四年级数学 定义新运算
小学数学定义新运算
小学数学定义新运算一.什么是定义新运算我们已经学过了加、减、乘、除运算。
在有些情况下,常把「有多步含加、减、乘、除的运算」用某种新的符号表示,这就是定义了新的运算。
见到了这种用新的符号所定义的运算后,就按它所规定的「运算程序」进行运算,直到得出最后结果。
例如,设A、B表示自然数,如果定义符号「※」表示的运算如下:A※B=3×A+4×B那么,根据新运算「※」的定义,就可以计算6※7如下:6※7=3×6+4×7=46。
如果定义符号「※」表示的运算为:A※B=A÷B×2+3×A-2,那么,按此定义去计算4※2的话,就有:4※2=4÷2×2+3×4-2=2×2+12-2=14。
二.定义新运算需要注意的几个问题按照新定义的运算求某个算式的结果,关键是要正确理解这种新运算的意义,如上面举例中的运算符号「※」所表示的运算并不是一种固定的算法,而是因题而异,不同的题目有不同的规定,我们应当严格按不同的规定进行运算。
需要注意的是:(1)有括号时,应当先算括号里的;(2)新定义的运算往往不一定具备交换律和结合律,不能随便套用这些运算定律来解题。
(3)上面例举中所定义的运算使用了符号「※」来定义,但并不是说只有「※」才是规定运算的符号,可能用△,#,…等符号。
符号的种类是次要的,符号所定义的运算按照怎样的程序来进行才是主要的。
三.典型例题例1设a,b表示整数(包括0),规定「*」的运算为a*b=a÷b×2+3×a-b,计算:169*13。
分析与解答动手算之前,先让我们弄清「*」是怎么一种运算程序,按规定,a*b的值是用a除以b,把商数乘2之后,再加上a的3倍,最后减去b,这些运算有两个特点:(1)各步运算都是大家熟悉的四则运算;(2)各步运算的先后次序要按规定的顺序办。
那么,根据「*」的规定,我们可以计算得到:169*13=169÷13×2+3×169-13=520。
四年级数学 --- 定义新运算 练习题
【例1】(★★)(数学解题能力展示试题) 规定n※b=3×n-b÷2。例如:1※2=3×1-2÷2=2。 根据以上的规定,10※6=( )
【例3】b=3a-2b,例如, 当a=6,b=5时,6※5 =3×6-2×5=8。 计算:(8※7)※9;
【例4】⑵(★★★) 定义运算※为a※ b a b (a b) , ①求12※(3※4),(12※3)※4; ②这个运算“※”有结合律吗? ③如果3※(5※x)=3,求x。 1
【例5】(★★★) 定义新运算:已知:※满足4※1=15,5※1=24, 4※5=11,8※16=48,那么:10※9=( )
【例2】(★★) 两个不相等的非零自然数a、b ,较大的数除以较小的数商为a△b, 余数记为a◇b,如3△11=3、3◇11=2,那么6◇(2△7)=( )。
【例3】⑵(★★★) 规定ab= 3a 2b ,例如 45 3 4 2 5 2, 那么当 x5比5 x大5时,x等于几?
【例4】⑴(★★) 规定 a b a 3 b 2 ,其中a、b都是自然数。 ① 6 8 的值 ② 8 6的值。
2
【例6】(★★★★)(中环杯试题) 已知 A* B AB A B , 则 1*9 *9 *9* *9 *9 _______。
共10次运算
【例7】(★★★★★) (祖冲之杯数学邀请赛) 小明来到红毛族探险,看到下面几个红毛族的算式: 8 8 8, 9 9 9 5 。 9 3 3, (93 8) 7 837。 老师告诉他,红毛族算术中所用的符号:“+、-、×、÷、 ( )、=”与我们算术中的意义相同,进位也是十进制,只 是每个数字虽然与我们写法相同,但代表的数却不同。 请你按红毛族的算术规则,完成下面算式: 89×57 =_____。
四年级数学奥数第23讲: 定义新运算
第23周定义新运算专题简析我们学过常用的运算有加、减、乘、除等。
如6+2=8,6×2=12等。
都是2 和6,为什么运算结果不同呢?主要是运算方式不同,实质上是对应法则不同。
由此可见,一种运算实际就是两个数与一个数的一种对应方法。
对应法则不同就是不同的运算。
当然,这个对应法则应该是对应任意两个数。
通过这个法则都有一个惟一确定的数与它们对应。
这一周,我们将定义一些新的运算形式,它们与我们常用的加、减、乘、除运算是不相同的。
王牌例题1设a、b都表示数,规定是a△表示a的3倍减去b的2倍,a△b=a×3-b×2。
试计算:①5△6,②6△5。
疯狂操练1(1)设a、b都表示数,规定a○b=6×a-2×b。
试计算3○4。
(2)设a、b都表示数,规定a*b=3×a+2×b。
试计算①(5*6)*7,②5(6*7)(3)有两个整数是A、B、A▽B表示A与B的平均数。
已知A▽6=17,求A。
王牌例题2对于两个数a与b,规定a⊕b=a×b+a+b,试计算6⊕2。
疯狂操练2(1)对于两个数a与b,a⊕b=a×b-(a+b)。
试计算3⊕5。
(2)对于两个数A与数B,规定AB=A×B÷2。
试计算6 4。
(3)对于两个数a与b规定a⊕b=a×b+a+b。
如果5⊕X=29,求X。
王牌例题3如果2△3=2+3+4,5△4=5+6+7+8,按此规律计算:3△5。
疯狂操练3(1)如果5▽2=5×6,2▽3=2×3×4,按此规律计算:3▽4。
(2)如果2▽4=24÷(2+4),3▽6=36÷(3+6),按此规律计算:8▽4。
(3)如果2▽3=2+3+4,5▽4=5+6+7+8,且1▽X=15,求X。
王牌例题4对于两个数a与b,a□b=a+(a +1)+(a+2)+……+(a+b-1)。
小学思维数学:定义新运算-带答案解析
定义新运算定义新运算这类题目是在考验我们的适应能力,我们大家都习惯四则运算,定义新运算就打破了运算规则,要求我们要严格按照题目的规定做题.新定义的运算符号,常见的如△、◎、※等等,这些特殊的运算符号,表示特定的意义,是人为设定的.解答这类题目的关键是理解新定义,严格按照新定义的式子代入数值,把定义的新运算转化成我们所熟悉的四则运算。
一 定义新运算 基本概念:定义一种新的运算符号,这个新的运算符号包含有多种基本(混合)运算。
基本思路:严格按照新定义的运算规则,把已知的数代入,转化为加减乘除的运算,然后按照基本运算过程、规律进行运算。
关键问题:正确理解定义的运算符号的意义。
注意事项:①新的运算不一定符合运算规律,特别注意运算顺序。
②每个新定义的运算符号只能在本题中使用。
我们学过的常用运算有:+、-、×、÷等.如:2+3=5 2×3=6都是2和3,为什么运算结果不同呢?主要是运算方式不同,实际是对应法则不同.可见一种运算实际就是两个数与一个数的一种对应方法,对应法则不同就是不同的运算.当然,这个对应法则应该是对任意两个数,通过这个法则都有一个唯一确定的数与它们对应.只要符合这个要求,不同的法则就是不同的运算.在这一讲中,我们定义了一些新的运算形式,它们与我们常用的“+”,“-”,“×”,“÷”运算不相同.二 定义新运算分类1.直接运算型2.反解未知数型3.观察规律型4.其他类型综合模块一、直接运算型【例 1】 若*A B 表示()()3A B A B +⨯+,求5*7的值。
【考点】定义新运算之直接运算 【难度】2星 【题型】计算【解析】 A *B 是这样结果这样计算出来:先计算A +3B 的结果,再计算A +B 的结果,最后两个结果求乘积。
由 A *B =(A +3B )×(A +B )可知: 5*7=(5+3×7)×(5+7) =(5+21)×12 = 26×12 = 312【答案】312【巩固】 定义新运算为a △b =(a +1)÷b ,求的值。
四年级 10、定义新运算
(3)(8θ 8)-(6θ 1)=(8×8)-(2×6+3×1)=64-15=49
例6 复杂的定义新运算 已知一种新的运算符号“ ▽ ”,使得2▽4=8,5▽3=13,3▽5=11, 9▽7=25。计算:7▽3。
仔细观察和分析这几个算式,可以发现下面的规 律:a▽b=2a+b,依次规律自己算出7▽3的值。
1、设a、b都表示两个数,规定:a○b=6×a-2×b。试计算3○4,4○3。
3○4=6×3—2×4=10 4○3=6×4—2×3=18
2、设a、b都表示两个数,规定:a□b=(a - b)×2。试计算15□3。
15□3=(15—3)×2=24
3、有两个整数是A、B,A▽B表示A与B的平均数。已知A▽6=17,求A。 A=17×2—6=28
(2☆3)+(4☆4)+(7☆5) =2×3+4-4+1+7+5 =19
1、规定运算“ ◎ ”为:若a>b,则a◎b=a-b;若a<b,则a◎b=a+b。
求:(1)13◎15;(2)10◎2;(3)(9◎5)x(8◎12)。
(1)13◎15=13+15=28 (2)10◎2=10-2=8 (3)(9◎5)×(8◎12)=(9-5)×(8+12)=4×20=80
一、练习黄冈试卷:1 —— 10题; 二、阅读与欣赏:“神奇的数字”。
是的,我们要通过计算才知道。
(1)5△6=5 x 3 - 6 x 2=3 (2)6△5=6 x 3 - 5 x 2=8
领悟思想 构建数模:
1、在定义的运算中关键是要理解运算符号的新规定,严格 按照规定的法则计算,最后达到解决问题的目的。 2、在定义的运算中不满足交换律,计算时不能将符号前后 的数交换。
四年级奥数:定义新运算
1、学过的运算:÷⨯+,,-,2、运算方式不同,对应法则也就不同。
3、一种运算实际就是两个数与一个数的一种对应方法,对应法则不同就是不同的运算。
4、定义新运算:规定新的运算方法,与我们常用的÷⨯+,,-,这些运算不相同。
5、按照规定的法则带入数值。
专题1:简单定义新运算通关1、规定一种新运算a ★b =(a +b )÷(a -b ),求(3★2)★3的值。
通关2、如果6★2=6+7,4★3=4+5+6,3★4=3+4+5+6,求1★50的值。
通关3、一如果4★2=14,5★3=22,3★5=4,7★8=41,求6★9的值。
定义新运算通关4、a$b表示a的3倍减去b的一半。
计算10$6,5$(3$2)。
通关5、有一种运算符号“□”,使下式算式成立。
3□2=3×4,5□4=5×6×7×8,10□3=10×11×12,计算7□3,(10□2)□2。
专题2:根据定义,解方程通关1、如果a★b=a×b+a+b,通关如3★4=3×4+3+4=19,那么当(a★2)★1=29时,a的值是多少?通关2、设a*b表示a的3倍减去b的2倍,即a*b=3a-2b(1)计算(5*4)*3,5*(4*3)。
(2)已知x*(4*x)=11,求x。
通关3、两个不等的自然数a、b,较大的数除以较小的数,余数记为a↓b,如5↓2=1,7↓25=4。
(1)求1991↓2000,(5↓19)↓19 (2)已知11↓x=2,而x小于20,求x。
通关4、如果2▼3=2+3+4,5▼4=5+6+7+8。
(1)2▼x=20,x=? (2)x▼3=27,x=?通关5、对任意的数a,b,定义:f(a)=2a+1,g(b)=b×b。
(1)求f(5)-g(3)的值;(2)求f(g(2))+g(f(2))的值;(3)已知f(x+1)=21,求x的值。
小学四年级新定义运算
一、 新定义运算1. 设b a ,表示两个不同的数,规定b a b a 43+=∆,求6)78(∆∆。
答案:180。
解析:)78(∆=3×8+4×7=24+28=52652∆=3×52+4×6=156+24=1802. 定义运算⊖为a ⊖b =5×)(b a b a +-⨯,求11⊖12。
答案: 637。
解析: ×11×12-(11+12)=660-23=6373. b a ,表示两个数,记为:a ※b =2×b b a 41-⨯,求8※(4※16)。
答案:1953。
解析:4※16=2×4×16-41×16 =128-4=1248※124=2×8×124-41×124 =1984-31=19534. 设y x ,为两个不同的数,规定x □y 4)(÷+=y x ,求a □16=10中a 的值。
答案:24。
解析:因为a □16=10,即(a +16)÷4=10a +16=40a =40-16a =24。
5. 规定a ba b a b +⨯=,求2 10 10的值。
答案:731解析:从左到右依次计算。
2 10 10 =102102+⨯ 10 =321 10 =1032110321+⨯ =7316. 定义新运算x ⊕y x y 1+=,求3⊕(2⊕4)的值。
答案:316解析:3⊕(2⊕4)=3⊕412+=3⊕43=4313+ =434=3167. 有一个数学运算符号“⊗”,使下列算式成立:4⊗8=16,10⊗6=26,6⊗10=22,18⊗14=50,求7⊗3=?答案:17。
解析:因为4⊗8=4×2+8=16;10⊗6=10×2+6=26;6⊗10=6×2+10=22;18⊗14=18×2+14=50。
定义新运算
定义新运算导言在数学中,运算是一种数学操作,用于对数值或数值集合进行处理和计算。
常见的运算包括加法、减法、乘法和除法等。
然而,在某些场景下,常规运算无法满足需求,因此需要定义新的运算。
新运算的定义新运算是指不属于常规运算范畴的一种数学操作。
它可以对数值进行加工处理,从而获得满足特定需求的结果。
与常规运算不同的是,新运算可能具有不同的符号、规则和运算法则。
新运算的特点1.创新性:新运算是一种相对于常规运算的创新,它提供了新的数学方式和解决问题的途径。
2.特殊性:新运算通常具有特殊的性质和规则,与常规运算存在差异。
3.应用性:新运算在特定领域或问题中具有较高的应用价值,能够更好地解决特定问题。
新运算的例子例子一:矩阵运算矩阵运算是一种常见的新运算。
它对矩阵进行加、减、乘等操作,从而获得矩阵相加、相减、相乘后的结果。
矩阵运算在线性代数、计算机图形学等领域具有广泛的应用,例如图像处理、机器学习等。
例子二:向量运算向量运算是指对向量进行处理和计算的一种新运算。
它可以进行向量的加法、减法、点积、叉积等操作,从而获得向量的相加、相减、点积、叉积等结果。
向量运算在物理学、力学等领域具有重要的应用,例如力的合成、求解位置等。
新运算的运算法则新运算的运算法则是指确定新运算的规则和操作方式。
它可以保证新运算的正确性和可靠性。
不同的新运算可能有不同的运算法则,以下是一些常见的运算法则:1.封闭性:新运算中的结果仍然属于原有运算的数值集合。
2.结合律和交换律:新运算满足结合律和交换律,可以改变运算顺序或数值顺序而不影响结果。
3.幂等性:多次进行新运算的结果与一次运算的结果相同。
4.分配律:新运算与其他运算之间满足分配律,可以在不同运算之间进行组合。
结语通过定义新运算,我们可以拓展数学领域的研究和应用范围,寻找更加适用于特定问题的数学工具和方法。
新运算的引入和应用将促进数学学科的发展和创新,对于解决实际问题和推动科学进步具有重要的意义。
4年级教材(上)09-定义新运算
第 讲 定义新运算定义新运算是定义一种新的运算符号,并按新定义导出的一种运算。
解决这类问题一定要认真观察、分析新规定的条件,正确理解定义的运算符号的意义,严格按照新定义的运算规则,把已知的数代入,转化为我们熟悉的加减乘除四则运算,然后按照基本运算过程、规律进行运算。
基本思想:严格按照新定义的运算规则,把已知的数代入,转化为加减乘除的运算,然后按照基本运算过程、规律进行运算。
注意事项:1.正确理解定义的运算符号的意义。
2.新的运算不一定符合运算规律,特别注意运算顺序。
3.每个新定义的运算符号只能在本题中使用【例1】设a ,b 都表示数,规定a △b=a ×3-b ×2.(1)求4△3。
(2)求3△4.(3)求(17△6)△2 (4)求17△(6△2)【例2】设a ,b 都表示数,规定a △b 表示的b 的4倍减去a 的3倍,即a △b=b ×4-a ×3,试计算:(1)5△8。
(2)5△(8△7)。
【例3】按如下规律:1!=1,2!=1×2=2,3!=1×2×3=6,……试计算:5!=?【例4】如果3*2=3+33=36,2*3=2+22+222=246,1*4=1+11+111+1111=1234,那么4*5等于多少?【例5】规定运算“☆”为:若a >b ,则a ☆b=a+b ;若a <b ,则a ☆b=a ×b 。
那么,(2☆3)+(7☆5)结果是多少?【例6】对于两个数a,b ,a △b 表示a 除以b 的商与余数的和。
例如:4△3=2,2△3=2.(1)计算:1999△6 (2)计算:(188△3)△81.丹丹、妈妈、爸爸今年的年龄和是87岁,妈妈的年龄比丹丹年龄的3倍还大4岁,且比爸爸小2岁。
今年丹丹,妈妈,爸爸各多少岁。
2.元元对丹丹说:“我比你大8岁,2年后,我的年龄是你的年龄的3倍。
”那么,元元现在多少岁岁。
四年级数学思维训练 定义新运算
让我们一起为了孩子的进步而努力!纳思书院Nice Education四年级数学思维训练定义新运算对于“加、减、乘、除”四则运算我们已经相当熟悉了。
为了扩展对运算的认识,在四则运算的基础上,还可以按需要规定新的运算。
例1设a、b都表示数,规定a△b=3×a-2×b。
(1)求4△3,3△4。
(2)这种运算有“交换律”吗?(3)求(17△6)△2,17△(6△2)。
(4)这种运算有“结合律”吗?(5)如果已知5△b=1,求b。
例2如果a#b=2×a+3×b,a*b=(a+b)÷2,那么(3*5)#7=?例3规定:a&b=a+(a+1)+(a+2)+…+(a+b-1),其中a、b表示自然数。
(1)求1&100的值;(2)已知x&10=75,求x。
让我们一起为了孩子的进步而努力!纳思书院Nice Education 例4羊和狼在一起时,狼要吃掉羊,所以关于羊和狼,我们规定一种运算,用符号△表示:羊△羊=羊;羊△狼=狼;狼△羊=狼;狼△狼=狼。
以上运算的意思是:羊和羊在一起还是羊;狼和狼在一起还是狼;但是狼和羊在一起就只剩下狼了。
小朋友总是希望羊能战胜狼,所以我们规定另一种运算,用符号★表示:羊★羊=羊;羊★狼=羊;狼★羊=羊;狼★狼=狼。
这个运算的意思是:羊和羊在一起还是羊;狼和狼在一起还是狼;但是由于羊能战胜狼,当狼和羊在一起时,它便被羊赶走,而只剩下羊了。
对羊或狼,可以用上面规定的运算作混合运算,混合运算的法则是从左到右,括号内先算。
运算的结果或者是羊,或者是狼。
那么求下式的结果:羊△(狼★羊)★羊△(狼★狼)。
巩固练习1.设a、b都表示数,规定:a△b表示a的4倍减去b的3倍,即a△b=4×a-3×b。
试计算:(1)5△6;6△5。
2.a、b是自然数,规定a*b=a×5+b÷3,求8*9。
3.设a▼b=8×a-18÷b,求7▼9=?让我们一起为了孩子的进步而努力!纳思书院Nice Education4.规定a☆b=(a+3)×(b-5),求5☆(6☆7)的值。
奥数《定义新运算》微课(教案)人教版数学四年级上册
奥数《定义新运算》微课(教案)人教版数学四年级上册一、教学目标1. 让学生掌握定义新运算的方法和步骤。
2. 培养学生运用新运算解决问题的能力。
3. 培养学生的逻辑思维能力和创新意识。
二、教学内容1. 定义新运算的概念。
2. 定义新运算的方法和步骤。
3. 运用新运算解决问题。
三、教学重点与难点1. 教学重点:定义新运算的方法和步骤。
2. 教学难点:运用新运算解决问题。
四、教学过程1. 导入新课通过一个有趣的故事引入新课,激发学生的学习兴趣。
2. 讲解定义新运算的概念解释定义新运算的含义,让学生明白定义新运算的意义。
3. 讲解定义新运算的方法和步骤通过具体的例子,讲解定义新运算的方法和步骤,让学生掌握定义新运算的技巧。
4. 操练定义新运算给出一些题目,让学生进行练习,巩固所学知识。
5. 讲解运用新运算解决问题通过具体的例子,讲解如何运用新运算解决问题,让学生学会运用新运算。
6. 操练运用新运算解决问题给出一些实际问题,让学生运用新运算进行解决,提高学生解决问题的能力。
7. 总结与反思对本节课的内容进行总结,让学生明白定义新运算的重要性,并引导学生进行反思。
五、课后作业1. 完成课后练习题。
2. 思考如何将新运算运用到实际生活中。
六、教学评价1. 通过课后练习题的完成情况,评价学生对定义新运算的掌握程度。
2. 通过学生的课堂表现,评价学生的逻辑思维能力和创新意识。
七、教学资源1. 教材:人教版数学四年级上册。
2. 教学课件:包含故事、例子、练习题等。
八、教学建议1. 在教学过程中,注重学生的参与,引导学生积极思考。
2. 在讲解定义新运算的方法和步骤时,要详细讲解,确保学生能够理解。
3. 在讲解运用新运算解决问题时,要注重实际例子的选择,让学生能够更好地理解。
4. 在课后作业的布置上,要注重练习题的质量,确保学生能够巩固所学知识。
需要重点关注的细节是“讲解定义新运算的方法和步骤”。
这个部分是教学的核心,学生能否理解和掌握定义新运算的方法和步骤,直接影响到他们能否在实际问题中灵活运用新运算。
四年级奥数 第三课时 定义新运算
第三课时定义新运算
定义新运算通常是用特殊的符号表示特定的运算意义。
它的符号不同于课本上明确定义或已经约定的符号,例如“+、-、×、÷、、>、<”等。
表示运算意义的表达式,通常是使用四则运算符号,例如a☆b=3a-3b,新运算使用的符号是☆,而等号右边表示新运算意义的则是四则运算符号。
正确解答定义新运算这类问题的关键是要确切理解新运算的意义,严格按照规定的法则进行运算。
如果没有给出用字母表示的规则,则应通过给出的具体的数字表达式,先求出表示定义规则的一般表达式,方可进行运算。
值得注意的是:定义新运算一般是不满足四则运算中的运算律和运算性质,所以,不能盲目地运用定律和运算性质解题。
一、例题与方法指导
例1.设ab都表示数,规定a△b表示a的4倍减去b的3倍,即a△b=4×a-3×b,试计算5△6,6△5。
例2.对于两个数a、b,规定a☆b表示3×a+2×b,试计算(5☆6)☆7,5☆(6☆7)。
例3.已知2△3=2×3×4,4△2=4×5,一般地,对自然数a、b,a△b表示a×(a+1)×…(a+b-1).
计算(6△3)-(5△2)。
例4.已知2△3=2+3+4,4△2=4+5
一般地,对自然数a、b,a△b表示a+(a+1)+…(a+b-1)
求1△100的值。
已知x△10=75,求x.
二、能力提升
1.对于两个数,规定a☆b=(a+b)÷2,试计算21☆7,16☆22☆9。
四年级奥数知识点:定义新运算
四年级奥数知识点:定义新运算我们学过的常用运算有:+、-、、等.如:2+3=523=6都是2和3,为什么运算结果不同呢?主要是运算方式不同,实际是对应法则不同.可见一种运算实际就是两个数与一个数的一种对应方法,对应法则不同就是不同的运算.当然,这个对应法则应该是对任意两个数,通过这个法则都有一个唯一确定的数与它们对应.只要符合这个要求,不同的法则就是不同的运算.在这一讲中,我们定义了一些新的运算形式,它们与我们常用的+,-,,运算不相同.我们先通过具体的运算来了解和熟悉定义新运算.例1 设a、b都表示数,规定a△b=3a2b,①求3△2,2△3;②这个运算△有交换律吗?③求(17△6)△2,17△(6△2);④这个运算△有结合律吗?⑤如果已知4△b=2,求b.分析解定义新运算这类题的关键是抓住定义的本质,本题规定的运算的本质是:用运算符号前面的数的3倍减去符号后面的数的2倍.解:① 3△2= 33-22=9-4= 52△3=32-23=6-6=0.②由①的例子可知△没有交换律.③要计算(17△6)△2,先计算括号内的数,有:17△6=317-2再计算第二步39△2=3 39-22=113,所以(17△6)△2=113.对于17△(6△2),同样先计算括号内的数,6△2=36-22=14,其次17△14=317-214=23,所以17△(6△2)=23.④由③的例子可知△也没有结合律.⑤因为4△b=34-2b=12-2b,那么12-2b=2,解出b=5.例2 定义运算※为a※b=ab-(a+b),①求5※7,7※5;②求12※(3※4),(12※3)※4;③这个运算※有交换律、结合律吗?④如果3※(5※x)=3,求x.解:① 5※7=57-(5+7)=35-12=23,7※ 5= 75-(7+5)=35-12=23.②要计算12※(3※4),先计算括号内的数,有:3※4=34-(3+4)=5,再计算第二步12※5=125-(12+5)=43,所以12※(3※4)=43.对于(12※3)※4,同样先计算括号内的数,12※3=123-(12+3)=21,其次21※4=214-(21+4)=59,所以(12※ 3)※4=59.③由于a※b=ab-(a+b);b※a=ba-(b+a)=ab-(a+b)(普通加法、乘法交换律)所以有a※b=b※a,因此※有交换律.由②的例子可知,运算※没有结合律.④5※x=5x-(5+x)=4x-5;3※(5※x)=3※(4x-5)=3(4x-5)-(3+4x-5)=12x-15-(4x-2)= 8x- 13那么 8x-13=3解出x=2.③这个运算有交换律和结合律吗?副标题#e#的观察,找到规律:例5 x、y表示两个数,规定新运算*及△如下:x*y=mx+ny,x△y=kxy,其中 m、n、k均为自然数,已知 1*2=5,(2*3)△4=64,求(1△2)*3的值.分析我们采用分析法,从要求的问题入手,题目要求1△2)*3的值,首先我们要计算1△2,根据△的定义:1△2=k12=2k,由于k的值不知道,所以首先要计算出k的值.k值求出后,l△2的值也就计算出来了,我们设1△2=a.(1△2)*3=a*3,按*的定义: a*3=ma+3n,在只有求出m、n时,我们才能计算a*3的值.因此要计算(1△2)* 3的值,我们就要先求出 k、m、n的值.通过1*2 =5可以求出m、n的值,通过(2*3)△4=64求出 k的值.解:因为1*2=m1+n2=m+2n,所以有m+2n=5.又因为m、n均为自然数,所以解出:①当m=1,n=2时:(2*3)△4=(12+23)△4=8△4=k84=32k有32k=64,解出k=2.②当m=3,n=1时:(2*3)△4=(32+13)△4=9△4=k94=36k所以m=l,n=2,k=2.(1△2)*3=(212)*3=4*3=14+23=10.宋以后,京师所设小学馆和武学堂中的教师称谓皆称之为“教谕”。
四年级《定义新运算》奥数教案
(四年级)备课教员:第十五讲定义新运算一、教学目标:知识目标理解新定义符号的含义,严格按新的规则操作。
能力目标经历新定义运算算式转化成一般的+、-、×、÷数学式子的过程,培养学生运用数学转化思想指导思维活动的能力。
情感目标通过将新定义运算转化成一般运算的过程,使学生感受数学中转化的思想方法。
体验学习与运用数学法则、规定解决数学问题的成功感受。
二、教学重点:理解新定义,按照新定义的式子代入数值。
三、教学难点:把定义的新运算转化成我们所熟悉的四则运算。
四、教学准备:PPT五、教学过程:第一课时(50分钟)一、导入(5分)【设计意图:谈话导入,用加法和乘法的运算,引出定义新运算的思想,引起学生的学习兴趣。
】师:在生活中,我们常见的有哪几种运算?生:有加、减、乘、除这四种。
师:同学们对这些运算都很熟悉吧?生:熟悉。
师:是的,它们在学习中特别“普及”,我们对它们的运算和意义都很熟悉。
我们来回忆下乘法的运算。
它是好多个相同的数相加的时候,比如8个13 相加,为了便于书写和计算,我们可以用8×13来表示,那么乘法是不是在加法运算上发展出来的新运算呢?生:是的。
师:不错,改革开放30多年,中国发生翻天覆地的变化。
昔日的农村的土坯房变成了今天的高楼大厦。
交通也发生了新的变化,这些变化都是由于改革的需要。
而在我们的数学中,有时为了某种需要,会用一种新符号来表示含有加、减、乘、除的运算,这种运算时根据需要而定义的,我们称之为定义新运算。
(可以举例说明定义新运算和普通运算的区别,如:a△b=a+b+ab ,3△2=3+2+3×2=11 ,那5△5=5+5+5×5=?可以和学生集体探讨下)学生没有学习过定义新运算的知识,需要老师好好引导。
【板书课题:定义新运算】二、探索发现授课(40分)(一)例题1:(10分)规定A⊙B=3×A+4×B,试计算8⊙3的值。
定义新运算完整版
定义新运算知识要点:定义新运算就是以加减乘除四则运算为基础,用某种新的符号来表示新运算。
见到这种新的运算符号所定义的运算后,就按照它所规定的“运算程序”进行运算,直到得出最后的结果。
运算时要严格按照新运算的定义要求进行计算,不得随意改变运算顺序,这是最关键的一点。
运算时,有括号的先算出括号里的值,再算出括号外的值,在没有确定新定义运算具有交换律,结合律之前,不能运用运算定律解题。
运算的符号可以是※,也可以是○,□。
§。
等,符号的种类是次要的,符号定义的运算运算程序才是主要的。
例1:设a、b是两个自然数,定义a*b=2a+4b,计算4*5是多少?开心一练:1设a、b是两个自然数,定义a*b=3a+5b,计算6*3是多少?2 对于自然数,定义a*b=3a+2b,求(1)10*11(2)11*10例2:定义新运算“*”对任何数a和b,有a*b=a×b-a+b,计算(1)8*10(2)(3*4)*5开心一练:1 定义新运算“*”对任何数a和b,有a*b=a×b+a-b,计算(1)4*6 (2)(4*6)*52对于整数a、b,设a*b=3a+b-1,求(1)4*(3*5)(2)(4*3)*53规定a△b=3a-b,求10△(2△5)。
例3:设a*b=4a-3b,求(1)5*(3*2)(2)x*(2*x)=15,求x。
开心一练:1已知a*b=a×b+a,如果(3*x)*2=18求x。
2设a*b=5a+4b,求(1)4*(3*2)(2)已知x*(4*x)=122,求x。
例4:对整数a*b,规定a*b=ax+b,如果4*5=23,求3*2的值。
开心一练:1 对整数a*b,规定a*b=a÷b×2+ab+x,如果6*3=28,求5*2的值。
2 对于整数a、b,设a*b=3a-bx,已知5*4=7,求x。
例5:设a、b都表示数,规定a♦b=3×a-2×b (1)求3♦2,2♦3。
小学数学专题 定义新运算 例题+练习
定义新运算一、知识点总结:定义新运算是指运用某种特殊符号来表示特定的意义,从而解答某些算式的一种运算。
解答定义新运算,关键是要正确地理解新定义的算式含义,然后严格按照新定义的计算程序,将数值代入,转化为常规的四则运算算式进行计算。
定义新运算是一种人为的、临时性的运算形式,它使用的是一些特殊的运算符号,如:*、△、⊙等,这是与四则运算中的“+、-、×、÷”不同的。
新定义的算式中有括号的,要先算括号里面的。
但它在没有转化前,是不适合于各种运算定律的。
二、例题讲解:【例题1】假设a*b=(a+b)+(a-b),求13*5和13*(5*4)。
解答:13*5=(13+5)+(13-5)=18+8=265*4=(5+4)+(5-4)=1013*(5*4)=13*10=(13+10)+(13-10)=26练习1:1.将新运算“*”定义为:a*b=(a+b)×(a-b).。
求27*9。
2.设a*b=a2+2b,那么求10*6和5*(2*8)。
3.设a*b=3a-b×1/2,求(25*12)*(10*5)。
【例题2】设p、q是两个数,规定:p△q=4×q-(p+q)÷2。
求3△(4△6)。
解答:3△(4△6)=3△【4×6-(4+6)÷2】=3△19=4×19-(3+19)÷2=76-11=65练习2:1.设p、q是两个数,规定p△q=4×q-(p+q)÷2,求5△(6△4)。
2.设p、q是两个数,规定p△q=p2+(p-q)×2。
求30△(5△3)。
3.设M、N是两个数,规定M*N=M/N+N/M,求10*20-1/4。
【例题3】如果1*5=1+11+111+1111+11111,2*4=2+22+222+2222,3*3=3+33+333,4*2=4+44,那么7*4=________;210*2=________。
四年级下册数学一课一练定义新运算通用版
四年级下册数学一课一练定义新运算通用版一.专题简析:我们学过常用的运算加、减、乘、除等,如6+2=8,6×2=12等。
都是2和6,为什么运算结果不同呢?主要是运算方式不同,实质上是对应法那么不同。
由此可见,一种运算实践就是两个数与一个数的一种对应方法。
对应法那么不同就是不同的运算。
当然,这个对应法那么应该是对应恣意两个数。
经过这个法那么都有一个独一确定的数与它们对应。
这一周,我们将定义一些新的运算方式,它们与我们常用的加、减、乘、除运算是不相反的。
二.精讲精练例1:设a、b都表示数,规则:a△b表示a的3倍减去b的2倍,即:a △b = a×3-b×2。
试计算:〔1〕5△6;〔2〕6△5。
剖析与解答:解这类题的关键是抓住定义的实质。
这道题规则的运算实质是:运算符号前面的数的3倍减去符号前面的数的2倍。
5△6=5×3-6×2=36△5=6×3-5×2=8显然,本例定义的运算不满足交流律,计算中不能将△前后的数交流。
练习一1,设a、b都表示数,规则:a○b=6×a-2×b。
试计算3○4。
2,设a、b都表示数,规则:a*b=3×a+2×b。
试计算:(1)〔5*6〕*7 〔2〕5*〔6*7〕3,有两个整数是A、B,A▽B表示A与B的平均数。
A▽6=17,求A。
例2:关于两个数a与b,规则a⊕b=a×b+a+b,试计算6⊕2。
剖析与解答:这道题规则的运算实质是:用运算符号前后两个数的积加上这两个数。
6⊕2=6×2+6+2=20练习二1,关于两个数a与b,规则:a⊕b=a×b-〔a+b〕。
计算3⊕5。
2,关于两个数A与B,规则:A☆B=A×B÷2。
试算6☆4。
3,关于两个数a与b,规则:a⊕b= a×b+a+b。
假设5⊕x=29,求x。
例3:假设2△3=2+3+4,5△4=5+6+7+8,按此规律计算3△5。
4年级-23- 定义新运算-难版
第23讲 定义新运算定义新运算这类题目是在考验我们的适应能力,我们大家都习惯四则运算,定义新运算就打破了运算规则,要求我们要严格按照题目的规定做题.新定义的运算符号,常见的如△、◎、※等等,这些特殊的运算符号,表示特定的意义,是人为设定的.解答这类题目的关键是理解新定义,严格按照新定义的式子代入数值,把定义的新运算转化成我们所熟悉的四则运算。
【例1】★若*A B 表示()()3A B A B +⨯+,求5*7的值。
【解析】A *B 是这样结果这样计算出来:先计算A +3B 的结果,再计算A +B 的结果,最后两个结果求乘积。
由 A *B =(A +3B )×(A +B )可知: 5*7=(5+3×7)×(5+7) =(5+21)×12 = 26×12 = 312【小试牛刀】定义新运算为a △b =(a +1)÷b ,求的值。
6△(3△4)【解析】所求算式是两重运算,先计算括号,所得结果再计算。
由a △b =(a +1)÷b 得,3△4=(3+1)÷4=4÷4=1;6△(3△4)=6△1=(6+1)÷1=7【例2】★★P 、Q 表示数,*P Q 表示2P Q +,求3*(6*8) 【解析】68373*(6*8)3*()3*7522++==== 【小试牛刀】已知a ,b 是任意自然数,我们规定: a ⊕b = a +b -1,2a b ab ⊗=-,那么 典型例题知识梳理[]4(68)(35)⊗⊕⊕⊗= .【解析】原式4[(681)(352)]4[1313]=⊗+-⊕⨯-=⊗⊕4[13131]425=⊗+-=⊗425298=⨯-=【例3】★★规定运算“☆”为:若a>b,则a☆b=a+b;若a=b,则a☆b=a-b+1;若a<b,则a☆b=a×b。
那么,(2☆3)+(4☆4)+(7☆5)= 。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第二十三周定义新运算
专题简析:
我们学过常用的运算加、减、乘、除等,如6+2=8,6×2=12等。
都是2和6,为什么运算结果不同呢?主要是运算方式不同,实质上是对应法则不同。
由此可见,一种运算实际就是两个数与一个数的一种对应方法。
对应法则不同就是不同的运算。
当然,这个对应法则应该是对应任意两个数。
通过这个法则都有一个唯一确定的数与它们对应。
这一周,我们将定义一些新的运算形式,它们与我们常用的加、减、乘、除运算是不相同的。
例1:设a、b都表示数,规定:a△b表示a的3倍减去b的2倍,即:a△b = a×3-b×2。
试计算:(1)5△6;(2)6△5。
分析与解答:解这类题的关键是抓住定义的本质。
这道题规定的运算本质是:运算符号前面的数的3倍减去符号后面的数的2倍。
(1)5△6=5×3-6×2=3
(2)6△5=6×3-5×2=8
显然,本例定义的运算不满足交换律,计算中不能将△前后的数交换。
练习一
1,设a、b都表示数,规定:a○b=6×a-2×b。
试计算3○4。
2,设a、b都表示数,规定:a*b=3×a+2×b。
试计算:(1)(5*6)*7 (2)5*(6*7)
3,有两个整数是A、B,A▽B表示A与B的平均数。
已知A ▽6=17,求A。
例2:对于两个数a与b,规定a⊕b=a×b+a+b,试计算6⊕2。
分析与解答:这道题规定的运算本质是:用运算符号前后两个数的积加上这两个数。
6⊕2=6×2+6+2=20
练习二
1,对于两个数a与b,规定:a⊕b=a×b-(a+b)。
计算3⊕5。
2,对于两个数A与B,规定:A☆B=A×B÷2。
试算6☆4。
3,对于两个数a与b,规定:a⊕b= a×b+a+b。
如果5⊕x=29,求x。
例3:如果2△3=2+3+4,5△4=5+6+7+8,按此规律计算3△5。
分析与解答:这道题规定的运算本质是:从运算符号前的数加起,每次加的数都比前面的一个数多1,加数的个数为运算符号后面的数。
所以,3△5=3+4+5+6+7=25
练习三
1,如果5▽2=2×6,2▽3=2×3×4,计算:3。
2,如果2▽4=24÷(2+4),3▽6=36÷(3+6),计算8▽4。
3,如果2△3=2+3+4,5△4=5+6+7+8,且1△x=15,求x。
例4:对于两个数a与b,规定a□b=a(a+1)+(a+2)+…(a+b-1)。
已知x□6=27,求x。
分析与解答:经仔细分析,可以发现这道题规定运算的本质仍然是:从运算符号前面的数加起,每次加的数都比它相邻的前一个数多1,加数的个数为运算符号后面的数,原式即x+(x+1)+(x+2)+…+(x+5)=27,解这个方程,即可求出x=2。
练习四
1,如果2□3=2+3+4=9,6□5=6+7+8+9+10=40。
已知x □3=5973,求x。
2,对于两个数a与b,规定a□b=a+(a+1)+(a+2)+…+(a+b-1),已知95□x=585,求x。
3,如果1!=1,2!=1×2=2,3!=1×2×3=6,按此规律计算5!。
例5: 2▽4=8,5▽3=13,3▽5=11,9▽7=25。
按此规律计算:。
分析与解答:仔细观察和分析这几个算式,可以发现下面的规律:a ▽b=2a+b ,依此规律:
7▽3=7×2+3=17。
练 习 五
1,有一个数学运算符号“▽”,使下列算式成立:6▽2=12,4▽3=13,3▽4=15,5▽1=8。
按此规律计算:8▽4。
2,有一个数学运算符号“□”使下列算式成立:21□6332=,6
5□42671
=,54□451197=。
按此规律计算:83□112。
3,对于两个数a 、b ,规定a ▽b=b ×x -a ×2,并且已知82▽65=31,计算:29▽57。