工具变量法
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
工具变量法
Document serial number【UU89WT-UU98YT-UU8CB-UUUT-UUT108】
工具变量法
一、工具变量法的主要思想
在无限分布滞后模型中,为了估计回归系数,通常的做法是对回归系数作一些限制,从而对受限的无限分布滞后模型进行估计。在这里,考伊克模型、适应性期望模型与部分调整模型给出了很好的解决此类问题的思路。经过变换,新的模型中,随机扰动项的表达式为:
考伊克模型:1t t t v u u λ-=- (01λ<< ,λ为衰减率) (); 适应性期望模型:1(1)t t t v u u λ-=--(01λ<< ,λ为期望系数)();
部分调整模型:(1)t t v u γ=-(01γ≤< ,1γ-为调整系数) ()。
t u 为原无限分布滞后模型中的扰动项,t v 为变换后的扰动项。
在原模型中的随机扰动项满足经典假设的前提下,部分调整模型也满足经典假设,但是考伊克模型与适应性期望模型的随机扰动项由于存在原随机扰动项的滞后项,也就是说考伊克模型与适应性期望模型的解释变量1t Y - 势必与误差项t v 相关,因此,可能会出现上述两个模型的最小二乘估计甚至是有偏的这样严重的问题。那么,我们是否可以找到一个与
1t Y -高度相关但与t v 不相关的变量来替代1t Y -在这里,一个可行的估计方法
就是工具变量法。
在讨论工具变量法之前,我们先来了解一下外生变量和内生变量。 一般来说:一个回归模型中的解释变量有的与随机扰动项无关,我们称这样的解释变量为外生变量;而模型中有的解释变量与随机扰动项相
关,我们可称这样的解释变量为内生解释变量。内生解释变量的典型情况之一就是滞后应变量为解释变量的情形,如上述考伊克模型与适应性期望模型中的1t Y 。
外生解释变量:回归模型中的解释变量与随机扰动项无关; 内生解释变量:回归模型中的解释变量与随机扰动项无关;
了解了内生变量和外生变量的概念,我们接着讨论工具变量法的主要思想:工具变量法和普通最小二乘法是模型参数估计的两类重要方法,在多元线性回归模型中,如果出现解释变量与随机误差项相关(即出现内生变量)时,其回归系数的普通最小二乘估计是非一致的,这时就需要引入工具变量。
工具变量,顾名思义是在模型估计过程中被作为工具使用,以替代模型中与随机误差性相关的随机解释变量(即内生变量)。
满足条件:1)总体无关:工具变量与随机扰动项无关;
2)样本相关:工具变量必须与被它所代替的内生变量高度相关;
3)与模型中其他解释变量不相关,以避免出现多重共线性。
做了替代后,用普通最小二乘法即可得到原回归系数的一致估计量。 二、工具变量法的基本原理
我们分别从简单线性回归模型和多元线性回归模型两方面来具体分析工具变量法的基本原理:
简单线性回归模型
考虑简单线性回归模型()122 1,2,,i i i Y X u n ββ=++ ()其中2i X 为内生
变量。
则其正规方程为:1120
10
i i i i i X u X X u ∧
∧
⎧
=⎪≡⎨⎪=⎩
∑∑ () 设回归模型中的解释变量与随机扰动项相关,则如前所述,普通最小二乘估计量是非一致的。现用一个工具变量i Z 来代替正规方程中的解释变量2i X ,其残差表达式不变。
110
10
i i i i i X u X Z u ∧
∧
⎧
=⎪≡⎨⎪=⎩
∑∑ () 即:
112211220 10i i i i i i i X Y X X Z Y X ββββ∧∧
∧∧
⎧⎛⎫
--= ⎪⎪⎪⎝⎭
≡⎨⎛⎫⎪--= ⎪⎪⎝⎭⎩
∑∑ () 解上述引入了工具变量后的正规方程可得斜率项系数的估计量为:
22i i IV i i
z y z x
β∧
=
∑∑ ()
()式中小写字母代表相应大写字母的离差。该市所表示的估计量就是工具变量估计量,简称IV 估计量,用β∧
IV 表示。易证IV 估计量是一致估计量。 事实上,()
2222222i
i
i
i i i i IV
i i
i i
i i
z y z x
u z u z x
z x
z x
βββ∧
+=
=
=+
∑∑∑∑∑∑ () 若工具变量与解释变量高度相关,则表明()式中2∑i i z x 较大;若工具变量与随机扰动项渐近无关,则表明()式中∑i i z u 随着样本容量的增加而趋向于零。
故在工具变量与它相应的解释变量高度相关而与随机扰动项渐近无关的条件下,有
2222lim lim lim i i
IV i i
p z u p p z x βββ∧
=+
=∑∑ ()
样本估计总体,()表明IV 估计量是一致估计量。 多元线性回归模型:
工具变量法可直接推广到多元线性回归模型
()
1122 1,2,
,i i i k ki i Y X X X u i n βββ=++
++= ()
其中:11i X ≡
在讨论工具变量法在多元线性回归模型中的应用之前,我们先来分析工具变量的个数问题。
为了一般起见,当解释变量与随机扰动项不相关时,我们把解释变量本身也作为是一个工具变量。这就是说,在我们的模型中凡事预随机扰动项无关或渐近无关而与解释变量相关的变量都称为是工具变量。这样与随机扰动项无关的解释变量本身当然是与解释变量高度相关的变量,故它也是工具变量。在作了这样的约定之后对多元回归模型()来说,工具变量的个数一定不会小于解释变量(包括常数项)的个数(但可以大于解释变量的个数)。这是因为凡是与随机扰动项相关的解释变量都要有与随机扰动项无关或者渐近无关的工具变量或工具变量的线性组合,而凡与随机扰动项无关的解释变量本身就是一个工具变量(按我们上述约定)。所以工具变量的个数当然不小于解释变量(包含常数项)的个数。