数字信号处理(西电版第三版)第2章 时域离散系统与系统的频域分析

合集下载

数字信号处理(第三版)课后习题答案全

数字信号处理(第三版)课后习题答案全


因此
d X ( e j ) FT[ nx( n)] j d
第2章
时域离散信号和系统的频域分析
6. 试求如下序列的傅里叶变换: (1) x1(n)=δ(n-3) (2) x2 (n) δ(n 1) δ(n) δ(n 1) (4) x4(n)=u(n+3)-u(n-4) 解 (1)
0.5ቤተ መጻሕፍቲ ባይዱ 2 n
n<0时, c内有极点0.5、 2、 0, 但极点0是一个n阶极点,
改成求c外极点留数, 可是c外没有极
点, 因此 x(n)=0 最后得到
x(n)=(0.5n-2n)u(n)
第2章
时域离散信号和系统的频域分析
19. 用部分分式法求以下X(z)的反变换:
(1)
1 1 z 1 3 X ( z) , 1 2 5z 2 z 2

7 7 j j e 2 (e 2 1 1 j j e 2 (e 2 7 j e 2 ) 1 j e 2 )
e j3
7 sin( ) 2 1 sin( ) 2
第2章
时域离散信号和系统的频域分析
14. 求出以下序列的Z变换及收敛域: (1) 2-nu(n) (5) δ(n-1) 解 (1) ZT[2 n u(n)]
n n

n 1

2n z n z 1 2
2z 1 1 2 z 1 2 1 z 1 (5) ZT[δ(n-1)]=z-10<|z|≤∞
第2章
16. 已知
时域离散信号和系统的频域分析
3 2 X ( z) 1 1 1 2 z 1 1 z 2
求出对应X(z)的各种可能的序列表达式。

数字信号处理第二章--离散时间信号与系统的频域分析ppt课件

数字信号处理第二章--离散时间信号与系统的频域分析ppt课件


.
2
X(ej)ejmd x(n)2(nm)
n
2x(m)
x(n)1 X(ej)ejnd
2
序列傅 里叶变
换对
X(ej) x(n)ejn n
x(n)21 X(ej)ejnd
.
正变换
反变换
3
例:试求矩形序列 RN (n) 的傅里叶变换
解:
N 1
X(ej) RN(n)ejn e j n
1X(ej w )1x*(n)ejn
2
2n
1X(ejw )1
x*(n)ejn
2
2n
1X(ej w )1[
x(n)ejn]
2
2n
1X(ejw)1X*(ejw)
2
2
XR(ejw)
.
14
C)实因果序列h(n)的对称性 因为h(n)是实序列,其FT只有共轭对称部分He(ejω),共轭反对称
部分为零。 即:H(ejω)=He(ejω)=H*(e-jω)
n
M为整数
因此序列的傅里叶变换是频率ω的周期函数,周期是2π。
由于FT的周期性,一般只分析-π~+π或0~2π之间的FT
2. 线性
设 X 1(ej)F T[x1(n)],X2(ej)F T[x2(n)], 那么 F T[ax1(n)bx2(n)]aX 1(ej)bX2(ej)
.
6
3. 时移与频移 设X(e jω)=FT[x(n)], 那么
则 Y(ej) 1 X(ej)H(ej)
2
1 X(ej)H[ej()]d
2
证明:
Y(ej)F[Ty(n)] x(n)h(n)ejn
n
x(n)[1H (ej)ejnd]ejn

数字信号处理第三版第2章.ppt

数字信号处理第三版第2章.ppt

| z | 2
试利用部分分式展开法求其Z反变换。
解:
X (z)

A1 1 2z 1

1

A2 0.5
z
1
4 1 1 1 3 1 2z1 3 1 0.5z1
x(n)


4 3

2n

1 3
(0.5)n
u(n)
第2章 时域离散信号和系统的频域分析
例: 设
X (z)
7)终值定理:设x(n)为因果序列,且X(z)=Z[x(n)]的全部
极点,除有一个一阶极点可以在z=1 处外,其余都在单位
圆内,则 : lim x(n) lim[(z 1)X (z)]
n
z1
第2章 时域离散信号和系统的频域分析
8)序列卷积(卷积定理)
若: y(n) x(n) h(n) x(m)h(n m) m
3z (z 3)2

z2
3z , 6z 9
试利用长除法求其Z反变换。
解:
| z | 3
第2章 时域离散信号和系统的频域分析
2.5.4 Z 变换的性质和定理
1)线性性质
Z[ax(n)+by(n)]=aX(z)+bY(z)
2)序列的移位 Z[x(n m)] zm X (z) Rx | z | Rx
2 j c
c (Rx , Rx )
直接利用围线积分的方法计算逆Z变换比较麻烦。 下面介绍几种常用的逆Z变换计算方法: 1)用留数定理求逆Z变换(了解) 2)部分分式展开法(掌握) 3)幂级数展开法(长除法)
第2章 时域离散信号和系统的频域分析
例: 设
1

数字信号处理西安电子高西全丁美玉第三版课后习题答案全1-7章

数字信号处理西安电子高西全丁美玉第三版课后习题答案全1-7章
=y′(n)
第 1 章 时域离散信号和时域离散系统
故该系统是非时变系统。 因为 y(n)=T[ax1(n)+bx2(n) =ax1(n)+bx2(n)+2[ax1(n-1)+bx2(n-1)] +3[ax1(n-2)+bx2(n-2)] T[ax1(n)]=ax1(n)+2ax1(n-1)+3ax1(n-2) T[bx2(n)]=bx2(n)+2bx2(n-1)+3bx2(n-2)
第 1 章 时域离散信号和时域离散系统
(3) 这是一个延时器, 延时器是线性非时变系统, 下面证明。 令输入为
输出为
x(n-n1)
y′(n)=x(n-n1-n0) y(n-n1)=x(n-n1-n0)=y′(n) 故延时器是非时变系统。 由于
T[ax1(n)+bx2(n)]=ax1(n-n0)+bx2(n-n0) =aT[x1(n)]+bT[x2(n)]
=aT[x1(n)]+mbT0 [x2(n)]
故系统是线性系统。
n
m0
第 1 章 时域离散信号和时域离散系统
(8) y(n)=x(n) sin(ωn)
令输入为
输出为
x(n-n0)
y′(n)=x(n-n0) sin(ωn) y(n-n0)=x(n-n0) sin[ω(n-n0)]≠y′(n) 故系统不是非时变系统。 由于
(5) 画x3(n)时, 先画x(-n)的波形(即将x(n)的波形以纵轴为中心翻转180°), 然后再右移2位, x3(n)波形如题2解图(四)所示。
第 1 章 时域离散信号和时域离散系统
题2解图(一)
第 1 章 时域离散信号和时域离散系统

数字信号处理(西电版第三版)ch02_2时域离散信号和系统的频域分析PPT

数字信号处理(西电版第三版)ch02_2时域离散信号和系统的频域分析PPT
Digital Signal Processing
数字信号处理(西电版第三版) ch02_2时域离散信号和系统的频
域分析PPT
本PPT课件仅供大家学习使用 请学习完及时删除处理 谢谢!
Digital Signal Processing
2.3 时域离散信号的Z变换
在模拟系统中,用傅里叶变换进行频域分析,而拉普拉 斯变换是傅里叶变换的推广,用于对信号在复频域的分 析。在数字域中,用序列傅里叶变换进行频域分析,Z 变换是其推广,用于对信号在复频域中的分析。
n
n 1
n 1
如果X(z)存在,则要求 a 1,z 得1 到收敛域为 。z在收a
敛域中,该Z变换为
X(z)1aa 11zz11 a z1
za
我们将例2.2和例2.3进行比较,两者Z 变换的函数表达式一样,但收敛域却 不相同,对应的原序列也不同,因此 正确地确定收敛域是很重要。
返回
Digital Signal Processing
回到本节
上式右边: 第一项是有限序列的Z变换,收敛域为0 ≤|z|<∞。 第二项为因果序列的Z变换,其收敛域为Rx-<|z|≤∞。
将两个收敛域相与,得到它的收敛域为Rx-<|z|<∞。
如果x(n)是因果序列,即设n1≥0,它的收敛域为 Rx-<|z|≤∞。
返回
Digital Signal Processing
A0 ResXz(z),0 AmResXz(z),zm
回到本节
这样,将上面的两式带入由X(z)展开得到的部分分式中 去,在通过查表(书中表)就能够得到原序列。
但我们知道收敛域不同,即使同一个z函数也可以有 不同的原序列对应,因此根据给定的收敛域,应正确地 确定每个分式的收敛域,这样才能得到正确的原序列。

数字信号处理(西电版第三版)ch02_1时域离散信号和系统的频域分析

数字信号处理(西电版第三版)ch02_1时域离散信号和系统的频域分析

式中a, b为常数
3. 时移与频移
设X(e jω)=FT[x(n)], 那么
改变相位
FFTT[[xx((nnnn00))]]eejjn0n0XX((eejj)) FFTT[[eejj00nnxx((nn))]]XX((eej(j(00)))
2.2 序列的傅里叶变换的定义和性质
4. FT的对称性
(1) 共轭对称序列
Digital Signal Processing
数字信号处理
数字信号处理课程组 2010年9月
第2章 时域离散信号和系统的频域分析
2.1 引 言 2.2 时域离散信号的傅里叶变换的定义及性质 2.3 周期序列的离散傅里叶级数及傅里叶变换表示式 2.4 时域离散信号的傅里叶变换与模拟信号
傅里叶变换之间的关系 2.5 序列的Z变换 2.6 利用Z变换分析信号和系统的频响特性 习题与上机题
共轭对称序列xe(n)满足:xe(n)=x*e(-n)
将xe(n)用其实部与虚部表示:xe(n)=xer(n)+jxei(n) 上式两边n用-n代替,取共轭:x*e(-n)= xer(-n)-jxei(-n)
得到: xer(n)= xer(-n) xei(n)= -xei(-n)
实部 是偶 函数
虚部 是奇 函数
2.1 引言
信号和系统的两种分析方法: 时域分析方法和频率分析方法 (1)模拟信号和系统 信号用连续变量时间t的函数表示; 系统则用微分方程描述; 信号和系统的频域分析方法:拉普拉斯变换和傅里叶变换;
(2)时域离散信号和系统 信号用序列表示; 系统用差分方程描述; 频域分析的方法是:Z变换或傅里叶变换;
xor(n)=-xor(-n)
实部
是奇

西安电子(高西全丁美玉第三版)数字信号处理课后答案第2章

西安电子(高西全丁美玉第三版)数字信号处理课后答案第2章
Y (e j ) X (e j )H (e j )
这是时域卷积定理。
第2章 时域离散信号和系统的频域分析
(5) 若y(n)=x(n)h(n), 则
Y (e j ) 1 H (e j ) X (e j ) 2π
这是频域卷积定理或者称复卷积定理。
(6)
xe
(n)

1 2
[x(n)
滤波器是高通还是低通等滤波特性, 也可以通过分析极、 零点分布确定, 不必等画出幅度特性再确定。 一般在最靠近 单位圆的极点附近是滤波器的通带; 阻带在最靠近单位圆的 零点附近, 如果没有零点, 则离极点最远的地方是阻带。 参 见下节例2.4.1。
第2章 时域离散信号和系统的频域分析
2.4 例
[例2.4.1] 已知IIR数字滤波器的系统函数
c (Rx , Rx )
这两式分别是序列Z变换的正变换定义和它的逆Z变 换定义。
第2章 时域离散信号和系统的频域分析
(8)
x(n) 2 1
X (e j ) 2d
n
2π 2
x(n) y(n) 1
n

c
X
(v)Y

(
1 v
)
dv v
max[Rx ,
H(z) 1 1 0.9z 1
试判断滤波器的类型(低通、 高通、 带通、 带阻)。 (某
解: 将系统函数写成下式:
H(z) 1 = z 1 0.9z 1 z 0.9
第2章 时域离散信号和系统的频域分析
系统的零点为z=0, 极点为z=0.9, 零点在z平面的原点, 不影响频率特性, 而惟一的极点在实轴的0.9处, 因此滤波 器的通带中心在ω=0处。 毫无疑问, 这是一个低通滤波器。

数字信号处理——时域离散信号和系统的频域分析(第二章)

数字信号处理——时域离散信号和系统的频域分析(第二章)

▪ 可以得到

xor(n)= -xor(-n)
(2.2.14)

xoi(n)= xoi(-n)
(2.2.15)
▪ 即共轭反对称序列的实部是奇函数, 而虚部是偶函数
▪ 【例】 2.2.2 试分析x(n)=e jωn的对称性

解:

将x(n)的n用-n代替, 再取共轭得到:

x*(-n)= e jωn

(2.2.10)
▪ 式中Xe(ejω)与Xo(ejω)分别称为共轭对称部分和共轭反对称部分, 它
们满足
X e (e j ) X (e j )
(2.2.21)
Xo (e j ) X (e j ) (2.2.22)
▪ 同样有下面公式满足:
Xe (e
j
)
1[X 2
(e
j
)
X
(e
j
)]
Xo
(e
j
)
因此x(n)=x*(-n), 满足(2.2.10)式, x(n)是共轭对称序列,
如展成实部与虚部, 得到

x(n)=cosωn+j sinωn

由上式表明, 共轭对称序列的实部确实是偶函数, 虚部
是奇函数。
重庆邮电学院 通信与信息工程学院 张刚
序列傅里叶变换的性质
▪ 对于一般序列可用共轭对称与共轭反对称序列之和表示, 即
数字信号处理
办公室 联系电话
张刚
通信与信息基础教学部(二)(二教三楼2313) 62460295;62477416
时域离散信号和系统的频域分析
本章主要内容
▪ 引言 ▪ 序列的傅里叶变换的定义及性质 ▪ 周期序列的离散傅里叶级数及傅里叶变换表示

数字信号处理课后答案西安电子

数字信号处理课后答案西安电子

第2章 时域离散信号和系统的频域分析 解: 假设输入信号x(n)=ejω0n,系统单位脉冲响应为h(n) 则系统,输出为
上式说明当输入信号为复指数序列时, 输出序列仍是复 指数序列, 且频率相同, 但幅度和相位取决于网络传 输函数。 利用该性质解此题:
第2章 时域离散信号和系统的频域分析
第2章 时域离散信号和系统的频域分析
上式中|H(ejω)|是ω的偶函数, 相位函数是ω的奇函数
|H(ej,ω)|=|H(e-
θ(ω)=-θ(-ω), 故
jω)|,
4. 设
第2章 时域离散信号和系统的频域分析
将x(n)以4为周期进行周期延拓, 形成周期序列
,
画出x(n)和
的波形, 求出
的离散傅里叶级数
和傅里叶变换。
解: 画出x(n) 和
由z3(z-1)=0, 得极点为 z1, 2=0, 1 零极点图和收敛域如题15解图(a)所示, 点相互对消。
图中, z=1处的零极
第2章 时域离散信号和系统的频域分析 题15解图
第2章 时域离散信号和系统的频域分析 (2)
第2章 时域离散信号和系统ຫໍສະໝຸດ 频域分析零点为极点 为
极零点分布图如题15解图(b)所示。 (3) 令y(n)=R4(n), 则
(4) δ(n)
(6) 2-n[u(n)-u(n-10)]
第2章 时域离散信号和系统的频域分析 解 (1)
(2)
第2章 时域离散信号和系统的频域分析 (3)
(4) ZT[δ(n)]=10≤|z|≤∞ (5) ZT[δ(n-1)]=z-10<|z|≤∞
(6)

第2章 时域离散信号和系统的频域分析
16. 已 知

第2章 时域离散信号和系统的频域分析

第2章  时域离散信号和系统的频域分析

1第2章时域离散信号和系统的频域分析z 2.1 引言z 2.2 序列的傅里叶变换的定义及性质z 2.4 时域离散信号的傅里叶变换与模拟信号傅里叶变换之间的关系z 2.5 序列的Z 变换z 2.6 利用Z变换分析信号和系统的频域特性22.1 引言信号和系统的分析方法:时域分析方法和变换域分析方法。

频域变换(傅里叶变换->复频域拉氏变换)连续时间信号(系统微分方程)频域变换(傅里叶变换->复频域Z 变换)时域离散信号(系统差分方程)本章学习内容是本书也是数字信号处理这一领域的基础。

3第2章时域离散信号和系统的频域分析z 2.1 引言z 2.2 序列的傅里叶变换的定义及性质z 2.4 时域离散信号的傅里叶变换与模拟信号傅里叶变换之间的关系z 2.5 序列的Z 变换z 2.6 利用Z变换分析信号和系统的频域特性2.2 序列的傅里叶变换的定义及性质5例2.2.1 设x(n)=R 4(n),求x(n)的DTFT 图2.2.1 R (n)的幅度与相位曲线sin /2ω常用序列的傅立叶变换7(2)()j M nn x n eωπ∞−+=−∞=∑二、序列离散时间傅里叶变换(DTFT)的性质1. DTFT 的周期性()()j j nn X e x n eωω∞−=−∞=∑(2)()j M X eωπ+=时域离散,频域周期函数。

周期是2π。

由于DTFT 的周期,一般只分析0-2π之间的DTFT 。

2. 线性1122:()[()],()[()]j j X e DTFT x n X e DTFT x n ωω==若1212:[()()]()()j j DTFT ax n bx n aX e bX e ωω+=+则3. 时移与频移00(0:[()](),[()]()j n j nj j DTFT x n n eX e DTFT ex n X eωωωωω−−−==则:()[()]j X e DTFT x n ω=若4. 反转7. 帕斯维尔(Parseval)定理8. 频域微分序列的Fourier变换的对称性质*()x n−)n也可分解成:e−*(e对称性质•序列Fourier 变换()()j x n X e ωRe[()]()j e x n X e ωIm[()]()j o j x n X e ω()Re[()]j e x n X e ω()Im[()]j o x n j X e ω实数序列的对称性质•序列Fourier 变换Re[()]()()j j e x n X e X e ωω=Im[()]0()0j o j x n X e ω==()Re[()]j e x n X e ω()Im[()]j o x n j X e ω)j eω−变换满足共轭对称性()]j X eω−Im[()]j X e ω−)arg[结论:z序列分成实部与虚部两部分,实部对应的DTFT具有共轭对称性,虚部和j一起对应的DTFT具有共轭反对称性。

数字信号处理2-离散时间信号与系统的Z域分析和频域分析

数字信号处理2-离散时间信号与系统的Z域分析和频域分析

n


x(n ) z n M
1 有限长序列
x (n ) n1 n n2 x(n) 其它n 0
湛江师范学院
其Z变换:X ( z ) x( n ) z n
n n1
n2
Roc至少为: 0 z
j Im[ z ] Re[ z ]
0
湛江师范学院
n1 0 n2
X ( z ) x ( n1 ) z n1 x ( n1 1) z ( n1 1) x ( 1) z1 x (0) z 0 x (1) z 1 x ( n2 1) z ( n2 1) x ( n2 ) z n2
x ( n ) n n1 x(n ) n n1 0
其Z变换:X ( z )
前式Roc: 0 z
n n1
x ( n ) z n x (n ) z n
n 0
1

后式Roc: Rx z
当n1 0时,Roc : Rx z 当n1 0时,Roc : Rx z
1 ai z Y ( z ) y (l ) z l 0 i l i N i

1 m 0b j z X ( z) m jx(m) z j M j
j 1 m j 0b j z X ( z) 0 b j z m jx(m) z j j Y ( z) N N i ai z a i z i
湛江师范学院
j Im[ z ]
Rx
Re[ z ]
n1 0
0
包括z 处
湛江师范学院
因果序列

数字信号处理第二章 ppt课件

数字信号处理第二章 ppt课件

分析信号在频率分布上的特性 和运算:这给了我们换个视角 观察信号的机会,我们会发现 许多在时间域上得不到的特性 和运算。
返回
2.2 时域离散信号的傅里叶变换
2.2.1 时域离散信号的傅里叶变换的定义 2.2.2 周期信号的离散傅里叶级数 2.2.3 周期信号的傅里叶变换 2.2.4 时域离散信号傅里叶变换的性质
X ~(k)N 1~ x(n)ej2 N k n k n0
上式的求和号中的每一项都是复指数序列,其中第K项
即为第K次谐波
1 X~(k)ej2Nkn Nr
的傅里叶变换根据
其周期性能够表示为:
F[1 T X ~ (k )ej2 N k]n 2X ~ (k )( 2k 2r)
N
N r N
换。
解: 将 x ( n ) 用欧拉公式展开为
x(n)1(ej0n ej0n)
2

FT[ej0n] 2(02r)
r
得余弦序列的傅里叶变换为
X(ej)FT[cos0n]
1 22r [(02r)(02r)]
[(02r) (02r)]
r
;
返回
回到本节
上式表明,余弦信号的傅里叶变换是在 0处的冲激函 数,强度为 ,同时以2 为周期进行周期性延拓,如下图
;
返回
回到本节
2.2.1 时域离散信号的傅里叶变换的定义
定义
X(ej) x(n)ejn
(2.2.1)
n
为时域离散信号x(n)的傅里叶变换,简称FT(Fourier
Transform)。上式成立的条件是序列绝对可和,或者
说序列的能量有限,即满足下面的公式:
x(n)zn
n
对于不满足上式的信号,可以引入奇异函数,使之能够

数字信号处理课件第2章 时域离散信号和系统的频域分析

数字信号处理课件第2章 时域离散信号和系统的频域分析

x ( n)
1 j jn X ( e ) e d 2
1 2 最终可得: X (e ) r) Xa( j j T r T T
结论:时域取样, 频域周期延拓。

是实奇序列,则其FT
⑤时域卷积定理
若y (n) x(n) h(n), 则Y (e j ) X (e j ) H (e j )
用途:求LTI系统的输出 ⑥频域卷积定理
若y (n) x(n) h(n), 则Y (e j )
1 X ( e j ) H ( e j ) 2 1 j j ( ) X ( e ) H ( e )d 2
0
x(t )
0 | Xn |
1
2 Tp
x ( n)
| X ( e j ) |
n
N点
~ x ( n)
~ | X (k ) |
n
N点
N点
k
四种傅里叶变换形式的归纳
时间函数 连续和非周期 连续和周期 离散和非周期 离散和周期 频率函数 非周期和连续 非周期和离散 周期和连续 周期和离散
B.若
x ( n ) X ( e j ),
j
则x * (n) X * (e
C.复序列
), x * ( n) X * (e j )
x ( n ) x r ( n ) jx i ( n )
1 1 * xr n [x(n) x (n)] X 2 2
1 jxi n [ x(n) x (n)] 2

j ( 2M ) n

n
j n j x ( n ) e X ( e )

0 数字低频

数字信号处理-西安电子(-高西全丁美玉)第三版-课后习题答案(全)1-7章-2

数字信号处理-西安电子(-高西全丁美玉)第三版-课后习题答案(全)1-7章-2

题4解图(三)
第1章
时域离散信号和时域离散系统
5. 设系统分别用下面的差分方程描述, x(n)与y(n)分别表示系统输入和输 出, 判断系统是否是线性非时变的。 (1)y(n)=x(n)+2x(n-1)+3x(n-2) (2)y(n)=2x(n)+3 (3)y(n)=x(n-n0) n0为整常数
n=1时,
1 1 1 1 h(1) h(0) (1) (0) 1 2 2 2 2
第1章
n=2时,
时域离散信号和时域离散系统
1 1 h(2) h(1) 2 2
1 1 h(3) h(2) 2 2
2
n=3时,
归纳起来, 结果为
1 h(n) 2
1 , 所以 8

第1章
时域离散信号和时域离散系统
4. 对题1图给出的x(n)要求:
(1) 画出x(-n)的波形; Nhomakorabea1 (2) 计算xe(n)= [x(n)+x(-n)], 并画出xe(n)波形; 2 1 [x(n)-x(-n)], 并画出x (n)波形; (3) 计算xo(n)= o 2
第1章
时域离散信号和时域离散系统
n jn
a e
n 0
1 1 ae j
第2章
时域离散信号和系统的频域分析
3. 求出序列
2-n u(n)
的Z变换及收敛域:
ZT[2 n u (n)]
n



2 n u ( n) z n 1 1 2z

n 0

2 n z n 1 2
设系统是因果的, 利用递推法求系统的单位脉冲响应。

数字信号处理 【西安电子科技大学出版社】

数字信号处理  【西安电子科技大学出版社】

第2章 时域离散信号和系统的频域分析
第2章 时域离散信号和系统的频域分析
第2章 时域离散信号和系统的频域分析
结论:共轭对称序列的实部是偶对称序列(偶函数) 而虚部是奇对称序列(奇函数)
结论:共轭反对称序列的实部是奇对称序列(奇函数) 而虚部是偶对称序列(偶函数)
第2章 时域离散信号和系统的频域分析
k
1e 4
1
e
jk 4 j k
j k j k
e 2 (e 2
j k j k
j k
e 2 )
j k
1 e 4 e 8 (e 8 e 8 )
第2章 时域离散信号和系统的频域分析
j 3 k
e8
sin
2
k
sin k
8
其幅度特性
~
X
(k)
如图2.3.1(b)所示。
第2章 时域离散信号和系统的频域分析 图 2.3.1 例2.3.1图
X (e jT ) Xˆ a ( j)
1 T
k
Xa(
j
jks )
1 T
k
Xa
j
2 k
T
第2章 时域离散信号和系统的频域分析
2.5.3 逆Z变换
已知序列的Z变换及其收敛域, 求序列称为逆Z变 换。 序列的Z变换及共逆Z变换表示如下:
X (z)
x(n)zn, Rx z Rx
式中a, b为常数
3. 时移与频移
设X(e jω)=FT[x(n)], 那么 FT[x(n n0 )] e jn0 X (e j ) FT [e j0n x(n)] X (e j(0 )
(2.2.8) (2.2.9)
第2章 时域离散信号和系统的频域分析

数字信号处理-西安电子科技大学出版(_高西全丁美玉)第三版_课后习题答案(全)

数字信号处理-西安电子科技大学出版(_高西全丁美玉)第三版_课后习题答案(全)

π, 所以3 7
, 这是2 π有理1数4, 因此是周期序 3
(2) 因为ω=
,
所以
1
8
=16π, 这是无理数, 因此是非周期序列。

第 1 章 时域离散信号和时域离散系统
* 4. 对题1图给出的x(n)要
1
2 1
求:
2
(1) 画出x(-n)的波形;
A
10
第 1 章 时域离散信号和时域离散系统
7. 设线性时不变系统的单位脉冲响应h(n)和输入序列x(n)如题7图所示,
要求画出y(n)输出的波形。
解: 解法(一)采用列表法。
y(n)=x(n)*h(n)=
x(m)h(n-m)
m
第 1 章 时域离散信号和时域离散系统
题7图
A
28
第 1 章 时域离散信号和时域离散系统
y(n)={-2,-1,-0.5, 2, 1, 4.5, 2, 1; n=-2, -1, 0, 1, 2, 3, 4, 5}
(5)y(n)=x2(n)
(6)y(n)=x(n2)
(7)y(n)=
n
(8)y(n)=x(n)sin(ωxn( m) )
m 0
解: (1) 令输入为
输出为x(n-n0) Nhomakorabeay′(n)=x(n-n0)+2x(n-n0-1)+3x(n-n0-2) y(n-n0)=x(n-n0)+2x(n—n0—1)+3(n-n0-2)
题2解图(三)
A
7
第 1 章 时域离散信号和时域离散系统
题2解图(四)
A
8
第 1 章 时域离散信号和时域离散系统
3. 判断下面的序列是否是周期的; 若是周期的, 确定其周期。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第2章 时域离散信号和系统的频域分析
第2章 时域离散信号和系统的频域分析
2.1 引 言 2.2 时域离散信号的傅里叶变换的定义及性质 2.3 周期序列的离散傅里叶级数及傅里叶变换表示式 2.4 时域离散信号的傅里叶变换与模拟信号
傅里叶变换之间的关系 2.5 序列的Z变换 2.6 利用Z变换分析信号和系统的频响特性 习题与上机题
第2章 时域离散信号和系统的频域分析
3.时移与频移 设X(ejω)=FT[x(n)], 那么
FT[x(n n0 )] e jm0 X (e j ) FT[ej0n x(n)] X (ej(0 ) )
(2.2.7) (2.2.8)
第2章 时域离散信号和系统的频域分析
4. FT 在学习FT的对称性以前,先介绍什么是共轭对称
【例2.2.2】 试分析x(n)=ejωm 解 因为
x*(-n)=ejωm=x(n) 满足(2.2.9)式,所以x(n)是共轭对称序列,如展成实部 与虚部,则得到:
本章学习序列的傅里叶变换和Z变换,以及利用Z变换 分析系统和信号频域特性。该章内容是本书也是数字信号
第2章 时域离散信号和系统的频域分析
2.2 时域离散信号的傅里叶变换 的定义及性质
时域离散信号不同于模拟信号,因此它们的傅里叶变
2.2.1
序列x(n)的傅里叶变换定义为
X (e j ) FT[x(n)] x(n)e jn n
第2章 时域离散信号和系统的频域分析
(2.2.1)和(2.2.3)式组成一对傅里叶变换公式。 (2.2.2)式是傅里叶变换存在的充分必要条件,有些 函数(例如周期序列)并不满足(2.2.2)式,说明它 的傅里叶变换不存在,但如果引入冲激函数,其傅里 叶变换也可以用冲激函数的形式表示出来,这部分内 容将在2.3
第2章 时域离散信号和系统的频域分析
图2.2.2 cosωm 的波形
第2章 时域离散信号和系统的频域分析
2. 线性 设X1(ejω)=FT[x1(n)], X2(ejω)=FT[x2(n)], 那么
FT[ax1(n) bx2 (n)] aX1(e j ) bX 2 (e j)
(2.2.6) 式中, a,b是常数。
X (e j ) x(n)e jn x(n)e j(2πM )n X (e j(2πM ) )
n
n
M为整数 (2.2.5)
观察上式,得到傅里叶变换是频率ω散信号和系统的频域分析
由FT的周期性进一步分析得到,在ω=0和ω=2πM附近 的频谱分布应是相同的(M取整数),在ω=0,±2π, ±4π,
(2.2.12)
将xo(n)表示成实部与虚部,如下式:
xo (n) xor (n) jxoi (n)
第2章 时域离散信号和系统的频域分析
可以得到:
xor (n) xor (n)
xoi (n) xoi (n)
(2.2.13) (2.2.14)
即共轭反对称序列的实部是奇函数,而虚部是偶函数。
第2章 时域离散信号和系统的频域分析
设序列xe(n)满足下式:
xe (n) xe*(n)
(2.2.9)
则称xe(n)为共轭对称序列。为研究共轭对称序列具有什 么性质,将xe(n)用其实部与虚部表示:
xe (n) xer (n) jxei (n)
第2章 时域离散信号和系统的频域分析
将上式两边n用-n代替,并取共轭,得到:
xe* (n) xer (n) jxei (n)
第2章 时域离散信号和系统的频域分析
2.1 引 言
我们知道,信号和系统的分析方法有两种,即时域分 析方法和频域分析方法。在模拟领域中,信号一般用连续 变量时间的函数表示,系统则用微分方程描述。在频率域, 则用信号的傅里叶变换(Fourier Transform)或拉普拉斯变换 表示。而在时域离散信号和系统中,信号用时域离散信号 (序列)表示,系统则用差分方程描述。在频率域,则用 信号的傅里叶变换或Z
对比上面两公式,因左边相等,因此得到:
xer (n) xer (n)
(2.2.10)
xei (n) xei (n)
(2.2.11)
第2章 时域离散信号和系统的频域分析
上面两式表明共轭对称序列其实部是偶函数,而虚 部是奇函数。类似地,可定义满足下式的共轭反对称序 列:
xo (n) xo* (n)
(2.2.1)
第2章 时域离散信号和系统的频域分析
FT为Fourier Transform的缩写。FT[x(n)]存在的充 分必要条件是序列x(n)满足绝对可和的条件,即满足下式:
| x(n) |
n
(2.2.2)
X(ejω)的傅里叶反变换为
x(n) IFT[X (ej )] 1 π X (ej )d (2.2.3) 2π π
点上表示x(n)信号的直流分量;离开这些点愈远,其频率愈
高,但又是以2π为周期,那么最高的频率应是ω=π。另外 要说明的是,所谓x(n)的直流分量,是指如图2.2.2(a)所 示的波形。例如,x(n)=cosωm,当ω=2πM, M取整数时, x(n)的序列值如图2.2.2(a)所示,它代表一个不随n变化的 信号(直流信号);当ω=(2M+1)π时,x(n)波形如图2.2.2 (b)所示,它代表最高频率信号,是一种变化最快的正弦 信号。由于FT的周期是2π,一般只分析-π~+π之间或 0~2π范围的FT
第2章 时域离散信号和系统的频域分析
【例2.2.1】 设x(n)=RN(n),求x(n)的傅里叶变换。

N 1
x(e j )
RN (n)e jn e j
n
n0
1 e jN e jN / 2 (e jN / 2 e jN / 2 ) 1 e j e j / 2 (e j / 2 e j / 2 )
e j(N 1)2 sin(N / 2) sin( / 2)
(2.2.4)
当N=4时,其幅度与相位随频率ω的变化曲线如 图2.2.1所示。
第2章 时域离散信号和系统的频域分析
图2.2.1 R4(n)的幅度与相位曲线
第2章 时域离散信号和系统的频域分析
2.2.2
1. FT的周期性 在定义(2.2.1)式中,n取整数,因此下式成立:
相关文档
最新文档