2019-2020年高中数学课下能力提升九北师大版
高中数学人教A版选修2-2创新应用课下能力提升(九) Word版含解析
课下能力提升(九)
[学业水平达标练]
题组求曲边梯形的面积
.在求直线=,=,=与曲线=所围成的曲边梯形的面积时,把区间[]等分成个小区间,则第个小区间是( )
.对于由直线=,=和曲线=所围成的曲边梯形,把区间等分,则曲边梯形面积的近似值(取每个区间的左端点)是( )
.求由直线=,=,=和曲线=(-)围成的图形的面积.
题组求变速直线运动的路程
.一物体沿直线运动,其速度()=,这个物体在=到=这段时间内所走的路程为( ) .
.若做变速直线运动的物体()=在≤≤内经过的路程为,求的值.
题组定积分的计算及性质
.下列等式不成立的是( )
.图中阴影部分的面积用定积分表示为( )
(-)
(+)(-)
.=与=的大小关系是( )
.=.=
.>.<
.已知=,=,=,则(+)=.
.用定积分的几何意义计算下列定积分:
[能力提升综合练] .若()=,()=-,则[()+()]=( )
..-.-.
.若()为偶函数,且()=,则等于( ) ....
.定积分(-)等于( )
.-..-.。
2019-2020学年北师大九年级数学下教学计划
北师大版2019-2020学年数学精品资料北师大版九年级数学下册教材分析及教学计划一、教学内容分析:l、本册书的主要内容主要有:二次函数;直角三角形的边角关系、圆;统计与概率。
在研究直角三角形的边角关系过程中,在锐角函数值与边的比值之间建立联系,形成概念,并用数学符号做出表示,便于说明和解决许多涉及三角形计算与测量的实际问题。
教材把解三角形的知识融入到现实背景中,可以结合比、比例、图形相似等知识的综合运用和说理证明,加深理解,为进一步学习“三角函数”作好理论准备。
二次函数的学习是在学习一次函数、反比例函数基础上进行的,学生对于函数概念的认识、研究函数的方法已积累了一定的经验。
通过学习,在丰富的现实背景中领会研究二次函数的重要性和必要性,经过探究认识二次函数的基本特性的过程,进一步积累研究函数的基本方法,为以后的学习打下必要的基础,同时,也感受数学与数学的其他内容、以及与其他学科的联系。
关注用从函数的角度考察问题,在问题求解过程中领悟函数的应用价值。
二次函数是一个重要的初等函数,对二次函数的讨论为进一步学习函数,体会函数思想奠定基础。
对于圆的学习,则充分利用圆的对称性,用对称的观点观察图形,以“变换”为工具深入探索,获得一批几何事实。
关注圆与直线形之间的内在联系,形成对圆和几何图形的整体性认识。
探索活动中关注识别复杂图形中几何要素和基本图形(特别是直角三角形)之间的关系,关注图形的整体结构和运动变化(图形的位置关系),用已有的知识进行说理,确认有关结论。
《统计与概率》一章中,主要目的是对前面学过的内容进行回顾与整理,进一步运用已有知识对现实问题和现象进行观察与思考,重新认识知识之间的联系,关注试验操作与理论计算之间的关系和概率与统计之间的内在联系。
2、教材设计与内容组织的考虑(1)为了能够准确刻画物体的倾斜程度及对坐标平面中直线“斜率”几何意义的理解,在直角三角形中先引入“锐角的正切”更容易为学生所接受。
2017-2018学年高中数学人教A版必修四课下能力提升:(十九) Word版含解析
课下能力提升(十九) [学业水平达标练]题组1 向量数量积的运算 1.下列命题:(1)若a ≠0,a ·b =a ·c ,则b =c ;(2)(a ·b )·c =a·(b ·c )对任意向量a ,b ,c 都成立; (3)对任一向量a ,有a 2=|a |2.其中正确的有( ) A .0个 B .1个 C .2个 D .3个2.已知|b |=3,a 在b 方向上的投影是32,则a ·b 为( )A.92B .3 C .2 D.12A.49B.43 C .-43 D .-49题组2 向量的模5.若非零向量a 与b 的夹角为2π3,|b |=4,(a +2b )·(a -b )=-32,则向量a 的模为( )A .2B .4C .6D .126.已知向量a ,b 的夹角为120°,|a|=1,|b |=3,则|5a -b |=________.7.已知非零向量a ,b ,满足a ⊥b ,且a +2b 与a -2b 的夹角为120°,则|a||b|=________.题组3 两向量的夹角与垂直问题8.若非零向量a ,b 满足|a |=|b |,(2a +b )·b =0,则a 与b 的夹角为( ) A .30° B .60° C .120° D .150°9.已知|a |=|b |=1,a 与b 的夹角是90°,c =2a +3b ,d =k a -4b ,c 与d 垂直,则k 的值为( )A .-6B .6C .3D .-310.设向量a ,b 满足|a |=1,|b |=1,且|k a +b |=3|a -k b |(k >0).若a 与b 的夹角为60°,则k =________.11.已知|a |=1,a ·b =14,(a +b )·(a -b )=12.(1)求|b |的值;(2)求向量a -b 与a +b 夹角的余弦值.[能力提升综合练]1.已知|a |=3,|b |=5,且a 与b 的夹角θ=45°,则向量a 在向量b 上的投影为( ) A.322B .3C .4D .52.设向量a ,b 满足|a +b |=10,|a -b |=6,则a·b =( ) A .1 B .2 C .3 D .5A .2 3 B.32 C.33D. 35.已知平面向量α,β,|α|=1,|β|=2,α⊥(α-2β),则|2α+β|的值是________. 6.已知a ,b 是两个非零向量,同时满足|a |=|b |=|a -b |,求a 与a +b 的夹角. 7.已知a ,b 是非零向量,t 为实数,设u =a +t b . (1)当|u |取最小值时,求实数t 的值; (2)当|u |取最小值时,向量b 与u 是否垂直?答 案[学业水平达标练]1. 解析:选B (1)(2)不正确,(3)正确.2. 解析:选A ∵|a |cos 〈a ,b 〉=32,|b |=3,∴a ·b =|a |·|b |cos 〈a ,b 〉=3×32=92.3.4.5. 解析:选A 由已知得,a 2+a ·b -2b 2=-32,∴|a |2+|a |×4×cos 2π3-2×42=-32.解得|a |=2或|a |=0(舍).6. 解析:|5a -b |=|5a -b |2=(5a -b )2 =25a 2+b 2-10a ·b =25+9-10×1×3×⎝⎛⎭⎫-12=7. 答案:77. 解析:(a +2b )·(a -2b )=a 2-4b 2,∵a ⊥b , ∴|a +2b |=a 2+4b 2,|a -2b |=a 2+4b 2.故cos 120°=(a +2b )·(a -2b )|a +2b ||a -2b |=a 2-4b 2(a 2+4b 2)2=a 2-4b 2a 2+4b 2=-12,得a 2b 2=43,即|a ||b |=233. 答案:2338. 解析:选C 因为(2a +b )·b =2a ·b +b ·b =0,所以a ·b =-12|b |2.设a 与b 的夹角为θ,则cos θ=a ·b |a ||b |=-12|b |2|b |2=-12,故θ=120°. 9. 解析:选B 由c ⊥d 得c·d =0,即(2a +3b )·(k a -4b )=0,即2k |a |2+(3k -8)a ·b -12|b |2=0,所以2k +(3k -8)×1×1×cos 90°-12=0,即k =6.故选B.10. 解析:∵|k a +b |=3|a -k b |, ∴k 2a 2+b 2+2k a ·b =3(a 2+k 2b 2-2k a ·b ).∴k 2+1+k =3(1+k 2-k ).即k 2-2k +1=0,∴k =1. 答案:111. 解:(1)(a +b )·(a -b )=a 2-b 2=12.∵|a |=1,∴1-|b |2=12,∴|b |=22.(2)∵|a +b |2=a 2+2a ·b +b 2=1+2×14+12=2,|a -b |2=a 2-2a ·b +b 2=1-2×14+12=1,∴|a +b |=2,|a -b |=1. 令a +b 与a -b 的夹角为θ,则cos θ=(a +b )·(a -b )|a +b ||a -b |=122×1=24,即向量a -b 与a +b 夹角的余弦值是24. [能力提升综合练]1. 解析:选A 由已知|a |=3,|b |=5,cos θ=cos 45°=22,而向量a 在向量b 上的投影为|a |cos θ=3×22=322. 2. 解析:选A ∵|a +b |=10, ∴(a +b )2=10, 即a 2+b 2+2a ·b =10.① ∵|a -b |=6,∴(a -b )2=6, 即a 2+b 2-2a ·b =6.②由①②可得a ·b =1,故选A. 3.4.解析:画出图形知△ABC 为直角三角形,且∠ABC =90°,=0+4×5×⎝⎛⎭⎫-45+5×3×⎝⎛⎭⎫-35=-25. 答案:-255. 解析:|α|=1,|β|=2,由α⊥(α-2β),知α·(α-2β)=0,2α·β=1, 所以|2α+β|2=4α2+4α·β+β2=4+2+4=10,故|2α+β|=10. 答案:106. 解:根据|a |=|b |,有|a |2=|b |2,又由|b |=|a -b |,得|b |2=|a |2-2a ·b +|b |2, ∴a ·b =12|a |2.而|a +b |2=|a |2+2a ·b +|b |2=3|a |2, ∴|a +b |=3|a |.设a 与a +b 的夹角为θ. 则cos θ=a ·(a +b )|a ||a +b |=|a |2+12|a |2|a |·3|a |=32.∴θ=30°.7. 解:(1)|u |2=|a +t b |2=(a +t b )·(a +t b )=|b |2t 2+2(a ·b )t +|a |2=|b |2⎝⎛⎭⎫t +a ·b|b |22+|a |2-(a ·b )2|b |2. ∵b 是非零向量,∴|b |≠0,∴当t =-a ·b|b |2时,|u |=|a +t b |的值最小.(2)∵b ·(a +t b )=a ·b +t |b |2=a·b +⎝⎛⎭⎫-a·b|b |2·|b |2=a ·b -a ·b =0, ∴b ⊥(a +t b ),即b ⊥u .。
2019—2020年新课标北师大版高中数学选修1-1全册综合考点学习与测试及答案答案解析.docx
(新课标)2017-2018学年北师大版高中数学选修1-1综合学习与测试(一)一、选择题(本大题共10小题,每题5分,共50分)1.以下四个命题,判断正确的是( )(1)原命题:若一个自然数的末位数字为零,则这个自然数能被5整除.(2)逆命题:若一个自然数能被5整除,则这个自然数的末位数字为零.(3)否命题:若一个自然数的末位数字不为零,则这个自然数不能被5整除.(4)逆否命题:若一个自然数不能被5整除,则这个自然数末位数字不为零.A.(1)与(3)为真,(2)与(4)为假B.(1)与(2)为真,(3)与(4)为假C.(1)与(4)为真,(2)与(3)为假D.(1)与(4)为假,(2)与(3)为真2.若a,b∈R,且a2+b2≠0,则(1)a、b全为零;(2)a、b不全为零;(3)a、b全不为零;(4)a、b至少有一个不为零,其中真命题的个数为( )A.0B. 1C.2D.33.设命题p:已知a、b为实数,若a+b是无理数.则a是无理数或b是无理数.则下列结论中正确的是( )A.p为真命题B.p的逆命题为真命题C.p 的否命题为真命题D. p 的逆否命题为假命题4.抛物线2y x =的焦点坐标是( )A .()1,0B .10,4⎛⎫ ⎪⎝⎭C . 1,04⎛⎫ ⎪⎝⎭D .10,8⎛⎫ ⎪⎝⎭5.若抛物线22(0)y px p =>上横坐标为6的点到焦点的距离等于8,则焦点到准线的距离是( )A .6B .2C .8D .46. 对任意实数a ,b ,c ,给出下列命题:①“b a =”是“bc ac =”充要条件;②“5+a 是无理数”是“a 是无理数”的充要条件③“a>b ”是“a 2>b 2”的充分条件;④“a<5”是“a<3”的必要条件.其中真命题的个数是 ( )A .1B .2C .3D .4 7.若椭圆22110036x y +=上一点P 到焦点F 1的距离等于6,则点P 到另一个焦点F 2的距离是( )A .4B .194C .94D .148.下列命题是真命题的是 ( )A “a(a-b)≤0”是“b a≥1”的必要条件 B “x ∈{1,2}”是“1-x =0”的充分条件C “A ∩B ≠φ”是“A ⊂B ”的充分条件D “x>5”是“x>2”的必要条件9.抛物线28x y =-的准线方程是 ( ) A 132x = B.y =2 C.14x = D.y=4 10.双曲线229436x y -=-的渐近线方程是( ) A 23y x =± B.32y x =± C.94y x =± D.49y x =± 二,填空题:(每小题5分,共20分)11.命题: 若a 、b 都是偶数,则a+b 是偶数. 其逆否命题为_______________.12.下列命题: ①5≥5 ②5>1且1<2 ③3>4或3<4 ④. x,y ∈R. “若x 2+y 2=0,则x,y 全为0”的否命题 ⑤“全等三角形是相似三角形”的逆命题 ⑥若ac 2>bc 2,则a>b. 其中假命题的序号是_______________.13.当a+b=10, c=25时的椭圆的标准方程是.14.已知一个圆的圆心为坐标原点,半径为2,从这个圆上任意一点P 向x 轴作垂线段PP ’,则线段PP ’的中点M 的轨迹方程为.三、解答题:15.(本小题满分5分)求经过点P(―3,27)和Q(―62,―7)且焦点在坐标轴上的双曲线的标准方程。
北师大版2019-2020九年级数学上册1.6应用一元二次方程巩固提升训练题C(附答案)
北师大版2019-2020九年级数学上册1.6应用一元二次方程巩固提升训练题C (附答案) 1.海南省省作为首批国家电子商务进农村示范省之一,先后携手阿里巴巴、苏宁云商等电商巨头,推动线上线下融合发展,激发农村消费潜力,实现“特产卖全国”.根据某淘宝农村超市统计一月份的营业额为36万元,三月份的营业额为49万元.设每月的平均增长率为x ,则可列方程为:( )A .49(1+x)2=36B .36(1-x)2=49C .36(1+x)2=49D .49(1-x)2=362.某种电脑病毒传播的非常快,如果一台电脑被感染,经过两轮感染后就会有81台电脑被感染,若病毒得不到有效控制,三轮感染后,被感染的电脑有( )台. A .81 B .648 C .700 D .729 3.裕丰商店一月份的利润为万元,二、三月份的利润平均增长率为,下列各式中,正确表示这个商店第一季度的总利润的是( ) A .万元 B .万元C .万元 D .万元4.若关于x 的方程2904x x a +-+=有两个不相等的实数根,则实数a 的取值范围是( )A .2a ≥B .2a ≤C .2a >D .2a <5.某商店3月份的营业额为15万元,4月份的营业额比3月份的营业额减少10%;商店经过加强管理,实施各种措施,使得5,6月份的营业额连续增长,6月份的营业额达到了20万元;设5,6月份的营业额的平均增长率为x ,依题意可列方程为( ) A . B . C .D .6.若两个连续偶数的积是288.则这两个偶数的和等于( ) A .43或—43 B .43 C .34或—34 D .—347.某商场将某种商品的售价从原来的每件200元经两次调价后调至每件162元,设平均每次调价的百分率为x , 列出方程正确的是( )A .162(1-x)2=200B .200(1+x)2=162C .162(1+x)2=200D .200(1-x)2=162 8.某商场4月份的利润是28万元,预计6月份的利润将达到40万元.设每月利润的平均增长率为x ,则根据题意所列方程正确的是( ) A .28(1+x )2=40 B .28(1+x )2=40-28 C .28(1+2x )=40 D .28(1+x 2)=409.某机械厂七月份生产零件50万个,计划八、九月份共生产零件万个,设八、九月份平均每月的增长率为x,那么x满足的方程是A.B.C.D.10.要组织一次排球邀请赛,参赛的每个队之间要比赛两场,根据场地和时间等条件,赛程计划安排7天,每天安排8场比赛,若设比赛组织者应邀请x个队参赛,则x满足的关系式为()A.x(x+1)=56 B.x(x﹣1)=56C.x(x+1)=56 D.x(x﹣1)=5611.我市前年投入资金万元用于校舍改造,今年投入资金万元,若设这两年投入改造资金的年平均增长率为,则根据题意可列方程为________.12.某商品原售价289元,经过连续两次降价后售价为256元,设平均每次降价的百分率为x,则满足x的方程是____________.13.一家今年刚成立的小型快递公司业务量逐月攀升,今年7月份和9月份完成投送的快递件数分别是20万件和24.2万件.若假设该公司每月投送的快递件数的增长率相同,则这家公司投送快递件数的月平均增长率为________________.14.圣诞节时,一个小组有x人,他们每两人之间互送贺卡一张,已知全组共送贺卡132张,则可列方程为.15.某印刷厂3月份印刷了50万册书籍,5月份印刷了72万册书籍,如果每月印刷的增长率都为x,则根据题意,可建立关于x的方程是_____.16.为了庆祝中华人民共和国成立周年,同学们通过互送贺卡来表示喜悦的心情.已知某班的一个数学学习小组一共送出卡片张,则此小组有学生________人.17.为了美化环境,某市加大对绿化的投资,2007年用于绿化的投资20万元,2009年用于绿化的投资是25万元,求这两年绿化投资的平均增长率,设这两年绿化投资的平均增长率为x,根据题意所列的方程为.18.学校要组织足球比赛,赛制为单循环形式(每两队之间赛一场),计划安排21场比赛,应邀请多少个球队参赛?设邀请x个球队参赛.根据题意,可列方程为_____.19.在长为100米,宽为80米的矩形场地上修建两条宽度相等且互相垂直的道路,剩余部分进行绿化,要使绿化面积为7125平方米,问道路的宽应为多少米?设道路的宽为x米,则可列方程为___________________.20.已知某工厂经过两年的时间把某种产品从现在的年产量100万台提高到121万台,那么每年的年平均增产百分率为________,按此年平均增长率,预计第四年该工厂的年产量为________。
2019-2020学年北师大版高中数学必修二教师用书:2-1-1直线的倾斜角和斜率 Word版含答
姓名,年级:时间:§1直线与直线的方程1.1 直线的倾斜角和斜率1.直线的确定在平面直角坐标系中,确定直线位置的几何条件是:已知直线上的一个点和这条直线的方向.2.直线的倾斜角(1)定义:在平面直角坐标系中,对于一条与x轴相交的直线l,把x 轴(正方向)按逆时针方向绕着交点旋转到和直线l重合所成的角,叫作直线l的倾斜角,与x轴平行或重合的直线的倾斜角为0°。
(2)倾斜角的范围是[0°,180°).3.直线的斜率(1)定义:倾斜角不是90°的直线,它的倾斜角α的正切值叫作这条直线的斜率,即k=tanα。
(2)斜率与倾斜角的变化规律当倾斜角0°≤α〈90°时,斜率是非负的,倾斜角越大,直线的斜率就越大;当倾斜角90°〈α<180°时,斜率是负的,倾斜角越大,直线的斜率就越大.(3)斜率公式:经过两点P1(x1,y1),P2(x2,y2)的直线的斜率公式是k =错误!(x1≠x2).判断正误(正确的打“√”,错误的打“×”)(1)任一直线都有倾斜角,都存在斜率.()(2)倾斜角为135°的直线的斜率为1.( )(3)若一条直线的倾斜角为α,则它的斜率为k=tanα.( )(4)直线斜率的取值范围是(-∞,+∞).()(5)对于不与x轴垂直的直线,直线的倾斜角越大,斜率就越大.( )[答案] (1)×(2)×(3)×(4)√ (5)×题型一直线的倾斜角【典例1】设直线l过原点,其倾斜角为α,将直线l绕坐标原点沿逆时针方向旋转40°,得直线l1,则直线l1的倾斜角为() A.α+40°B.α-140°C.140°-αD.当0°≤α〈140°时为α+40°,当140°≤α〈180°时为α-140°[思路导引](1)注意根据倾斜角的概念及倾斜角的取值范围解答.(2)求直线的倾斜角主要根据定义来求,其关键是根据题意画出图形,找准倾斜角,有时要根据情况分类讨论.[解析] 根据题意,画出图形,如图所示:因为0°≤α<180°,显然A,B,C未分类讨论,均不全面,不合题意.通过画图(如图所示)可知:当0°≤α〈140°时,l1的倾斜角为α+40°;当140°≤α〈180°时,l1的倾斜角为40°+α-180°=α-140°.故选D。
2017_2018学年高中数学课下能力提升九新人教A版选修2_220180312287
课下能力提升(九)[学业水平达标练]题组1求曲边梯形的面积1.在求直线x=0,x=2,y=0与曲线y=x2所围成的曲边梯形的面积时,把区间[0,2] 等分成n个小区间,则第i个小区间是()i-1 i i i+1A.[ n]B.[,n],n n2i-12i2i2i+1C.[D.,n]n] [ ,n n2.对于由直线x=1,y=0和曲线y=x3所围成的曲边梯形,把区间3等分,则曲边梯形面积的近似值(取每个区间的左端点)是()1 1A. B.9 251 1C. D.27 303.求由直线x=0,x=1,y=0和曲线y=x(x-1)围成的图形的面积.题组2求变速直线运动的路程4.一物体沿直线运动,其速度v(t)=t,这个物体在t=0到t=1这段时间内所走的路程为()1 1 3A. B. C. 1 D.3 2 25.若做变速直线运动的物体v(t)=t2在0≤t≤a内经过的路程为9,求a的值.题组3定积分的计算及性质6.下列等式不成立的是()17.图中阴影部分的面积用定积分表示为()1 1A.∫02x d xB.∫(2x-1)d x1 1C.∫0(2x+1)d xD.∫(1-2x)d x1 18.S1=∫0x d x与S2=∫x2d x的大小关系是()A.S1=S2 B.S21=S2C.S1>S2 D.S1<S21 21 72 29.已知∫x2d x=3,∫x2d x=3,∫01d x=2,则∫(x2+1)d x=________.0 1 010.用定积分的几何意义计算下列定积分:[能力提升综合练]b b b1.若∫a f(x)d x=1,∫a g(x)d x=-3,则∫[2f(x)+g(x)]d x=()a2A.2 B.-3 C.-1 D.462.若f(x)为偶函数,且∫f(x)d x=8,则等于()A.0 B.4 C.8 D.1633.定积分∫(-3)d x等于()1A.-6 B.6 C.-3 D.36.用定积分表示下列曲线围成的平面区域的面积.(1)y=|sin x|,y=0,x=2,x=5;答案题组1求曲边梯形的面积21.解析:选C将区间[0,2]等分为n个小区间后,每个小区间的长度为,第i个小区n2i-12i间为[ n ].,n1 12 22.解析:选A将区间[0,1]三等分为[0,3 ],[ 3 ],[,1 ],各小矩形的面积和为,3 31 1 12 1 9 1S=03·3+( 3·3+(3 )3·==.3 )3 81 93.解:(1)分割将曲边梯形分割成n个小曲边梯形,在区间[0,1]上等间隔地插入n-1个点,将区间[0,1] 等分成n个小区间:1 12 n-1[0,n][n] [ ,1],,,…,,n n3i -1 i记第 i 个区间为[n ](i =1,2,…,n ),其长度为 ,ni i -1 1 Δx = - = . n n n把每个小曲边梯形的面积记为 ΔS 1,ΔS 2,…,ΔS n . (2)近似代替根据题意可得第 i 个小曲边梯形的面积i -1 ΔS i =|f ( n )·Δx|i -1 i -11=|[-1)]·n |·( nni -1 i -1=·(i =1,2,…,n ).n 2(1- n )(3)求和把每个小曲边梯形近似地看作矩形,求出这 n 个小矩形的面积的和ni -1∑i =1|f ( n )·Δx |S n =ni -1i -1∑=·n 2(1- n )i =111=6·(1-n 2),11 从而得到所求图形面积的近似值 S ≈ · . 6 (1-n 2)(4)取极限1即直线 x =0,x =1,y =0和曲线 y =x (x -1)围成的图形的面积为 .6题组 2 求变速直线运动的路程14.解析:选 B 曲线 v (t )=t 与直线 t =0,t =1,横轴围成的三角形面积 S = 即为这段2时间内物体所走的路程.a i-1ai5.解:将区间[0,a]n等分,记第i个区间为,(i=1,2,…,n),此区间n na长为,nnai a ai a a3∑用小矩形面积(n)2·近似代替相应的小曲边梯形的面积,则i=1 (n)2·=·(12n n n3 a3 1 1+22+…+n2)=3(1+n)(1+2n)近似地等于速度曲线v(t)=t2与直线t=0,t=a,t轴围成4的曲边梯形的面积.a 3∴ =9,解得 a =3. 3题组 3 定积分的计算及性质6.解析:选 C 利用定积分的性质可判断 A ,B ,D 成立,C 不成立.222222例如∫0x d x =2,∫02d x =4,∫02xd x =4,但 ∫02xd x ≠∫0xd x ·∫2d x .1117.解析:选 B 根据定积分的几何意义,阴影部分的面积为∫2x d x -∫01d x =∫(2x-1)d x.1 18.解 析:选 C∫0x d x 表示由直线 x =0,x =1,y =x 及 x 轴所围成的图形的面积,而 ∫x 2d x表示的是由曲线 y =x 2与直线 x =0,x =1及 x 轴所围成的图形的面积,因为在 x∈[0,1]内直 线 y =x 在曲线 y =x 2的上方,所以 S 1>S 2.9.解析:由定积分的性质可知2∫(x 2+1)d x22=∫0x 2d x +∫1d x12=∫0x 2d x +∫x 2d x +211 7 14 = + +2= . 3 3 314 答案: 3 10.5× 52 25而 S = = , 24(2)令 y = 4-x 2+2,则 y = 4-x 2+2表示以(0,2)为圆心,2为半径的圆的上半圆,5[能力提升综合练]b b b1.解析:选C∫a [2f(x)+g(x)]d x=2∫a f(x)d x+∫g(x)d x=2×1-3=-1.a2.解析:选D∵被积函数f(x)为偶函数,∴在y轴两侧的函数图象对称,从而对应的曲边梯形面积相等.3.解析:选A3∵∫3d x表示图中阴影部分的面积S=3×2=6,13 3∴∫1 (-3)d x=-∫3d x=-6.14.又y=sin x与y=2x都是奇函数,故所求定积分为0.答案:05.解析:由y=4-x2可知x2+y2=4(y≥0),其图象如图.等于圆心角为60°的弓形CD的面积与矩形ABCD的面积之和.1 π 1 π2πS弓形=××22-×2×2sin=-.32 3 2 3 3S矩形=AB·BC=2 3.2π3答案:+36.解:(1)曲线所围成的平面区域如图所示.6设此面积为S,(2)曲线所围成的平面区域如图所示.7.解:如图,7。
2019-2020学年高中数学北师大版选修4-5教师用书:第1章5 不等式的应用 Word版含答案
§5 不等式的应用1.理解不等式的性质、平均值不等式;掌握不等式的解法.(重点) 2.能利用不等式解决一些实际问题.(难点)教材整理 不等式应用的类型及步骤 阅读教材P 23~P 24,完成下列问题. 1.不等式的应用大致分为两类(1)利用不等式研究函数的性质,求参数的取值范围.(2)实际问题中建立不等式(或函数)模型,解决简单的实际问题. 2.解不等式应用问题的四个步骤 (1)审题,必要时画出示意图.(2)建立不等式模型,即根据题意找出常数量和变量的不等关系.(3)利用不等式的有关知识解题,即将数学模型转化为数学符号或图形符号. (4)作出问题结论.填空:(1)不等式|2x -1|>x 的解集为________.(2)长为2米的木棍,截断围成矩形,其矩形的最大面积为________. (3)若a >b >c 且a +b +c =0,则a 的符号为________,c 的符号为________. 【解析】 (1)|2x -1|>x 等价于2x -1>x 或2x -1<-x , 即x >1或x <13,所以解集为⎩⎨⎧x ⎪⎪⎪⎭⎬⎫x>1或x<13.(2)设矩形的长为x ,宽为y ,则2x +2y =2,即x +y =1,所以面积S =xy ≤⎝ ⎛⎭⎪⎫x +y 22=14,故最大面积为14.(3)由a >b >c 且a +b +c =0知3a >a +b +c =0,即a >0,3c <a +b +c =0,即c <0.【答案】 (1)⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪x>1或x<13 (2)14 (3)正 负预习完成后,请将你的疑问记录,并与“小伙伴们”探讨交流:疑问1: 解惑: 疑问2: 解惑: 疑问3: 解惑:已知0<b <1+3个,则( ) A .-1<a <0 B .0<a <1 C .1<a <3D .3<a <6【精彩点拨】 原不等式――→变形关于x 的方程――→讨论二次项系数满足的条件――→韦达定理结果【自主解答】 由(x -b )2>(ax )2,得x 2(1-a 2)-2bx +b 2>0. 若恰有3个整数解,必须满足1-a 2<0,即a >1或a <-1(舍去). 设不等式对应方程两根为x 1,x 2, 则|x 1-x 2|=+-4x1x2=⎝ ⎛⎭⎪⎫2b 1-a22-4·b21-a2=4a2b2-=2ab a2-1. 又不等式有3个整数解, ∴2<2ab a2-1≤3,解得b ≥3a2-32a .由已知0<b <1+a ,得3a2-32a <1+a ,解得1<a <3, ∴1<a <3. 【答案】 C1.“三个二次”的关系,一元二次不等式,一元二次方程及二次函数的关系,解题要注意相互转化. 2.对二次项系数含有参数的式子要进行讨论.1.不等式|x +3|-|x -1|≤a 2-3a 对任意实数x 恒成立,则实数a 的取值范围为( ) A .(-∞,-1]∪∪ D .(-∞,1]∪2.设甲、乙两地距离为s ,船在流水中在甲地和乙地间来回行驶一次的平均速度为v 1(v 1>0),已知船在静水中的速度为v 2(v 2>0),试比较v 1和v 2的大小.【解】 设水流速度为v (v >0),则船在流水中在甲乙间来回行驶一次的时间t =s v2+v +s v2-v =2sv2v22-v2, ∴平均速度v 1=2s t =v22-v2v2.∵v 1>0,v 2>0,∴v1v2=v22-v2v2v2=v22-v2v22=1-⎝ ⎛⎭⎪⎫v v2<1,∴v 1<v 2.),其他三面围墙要新建,在旧墙对面的新墙上要留一个宽度为2 m 的进出口,如图151所示.已知旧墙的维修费用为45 元/m ,新墙的造价为180 元/m.设利用的旧墙的长度为x (单位:m),修建此矩形场地围墙的总费用为y (单位:元).图151(1)将y 表示为x 的函数;(2)试确定x ,使修建此矩形场地围墙的总费用最小,并求出最小总费用.【精彩点拨】 (1)由题可知总费用由旧墙的维修费及新墙的造价构成,故先弄清旧墙需维修的长度及新墙需建的长度,然后易知y 与x 的关系式;(2)用均值不等式可求总费用的最小值.【自主解答】 (1)设矩形的另一边长为a m ,则y =45x +180(x -2)+180×2a=225x +360a -360. 由已知ax =360,得a =360x ,∴y =225x +3602x-360(x >0).(2)∵x >0,∴225x +3602x ≥2225×3602=10 800,∴y =225x +3602x -360≥10 440,当且仅当225x =3602x时,等号成立.即当x =24 m 时,修建围墙的总费用最小,最小总费用是10 440元.设出变量――→建立数学模型――→定义域利用平均值不等式求最值――→“=”成立的条件结论3.如图152,把一块边长是a 的正方形铁片的各角切去大小相同的小正方形,再把它的边沿着虚线翻折做成一个无盖方底的盒子,问切去的正方形边长是多少时,才能使盒子的容积最大?图152【解】 设切去的正方形边长为x ,无盖方底盒子的容积为V ,则V =(a -2x )2·x ,其中0<x <a 2.又V =14(a -2x )·(a -2x )·4x≤14⎣⎢⎡⎦⎥⎤-+-+4x 33=2a327, 当且仅当a -2x =4x ,即当x =a 6时,不等式取等号,此时V 取最大值2a327.因此当切去的小正方形边长是原来正方形边长的16时,盒子的容积最大.1.函数y =x2+mx +m2对一切x ∈R 都有意义,则实数m 的取值范围是( )【导学号:94910026】A .m >2B .m <2C .m <0或m >2D .0≤m ≤2【解析】 由题意,Δ=m 2-4·m 2≤0,所以0≤m ≤2. 【答案】 D2.已知x >0,y >0,且2x +1y =1,则x +y 的最小值是( )A .6B .4 2C .3+2 2D .4 3【解析】 (x +y )×1=(x +y )⎝ ⎛⎭⎪⎫2x +1y =2+1+2y x +xy ≥3+2 2.当且仅当2y x =xy 时,等号成立.【答案】 C3.已知点A n (n ,a n )为函数y =x2+1的图象上的点,B n (n ,b n )为函数y =x 图象上的点,其中n 为正整数,设c n =a n -b n ,则c n 与c n +1的大小关系为________.【解析】 易得a n =n2+1,b n =n , ∴c n =n2+1-n =1n2+1+n ,c n 随n 的增大而减小,∴c n >c n +1. 【答案】 c n >c n +14.设三角形三边长为3,4,5,P 是三角形内的一点,则P 到这个三角形三边距离乘积的最大值是________. 【解析】 设P 到三角形三边距离分别为h 1,h 2,h 3, 又∵三角形为直角三角形,S =12·3·4=6,∴12h 1·3+12h 2·4+12h 3·5=6, ∴3h 1+4h 2+5h 3=12≥3360h1h2h3, ∴h 1h 2h 3≤6460=1615.【答案】16155.汽车在行驶中,由于惯性作用,刹车后还要继续向前滑行一段距离才能停住,我们称这段距离为“刹车距离”.刹车距离是分析事故的一个重要因素.在一个限速40 km/h 以内的弯道上,甲、乙两辆汽车相向而行,发现情况不对,同时刹车,但还是相碰了,事发后现场测得甲车的刹车距离略超过12 m ,乙车的刹车距离略超过10 m ,又知甲、乙两种车型的刹车距离s (m)与车速x (km/h)之间有如下关系:s 甲=0.1x +0.01x 2,s 乙=0.05x +0.005x 2.问:超速行驶应负主要责任的是谁?【解】 由题意,列出不等式0.1x +0.01x 2>12(x >0), 解得x <-40或x >30.由于x >0,从而可得x 甲>30 km/h.由s 乙>10,得 0.05x +0.005x 2>10(x >0), 解得x >40,即x 乙>40 km/h. 所以超速行驶应负主要责任的是乙车.我还有这些不足:(1) (2) 我的课下提升方案:(1) (2)。
2019-2020学年北师大版高中数学必修二教师用书:1-1-2 简单多面体 Word版含答案
姓名,年级:时间:1.2 简单多面体1.多面体我们把若干个平面多边形围成的几何体叫作多面体.其中棱柱、棱锥、棱台都是简单多面体.2.棱柱(1)棱柱的有关概念两个面互相平行,其余各面都是四边形,并且每相邻两个四边形的公共边都互相平行,这些面围成的几何体叫作棱柱.两个互相平行的面叫作棱柱的底面,其余各面叫作棱柱的侧面,棱柱的侧面是平行四边形.两个面的公共边叫作棱柱的棱,其中两个侧面的公共边叫作棱柱的侧棱,底面多边形与侧面的公共顶点叫作棱柱的顶点.(2)棱柱的分类①按底面多边形的边数:棱柱的底面可以是三角形、四边形、五边形……我们把这样的棱柱分别叫作三棱柱、四棱柱、五棱柱…….②按侧棱与底面是否垂直:3.棱锥(1)定义有一个面是多边形,其余各面是有一个公共顶点的三角形,这些面围成的几何体叫作棱锥.如右图棱锥记作:三棱锥S—ABC。
(2)正棱锥如果棱锥的底面是正多边形,且各侧面全等,就称作正棱锥.(3)分类按底面多边形的边数分:底面是三角形、四边形、五边形……的棱锥分别叫作三棱锥、四棱锥、五棱锥……。
4.棱台(1)定义用一个平行于棱锥底面的平面去截棱锥,底面与截面之间的部分叫作棱台.如右图棱台记作:三棱台ABC—A1B1C1。
(2)正棱台用正棱锥截得的棱台叫作正棱台.(3)分类按底面多边形的边数分:底面是三角形、四边形、五边形……的棱台分别叫作三棱台、四棱台、五棱台……。
1.给出下列图片:观察这些图片中的物体,你能得到什么样的空间几何体?请与下面轮廓图对应,并将它们进行分类.[答案] 图片中展示的几何体有:柱体、锥体、台体、球体四类.可作两种不同的分类:错误!2.正棱锥的侧面是什么样的三角形?正棱台的侧面呢?[答案]正棱锥的侧面是全等的等腰三角形;正棱台的侧面是全等的等腰梯形.3.判断正误(正确的打“√”,错误的打“×”)(1)棱柱的侧面都是平行四边形.()(2)棱锥的侧面为三角形,且所有侧面都有一个公共点.()(3)棱台的侧面有的是平行四边形,有的是梯形.( )(4)棱台的侧棱所在直线均相交于同一点.( )(5)多面体至少有四个面.( )(6)三棱锥也叫作四面体.()[答案](1)√(2)√(3)×(4)√(5)√(6)√题型一棱柱的几何特征【典例1】如图所示的直八棱柱,它的底面边长都是5厘米,侧棱长都是6厘米,回答下列问题:(1)这个八棱柱一共有多少面?它们的形状分别是什么图形?哪些面的形状、面积完全相同?(2)这个八棱柱一共有多少条棱?它们的长度分别是多少?(3)沿一条侧棱将其侧面全部展开成一个平面图形,这个图形是什么形状?面积是多少?[思路导引]棱柱的表面分为底面与侧面,底面可以是任意的平面多边形,而侧面只可以是平行四边形;棱柱的棱分为底棱和侧棱,侧棱相互平行,相对底棱相互平行.[解](1)这个八棱柱一共有10个面,其中上、下两个底面,8个侧面;上、下底面是八边形,侧面都是长方形;上、下底面的形状、面积完全相同,8个侧面的形状、面积完全相同.(2)这个八棱柱一共有24条棱,其中侧棱的长度都是6厘米,其他棱长是5厘米.(3)将其侧面沿一条棱展开,展开图是一个长方形,长为5×8=40(厘米),宽为6厘米,所以面积是40×6=240(平方厘米).[针对训练1] 下列对棱柱的叙述中正确的是()A.由面围成的几何体叫做棱柱B.至少有两个面互相平行,其余各面都是平行四边形的几何体叫做棱柱C.每相邻两个四边形的公共边互相平行的几何体叫做棱柱D.有两个面互相平行,其余各面都是四边形且相邻的两个四边形的公共边互相平行的几何体叫棱柱[解析]由棱柱的定义可知,D正确.[答案]D题型二棱锥、棱台的几何特征【典例2】(1)判断如图所示的物体是不是棱锥,为什么?(2)如图所示的多面体是不是棱台?[思路导引] 根据棱锥与棱台的几何特征判定.[解] (1)该物体不是棱锥.因为棱锥的定义中要求:各侧面有一个公共顶点,但侧面ABC与侧面CDE没有公共顶点,所以该物体不是棱锥.(2)根据棱台的定义,可以得到判断一个多面体是否是棱台的标准有两个:一是共点,二是平行.即各侧棱延长线要交于一点,上、下两个底面要平行,二者缺一不可.据此,图(1)中多面体侧棱延长线不相交于同一点,故不是棱台;图(2)中多面体不是由棱锥截得的,不是棱台;图(3)中多面体虽是由棱锥截得的,但截面与底面不平行,因此也不是棱台.棱锥、棱台结构特征问题的判断方法(1)举反例法结合棱锥、棱台的定义举反例直接说明关于棱锥、棱台结构特征的某些说法不正确.(2)直接法[针对训练2]有下列三个命题:①用一个平面去截棱锥,棱锥底面和截面之间的部分是棱台;②两个面平行且相似,其余各面都是梯形的多面体是棱台;③有两个面互相平行,其余四个面都是等腰梯形的六面体是棱台.其中正确的有( )A.0个B.1个C.2个D.3个[解析] ①中的平面不一定平行于底面,故①错;②③可用反例去检验,如图所示,侧棱延长线不能相交于一点,故②③错.故选A.[答案]A题型三多面体的识别和判断【典例3】如图,已知长方体ABCD-A1B1C1D1。
2019-2020学年高中数学北师大版必修1练习:2.2.1函数概念-附答案
2.1函数概念课后篇巩固提升A组基础巩固1.对于函数y=f(x),下列命题正确的个数为()①y是x的函数;②对于不同的x值,y值也不同;③f(a)表示当x=a时函数f(x)的值,是一个常量;④f(x)一定可以用一个具体的式子表示.A.1B.2C.3D.4解析:①③正确.对于②,不同的x值可对应同一个y值,如y=x2;f(x)不一定是函数关系式,也可以用图像或表格等形式来体现.答案:B2.函数f(x)=--的定义域是()A.[2,3)B.(3,+∞)C.[2,3)∪(3,+∞)D.(2,3)∪(3,+∞)解析:由--解得x≥2,且x≠3.故函数f(x)的定义域为[2,3)∪(3,+∞).答案:C3.下列各组函数中表示同一函数的是()A.f(x)=,g(x)=()2B.f(x)=--,g(x)=x+1C.f(x)=|x|,g(x)=D.f(x)=-,g(x)=-解析:对于A选项,f(x)的定义域为R,g(x)的定义域为[0,+∞),∴不是同一函数.对于B选项,f(x)的定义域为{x|x≠1},g(x)的定义域为R,∴不是同一函数.对于C选项,f(x)的定义域为R,g(x)的定义域为R,且两函数解析式化简后为同一解析式,∴是同一函数.对于D选项,f(x)的定义域为[1,+∞),g(x)的定义域为(-∞,-1]∪[1,+∞),∴不是同一函数.故选C.答案:C4.下列式子不能表示函数y=f(x)的是()A.x=y2+1B.y=2x2+1C.x-2y=6D.x=解析:B中,y=2x2+1是二次函数;C中,y=x-3;D中,y=x2,x≥0;A中,y=±-,y不是x的函数.答案:A5.已知f(x)=x2-3x,且f(a)=4,则实数a等于()A.4B.-1C.4或-1D.-4或1解析:由已知可得a2-3a=4,即a2-3a-4=0,解得a=4或a=-1.答案:C6.下表表示y是x解析:∵5<6≤10,∴6对应的函数值是3.答案:37.函数f(x)=x2-2x,x∈{-2,-1,0,1}的值域为.解析:因为f(-2)=(-2)2-(-2)=6,f(-1)=(-1)2-2×(-1)=3,f(0)=02-2×0=0,f(1)=12-2×1=-1,所以f(x)的值域为{6,3,0,-1}.答案:{6,3,0,-1}8.已知函数f(x)=.(1)求f(2);(2)若f(m)=2,求m的值.解:(1)f(2)=.(2)∵f(m)==2,∴m=-3.9.求下列函数的定义域:(1)f(x)=-;(2)f(x)=--+2;(3)f(x)=-.解:(1)当x-|x|≠0,即|x|≠x,也即x<0时,f(x)有意义,故函数f(x)的定义域为(-∞,0).(2)要使函数有意义,应满足--解得1≤x≤4.故函数f(x)的定义域为[1,4].(3)要使函数f(x)有意义,应满足-解得x≤1,且x≠-1.故函数f(x)的定义域为(-∞,-1)∪(-1,1].10.求下列函数的值域:(1)y=1-;(2)y=;(3)f(x)=3-2x,x∈[0,2].解:(1)∵函数的定义域为{x|x≥0},∴≥0.∴1-≤1.∴函数y=1-的值域为(-∞,1].(2)∵y==2-,且其定义域为{x|x≠-1},∴≠0,即y≠2.∴函数y=的值域为{y|y∈R,且y≠2}.(3)∵0≤x≤2,∴0≤2x≤4.∴-1≤3-2x≤3,即-1≤f(x)≤3,故函数f(x)的值域是[-1,3].B组能力提升1.如图所示,可表示函数y=f(x)的图像的是()解析:由函数定义可知D正确.答案:D2.已知g(x)=1-2x,f(g(x))=-(x≠0),则f等于()A.1B.3C.15D.30解析:由已知1-2x=,∴x=,∴f -=15,故选C.答案:C3.若函数y=f(x+2)的定义域为[0,1],则函数y=f(x)的定义域为()A.[2,3]B.[0,1]C.[-2,-1]D.[0,-1]解析:解决此类问题的关键要弄清函数定义域是指x的变化范围,而借助的理论依据是y=f(x)中对应关系f所施加的对象取值是一致的.对于本题函数y=f(x)的定义域其实为函数y=f(x+2)中“x+2”的整体范围,因此可得y=f(x)的定义域为[2,3].答案:A4.导学号85104026(信息题)若一系列函数的关系式相同,值域相同,但定义域不同,则称这些函数为“孪生函数”,那么函数关系式为y=2x2-1,值域为{1,7}的“孪生函数”共有()A.10个B.9个C.8个D.4个解析:由2x2-1=1,得x=±1;由2x2-1=7,得x=±2.因此当y=2x2-1的定义域为{-2,-1},{-1,2},{-2,1},{1,2},{-2,2,1},{-2,2,-1},{2,-1,1},{-2,-1,1},{-1,1,2,-2}时,函数值域均为{1,7}.答案:B5.函数f(x)=--的值域为.解析:由--解得x=2 018.所以函数的定义域为{2 018}.显然f(2 018)=0+0=0.所以函数的值域为{0}.答案:{0}6.有下列三个命题:①y=|x|,x∈{-2,-1,0,1,2,3},则它的值域是{0,1,4,9};②y=--,则它的值域为R;③y=-,则它的值域为{y|y≥0}.其中正确命题的序号是.解析:对于①,当x=-2,-1,0,1,2,3时,|x|=2,1,0,1,2,3.因此函数的值域为{0,1,2,3}.故①不正确.对于②,∵y=--=x+1(x≠1),∴x=y-1≠1,∴y≠2.即值域为(-∞,2)∪(2,+∞).故②不正确.对于③,∵y=-≥0,∴其值域为[0,+∞),故③正确.答案:③7.已知函数f(x)=x2+x-1.(1)求f(2),f;(2)若f(x)=5,求x的值.解:(1)f(2)=22+2-1=5,f-1=-.(2)∵f(x)=x2+x-1=5,∴x2+x-6=0,∴x=2或x=-3.8.已知函数f(x)=.(1)求f(1),f(2)+f的值;(2)证明:f(x)+f等于定值;(3)求f(1)+f(2)+f(3)+…+f(2 018)+f+f+…+f的值.(1)解:f(1)=;f(2)=,f,所以f(2)+f=1.(2)证明:f,所以f(x)+f=1,为定值.(3)解:由(2)知,f(x)+f=1.所以f(1)+f(2)+f(3)+…+f(2 018)+f+f+…+f=f(1)+f(2)+f+f(3)+f+…+f(2 018)+f=….。
2019—2020年新课标北师大版高中数学选修1-1全册模块质量试题及答案答案解析.docx
(新课标)2017-2018学年北师大版高中数学选修1-1模块质量检测一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.与命题:“若a ∈P 则b ∉P ”等价的命题是( ) A .若a ∉P ,则b ∉P B .若b ∉P ,则a ∈P C .若a ∉P ,则b ∈PD .若b ∈P ,则a ∉P解析: 原命题的逆否命题是“若b ∈P ,则a ∉P ”. 答案: D2.条件甲:“a 、b 、c 成等差数列”是条件乙:“ab +cb =2”的( )A .必要不充分条件B .充分不必要条件C .充要条件D .既不充分也不必要条件解析: 甲⇒/乙,如a =-1,b =0,c =1; 乙⇒甲,故甲是乙的必要不充分条件. 答案: A3.曲线f(x)=x 3+x -2在点P 0处的切线平行于直线y =4x -1,则点P 0的坐标为( ) A .(1,0)B .(2,8)C .(1,0)和(-1,-4)D .(2,8)和(-1,-4)解析: f ′(x 0)=3x 20+1=4, ∴x 0=±1. 答案: C4.以x 24-y 212=-1的焦点为顶点,顶点为焦点的椭圆方程为( )A.x 216+y 212=1 B .x 212+y 216=1C.x 216+y 24=1 D .x 24+y 216=1解析: 双曲线x 24-y 212=-1,即x 212-y 24=1的焦点为(0,±4),顶点为(0,±23).所以对椭圆y 2a 2+x 2b 2=1而言,a 2=16,c 2=12.∴b 2=4,因此方程为y 216+x 24=1.答案: D 5.函数y =4x 2+1x的单调递增区间为( ) A .(0,+∞)B .(-∞,1) C.⎝ ⎛⎭⎪⎫12,+∞ D .(1,+∞)解析: 由已知定义域为{x|x ≠0}, y ′=8x -1x 2,令y ′>0得x >12,故选C.答案: C6.若k 可以取任意实数,则方程x 2+ky 2=1所表示的曲线不可能是( ) A .直线 B .圆 C .椭圆或双曲线D .抛物线解析: 本题主要考查圆锥曲线的一般形式:Ax 2+By 2=c 所表示的圆锥曲线问题,对于k =0,1及k >0且k ≠1,或k <0,分别讨论可知:方程x 2+ky 2=1不可能表示抛物线.答案: D7.函数f(x)=-13x 3+x 2在区间[0,4]上的最大值是( )A .0B .-163C.43D .163解析: f ′(x)=2x -x 2,令f ′(x)=0,解得x =0或2. 又∵f(0)=0,f(2)=43,f(4)=-163,∴函数f(x)在[0,4]上的最大值为43.答案: C8.若椭圆x 2a 2+y 2b 2=1(a >b >0)的离心率为32,则双曲线x 2a 2-y 2b 2=1的离心率为( )A.54 B .52C.32D .54解析: 因为椭圆x 2a 2+y 2b 2=1的离心率e 1=32,所以1-b 2a 2=e 21=34,即b 2a 2=14,而在双曲线x 2a 2-y 2b2=1中,设离心率为e 2,则e 22=1+b 2a 2=1+14=54,所以e 2=52.故选B. 答案: B9.已知f(2)=-2,f ′(2)=g(2)=1,g ′(2)=2,则函数 g (x )f (x )(f(x)≠0)在x =2处的导数为( )A .-54B .54C .-5D .5解析: 令h(x)=g (x )f (x ),则h ′(x)=g ′(x )f (x )-f ′(x )g (x )f 2(x ),∴h ′(2)=-54.故选A.答案: A10.已知命题p :|x -1|≥2,命题q :x ∈Z ,如果p 且q 、非q 同时为假,则满足条件的x 为( )A .{x|x ≤-1或x ≥3,x ∉Z}B .{x|-1≤x ≤3,x ∉Z}C .{-1,0,1,2,3}D .{0,1,2}解析: ∵p 且q 假,非q 为假, ∴p 假q 真,排除A ,B ,p 为假, 即|x -1|<2,∴-1<x <3且x ∈Z.∴x =0,1,2. 答案: D11.中心在原点,对称轴为坐标轴的双曲线C 的两条渐近线与圆x 2+(y -2)2=1都相切,则双曲线C 的离心率是( )A.3或62B .2或 3C.233或2D .233或62解析: 设圆的两条过原点的切线方程为y =kx. 由2k 2+1=1得k =±3.当ba =3时,e =ca=1+b 2a 2=2.当ab =3时,e =ca=1+b 2a 2=233.答案: C12.设f(x),g(x)分别是定义在R 上的奇函数和偶函数.当x <0时,f ′(x)g(x)+f(x)g ′(x)>0,且g(-3)=0,则不等式f(x)g(x)<0的解集是( )A .(-3,0)∪(3,+∞)B .(-3,0)∪(0,3)C .(-∞,-3)∪(3,+∞)D .(-∞,-3)∪(0,3)解析: f(x)为奇函数,g(x)为偶函数,则f(x)g(x)是奇函数.又当x <0时,f ′(x)g(x)+f(x)g ′(x)>0,即[f(x)g(x)]′>0,所以F(x)=f(x)·g(x)在(-∞,0)上是增函数,又g(-3)=g(3)=0,故F(-3)=F(3)=0.所以不等式f(x)g(x)<0的解集为(-∞,-3)∪(0,3). 答案: D二、填空题(本大题共4小题,每小题4分,共16分.把答案填在题中横线上)13.曲线y =13x 3-2在点⎝⎛⎭⎪⎫-1,-73处切线的倾斜角是________.解析: y ′=x 2,则曲线在x =-1处的导数为1,所以tan α=1,又因为α是切线的倾斜角,所以α=45°.答案: 45°14.已知双曲线的离心率为2,焦点是(-4,0)(4,0),则双曲线的方程为________. 解析: 由题意知c =4,e =ca =2,故a =2,所以b 2=c 2-a 2=12, 双曲线的方程为x 24-y 212=1.答案:x 24-y 212=1 15.函数f(x)=x +2cos x 在区间⎣⎢⎡⎦⎥⎤-π2,0上的最小值是________.解析: ∵f ′(x)=1-2sin x ,令f ′(x)>0,∴sin x <12.当x ∈⎣⎢⎡⎦⎥⎤-π2,0时,sin x <0<12,即f ′(x)在⎣⎢⎡⎦⎥⎤-π2,0上恒大于0,∴f(x)在区间⎣⎢⎡⎦⎥⎤-π2,0上为增函数,∴f(x)min =f ⎝ ⎛⎭⎪⎫-π2=-π2.答案: -π216.已知:①命题“若xy =1,则x ,y 互为倒数”的逆命题; ②命题“所有模相等的向量相等”的否定;③命题“若m ≤1,则x 2-2x +m =0有实根”的逆否命题; ④命题“若A ∩B =A ,则AB ”的逆否命题.其中能构成真命题的是________(填上你认为正确的命题的序号). 解析: ①逆命题:若x ,y 互为倒数,则xy =1.是真命题. ②的否定是:“存在模相等的向量不相等”.是真命题. 如,a =(1,1),b =(-1,1)有|a|=|b|=2,但a ≠b.③命题“若m ≤1,则x 2-2x +m =0”是真命题.这是因为当m <0时Δ=(-2)2-4m =4-4m >0恒成立.故方程有根.所以其逆否命题也是真命题.④若A ∩B =A ,则A ⊆B ,故原命题是假命题,因此其逆否命题也是假命题. 答案: ①②③三、解答题(本大题共6小题,共74分.解答时应写出必要的文字说明、证明过程或演算步骤)17.(12分)已知p :1≤x ≤2,q :a ≤x ≤a +2,且¬p 是¬q 的必要不充分条件,求实数a 的取值范围.解析: ∵¬p 是¬q 的必要不充分条件, ∴q 是p 的充分不必要条件.∴{x|1≤x ≤2}{x|a ≤x ≤a +2},∴⎩⎪⎨⎪⎧a ≤1,a +2≥2,∴0≤a ≤1.18.(12分)已知命题p :方程x 22m -y 2m -1=1表示焦点在y 轴上的椭圆,命题q :双曲线y 25-x 2m=1的离心率e ∈(1,2),若p ∨q 为真命题,p ∧q 为假命题,求实数m 的取值范围. 解析: p :0<2m <1-m ⇒0<m <13,q :1<5+m5<2⇒0<m <15, p 且q 为假,p 或q 为真⇒p 假q 真,或p 真q 假.p 假q 真⇒⎩⎪⎨⎪⎧m ≤0或m ≥130<m <15⇒13≤m <15, q 假p 真⇒⎩⎪⎨⎪⎧0<m <13m ≤0或m ≥15m ∈∅.综上可知13≤m <15.19.(12分)已知动圆过定点⎝ ⎛⎭⎪⎫p 2,0,与直线x =-p2相切,其中p >0,求动圆圆心的轨迹方程.解析: 如图,设M 为动圆圆心,⎝ ⎛⎭⎪⎫p 2,0记为点F.过点M 作直线x =-p2的垂线,垂足为N ,由题意知|MF|=|MN|,即动点M 到定点F与到定直线x =-p2的距离相等,由拋物线的定义,知点M 的轨迹为拋物线,其中F ⎝ ⎛⎭⎪⎫p 2,0为其焦点,x =-p2为其准线,所以动圆圆心的轨迹方程为y 2=2px(p >0).20.(12分)已知函数f(x)=2ax 3+bx 2-6x 在x =±1处取得极值. (1)求f(x)的解析式,并讨论f(1)和f(-1)是函数f(x)的极大值还是极小值; (2)试求函数f(x)在x =-2处的切线方程. 解析: (1)f ′(x)=6ax 2+2bx -6, 因为f(x)在x =±1处取得极值,所以x =±1是方程3ax 2+bx -3=0的两个实根.所以⎩⎪⎨⎪⎧-b3a =0,-33a =-1,解得⎩⎪⎨⎪⎧a =1,b =0.所以f(x)=2x 3-6x ,f ′(x)=6x 2-6.令f ′(x)>0,得x >1或x <-1; 令f ′(x)<0,得-1<x <1.所以f(-1)是函数f(x)的极大值,f(1)是函数f(x)的极小值.(2)由(1)得f(-2)=-4,f ′(-2)=18,即f(x)在x =-2处的切线的斜率为18. 所以所求切线方程为y -(-4)=18[x -(-2)], 即18x -y +32=0. 21.(12分)设函数f(x)=x 3-92x 2+6x -a. (1)对于任意实数x ,f ′(x)≥m 恒成立,求m 的最大值; (2)若方程f(x)=0有且仅有一个实根,求a 的取值范围. 解析: (1)f ′(x)=3x 2-9x +6=3(x -1)(x -2).因为x ∈(-∞,+∞),f ′(x)≥m ,即3x 2-9x +(6-m)≥0恒成立,所以Δ=81-12(6-m)≤0,解得m ≤-34,即m 的最大值为-34.(2)因为当x <1时,f ′(x)>0;当1<x <2时,f ′(x)<0; 当x >2时,f ′(x)>0.所以当x =1时,f(x)取极大值f(1)=52-a ;当x =2时,f(x)取极小值f(2)=2-a ,故当f(2)>0或f(1)<0时,f(x)=0仅有一个实根. 解得a <2或a >52.22.(14分)某椭圆的中心是原点,它的短轴长为22,一个焦点为F(c,0)(c >0),x轴上有一点A ⎝ ⎛⎭⎪⎫a 2c ,0且满足|OF|=2|FA|,其中a 为长半轴长,过点A 的直线与该椭圆相交于P ,Q 两点.求:(1)该椭圆的方程及离心率;(2)若OP →·OQ →=0,求直线PQ 的方程.解析: (1)依题意可设椭圆的方程为x 2a 2+y 22=1(a >2),由已知得⎩⎪⎨⎪⎧a 2-c 2=2,c =2⎝ ⎛⎭⎪⎫a 2c -c ,解得⎩⎪⎨⎪⎧a =6,c =2.所以椭圆的方程为x 26+y 22=1,离心率e =63.(2)由(1)可得点A(3,0),由题意知直线PQ 的斜率存在,设为k , 则直线PQ 的方程为y =k(x -3),由方程组⎩⎪⎨⎪⎧x 26+y22=1,y =k (x -3),得(3k 2+1)x 2-18k 2x +27k 2-6=0,依题意知,Δ=12(2-3k 2)>0,得-63<k <63. 设P(x 1,y 1),Q(x 2,y 2),则x 1+x 2=18k 23k 2+1,x 1x 2=27k 2-63k 2+1,从而得y 1=k(x 1-3),y 2=k(x 2-3), 于是y 1y 2=k 2(x 1-3)(x 2-3).因为OP →·OQ →=0,所以x 1x 2+y 1y 2=0, 解得5k 2=1,从而k =±55∈⎝ ⎛⎭⎪⎪⎫-63,63,所以直线PQ 的方程为x -5y -3=0或x +5y -3=0.。
2019-2020学年北师大版高中数学必修二教师用书:1-5-1-1直线与平面平行的判定 Word
姓名,年级:时间:§5平行关系5.1 平行关系的判定一直线与平面平行的判定直线和平面平行的判定定理判断正误(正确的打“√”,错误的打“×”)(1)如果一条直线不在平面内,则这条直线就与这个平面平行.( )(2)过直线外一点,可以作无数个平面与这条直线平行.( )(3)如果一条直线与平面平行,则它与平面内的任何直线平行.( )[答案](1)×(2)√(3)×题型一线面平行的判定定理的理解【典例1】下列说法中正确的是( )A.若直线l平行于平面α内的无数条直线,则l∥αB.若直线a在平面α外,则a∥αC.若直线a∥b,bα,则a∥αD.若直线a∥b,bα,那么直线a平行于平面α内的无数条直线[思路导引]直线在平面外包括直线与平面平行和直线与平面相交两种情况.直线与平面内无数条直线平行,直线不一定与平面平行,有可能在平面内.[解析]选项A中,直线lα时l与α不平行;直线在平面外包括直线与平面平行和直线与平面相交两种情况,所以选项B不正确;选项C中直线a可能在平面α内;选项D正确.故选D。
[答案] D线面平行判定定理应用的误区(1)条件不全,最易忘记的条件是aα与bα.(2)不能利用题目条件顺利地找到两平行直线.[针对训练1]有以下三种说法,其中正确的是( )①若直线a与平面α相交,则α内不存在与a平行的直线;②若直线b∥平面α,直线a与直线b垂直,则直线a不可能与α平行;③直线a,b满足a∥α,且bα,则a平行于经过b的任何平面.A.①②B.①③C.②③D.①[解析] ①正确.②错误,反例如图(1)所示.③错误,反例如图(2)所示,a,b可能在同一平面内.故选D.[答案] D题型二直线与平面平行的判定【典例2】如图,M,N分别是底面为矩形的四棱锥P-ABCD的棱AB,PC 的中点,求证:MN∥平面PAD。
[思路导引] 在平面PAD中找一条与MN平行的直线是本题的关键.[证明]如图所示,取PD的中点E,连接AE,NE,因为N是PC的中点,所以NE∥CD,NE=错误!CD。
高中北师大版新旧数学教科书习题综合难度比较研究——以北师大201
大(17%),概念水平增幅最小(6%).可见在数学认
江
,2009(35) 0
2020年第4期
中学数学月刊
• 49 *
(2)研究工具
5, =1,2,…).其中d,表示第k个难度因素上的加
本文借鉴王建磐教授与鲍建生教授的综合难度
权平均值,表示第,个难度因素上第7个水平的
国际比较模型,并结合实际,从情境、数学认知、运 算、推理和知识综合五个难度因素入手分析习题难 度利用下面公式计算每组题目在每个因素上的
象能力.美国GMH教材中的Real-Worid Link部分,
将知识和生活、文化等相联系,学会用数学的眼光看
世界.教材编写还可考虑将情境和习题相结合,增加 知识的应用性和趣味性.
5.2 设置问题串,引导学生深度思考
美 GMH 材 知 标上
“
”和
“理解”水平,注重用基本概念进行转化思考和解决
质上 , 学 学的
22%
1 . 29
13
30%
1 . 30
科学情境
2
3%
学认知
操作 概念 领会
24
47%
4
8%
2. 22 4%
2. 86
17
39%
分析 无运算
12
23%
4
8%
14
31%
1
2%
数值运算
12
23%
运算
2. 88
简单符号运算
21
41 %
15
34%
2. 80
20
45%
复杂符号运算
14
28%
造成学生思维的脱节.
2019—2020年新课标北师大版高中数学选修1-1全册质量试题试题及答案答案解析.docx
(新课标)2017-2018学年北师大版高中数学选修1-1高二数学选修1-1质量检测试题(卷)本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。
第Ⅰ卷1至2页。
第Ⅱ卷3至6页。
考试结束后. 只将第Ⅱ卷和答题卡一并交回。
第Ⅰ卷(选择题共60分)注意事项:1.答第Ⅰ卷前,考生务必将姓名、准考号、考试科目用铅笔涂写在答题卡上。
2.每小题选出答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案,不能答在试题卷上。
一、选择题:本大题共12个小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1. 顶点在原点,且过点(4,4)-的抛物线的标准方程是A.24y x=- B.24x y=C.24y x=-或24x y= D.24y x=或24x y=-2. 椭圆的长轴长为10,其焦点到中心的距离为4,则这个椭圆的标准方程为A.22110084x y+= B.221259x y+=C.22110084x y+=或22184100x y+= D.221259x y+=或221259y x+=3.如果方程22143x y m m +=--表示焦点在y 轴上的椭圆,则m 的取值范围是 A.34m << B. 72m >C. 732m <<D.742m << 4.“5,12k k Z αππ=+∈”是“1sin 22α=”的 A.充分不必要条件 B. 必要不充分条件C.充要条件D. 既不充分又不必要条件5. 已知函数2sin y x x =,则y '=A. 2sin x xB.2cos x x C. 22sin cos x x x x + D. 22cos sin x x x x +6. 已知(2)2f =-,(2)(2)1f g '==,(2)2g '=,则函数()()g x f x 在2x =处的导数值为A. 54-B.54C.5-D. 5 7. 已知两定点1(5,0)F ,2(5,0)F -,曲线上的点P 到1F 、2F 的距离之差的绝对值是6,则该曲线的方程为 A.221916x y -= B.221169x y -= C.2212536x y -= D. 2212536y x -= 8.设P 是椭圆221169x y +=上的点,1F 、2F 是椭圆的两个焦点,则12PF PF +的值为A. 10B. 8C. 6D. 49.命题“a, b 都是偶数,则a 与b 的和是偶数”的逆否命题是A. a 与b 的和是偶数,则a, b 都是偶数B. a 与b 的和不是偶数,则a, b 都不是偶数C. a, b 不都是偶数,则a 与b 的和不是偶数D. a 与b 的和不是偶数,则a, b 不都是偶数10 .若曲线()y f x =在点00(,())x f x 处的 切线方程为210x y +-=,则A. 00()f x '>B. 00()f x '<C. 00()f x '=D. 0()f x '不存在11.以下有四种说法,其中正确说法的个数为:(1)“m 是实数”是“m 是有理数”的充分不必要条件;(2)“a b >”是“22a b >”的充要条件; (3) “3x =”是“2230x x --=”的必要不充分条件; (4)“A B B =”是“A φ=”的必要不充分条件.A. 0个B. 1个C. 2个D. 3个12. 双曲线22221x y a b-=(0a >,0b >)的左、右焦点分别是12F F ,,过1F 作倾斜角为30的直线交双曲线右支于M 点,若2MF 垂直于x 轴,则双曲线的离心率为A .6B .5C .3D .2二、填空题:本大题共6小题,每小题5分,共30分。
2019-2020最新高中数学第2章几个重要的不等式2-1柯西不等式学案北师大版选修4_5(1)
5.函数y=+2的最大值是( )
A.B.
C.3D.5
【解析】 根据柯西不等式,知y=1×+2×≤×=.
【答案】 B
二、填空题
6.函数y=+的最大值为__________.
【解析】 由,非负且()2+()2=3,
所以+≤
==.
【答案】
7.设x,y为正数,且x+2y=8,则+的最小值为__________.
∴a2+b2+c2≥.
【答案】 C
3.已知a2+b2+c2=1,x2+y2+z2=1,t=ax+by+cz,则t的取值范围是( )
A.(0,1)B.(-1,1)
C.(-1,0)D.[-1,1]
【解析】 设α=(a,b,c),β=(x,y,z).
∵|α|==1,|β|==1,
由|α||β|≥|α·β|,得|t|≤1.
【解】 由柯西不等式得,
(2b2+3c2+6d2)≥(b+c+d)2,
即2b2+3c2+6d2≥(b+c+d)2.
由条件可得,5-a2≥(3-a)2,
解得1≤a≤2,
所以实数a的取值范围是[1,2].
[探究共研型]
利用柯西不等式求最值
探究1 柯西不等式(a2+b2)(c2+d2)≥(ac+bd)2是如何证明的?
【解析】 函数的定义域为[5,6],且y>0,
y=3+4
≤×=5,
当且仅当3=4,
即x=时取等号.
∴ymax=5.
【答案】 [5,6] 5
4.△ABC的三边长为a,b,c,其外接圆半径为R.
求证:(a2+b2+c2)≥36R2.
【证明】 由三角形中的正弦定理得:
sin A=,所以=,
同理=,=,
2019-2020学年北师大版高中数学必修二教师用书:1-3 三视图 Word版含答案
姓名,年级:时间:§3三视图1.由基本几何体形成的组合体有两种基本的组成形式:(1)将基本几何体拼接成组合体;(2)从基本几何体中切掉或挖掉部分构成组合体.2.绘制三视图时的注意点(1)主、俯视图长对正;主、左视图高平齐;俯、左视图宽相等,前后对应.(2)在三视图中,需要画出所有的轮廓线,其中,视线所见的轮廓线画实线,看不见的轮廓线画虚线.(3)同一物体放置的位置不同,所画的三视图可能不同.(4)清楚简单组合体是由哪几个基本几何体组成的,并注意它们的组成方式,特别是它们的交线位置.判断正误(正确的打“√”,错误的打“×”)(1)任何几何体的三视图都与其摆放的位置有关.( )(2)任何几何体的三视图都与其摆放的位置无关.()(3)有的几何体的三视图与其摆放的位置无关.()(4)正方体的三视图一定是三个全等的正方形.( )[答案] (1)×(2)×(3)√(4)×题型一简单几何体的三视图【典例1】画出如图所示几何体的三视图.[思路导引]图①为正六棱柱,可按棱柱的画法画出,图②为一个圆锥与一个圆台的组合体,按圆锥、圆台的三视图画出它们的组合形状.[解] 按正六棱柱、圆锥、圆台的三视图画法如图所示.(1)画三视图时,首先确定主视、左视、俯视的方向,同一物体放置的位置不同,所画的三视图可能不同.一般主视方向确定了,则左视与俯视的方向也就确定了,在有的问题里,直接给出主视图,也是确定主视方向的一个方法.(2)一个物体的三视图的排列规则是:俯视图放在主视图的下面,左视图放在主视图的右面.[针对训练1]如下图所示,图(1)是底面边长和侧棱长都是2 cm 的四棱锥,图(2)是上、下底面半径分别为1 cm,2 cm,高为2 cm的圆台,分别画出它们的三视图.[解](1)四棱锥的三视图如下图所示:(2)圆台的三视图如下图所示:题型二简单组合体的三视图【典例2】画出如图所示的几何体的三视图.[思路导引]画三视图之前,先把几何体的结构弄清楚,图为两个圆柱的组合体.[解] 如图所示.画简单组合体的三视图时要注意的问题(1)分清简单组合体是由哪些简单几何体组成的,是组合型还是切挖型.(2)先画主体部分,后画次要部分.(3)几个视图要配合着画.一般是先画主视图再确定左视图和俯视图.(4)组合体的各部分之间要画出分界线.[针对训练2]画出如图所示几何体的三视图.[解] 如图所示(1)(2)题型三由三视图还原成实物图【典例3】如图是一个物体的三视图,则此三视图所描述的物体是下列哪个几何体( )[思路导引](1)通过主视图和左视图确定是柱体、锥体还是台体.若主视图和左视图为矩形,则原几何体为柱体;若主视图和左视图为等腰三角形,则原几何体为锥体;若主视图和左视图为等腰梯形,则原几何体为台体.(2)通过俯视图确定是多面体还是旋转体,若俯视图为多边形,则原几何体为多面体;若俯视图为圆,则原几何体为旋转体.[解析] 由俯视图可知该几何体为旋转体,由主视图、左视图、俯视图可知该几何体是由圆锥、圆柱组合而成.[答案] D由三视图还原成实物图时,一般先由俯视图确定底面,由主视图与左视图确定几何体的高及位置,同时想象视图中每一部分对应实物部分的形状.[针对训练3]根据三视图(如图所示)想象物体原形,指出其结构特征,并画出物体的实物草图.[解]由俯视图知,该几何体的底面是一直角梯形;再由主视图和左视图知,该几何体是一四棱锥,且有一侧棱与底面垂直,所以该几何体如图所示.1.如图,甲、乙、丙是三个立体图形的三视图,与甲、乙、丙相对应的标号是()①长方体;②圆锥;③三棱锥;④圆柱.A.③①② B.①②③ C.③②④ D.④②③[答案] D2.已知三棱柱ABC—A1B1C1如右图所示,以BCC1B1的前面为正前方,画出的三视图正确的是( )[解析]主视图是矩形,左视图是三角形,俯视图是矩形,中间有一条线.[答案] A3.已知棱长为1的正方体的俯视图是一个面积为1的正方形,则该正方体的主视图的面积不可能等于()A.1 B. 2 C。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2019-2020年高中数学课下能力提升九北师大版一、选择题1.想泡茶喝,当时的情况是:火已经生起了,凉水和茶叶也有了,开水没有,开水壶要洗,茶壶和茶杯要洗,下面给出了四种不同形式的算法过程,你认为最好的一种算法是( )A .洗开水壶,灌水,烧水,在等待水开时,洗茶壶、茶杯、拿茶叶,等水开了后泡茶喝B .洗开水壶,洗茶壶和茶杯,拿茶叶,一切就绪后,灌水,烧水,坐等水开后泡茶喝C .洗开水壶,灌水,烧水,坐等水开,等水开后,再拿茶叶,洗茶壶、茶杯,泡茶喝D .洗开水壶,灌水,烧水,再拿茶叶,坐等水开,洗茶壶、茶杯,泡茶喝3.下列叙述能称为算法的个数为( )①植树需要运苗、挖坑、栽苗、浇水这些步骤.②顺序进行下列运算:1+1=2,2+1=3,3+1=4,…,99+1=100.③从枣庄乘火车到徐州,从徐州乘飞机到广州.④3x >x +1.⑤求所有能被3整除的正数,即3,6,9,12,….A .2B .3C .4D .54.下列所给问题中:①二分法解方程x 2-3=0(精确到0.01);②解方程⎩⎪⎨⎪⎧ x +y +5=0,x -y +3=0;③求半径为2的球的体积;④判断y =x 2在R 上的单调性.其中可以设计一个算法求解的个数是( )A .1B .2C .3D .45.已知算法:1.输入n ;2.判断n 是否是2,若n =2,则n 满足条件;若n >2,则执行第3步;3.依次检验从2到n -1的整数能不能整除n ,若不能整除n ,满足条件.上述满足条件的数是( )A .质数B .奇数C .偶数D .4的倍数二、填空题6.下列关于算法的说法,正确的个数有________.①求解某一类问题的算法是唯一的;②算法必须在有限步操作之后停止;③算法的每一步操作必须是明确的,不能有歧义或模糊;④算法执行后一定产生确定的结果.7.给出下列算法:1.输入x 的值.2.当x >4时,计算y =x +2;否则执行下一步.3.计算y =4-x .4.输出y .当输入x =10时,输出y =__________.8.已知直角三角形的两条直角边长分别为a ,b ,写出求斜边c 的算法步骤.1.________________________________________________________________________;2.________________________________________________________________________;3.________________________________________________________________________.三、解答题9.请设计求18的所有正约数的算法.10.已知函数y =⎩⎪⎨⎪⎧ 2x -1 x ≤-,log 2x +-1<x ,x 2 x,试设计一个算法,输入x 的值,求对应的函数值.1. 解析:选A 解决一个问题可以有多种算法,可以选择其中最优、最简单、步骤尽可能少的算法.选项中的四种算法中都符合题意,但算法A 运用了统筹法原理,因此这个算法要比其余的三种算法科学.2. 解析:选C 算法指的是解决一类问题的方法或步骤,选项C只是一个纯数学问题,没有解问题的步骤,不属于算法.3. 解析:选 B 根据算法的含义和特征:①②③都是算法.④⑤不是算法.其中④,3x>x +1不是一个明确的逻辑步骤,不符合逻辑性;⑤的步骤是无穷的,与算法的有穷性矛盾.4. 解析:选C 由算法的特征可知①②③都能设计算法.对于④,当x>0或x<0时,函数y=x2是单调递增或单调递减函数,但当x∈R时,由函数的图像可知在整个定义域R上不是单调函数,因此不能设计算法求解.5. 解析:选A 由质数的定义知,满足条件的是质数.6. 解析:由算法的特征(有限性、确定性、有序性等)可知②③④正确,但解决某一类问题的算法不一定是唯一的,故①错.答案:37. 解析:∵x=10>4,∴计算y=x+2=12.答案:128. 解析:先输入a、b的值,再根据勾股定理算出斜边c的长,最后输出c的结果.答案:输入两直角边长a、b的值计算c=a2+b2输出斜边长c的值9. 解:1.18=2×9;2.18=2×32;3.列出18的所有正约数:1,2,3,32,2×3,2×32.10. 解:算法如下:1.输入x的值.2.当x≤-1时,计算y=2x-1;否则执行第三步.3.当x<2时,计算y=log2(x+1),否则执行第四步.4.计算y=x2.5.输入y.2019-2020年高中数学课下能力提升九垂直关系的判定北师大版一、选择题1.一条直线和三角形的两边同时垂直,则这条直线和三角形的第三边的位置关系是( )A.平行B.垂直C.相交不垂直D.不确定2.在三棱锥ABCD中,若AD⊥BC,BD⊥AD,那么必有( )A.平面ABD⊥平面ADCB.平面ABD⊥平面ABCC.平面ADC⊥平面BCDD.平面ABC⊥平面BCD3.在正方体ABCDA1B1C1D1中,与AD1垂直的平面是( )A.平面DD1C1CB.平面A1DCB1C.平面A1B1C1D1D.平面A1DB4.设l、m为不同的直线,α为平面,且l⊥α,下列为假命题的是( )A.若m⊥α,则m∥lB.若m⊥l,则m∥αC.若m∥α,则m⊥lD.若m∥l,则m⊥α5.如图,在正方形ABCD中,E、F分别为边BC,CD的中点,H是EF的中点,现沿AE、AF,EF把这个正方形折成一个几何体,使B、C、D三点重合于点G,则下列结论中成立的是( )A.AG⊥平面EFG B.AH⊥平面EFGC.GF⊥平面AEF D.GH⊥平面AEF二、填空题6.如图,在正方体ABCDA1B1C1D1中,平面ACD1与平面BB1D1D的位置关系是________.7.如图所示,底面ABCD是矩形.PA⊥平面ABCD,则图中互相垂直的平面共有________对.8.已知点O为三棱锥PABC的顶点P在平面ABC内的射影,若PA=PB=PC,则O为△ABC的________心;若PA⊥BC,PB⊥AC,则O为△ABC的________心;若P到三边AB,BC,CA的距离都相等且点O在△ABC的内部,则O为△ABC的__________心.三、解答题9.如图,四边形ABCD是边长为a的菱形,PC⊥平面ABCD,E是PA的中点,求证:平面BDE⊥平面ABCD.10.(北京高考)如图1,在Rt△ABC中,∠C=90°,D,E分别为AC,AB的中点,点F 为线段CD上的一点.将△ADE沿DE折起到△A1DE的位置,使A1F⊥CD,如图2.(1)求证:DE∥平面A1CB;(2)求证:A1F⊥BE;(3)线段A1B上是否存在点Q,使A1C⊥平面DEQ?说明理由.答案1. 解析:选B 由线面垂直的判定定理知直线垂直于三角形所在的平面.2. 解析:选C 由AD⊥BC,BD⊥AD,BC∩BD=B⇒AD⊥平面BCD,AD 平面ADC,∴平面ADC⊥平面BCD.3. 解析:选B 如图,连接A1D、B1C,由ABCDA1B1C1D1为正方体可知,AD1⊥A1B1,AD1⊥A1D.故AD1⊥平面A1DCB1.4. 解析:选B A中,若l⊥α,m⊥α,则m∥l,所以A正确;B中,若l⊥α,m⊥l,则m∥α或mα,所以B错误;C中,若l⊥α,m∥α,则m⊥l,所以C正确;若l⊥α,m∥l,则m⊥α,所以D正确.5. 解析:选A ∵AG⊥GF,AG⊥GE,GF∩GE=G,∴AG⊥平面EFG.6. 解析:∵ABCD是正方形,∴AC⊥BD.又∵D1D⊥平面ABCD,AC 平面ABCD,∴D1D⊥AC.∵D1D∩DB=D,∴AC⊥平面BB1D1D.∵AC 平面ACD1,∴平面ACD1⊥平面BB1D1D.答案:垂直7. 解析:图中互相垂直的面共有6对,即平面PAB⊥平面ABCD,平面PAC⊥平面ABCD,平面PAD⊥平面ABCD,平面PAB⊥平面PAD,平面PAB⊥平面PBC,平面PCD⊥平面PAD.答案:68. 解析:如图,由PA=PB=PC,∴OA=OB=OC,O是△ABC的外心;若PA⊥BC,又PO⊥面ABC,∴BC⊥PO.∴BC⊥面PAO.∴BC⊥AO.同理AC⊥OB.∴O是△ABC的垂心;若P到AB,BC边的距离相等,则易知O到AB,BC边的距离也相等,从而可判定O是△ABC的内心.答案:外垂内9. 证明:设AC∩BD=O,连接OE.如图.因为O为AC中点,E为PA的中点,所以EO是△PAC的中位线,EO∥PC.因为PC⊥平面ABCD,所以EO⊥平面ABCD.又因为EO 平面BDE,所以平面BDE⊥平面ABCD.10. 解:(1)证明:因为D,E分别为AC,AB的中点,所以DE∥BC.又因为DE⊄平面A1CB,所以DE∥平面A1CB.(2)证明:由已知得AC⊥BC且DE∥BC,所以DE⊥AC.所以DE⊥A1D,DE⊥CD.所以DE⊥平面A1DC.而A1F⊂平面A1DC,所以DE⊥A1F.又因为A1F⊥CD,所以A1F⊥平面BCDE.所以A1F⊥BE.(3)线段A1B上存在点Q,使A1C⊥平面DEQ.理由如下:如图,分别取A1C,A1B的中点P,Q,则PQ∥BC.又因为DE∥BC,所以DE∥PQ.所以平面DEQ即为平面DEP.由(2)知,DE⊥平面A1DC,所以DE⊥A1C.又因为P是等腰三角形DA1C底边A1C的中点,所以A1C⊥DP.所以A1C⊥平面DEP.从而A1C⊥平面DEQ.故线段A1B上存在点Q,使得A1C⊥平面DEQ.。