⎧-<<<<-22422yx y y ,∴2316)324()4(2232222=-=--=--⎰y y dy y y S D(由于图形关于X 轴对称,所以也可以解为:2316)324(2)4(223222=-=--=⎰y y dy y y S D )★★4.求由曲线2x y =、24x y =、及直线1=y 所围图形的面积知识点:平面图形面积思路:所围图形关于Y 轴对称,而且在第一象限内的图形表达为Y-型时,解法较简单 解:见图6-2-4∵第一象限所围区域1D 表达为Y-型:⎩⎨⎧<<<<y x y y 210,∴34322)2(22102311=⨯=-==⎰y dy y y S S D D(若用X-型做,则第一象限内所围区域=1D b a D D Y ,其中a D :⎪⎩⎪⎨⎧<<<<22410x y x x ,b D :⎪⎩⎪⎨⎧<<<<14212y x x ;∴12212201422[()(1)]443D D x x S S x dx dx ==-+-=⎰⎰) ★★5.求由曲线xy 1=与直线x y =及2=x 所围图形的面积知识点:平面图形面积思路:由于所围图形表达为X-型,解法较简单,所以用X-型做解:见图6-2-5∵两条曲线xy =和x y =的交点为(1,1)、(-1,-1),又这两条线和2=x 分别交于 21,2(、2) ,2( ∴所围区域D 表达为X-型:⎪⎩⎪⎨⎧<<<<x y xx 121,∴22211113((ln )ln 222DS x dx x x x =-=-=-⎰★★★6.抛物线x y 22=分圆822=+y x 的面积为两部分,求这两部分的面积知识点:平面图形面积思路:所围图形关于X 轴对称,而且在第一象限内的图形表达为Y-型时,解法较简单 解:见图6-2-6,设阴影部分的面积为1D S ,剩余面积为2D S∵两条曲线x y 22=、822=+y x 的交于(2,2)±(舍去4-=x 的解),∴所围区域1D 表达为Y-型:⎪⎩⎪⎨⎧-<<<<-228222y x y y ;又图形关于x 轴对称,∴342)342(2)68(2)28(220320220221+=-+=--=--=⎰⎰ππy y dy y y S D(其中222cos 18cos 22cos 22844sin 2222+=+=⨯=-⎰⎰⎰=πππdt ttdt t dyy ty ) ∴34634282-=--=πππDS ★★★7.求由曲线x e y =、x e y -=与直线1=x 所围图形的面积知识点:平面图形面积思路:由于所围图形表达为X-型时,解法较简单,所以用X-型做 解:见图6-2-7∵两条曲线x e y =和x e y -=的交点为(0,1),又这两条线和1=x 分别交于) ,1(e 和) ,1(1-e∴所围区域D 表达为X-型:⎩⎨⎧<<<<-x x e y e x 10,∴2)()(1101-+=+=-=---⎰e e e e dx e e S x x x x D★★★8.求由曲线x y ln =与直线a y ln =及b y ln =所围图形的面积)0(>>a b知识点:平面图形面积思路:由于所围图形表达为Y-型时,解法较简单,所以用Y-型做 解:见图6-2-8∵在x ln 的定义域范围内所围区域D :⎩⎨⎧<<<<ye x by a 0ln ln , ∴a b edy e S b ay bayD-===⎰ln ln ln ln★★★★9.求通过(0,0),(1,2)的抛物线,要求它具有以下性质:(1)它的对称轴平行于y 轴,且向下弯;(2)它与x 轴所围图形面积最小知识点:平面图形面积和求最值思路:首先根据给出的条件建立含参变量的抛物线方程,再求最值时的参变量解:由于抛物线的对称轴平行于y 轴,又过(0,0),所以可设抛物线方程为bx ax y +=2,(由于下弯,所以0<a),将(1,2)代入bx ax y +=2,得到2=+b a ,因此x a ax y )2(2-+=该抛物线和X 轴的交点为0=x 和aa x 2-=, ∴所围区域D :2200(2)a x ay ax a x-⎧<<⎪⎨⎪<<+-⎩ ∴23223226)2()223(])2([a a x a x a dx x a ax S aa a a D-=-+=-+=--⎰)4()2(61)]2()2()2(3[61)(233322+-=-⨯-+-⨯='---a a a a a a a a S D得到唯一极值点:4-=a ,∴所求抛物线为:x x y 642+-=★★★★10.求位于曲线x e y =下方,该曲线过原点的切线的左方以及x 轴上方之间的图形的面积知识点:切线方程和平面图形面积思路:先求切线方程,再作出所求区域图形,然后根据图形特点,选择积分区域表达类型解:x e y =⇒xe y =',∴在任一点0x x =处的切线方程为)(000x x e ey x x -=-而过(0,0)的切线方程就为:)1(-=-x e e y ,即ex y =所求图形区域为21D D D Y =,见图6-2-10X-型下的1D :⎩⎨⎧<<<<∞-x e y x 00,2D :⎩⎨⎧<<<<xey ex x 1∴222)(12110e e e x eedx ex e dx e S x x x D=-=-=-+=∞-∞-⎰⎰ ★★★11.求由曲线θcos 2a r =所围图形的面积知识点:平面图形面积思路:作图可知该曲线是半径为a 、圆心(0 ,a )的圆在极坐标系下的表达式,可直接求得面积为2a π,也可选择极坐标求面积的方法做。
高数二(定积分应用)
1
e
1
0
1
x0
求旋转体体积— 柱壳法 曲边梯形 y= f (x) ,x=a,x=b,y=0 绕 y 轴
y
f (x)
0
a
dx
x
b
x
求旋转体体积— 柱壳法 曲边梯形 y= f (x) ,x=a,x=b,y=0 绕 y 轴 内表面积
dV= 2 x f (x)dx
y
f (x)
2π xf ( x )
定积分的应用
§1 . 定积分的元素法
回顾求曲边梯形面积的步骤:
y = f (x) ≥0 ,在[ a , b ]上连续。 (1) 分割:得小曲边梯形得面积 Ai (2) 近似:Ai f ( i )xi (i =1 , 2 ,…, n) ( Ai 与 f ( i )xi 仅差高阶无穷小)
2
2
2
2
0
0
2
2
x
y
5
5
V x 圆 柱 体 V1 )dx 22 5 y 2 dx 20 ( x 1 8
1
5
1
2 y x , y 0, x 2所围图形绕直线 y 1 例 求 旋转一周的体积
解: V V1 圆 柱 体
dV1 ( y 1) 2 dx ( x 2 1) 2 dx
[ x ( x x )]dx
–3
2、参数方程情形 若曲边由参数方程:
x ( t ) ( t ) 给出, y ( t ) ( t ), ( t ) 连续。
则 A
b a
y dx
高数第五章定积分及其应用(第129-163页,共35页张勇)
129第五章 定积分及其应用§5.1 学习的要求1. 理解定积分的概念及几何意义,了解可积的条件.2. 掌握定积分的基本性质.3. 理解变上限积分是变上限的函数,掌握对变上限积分求导数的方法.4. 熟练掌握牛顿—莱布尼茨公式.5. 掌握定积分的换元积分法和分部积分法6. 理解无穷区间的广义积分,掌握其计算方法.7. 熟练掌握定积分求平面图形面积和掌握平面图形绕坐标轴旋转所成的旋转体体积 8. 会用定积分求变力直线做功和不均匀细棒的质量.§5.2内容提要一、 定积分的概念 (一)定积分的概念定义 设函数)(x f y =在区间],[b a 上有定义,用任一组分点: 01....a x x =<<,i n x x b <<<=把区间],[b a 分成n 个小区间),...3,2,1](,[1n i x x i i =-在每个小区],[1i i x x -上任意取一点i ξi i i x x ≤≤-ξ1() 用函数值)(i f ξ与该区间的长度1--=∆i i i x x x 相乘,作和式i ni i x f ∑=∆1)(ξ 如果不论对区间],[b a 采取何种分法及i ξ如何选取,当 {}0(max (1)i x x x i n ∆→∆=∆≤≤)时,和式的极限存在,则称函数)(x f 在],[b a 上可积,此极限称为函数在区间],[b a 上的定积分(简称积分).记为dx x f ba)(⎰,即1()()limnbiiai x f x dx f x ξ=∆→=∆∑⎰,其中变量x 称为积分变量,)(x f 称为被积函数,dx x f )(称为被积表达式b a ,分别称为积分下限和积分上限, ],[b a 称为积分区间.⎰badx x f )( 是 一个常量(b a ,为常数),其值只与被积函数和积分上下限有关,与积分变量用什么字母无关.(二).几何意义 1. 若)(x f ≥0,定积分⎰ba dx x f )(表示曲线)(x f y =,直线x =a 和x =b 以及x 轴所围成的曲边梯形的面积. 2. 若)(x f ≤0,定积分⎰badx x f )(表示相应曲边梯形面积的负值.(三) 定积分存在定理定理 如果函数)(x f 在区间],[b a 上连续,则)(x f 在],[b a 上的定积分必定存在. 二 、定积分的性质130 性质1 若],,[b a x ∈恒有)(x f =1,则有⎰⎰-==⋅bab aa b dx dx 1.性质2 ⎰ba dx x f )(=-⎰abdx x f )(.性质3 ⎰=badx x kf )(⎰badx x f k )( (k 是常数)性质4⎰⎰⎰±=±b ab abadx x f dx x f dx x f x f )()()]()([2121推论1 112[()()]()()()bb bbn n aaaaf x f x dx f x dx f x dx f x dx ±±=±±±⎰⎰⎰⎰性质5 ],[b a c ∈∀,则⎰badx x f )(=⎰c adx x f )(+⎰bcdx x f )(推论2 c b a ,,为任意的常数⎰badx x f )(=⎰c adx x f )(+⎰bcdx x f )(.性质6(积分中值定理) 若函数)(x f 在],[b a 上连续,则至少存在一点ξ()b a ,(∈ξ),使⎰badx x f )(=))((a b f -ξ三 、牛顿—莱布尼茨公式 (一) 积分上限函数1. 定义 设)(x f 在],[b a 上连续,],,[b a x ∈则)(t f 在],[x a 上可积 , 即⎰xadt t f )(存在,因此⎰xadt t f )(是上限x 的函数,记为()x φ=⎰xadt t f )(,称)(x φ为积分上限函数(或变上限积分) .2.积分上限函数的导数设)(x f 在],[b a 上连续, )(x φ在],[b a 上可导,则⎰∈==xa b a x x f dt t f dxd x ].,[),()()('φ )(x φ就是)(x f 在],[b a 上的一个原函数.(二)牛顿—莱布尼茨公式定理 如果函数()F x 是连续函数)(x f 在区间],[b a 上的任一原函数, 则)()()(a F b F dx x f ba-=⎰,这个公式称为牛顿—莱布尼茨公式,也称为微积分学基本定理. 公式表明:一个连续函数在区间],[b a 上的定积分等于它的任一原函数在区间],[b a 上的增量.四. 定积分的换元法和分部积分法 (一) 定积分的换元法设函数)(x f 在区间],[b a 上连续,令)(t x φ=,如果 (1) )(t φ在[βα,]上连续,当],[βα∈t 时, )(t φ的值不超出],[b a ,且有连续导函数)('t φ;(2) b a ==)(,)(βφαφ, 则⎰badx x f )(=⎰βαφφdx t t f )('))((.用)(t x φ=进行变换时,积分限也要随之换成新变量t 的积分限,不必像不定积分那样将变量还原.131(二)定积分的分部积分法设函数),(x u )(x v 在],[b a 上具有连续的一阶导数 ),('),('x v x u 则''bb aaba uv dx u vdx uv =-⎰⎰;或bbaaba udv vdu uv =-⎰⎰ .(三)偶,奇函数在对称区间],[a a -上的积分(1)当)(x f 是],[a a -上连续的偶函数时,⎰⎰-=aaadx x f dx x f 0)(2)(;(2)当)(x f 是],[a a -上连续的奇函数时,⎰-=aadx x f 0)(.五.广义积分(反常积分)(一) 无穷区间上的积分(无穷积分)定义 设)(x f 在区间[,)a +∞上连续,取b a >,若极限lim ()bab f x dx →∞⎰,则称此极限值为 )(x f 在),[+∞a 上的广义积分,记作 ⎰+∞adx x f )(=lim ()bab f x dx →∞⎰;(1)类似地,可以定义如下反常积分⎰∞-bdx x f )(=lim()baa f x dx →-∞⎰; (2)⎰-∞∞-dx x f )(=⎰∞-cdx x f )(+⎰+∞cdx x f )(lim()caa f x dx →-∞=⎰+lim()bcb f x dx →+∞⎰, (3)其中c 为任何实数;当(1)(2)(3)式右端极限存在时,反常积分收敛,否则是发散的. (二) 无界函数的积分定义 设)(x f 在],(b a 上连续,且lim ()x af x +→=∞,取0>ε若极限0lim ()ba f x dxεε+→⎰存在,则称此极限为无界函数)(x f 在],[b a 上的广义积分,记作⎰badx x f )(=0lim ()ba f x dx εε++→⎰.类似地,可定义在x b =附近无界函数()f x 的反常积分⎰b adx x f )(=0lim ()b af x dx εε-→⎰,以及在(a ,b )内一点x c =附近无界函数()f x 的反常积分⎰badx x f )(=⎰c adx x f )(+⎰bcdx x f )(=0lim ()c af x dx εε-→⎰+0lim ()bc f x dx εε++→⎰.六 定积分的应用(二) 定积分的元素法.(1) 任取],[b a 上的代表性的小区间[,]x x dx + ,作出欲求量Q 在此小区间上增量Q ∆的近似值即微元: dx x f dQ )(= .(2)求积分,Q =⎰badx x f )(.注:关键是找出微元,例如求面积要找出“面积微元”,求体积要找出“体积微元”等. (三)定积分的几何应用1)平面图形的面积(1)直角坐标系下的面积公式①由曲线(),()(()())y f x y g x f x g x ==≥与)(,b a b x a x <==所围成的图形面积132 S=⎰-badx x g x f )]()([;②由曲线 (),()(()())x y x y y y φϕφϕ==≥与)(,d c d y c y <==所围成的图形面积[()()]dcs y y dy φϕ=-⎰.(2)极坐标系下的面积,求立体的体积由曲线],,[),(βαθθ∈=r r 与两条射线βθαθ==, 所围成的曲边扇形的面积 21()2s r d βαθθ=⎰. 2)已知平行截面的面积,求立体的体积设某立体由一曲面和垂直于x 轴的两个平面 b x a x ==,围成,用垂直于x 轴的平面去截这个立体,若截面面积()A x (b x a ≤≤)是已知的连续函数,则该立体体积()baV A x dx =⎰.3)旋转体的体积①连续曲线))((b x a x f y ≤≤=与b x a x =-,及x 轴所围成的图形绕x 轴旋转一周所得的旋转体体积⎰=bax dx x f V )(2π②连续曲线))((d y c y x ≤≤=φ与d y c y ==,及y 轴所围成的图形绕y 轴旋转一周所得的旋转体体积⎰=dcy dy y V )(2φπ.(三)定积分在物理上的应用 1.变力沿直线作功变力)(x f 作用于物体,使物体由点a x =移动到b x =,)(x f 在],[b a 上连续,由微元法,任取],[b a 上的小区间[,],x x dx +其上的变力)(x f 近似看着常数,得功元素dx x f dw )(=,以a 到b 求定积分,得所求的功 w =⎰badx x f )(.2.非均匀直线细棒的质量.直线细棒的线密度为∈=x x ),(ρρ],[b a ,在],[b a 上由微元法,任取],[b a 上的小区间[,],x x dx +其上的密度近似看着常数,得质量元素 dx x dm )(ρ=,从a 到b 求定积分,得到所求的直线细棒的质量m =⎰badx x )(ρ.3. 非均匀细棒的转动惯量细棒AB 的方程为,b kx y +=密度∈=x x ),(ρρ],[b a ,任取],[b a 上的小区间],[dx x x +,视该小区间上密度与],[dx x x +对应的细棒段CD 到转轴x 轴的距离y 为常数,得转动惯量微元dx x b kx k dx x k ydI x )()(1)(12222ρρ++=+=转动惯量为 ⎰++=bax dx x b kx k I )()(122ρ§5.3基本例题及分析133例1.比较下列积分的大小关系.(1)⎰21sin dx x x 与⎰212)sin (dx x x ; (2)⎰⎰++1010)1ln(1dx x dx xx 与. 分析 在积分上下限都相同的情况下,积分大小由被积函数的大小决定. 比较两个函数的大小可以根据函数本身的图形关系、利用单调函数的定义等方法来判断.解 (1)当0x >时sin x x <,当1<x <2时,有1sin >x x ,即有 ,sin )sin (2xx x x > 则⎰⎰<21212)sin (sin dx x x dx x x . (2) 令0)0(),1ln(1)(=+-+=F x x xx F ,,)1(11)1(1)('22x xx x x F +-=+-+= 当0x >时,0)('<x F 时,()F x 单调下降,0)0()(,0=<>F x F x ,即)1l n (1x xx+<+, 则⎰⎰+<+1010)1ln(11dx x dx x .例2.估计积分1214xe ⎰的值.解 当]21,41[∈x 时, x y =单增, x y arcsin=单增, u e y =是单增,所以x xe x f y arcsin )(==在]21,41[也是单增的,因此)21()()41(f x f f <<,由641111(),()4422f e f e ππ==,得 6411()42e f x e ππ<<,同时积分得42141681)(161ππe dx x f e <<⎰. 例3.设)(x f 在a x =处连续,求极限ax dt t f xaax -⎰→)(lim.分析 x a →时,分子趋向()aaf t dt ⎰(=0),所以是型极限,一般对变上限积分很常用“(())()xaf t dt f x '=⎰”这种运算方式,所以很自然想到用洛必达法则求解.解 这是型未定式,用洛必达法则求解. 原式=)(1)(lim)'())((lim'a af x xf a x dt t tf ax xa ax ==-→→⎰.134 例 4. 设)(x f 在 ],[b a 上连续,且)(x f >0,证明:方程⎰⎰=+xaxbdt t f dt t f 0)(1)( 在区间),(b a 内恰有一个根.分析 证明根的存在可以考虑零点定理:连续函数的端点函数值符号相反则函数至少有一个零点(即函数值为0的点),如果函数是单调函数,则只能有一次穿过x 轴.本例中出现变上限积分,一般要用到它的导数,注意变上限积分函数的自变量由变上限确定.证 设 )(x F =⎰⎰+xaxbdt t f dt t f )(1)(,由于)(x f 连续, )(x f >0,则)(1x f 连续,所以)(x F 在],[b a 上也连续.又因为11()0,()()0()()ab b b a a F a dt dt F b f t dt f t f t ==-<=>⎰⎰⎰,由零点定理可知, )(x F =0在),(b a 内至少有一个根.又.0)(1)()('>+=x f x f x F 则)(x F 在],[b a 上单增,()0F x =在 ],[b a 上最多有一个根,由上述证明可知:)(x F 在),(b a 内恰好有一个根.例5. 计算下列积分 (1)⎰94sin dx xx ; (2)⎰2052sin cos πxdx x ;(3)⎰-adx x a x222(a >0); (4) ⎰---1221x x dx ;(5)⎰-+1)1ln(e dx x ; (6)⎰-+223)cos (sin ππdx x x .分析 (1)题出现了复合函数和其中间变量的导数,比较明显是用凑微分法;另外也项,可以尝试第二换元法.(2)题先用倍角公式化简后明显是用凑微分法的情形.(32xdx -的组成,所以用第二换元法的三角代换法.(4)题同(3)题,另外注意到和(arcsin )x '=.(5)题是幂函数乘对数函数的积分,显然用分部积分.(6)题的上下限是对称区间,根据奇偶函数在对称区间的积分来做.解:(1)法一:,21x d dx x=⎰⎰-=-==949494)3cos 2(cos 2cos 2sin 2sin xx d x dx xx .法二:(用第二换元法). 令,2,,2tdt dx t x x t === 当x =4时, t =2;当x =9时t =3,则93332422sin 22sin 2cos 2(cos 2cos3)t tdt tdt tt ===-=-⎰⎰⎰.(2)原式=2⎰⎰=-=-=2020276672cos 72cos cos 2sin cos πππx x xd xdx x .135(3)令tdt a dx t t a x cos ),20(,sin =≤≤=π,当x =0时, t =0;当x =a 时, t =2π,则22422220(sin )(cos )(cos )sin cos axa t a t a t dt at tdt ππ==⎰⎰⎰4422201cos 4sin 2442a a t tdt dt ππ-==⎰⎰4420sin 4()8416a t a t ππ=-=.(4)法一:用第二换元积分法,令sec ,sec tan x t dx t tdt ==,当2-=x 时,π32=t ;当1-=x 时, t =π,则⎰⎰⎰---=-=-=-12323223)1()tan (sec tan sec 1πππππdt dt t t t t x x dx . 法二:运用恒等变形和凑微分法. 当[2,1],x ∈--x =-1()x'==,令1u x =,则1121/----=⎰⎰11/2arcsin ()263u πππ--==---=-. (5)1111ln(1)ln(1)(1)[(1)ln(1)](1)ln(1)e e e e x dx x d x x x x d x ----+=++=++-++⎰⎰⎰11001(1)11e e e x dx e x x --=-+=-=+⎰ . (6)积分区间关于点对称, x 3sin 是奇函数,x 3cos 是偶函数.原式=/2/232/2/2sin cos 02cos 2xdx xdx xdx πππππ--+=+=⎰⎰⎰.例6.求证(sin )(sin )2xf x dx f x dx πππ=⎰⎰.分析 等式两边被积函数均含有)(sin x f ,注意到sin()sin t t π-=,如果t x -=π,其上下限互换了,并注意到定积分与积分变量用什么符号无关.证 令t x -=π,,dt dx -=,当0=x 时, t =π;当x =π时, t =0.00(sin )()(sin())()()(sin )xf x dx t f t dt t f t dt ππππππ=---=--⎰⎰⎰=()(sin )(sin )(sin )t f t dt f t dt tf t dt πππππ-=-⎰⎰⎰,而定积分与积分变量无关,得⎰⎰=ππ00)(sin )(sin dx x xf dt t tf ,整理得⎰⎰=πππ)(sin 2)(sin dx x f dx x xf .例7.计算⎰∞-0sin xdx e x .136 分析 被积函数的指数函数乘正弦函数,两次同型的分部积分就可以解出原函数.本题是广义积分,其实就是先求定积分,然后取上限或下限的极限.解:由不定积分⎰⎰---+-=xdxe x e xdx e x x x cos sin sin =dx x e x e x e xx x )sin (cos sin -+-----⎰,则⎰++-=--c x x e dx ex x)cos (sin 21sin ,⎰⎰∞-∞→-=00sin lim sin b xb x xdx e xdx e . 则 0lim[(/2)(sin cos )]x bb e x x -→∞-+=2/1)2/12cos sin (lim =++-∞→b b eb b 则⎰∞-0sin xdx e x 收敛,其值为1/2.例8.求曲线24x y -=与直线x =4, x 轴, y 轴在区间[0,4]上围成图形的面积S . 解S =42424222330224(4)(4)(4(34)16x dx x dx x dx x x x x -=-+-=-+-=⎰⎰⎰.例9.求由曲线θ2cos 22=r 所围成图形在r =1内的面积.分析 本题没有明确指出极坐标下θ的变化范围,那么肯定要根据已知条件找出来,注意2r >0. 题意是求两个图形围成的图形面积,而r =1是一个半径为1的圆,它和曲线一定要相交,所以首先要求出交点,从而确定积分的限.解 由 θ2cos 22=r 0≥ ,则 cos20θ≥,2,2244ππππθθ-≤≤-≤≤.令 {22cos21r r θ==,得6πθ±= ,交点(1,6π±).由于对称性,先计算第一象限内的部分.当6/0πθ<<时, r =1 ,阴影部分面积⎰⎰===660211212121πππθθd d r A ;当46πθπ<<时,,2cos 22θ=r 阴影部分的面积为2442661112cos 2(1222A r d d ππππθθθ===⎰⎰323)(421-+=+=πA A A .例10.求由曲线22x y -=与直线0),0(=≥=x x x y . 围成的平面图形绕x 轴旋转而成的旋转体体积.分析 两曲线围成图形的旋转体体积可以看成大的旋转体去掉小的旋转体,曲线绕x 轴旋转,任意点x 处的截面半径是()r y f x ==,旋转体体积微元是22()y dx f x dx ππ=.解 解方程组{22y xy x ==-且x 0≥,得x =1.则所求旋转体的体积为111222240(2)(45)x V x dx x dx x x dx πππ=--=-+⎰⎰⎰137=π513058(4)23515x x x π-+=例11.自地面垂直向上发射火箭,火箭质量为m , 试计算将火箭发射到距离地面高度为h 处所做的功.解:设地球质量M ,半径为R ,坐标原点在地心,地球对于r 点处火箭的引力大小为2rMmGf = (r 是地心到火箭的距离) . 火箭从r 处到dr r +处. 引力近似看成不变,为2)(rMmG r f =, 则功元素为dr r f dW )(=,2111()()()R R R R RRRRhhhhMm W dW f r dr Gdr GMm GMm r rR R h++++====-=-+⎰⎰⎰.§5.4 教材习题选解习题 5-11、判断题(1)定积分⎰ba x f )(由被积函数)(x f 与积分区间],[b a 确定. (√)(2)定积分⎰b a dx x f )(是x 的函数. (×) (3)若⎰=b adx x f 0)(,则0)(=x f . (×)(4)定积分⎰badx x f )(在几何上表示相应曲边梯形面积的代数和. (√)2、选择题(根据右图(见教材P122图)写出答案): (1)⎰=bdx x f 0)((B );(A )21A A +; (B )21A A -; (C )12A A +; (D )231A A A -+. (2)⎰=dcC dx x f )()(;(A )32A A +; (B )32A A -; (C )23A A -; (D )213A A A -+. (3)⎰=d dx x f 0)((C ).(A )321A A A ++;(B )321A A A -+;(C )321A A A +-;(D )213A A A +-.习题 5-21、判断题 (1)⎰⎰=2112)()(dx x f dx x f ;(×)138 (2)当c x f =)(时,⎰⎰+=11)()(a adx x f dx x f ;(√)(3)⎰⎰=babadx x f k dx x kf )()(只对非零常数k 成立;(×)(4)⎰⎰⎰±=±bababadx x f k dx x f k dx x f k x f k )()()]()([22112211;(√)(5)⎰⎰⎰--+=ππππππ2339929sin sin sin xdx xdx xdx . (√)2、已知⎰=10341dx x ,⎰=10231dx x ,⎰=1021xdx ,⎰=201cos πxdx ,⎰=201sin πxdx ,求定积分:(1)130(421)x x dx ++⎰;(2)120(2)x dx +⎰;(3)11(3)3x dx +⎰; (4)130(1)x dx +⎰; (5)220sin 2x dx π⎰; (6)20(sin cos )a x b x dx π+⎰.解 (1)⎰⎰⎰⎰=+⨯+⨯=++=++101010103331212414124)124(dx xdx dx x dx x x ;(2)⎰⎰⎰⎰⎰=+⨯+=++=++=+1010*******2231642143144)44()2(dx xdx dx x dx x x dx x ; (3)⎰⎰⎰=+=⨯+⨯=+=+101010611629131213313)313(dx xdx dx x ;(4)⎰⎰⎰⎰⎰⎰+++=+++=+10101010123231333)133()1(dx xdx dx x dx x dx x x x dx x419121331341=+⨯+⨯+=; (5)2222200001cos 11111sin cos (2)22222224x x dx dx dx xdx ππππππ-==-=⨯-=-⎰⎰⎰⎰; (6)⎰⎰⎰+=⨯+⨯=+=+2020211cos sin )cos sin (πππb a b a xdx b xdx a dx x b x a .3、设)(x f 和)(x g 在],[b a 上连续,且)()(0x g x f ≤≤试用定积分的几何意义说明⎰⎰≤babadx x g dx x f )()(.解 令)()()(x f x g x h -=,则在],[b a 上,≥)(x h 0,()0b ah x dx ∴≥⎰,即⎰⎰⎰≥-=-b a b a badx x f dx x g dx x f x g 0)()())()((,()()bbaaf x dxg x dx ≤⎰⎰.4、用第3题的结论比较定积分的大小: (1)⎰21xdx 与⎰212dx x ;(2)⎰43ln xdx 与⎰432)(ln dx x ;(3)⎰20πxdx 与⎰20sin πxdx ;(4)⎰10sin xdx 与⎰12sin xdx .139解(1) 在[1,2]上,x x >2,⎰⎰<∴21212dx x xdx .(2) 在[3,4]上,ln 1x >,知2ln (ln )x x <∴⎰43ln xdx <⎰432)(ln dx x .(3) 在]20[π,上,x x x f sin )(-=,'()1cos 0f x x =-≥,即()f x 在]2,0[π是增函数,显然在]20[π,上,当0=x 时,)(x f 取到最小值0,即在]20[π,上0sin )(≥-=x x x f ,有sin x x ≤,则220sin xdx xdx ππ>⎰⎰.(4) 在[0,1]上,0sin 1x <<,2sin sin x x >⎰⎰>∴1012sin sin xdx xdx .习题 5-31、判断题 (1)当⎰=Φxadt t f x )()(时,)()('x f x =Φ;(√)(2)对任意函数)(x f 有⎰-=baa Fb F dx x f )()()(;(×)(3)⎰=--122)11(πdx x;(×)(4)0sin 20=⎰kxdx π. (√)2、计算定积分(2))0()13(211>+-⎰+a dx x x x a ;(3)⎰+2142)1(dx xx ;(4)4dx +⎰; (5)⎰+33121x dx ; (6)⎰--212121xdx ; (7)⎰>+a a x a dx 3022)0(; (8)⎰-4221x dx; (9)⎰-1024xdx ; (10)⎰-+++11241133dx x x x ; (11)⎰23sin πxdx ; (12)dx x |sin |20⎰π;(13)⎩⎨⎧>-≤=1,121,)(2x x x x x f ,求⎰20)(dx x f ; (14)⎰+π0)cos 3sin 2(dx x x ; (15)⎰402tan πxdx ;(16)⎰++212123dx xx x ; (17)⎰+π02)2cos (dx xe x .140 解(2)1211(3)a x x dx x +-+⎰1123|)|ln 2(++-=a x x x0211)1ln(2)1()1(23-+-+++-+=a a a)1ln(22523++++=a a a a .(3) ⎰+2142)1(dx x x 8212463)3131(3183138)3131(2133==--⨯-=-=-x x .(4) ⎰⎰+=+=+94942232194)2132()()1(x x dx x x dx x x)1621832()81212732(⨯+⨯-⨯+⨯= 6145621110)8316()28118(=+=+-⨯=.(5) ⎰+33121xdx663arctan 331πππ=-==x .(6)⎰--212121x dx 3)6(6arcsin 2121πππ=--==-x. (7)220dx a x +aa a xaa 3031arctan130ππ=-⋅==. (8)⎰-4221x dx 5ln 213ln 31ln 2153ln 21|11|ln 2142-=-=+-=x x . (9) ⎰-1024xdx60arcsin 21arcsin 2arcsin 10π=-==x . (10) ⎰-+++11241133dx x x x ⎰-++++-+=112222143)1(3)1(3dx x x x x x ⎰⎰⎰--+++++=1111222141)1(23x dx x x d dx 1111211113arctan 4)1ln(233----++-=x x x x 2604[()]2444πππ=-++--=-.(11)⎰23sin πxdx⎰=---=-=-=2020203232)10()10(31cos cos 31)(cos )1(cos πππx x x d x .141(12)dx x |sin |20⎰π⎰⎰+-=-=ππππππ0202cos cos sin sin xx xdx xdx4)11()11(=+++=.(13) ⎰⎰⎰=-+=-+=-+=21212121032312)02(31)(3)12()(x x x dx x dx x dx x f .(14)⎰+π)cos 3sin 2(dx x x ⎰⎰+-=+=ππππ0sin 3cos 2cos 3sin 2x x xdx xdx4)00(3)11(2=-++=(15)⎰402tan πxdx ⎰-=-=-=4040241)(tan )1(sec οππx x dx x .(16)⎰++212123dx xxx 42121)2t t t dt =++)13253(2)222322453(2)3253(22135++-+⋅+⋅=++=t t t1568215142-=. (17) ⎰+π02)2cos (dx x e x ⎰⎰++=ππ002cos 1dx x dx e x 12)00(21)02()1(sin 2121000-+=-+-+-=++=πππππππe e x x e x.3、设k 为正整数,证明:(1)sin 0kxdx ππ-=⎰;(2)⎰-=ππ0cos kxdx .证明 :(1)⎰⎰---=---=-==ππππππππ0))cos((cos 1cos 1)(sin 1sin k k k kx k kx kxd k kxdx ; (2)⎰⎰---=--===ππππππππ0))sin((sin 1sin 1)(cos 1cos k k k kx k kx kxd k kxdx .4、设某公司拟在市场推出一种新产品,据市场预测,产品最终可占有全国市场的4%,即每年可销售480万元,产品刚上市时大家陌生,故开始时达不到预测数,若收益函数变化率])1(11[480)('3+-=t t R (万元/年),问第二年的收益为多少?第三年呢? 解 第二年的收益为:⎰⎰+-=21213])1(11[480)('dt t dt t R32446]4121191212[480])1(121[480212=⋅--⋅+=+⋅+=t t (万), 第三年的收益为:142 ⎰⎰+-=32323])1(11[480)('dt t dt t R 31468]91212161213[480])1(121[480212=⋅--⋅+=+⋅+=t t (万).习题 5-41、判断题:(1)定积分换元时要交换上、下限;(×)(2)⎰-=++2232110)2)(cos 1(ππdx x x x ;(√) (3)222sin 4cos x u udu π=⎰⎰;(√) (4)dx xdx x e e +-=+⎰⎰--11)1ln(11;(×) (5)⎰-=--124)1(πdx x . (√)2、计算定积分(1)⎰+2024t dt; (2)⎰+10431dx x x ; (3)dt t t ⎰-211; (4)31e ⎰; (5)21211cos dt t tππ⎰; (6)⎰203cos sin πxdx x ; (7)⎰+ωπϕω02)(sin dt t ; (8)⎰-222cos cos ππxdx x ; (9)222)1(x xdx+⎰; (10)⎰-121dx x ; (11)⎰>-2022)0(a a xa dx.解(1)⎰+224t dt ⎰⎰===40402821sec 4)tan 2(tan 2πππdu u u d u t . (2) ⎰+10431dx x x ⎰=+=++=1014442ln 41)1ln(411)1(41x x x d . (3) dt tt ⎰-21121122220011(1)2111u u u d u du t u u u =+-+==+++⎰⎰ 22arctan 22)111(21010102π-=-=+-=⎰u u du u .(4)31e⎰222221122221111111()2222t t t t t t d e t e dt dt tx etet e-----=⋅=====⋅⎰⎰⎰.143(5)22111cos dt t t ππ⎰2121111cos ()sin sin sin 12d t t t ππππππ=-=-=-=-⎰. (6)⎰203cos sin πxdx x ⎰=-===2204341)01(41sin 41)(sin sin ππxx xd . (7)20sin ()tdt πωωϕ+⎰1cos 2()2tdt πωωϕ-+=⎰11cos 2()(2())24t t d t ππωωωϕωϕω=-++⎰ 011sin 2()[sin(22)sin 2]24242t πωπππωϕπϕϕωωωωω=-+=-+-=. (8) ⎰-222cos cos ππxdx x 222222sin 213sin 61)cos 3(cos 21ππππππ---+=+=⎰x x dx x x 32)11(21)11(61=++--=. (9) 2220)1(x xdx +⎰222201(1)(1)2x d x -=++⎰52)151(211121202=--=+-=x . (10) ⎰-1021dx x ⎰⎰⎰+===202022022cos 1cos )(sin cos sin πππdu u udu u ud u x 42sin 414)2(2cos 4121202020πππππ=+=+=⎰u u ud u . 969323 (11)20a ⎰⎰⎰===60606cos )sin (sin πππdu u a u a d ua x . 3、计算定积分: (1)10xxe dx -⎰; (2)0sin t tdt π⎰; (3)120arcsin xdx ⎰;(4)1arctan x xdx ⎰; (5)⎰202cos πxdx e x ; (6)⎰π2sin xdx x .解(1) 11111102()1xx xx xxe dx xdx e xee dx e ee ------=-=-+=--=-⎰⎰⎰;(2)00sin (cos )cos cos sin t tdt td t t ttdt tπππππππ=-=-+=+=⎰⎰⎰.(3)111122220001arcsin arcsin (arcsin )26xdx x xxd x π=-=⋅-⎰⎰⎰112222011(1)(1)1122122122x d x πππ-=++-=+⋅+-⎰.144 (4) 211112220000111arctan arctan (arctan )22821x dx x xdx x x x d x x π=-=-+⎰⎰⎰ 112001111(1)[arctan )]8218242dx x x x πππ=--=--=-+⎰. (5)⎰22cos πxdx e x ⎰⎰-==202022022)(sin sin )(sin πππx x x e xd x e x d e⎰⎰⎰-+=+=-=202020220222)(cos 2cos 2)(cos 2sin 2πππππππx xxxe xd x e e x d e e xdx e e22024cos x e e xdx ππ=--⎰,⎰-=∴202)2(51cos πx x e xdx e . (6)⎰π2sin xdx x ⎰⎰+-=-=πππ22cos 2cos )(cos xdx x x x x d x222202(sin )2sin 2sin 2cos 4xd x x xxdx xππππππππ=+=+-=+=-⎰⎰.4、求定积分(1)⎰--+12511x dx ;(2)⎰-10221dt t t ;(3)⎰414ln dx xx ;(4)11ln e x dx x +⎰;(5)⎰-ππxdx x 34sin ;(6)⎰-+11231)1cos (dx x x .解(1) ⎰--+12511x dx 6ln 51)1ln 6(ln 51|511|ln 51511)511(511212=-=+=++=----⎰x x x d .(2) ⎰-1221dt t t ⎰⎰⋅=⋅=202022)cos (sin )(sin cos sin sin ππdu u u u ud u u t 222220000111cos 411sin 2cos 444288u udu du u udu ππππ-===-⎰⎰⎰201sin 4163216u πππ=-=. (3) ⎰414ln dx xx 2222221111ln 1()ln ln 4t d t tdt t t t dt t t ==-⎰⎰ 12ln 22ln 221-=-=t .(4) 11ln ex dx x +⎰2211113(1ln )(1ln )(1ln )[(11)1]222e e x d x x =++=+=+-=⎰.145(5) ⎰-ππxdx x 34sin 0=(奇函数).(6)⎰-+11231)1cos (dx x x ⎰⎰⎰--=+=+=11111231220)cos (dx dx dx x x (奇函数). 5、证明在区间],[a a -上,若)(x f 为偶函数,则⎰⎰-=aaadx x f dx x f 0)(2)(.证明00()()()aa a af x dx f x dx f x dx --=+⎰⎰⎰,对0()()af x d x -⎰,令x u =-,有00()()()()()()()()()()aaaaaf x d x f u d u f u d u f u d u f u d u -=--=-=-=⎰⎰⎰⎰⎰,又因为积分与变量形式无关,知()()()()aaf u d u f x d x =⎰⎰,从而⎰⎰-=aaadx x f dx x f 0)(2)(.6、设k 为自然数,试证: (1)2cos kxdx πππ-=⎰;(2)2sin kxdx πππ-=⎰.证明 (1)⎰⎰⎰----+=+=ππππππππkxdx x dx kx kxdx 2cos 212122cos 1cos 2111cos 2(2)sin 2(00)444kxd kx kxk kkππππππππ--=+=+=+-=⎰. (2)21cos 211sin cos 2222kx kxdx dx xkxdx ππππππππ-----==-⎰⎰⎰ ⎰--=--=-=-=ππππππππ)00(412sin 41)2(2cos 41k kx k kx kxd k .7、证明:⎰⎰>+=+11122)0(11x x x x dx x dx . 证明 1211111112212211()1111111x t x x x x x d dx t t dt dt x t t t t==-=-+=+++⎰⎰⎰⎰ 11221111x xdt dx t x ==++⎰⎰.(积分与变量形式无关,只与积分上下限和函数有关)习题 5-51、某河床的横断面如下图所示(图形见教材P134),为了计算最大排洪量,需要计算它的横断面的面积,试根据图示的测量数据(单位:m )用梯形法计算其横断面面积.解26.67277279.529.55.225.21.121.10(4)(36+++++++++++≈⎰dx x f146 )22.222.21.421.46.6++++++)2.21.46.6779.55.21.1(4+++++++= 6.145=(2m ). 2、用矩形法,梯形法与抛物线法近似计算定积分⎰21xdx ,以求2ln 的近似值(取10=n ,被积函数值取四位小数).解 取10=n ,分点为:10=x ,1.11=x ,2.12=x ,…,9.19=x ,210=x 且101=∆x矩形法:用外接矩形21(1 3.4595+2.7282)0.7187710x ≈+=⎰,或者用内接矩形211(0.5 3.4595+2.7282)0.6687710dx x ≈+=⎰梯形法:2111( 1.5000 3.4595+2.7282)0.6938102dx x ≈⨯+=⎰,抛物线法:211(1.50002 2.72824 3.4595)0.69316*5dx x ≈+⨯+⨯=⎰.习题 5-61、计算反常积分 (1)41x dx ⎰∞+;(2)dx e ax-+∞⎰0(0a >);(3)⎰∞+a dx x x ln (0a >);(4)⎰∞+∞-++222x x dx ; (5)⎰-121x xdx ;(6)⎰-e x x dx 12)(ln 1;(7)xdx e xsin 0-+∞⎰;(8)⎰242cos ππx dx . 解(1)41x dx ⎰∞+31)1lim (3131331341=--=-==--+∞→∞+--∞+⎰b x dx x b .147(2) dx eax-+∞⎰ae e a e aax d e a ab b axax 1)lim (11)(1000=--=-=--=-+∞→∞+--∞+⎰.(3) ⎰∞+adx x x ln +∞=-===+∞→∞+∞+⎰)ln ln lim (21ln 21)(ln ln 222a b x x xd b aa (发散).(4) ⎰∞+∞-++222x x dx∞+∞-∞+∞-+=+++=⎰)1arctan(1)1()1(2x x x dlim arctan(1)lim arctan(1)a b a b →+∞→-∞=+-+πππ=--=)2(2.(5)⎰-121x xdx101)1(1lim 211)1(21201022=-+---=---=+→⎰εεxx d . (6)⎰-ex x dx 12)(ln1101(ln )lim arcsin(ln )122ee x x εεππ+→-===-=⎰.(7)xdx e xsin 0-+∞⎰(cos )cos cos ()xxx e d x e xxd e +∞+∞+∞---=-=-+⎰⎰00lim cos cos 0(sin )a x a e a e e d x +∞--→+∞=-+-⎰01sin sin xx e xxde +∞+∞--=-+⎰xdx e e b e x bb sin 0sin sin lim 10-∞+-+∞→⎰-+-=xdx e x sin 10-+∞⎰-=,21sin 0=∴-∞+⎰xdx e x . (8) ⎰242cos ππx dx 2242004sec lim tan lim tan()12xdx x πππεπεεπε++-→→===--=+∞⎰(发散). 2、求分开数值为1C 的两个相反电荷所需要的能量,假定正负电荷开始相距1m ,将一个电荷移动至另一个电荷的无穷远处.解 设两个相反电荷的横坐标分别为0,1,则将2C 移至无穷远处所需能量为2221111()(lim ()1)a C k dx kC kC kC x xa+∞+∞→+∞=-=-+=⎰.习题 5-71、判断题(1)微元dx x f dA )(=是所求量A 在任意微小区间].[dx x x +上部分量A ∆的近似值;(√)148 (2)由曲线2x y =与3x y =围成图形面积为⎰-=13)(dx x x A ; (×)(3)由曲线3x y =与x y =在[0,1]上围成图形绕y 轴旋转所得旋转体体积⎰-=126)(dy y y V ππ; (√)(4))(x f y =在任意微小区间],[dx x x +上的弧微分为21y ds '+=. (×) 2、将阴影部分的面表用定积分表示出来(图形见教材P144): 解 (4)令223x x =+,有(1)(3)0x x +-=,∴两曲线交点横坐标为1-=a ,3=b ,∴ ⎰--+=312)32(dx x x A .4、求由曲线围成图形的面积(1)xy 1=与直线x y =及2=x ;(2)x e y =,xe y -=与直线1=x ; (3)x y ln =,2ln =y ,7ln =y ,0=x ;(4)22,4y x x y =+=;(5)2x y =与直线x y =及x y 2=.解(1) ⎰-=---=-=-=212122ln 23)021(2ln 2|)|ln 2()1(x x dx x x A .(2) 21)11(1)()(11-+=+-+=+=-=⎰--e e e e e e dx e e A xxxx(3) 由ln y x =,有yx e =,则⎰=-===7ln 2ln 7ln 2ln 527yy edy e A .(4) 由242y y =-有2280y y +-=,即(2)(4)0y y -+=, 解得两曲线交点纵坐标为4-=a ,2=b ,从而2232244(4)(4)18226y y y A y dx y --=--=--=⎰.(5) 显然2x y =与x y =交点横坐标为0,1,2x y =与x y 2=交点横坐标为0,2,⎰⎰⎰⎰-+=-+-=1021102122)2()2()2(dx x x xdx dx x x dx x x A67)311()384(21)3(2213212=---+=-+=x x x .5、求由曲线围成图形的面积: (1)θρcos 2=,0=θ,6πθ=;(2))cos 1(2θρ+=a ,0=θ,πθ2=.解(1) 266001(2cos )(1cos 2)2A d d ππθθθθ==+⎰⎰66011sin 2262264ππππθθ=+=+⋅=+.149(2) θθθθθππd a d a A )cos cos 21(2)]cos 1(2[212202220++=+=⎰⎰ 2203cos 22(2cos )22a d πθθθ=++⎰ππθθθπ222026)003(2)42sin sin 223(2a a a =++=++=.6、求曲线围成图形绕指定轴旋转所得旋转体的体积:(1)042=+-y x ,0=x 及0=y ,绕x 轴;(2)42-=x y ,0=y 绕x 轴;(3)12222=+by a x ,绕x 轴;(4)x y =2,y x =2,绕y 轴;(5)x y sin =,x y cos =及x 轴上的线段]2,0[π绕x 轴旋转.解(1) 因为 dx x dV 2)42(+=π,所以3222222(24)4(44)4(24)3x V x dx x x dx x x πππ---=+=++=++⎰⎰8324(88)33ππ=--+-=.(2) 因为 dx x dV 22)4(-=π,所以dx x x V )168(2422+-=⎰-π2235)16385(-+-=x x x ππ15512=.(3) 因为 2222(1)x dV y dx b dx aππ==-,所以a aa a x a xb dx a x b V ---=-=⎰)31()1(322222ππ234ab π=.(4) 因为 dy y y dy y dy y dV )()()(4222-=-=πππ,所以2514013()()02510y y V y y dy πππ=-=-=⎰.(5) 因为 xdx dV 2sin π=,]4,0[π∈x ,xdx dV 2cos π=,]2,4[ππ∈x ,224204sin cos V xdx xdx πππππ=+⎰⎰4(1cos 2)2x dx ππ=-⎰)2(4)2cos 1(224-=++⎰πππππdx x .7、有一铸铁件,它是由三条线:抛物线2110y x =,11012+=x y 与直线10=y 围成的图形,绕y 轴旋转而成的旋转体,算出它的重量(长度单位是厘米(cm),铁的比重是7.8g/cm 3).。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第六章定积分的应用教学目的1、理解元素法的基本思想;2、掌握用定积分表达和计算一些几何量(平面图形的面积、平面曲线的弧长、旋转体的体积及侧面积、平行截面面积为已知的立体体积)。
3、掌握用定积分表达和计算一些物理量(变力做功、引力、压力和函数的平均值等)。
教学重点:1、计算平面图形的面积、平面曲线的弧长、旋转体的体积及侧面积、平行截面面积为已知的立体体积。
2、计算变力所做的功、引力、压力和函数的平均值等。
教学难点:1、截面面积为已知的立体体积。
2、引力。
§6.1 定积分的元素法回忆曲边梯形的面积:设y=f (x)≥0 (x∈[a,b]).如果说积分,⎰=b adx xfA)(是以[a,b]为底的曲边梯形的面积,则积分上限函数⎰=x adt tfxA)()(就是以[a,x]为底的曲边梯形的面积.而微分dA(x)=f (x)dx表示点x处以dx为宽的小曲边梯形面积的近似值∆A≈f (x)dx, f (x)dx称为曲边梯形的面积元素.以[a,b]为底的曲边梯形的面积A就是以面积元素f(x)dx为被积表达式,以[a , b ]为积分区间的定积分:⎰=ba dx x f A )( .一般情况下, 为求某一量U , 先将此量分布在某一区间[a , b ]上, 分布在[a , x ]上的量用函数U (x )表示, 再求这一量的元素dU (x ), 设dU (x )=u (x )dx , 然后以u (x )dx 为被积表达式, 以[a , b ]为积分区间求定积分即得⎰=ba dx x f U )(.用这一方法求一量的值的方法称为微元法(或元素法).§6. 2 定积分在几何上的应用一、平面图形的面积 1.直角坐标情形设平面图形由上下两条曲线y =f 上(x )与y =f 下(x )及左右两条直线x =a 与x =b 所围成, 则面积元素为[f 上(x )- f 下(x )]dx , 于是平面图形的面积为 dx x f x f S ba ⎰-=)]()([下上.类似地, 由左右两条曲线x =ϕ左(y )与x =ϕ右(y )及上下两条直线y =d 与y =c 所围成设平面图形的面积为⎰-=d c dy y y S )]()([左右ϕϕ.例1 计算抛物线y 2=x 、y =x 2所围成的图形的面积.解 (1)画图.(2)确定在x 轴上的投影区间: [0, 1]. (3)确定上下曲线: 2)( ,)(x x f x x f ==下上. (4)计算积分31]3132[)(10323102=-=-=⎰x x dx x x S . 例2 计算抛物线y 2=2x 与直线y =x -4所围成的图形的面积. 解 (1)画图.(2)确定在y 轴上的投影区间: [-2, 4]. (3)确定左右曲线: 4)( ,21)(2+==y y y y 右左ϕϕ.(4)计算积分⎰--+=422)214(dy y y S 18]61421[4232=-+=-y y y .例3 求椭圆12222=+b y ax 所围成的图形的面积. 解 设整个椭圆的面积是椭圆在第一象限部分的四倍, 椭圆在第一象限部分在x 轴上的投影区间为[0, a ]. 因为面积元素为ydx , 所以⎰=aydx S 04.椭圆的参数方程为: x =a cos t , y =b sin t ,于是 ⎰=a ydx S 04⎰=02)cos (sin 4πt a td b⎰-=022sin 4πtdt ab ⎰-=20)2cos 1(2πdt t ab ππab ab =⋅=22.2.极坐标情形曲边扇形及曲边扇形的面积元素:由曲线ρ=ϕ(θ)及射线θ =α, θ =β围成的图形称为曲边扇形. 曲边扇形的面积元素为θθϕd dS 2)]([21=.曲边扇形的面积为⎰=βαθθϕd S 2)]([21.例4. 计算阿基米德螺线ρ=a θ (a >0)上相应于θ从0变到2π 的一段弧与极轴所围成的图形的面积.解: ⎰=πθθ202)(21d a S 32203234]31[21πθπa a ==.例5. 计算心形线ρ=a (1+cos θ ) (a >0) 所围成的图形的面积.解: ⎰+=πθθ02]cos 1([212d a S ⎰++=πθθθ02)2cos 21cos 221(d aπθθθπ20223]2sin 41sin 223[a a =++=.二、体 积 1.旋转体的体积旋转体就是由一个平面图形绕这平面内一条直线旋转一周而成的立体. 这直线叫做旋转轴.常见的旋转体: 圆柱、圆锥、圆台、球体.旋转体都可以看作是由连续曲线y =f (x )、直线x =a 、a =b 及x 轴所围成的曲边梯形绕x 轴旋转一周而成的立体.设过区间[a , b ]内点x 且垂直于x 轴的平面左侧的旋转体的体积为V (x ), 当平面左右平移dx 后, 体积的增量近似为∆V =π[f (x )]2dx , 于是体积元素为 dV = π[f (x )]2dx , 旋转体的体积为dx x f V ba 2)]([π⎰=.例1 连接坐标原点O 及点P (h , r )的直线、直线x =h 及x 轴围成一个直角三角形. 将它绕x 轴旋转构成一个底半径为r 、高为h 的圆锥体. 计算这圆锥体的体积. 解: 直角三角形斜边的直线方程为x hr y =.所求圆锥体的体积为dx x h r V h 20)(π⎰=hx hr 0322]31[π=231hr π=. 例2. 计算由椭圆12222=+by a x 所成的图形绕x 轴旋转而成的旋转体(旋转椭球体)的体积.解: 这个旋转椭球体也可以看作是由半个椭圆 22x a ab y -=及x 轴围成的图形绕x 轴旋转而成的立体. 体积元素为dV = π y 2dx ,于是所求旋转椭球体的体积为⎰--=a a dx x a a b V )(2222πa a x x a ab --=]31[3222π234ab π=. 例3 计算由摆线x =a (t -sin t ), y =a (1-cos t )的一拱, 直线y =0所围成的图形分别绕x 轴、y 轴旋转而成的旋转体的体积.解 所给图形绕x 轴旋转而成的旋转体的体积为 ⎰=ax dx y V ππ202⎰-⋅-=ππ2022)cos 1()cos 1(dt t a t a ⎰-+-=ππ20323)cos cos 3cos 31(dt t t t a =5π 2a 3.所给图形绕y 轴旋转而成的旋转体的体积是两个旋转体体积的差. 设曲线左半边为x =x 1(y )、右半边为x =x 2(y ). 则⎰⎰-=aay dy y x dy y x V 20212022)()(ππ⎰⎰⋅--⋅-=πππππ022222sin )sin (sin )sin (tdt a t t a tdt a t t a ⎰--=ππ2023sin )sin (tdt t t a =6π 3a 3 .2.平行截面面积为已知的立体的体积设立体在x 轴的投影区间为[a , b ], 过点x 且垂直于x 轴的平面与立体相截, 截面面积为A (x ), 则体积元素为A (x )dx , 立体的体积为 dx x A V ba )(⎰=.例4 一平面经过半径为R 的圆柱体的底圆中心, 并与底面交成角α. 计算这平面截圆柱所得立体的体积.解: 取这平面与圆柱体的底面的交线为x 轴, 底面上过圆中心、且垂直于x 轴的直线为y 轴. 那么底圆的方程为x 2 +y 2=R 2. 立体中过点x 且垂直于x 轴的截面是一个直角三角形. 两个直角边分别为22x R -及αtan 22x R -. 因而截面积为αtan )(21)(22x R x A -=. 于是所求的立体体积为dx x R V RR αtan )(2122-=⎰-ααtan 32]31[tan 21332R x x R R R =-=-. 例5. 求以半径为R 的圆为底、平行且等于底圆直径的线段为顶、高为h 的正劈锥体的体积.解: 取底圆所在的平面为x O y 平面, 圆心为原点, 并使x 轴与正劈锥的顶平行. 底圆的方程为x 2 +y 2=R 2. 过x 轴上的点x (-R <x <R )作垂直于x 轴的平面, 截正劈锥体得等腰三角形. 这截面的面积为22)(x R h y h x A -=⋅=. 于是所求正劈锥体的体积为⎰--=RR dx x R h V 22h R d h R 2202221cos 2πθθπ==⎰ .三、平面曲线的弧长设A , B 是曲线弧上的两个端点. 在弧AB 上任取分点A =M 0, M 1, M 2, ⋅ ⋅ ⋅ , M i -1, M i , ⋅ ⋅ ⋅, M n -1, M n =B , 并依次连接相邻的分点得一内接折线. 当分点的数目无限增加且每个小段M i -1M i 都缩向一点时, 如果此折线的长∑=-ni i i M M 11||的极限存在, 则称此极限为曲线弧AB 的弧长, 并称此曲线弧AB 是可求长的.定理 光滑曲线弧是可求长的. 1.直角坐标情形 设曲线弧由直角坐标方程y =f (x ) (a ≤x ≤b )给出, 其中f (x )在区间[a , b ]上具有一阶连续导数. 现在来计算这曲线弧的长度. 取横坐标x 为积分变量, 它的变化区间为[a , b ]. 曲线y =f (x )上相应于[a , b ]上任一小区间[x , x +dx ]的一段弧的长度, 可以用该曲线在点(x , f (x ))处的切线上相应的一小段的长度来近似代替. 而切线上这相应的小段的长度为dx y dy dx 2221)()('+=+,从而得弧长元素(即弧微分)dx y ds 21'+=.以dx y 21'+为被积表达式, 在闭区间[a , b ]上作定积分, 便得所求的弧长为⎰'+=ba dx y s 21.在曲率一节中, 我们已经知道弧微分的表达式为dx y ds 21'+=, 这也就是弧长元素. 因此例1. 计算曲线2332x y =上相应于x 从a 到b 的一段弧的长度.解: 21x y =', 从而弧长元素dx x dx y ds +='+=112.因此, 所求弧长为b a bax dx x s ])1(32[123+=+=⎰])1()1[(322323a b +-+=. 例2. 计算悬链线cx c y ch =上介于x =-b 与x =b 之间一段弧的长度.解: cx y sh =', 从而弧长元素为dx cx dx c x ds ch sh 12=+=.因此, 所求弧长为⎰⎰==-b b b dx c x dx c x s 0ch 2ch cb c dx c x c b sh 2]sh [20==. 2.参数方程情形设曲线弧由参数方程x =ϕ(t )、y =ψ(t ) (α≤t ≤β )给出, 其中ϕ(t )、ψ(t )在[α, β]上具有连续导数. 因为)()(t t dx dy ϕψ''=, dx =ϕ'(t )d t , 所以弧长元素为 dt t t dt t t t ds )()()()()(12222ψϕϕϕψ'+'='''+=.所求弧长为⎰'+'=βαψϕdt t t s )()(22.例3. 计算摆线x =a (θ-sin θ), y =a (1-cos θ)的一拱(0 ≤θ ≤2π )的长度. 解: 弧长元素为θθθd a a ds 2222sin )cos 1(+-=θθd a )cos 1(2-=θθd a 2sin2=.所求弧长为⎰=πθθ202sin 2d a s πθ20]2cos 2[2-=a =8a .3.极坐标情形 设曲线弧由极坐标方程ρ=ρ(θ) (α ≤ θ ≤ β )给出, 其中r (θ)在[α, β]上具有连续导数. 由直角坐标与极坐标的关系可得 x =ρ(θ)cos θ , y =ρ(θ)sin θ(α ≤θ ≤ β ). 于是得弧长元素为θθθd y x ds )()(22'+'=θθρθρd )()(22'+=.从而所求弧长为⎰'+=βαθθρθρd s )()(22.例14. 求阿基米德螺线ρ=a θ (a >0)相应于θ 从0到2π 一段的弧长. 解: 弧长元素为θθθθd a d a a ds 22221+=+=.于是所求弧长为⎰+=πθθ2021d a s )]412ln(412[222ππππ++++=a .§6. 3 功 水压力和引力一、变力沿直线所作的功例1 把一个带+q 电量的点电荷放在r 轴上坐标原点O 处, 它产生一个电场. 这个电场对周围的电荷有作用力. 由物理学知道, 如果有一个单位正电荷放在这个电场中距离原点O 为r 的地方, 那么电场对它的作用力的大小为2r qkF = (k 是常数). 当这个单位正电荷在电场中从r =a 处沿r 轴移动到r =b (a <b )处时, 计算电场力F 对它所作的功.例1' 电量为+q 的点电荷位于r 轴的坐标原点O 处它所产生的电场力使r 轴上的一个单位正电荷从r =a 处移动到r =b (a <b )处求电场力对单位正电荷所作的功. 提示: 由物理学知道, 在电量为+q 的点电荷所产生的电场中, 距离点电荷r 处的单位正电荷所受到的电场力的大小为2r qkF = (k 是常数). 解: 在r 轴上, 当单位正电荷从r 移动到r +dr 时, 电场力对它所作的功近似为dr r qk 2, 即功元素为dr r qk dW 2=. 于是所求的功为dr rkq W b a2⎰=b a r kq ]1[-=)11(b a kq -=. 例2. 在底面积为S 的圆柱形容器中盛有一定量的气体. 在等温条件下, 由于气体的膨胀, 把容器中的一个活塞(面积为S )从点a 处推移到点b 处. 计算在移动过程中, 气体压力所作的功.解: 取坐标系如图, 活塞的位置可以用坐标x 来表示. 由物理学知道, 一定量的气体在等温条件下, 压强p 与体积V 的乘积是常数k , 即pV =k 或Vk p =.解: 在点x 处, 因为V =xS , 所以作在活塞上的力为xk S xS k S p F =⋅=⋅=.当活塞从x 移动到x +dx 时, 变力所作的功近似为dx xk ,即功元素为dx xk dW =.于是所求的功为dx x k W b a ⎰=b a x k ][ln =ab k ln =. 例3. 一圆柱形的贮水桶高为5m , 底圆半径为3m , 桶内盛满了水. 试问要把桶内的水全部吸出需作多少功?解: 作x 轴如图. 取深度x 为积分变量. 它的变化区间为[0, 5], 相应于[0, 5]上任小区间[x , x +dx ]的一薄层水的高度为dx . 水的比重为9.8kN/m 3, 因此如x 的单位为m , 这薄层水的重力为9.8π⋅32dx . 这薄层水吸出桶外需作的功近似地为dW =88.2π⋅x ⋅dx ,此即功元素. 于是所求的功为⎰=502.88xdx W π502]2[2.88x π=2252.88⋅=π(kj). 二、水压力从物理学知道, 在水深为h 处的压强为p =γh , 这里 γ 是水的比重. 如果有一面积为A 的平板水平地放置在水深为h 处, 那么, 平板一侧所受的水压力为P =p ⋅A .如果这个平板铅直放置在水中, 那么, 由于水深不同的点处压强p 不相等, 所以平板所受水的压力就不能用上述方法计算.例4. 一个横放着的圆柱形水桶, 桶内盛有半桶水. 设桶的底半径为R , 水的比重为 γ ,计算桶的一个端面上所受的压力.解: 桶的一个端面是圆片, 与水接触的是下半圆. 取坐标系如图.在水深x 处于圆片上取一窄条, 其宽为dx , 得压力元素为dx x R x dP 222-=γ.所求压力为⎰-=R dx x R x P 022 2γ)()(2221220x R d x R R ---=⎰γR x R 02322])(32[--=γ332R r =. 三、引力从物理学知道, 质量分别为m 1、m 2, 相距为r 的两质点间的引力的大小为221r m m G F =, 其中G 为引力系数, 引力的方向沿着两质点连线方向.如果要计算一根细棒对一个质点的引力, 那么, 由于细棒上各点与该质点的距离是变化的, 且各点对该质点的引力的方向也是变化的, 就不能用上述公式来计算. 例5. 设有一长度为l 、线密度为ρ的均匀细直棒, 在其中垂线上距棒a 单位处有一质量为m 的质点M . 试计算该棒对质点M 的引力.例5'. 求长度为l 、线密度为ρ的均匀细直棒对其中垂线上距棒a 单位处质量为m 的质点M 的引力.解: 取坐标系如图, 使棒位于y 轴上, 质点M 位于x 轴上, 棒的中点为原点O . 由对称性知, 引力在垂直方向上的分量为零, 所以只需求引力在水平方向的分量. 取y 为积分变量, 它的变化区间为]2 ,2[l l -. 在]2,2[l l -上y 点取长为dy 的一小段, 其质量为ρdy , 与M 相距22y a r +=. 于是在水平方向上, 引力元素为2222y a a y a dy m G dF x +-⋅+=ρ2/322)(y a dy am G +-=ρ. 引力在水平方向的分量为⎰-+-=222/322)(l l x y a dy am G F ρ22412l a a l Gm +⋅-=ρ.。