第七章二次根式测试题
鲁教版数学八年级下《第七章二次根式》单元测试卷含答案
第七章二次根式单元测试卷题号一二三总分得分一、选择题(每题3分,共30分)1.要使二次根式有意义必须满足( )≤2 ≥2 >2 <22.下列二次根式中,不能与合并的是( )A. B. C. D.3.下列二次根式中,最简二次根式是( )A. B. C. D.4.下列各式计算正确的是( )A.+=B.4-3=1C.2×3=6D.÷=35.下列各式中,一定成立的是( )A.=()2B.=()2C. 1D.=·6.已知+1,则a与b的关系为( )1 17.计算÷×的结果为( )A. B. C. D.8.已知为△的三边长,且0,则△的形状是( )A.等腰三角形B.等边三角形C.直角三角形D.等腰直角三角形9.已知2-1,则(1)(1)的值为( )B.3C.3-2D.-110.实数a、b在数轴上对应点的位置如图所示,那么化简的结果是( )A.2 C.2二、填空题(每题3分,共24分)11.计算:-3.12.若最简二次根式与可以合并,则m的值为.13.已知=,则x2+.14.有一个密码系统,其原理如图所示,当输出的值为时,则输入的.输入x →→输出15.若整数x满足≤3,则使为整数的x的值是(只需填一个).16.已知为两个连续..的整数,且a<<b,则.17.若>0,则二次根式x化简的结果为.18.已知为实数,且-+4,则的值为.三、解答题(19题12分,24,25题每题11分,其余每题8分,共66分)19.计算:(1)3-2+; (2)×;(3)×(-)2.20.先化简,再求值:÷,其中2+2-.21.已知是△的三边长,化简:-+.22.已知2,求+的值.23.已知长方形的长,宽.(1)求长方形的周长;(2)求与长方形等面积的正方形的周长,并比较与长方形周长的大小关系.24.全球气候变暖导致一些冰川融化并消失.在冰川消失12年后,一种低等植物苔藓就开始在岩石上生长.每一个苔藓都会长成近似圆形,苔藓的直径和冰川消失的时间近似地满足如下的关系式7×(t≥12).其中d代表苔藓的直径,单位是厘米代表冰川消失的时间,单位是年.(1)计算冰川消失16年后苔藓的直径;(2)如果测得一些苔藓的直径是35厘米,问冰川约是多少年前消失的?25.阅读下面的材料,解答后面给出的问题:两个含有二次根式的代数式相乘,如果它们的积不含有二次根式,我们就说这两个代数式互为有理化因式,例如与,+1与-1. (1)请你再写出两个含有二次根式的代数式,使它们互为有理化因式: ;这样,化简一个分母含有二次根式的式子时,采用分子、分母同乘以分母的有理化因式的方法就可以了,例如:==,===.(2)请仿照上面给出的方法化简:;(3)计算:+++…+.参考答案一、1.【答案】B 2.【答案】C 3.【答案】D4.【答案】D5.【答案】A6.【答案】A解:===+1,故选A.7.【答案】B解:原式===.8.【答案】B解:原等式可化为0,∴0且0,∴,即△是等边三角形.9.【答案】A解:(1)(1)()-1.将2-1整体代入上式,得原式=-(2-1)-1.10.【答案】B解:本题利用了数形结合的解题思想,由数轴上点的位置知a<0<0,所以.二、11.【答案】12.【答案】3解:∵最简二次根式与可以合并,∴它们的被开方数相同,即54=25,解得3.13.【答案】8解:x2+2+-2+2=+2=()2+2=6+2=8.14.【答案】215.【答案】-2(答案不唯一)解:∵≤3,∴-3≤x≤3.当2时,==3;当3时,==2,∴使为整数的x 的值是-2或3(填写一个即可).16.【答案】11解:因为5<<6,所以56,所以11.17.【答案】-解:由题意知x<0<0,所以x.解此类题要注意二次根式的隐含条件:被开方数是非负数.18.【答案】-1或-7解:由二次根式有意义,得解得x2=9,∴±34,∴1或-7.三、19.解:(1)原式=3×2-2×4+2=6-8+22+2.(2)原式=×+×=1+9=10.(3)原式3+2+8=8-.20.解:原式=÷=·=,当2+2-时,原式===.21.解:∵是△的三边长,∴>0>0<0,∴原式()+()=3.22.解:由题意,知a<0<0,所以原式=+=+=+=2.分析:此题易出现以下错误:原式=+==2.出错的原因在于忽视了隐含条件,进而导致在解答过程中进行了非等价变形.事实上,由2,可知a<0<0,所以将+变形成+是不成立的.23.解:(1)2()=2×=2×(2+)=6.故长方形的周长为6.(2)4=4=4=4×2=8.因为6>8,所以长方形的周长大.24.解:(1)7×,当16时7×=14.即冰川消失16年后苔藓的直径为14厘米.(2)在7×中,当35时,有35=7×,∴=5,∴37.即苔藓的直径是35厘米时,冰川约是37年前消失的.25.解:(1)+与-(答案不唯一)(2)===17-12.(3)原式=(-1)+(-)+(-)+…+(-)1+-+-++…-+1+1+10=9.。
第七章_二次根式测试题
一、选择题
A.1 个
B.2 个
C.3 个
D.4 个
A.2 个
B.3 个
C.4 个 )
D.5 个
3.在下列各式的化简中,化简正确的有(
A.1 个
B.2 个
C.3 个 ). (C) ).
D.4 个
4.下列各式中,是二次根式是( (A)
x
(B) −30
a +1
(D)
8.在直角坐标系中,点 A(- 2 , 6 )到原点的距离是__________ 三、解答题 1. 2 + 8 +
1 . 2
2. 计算:
27 × 32 ÷ 6
3. 计算: (3 2 − 2 3)(3 2 + 2 3) .
4. 已知: x =
2 + 1 ,求代数式
x2 − x − 2 的值. x2 − 2 x + 1
5.已知 x= 3 +2,y= 3 -2,求 x2+2xy+y2 的值
2
, b>0) ,
4 a + 3b 与 2a − b + 6 是同类二次根式,则 a=
.
5 计算: (2 7 -5 2 )2-(5 2 +2 7 )2=_______。 =0,则 a 的取值范围是______________________.
2 2
7.化简 : ( 1 − x ) − (x-2)
= ______________________.
2006 • ( 3 + 2)2007 的结果为( 10. 化简 ( 3 − 2)
(A) –1 二、 填空题、 、填空题、 1.化简:
二次根式单元测试题及答案word
二次根式单元测试题及答案word一、选择题1. 计算下列二次根式的结果:A. √16 = 4B. √25 = 5C. √36 = 6D. √49 = 7答案:A2. 以下哪个表达式是正确的?A. √(-4) = 2iB. √(-9) = 3iC. √(-16) = 4iD. √(-25) = 5i答案:C3. 根据二次根式的乘法法则,下列哪个等式是正确的?A. √2 * √8 = √16B. √3 * √3 = √9C. √5 * √5 = √20D. √7 * √7 = √49答案:D二、填空题4. 计算√(2x^2) 的结果,其中 x = 3。
答案:3√25. 如果√(a^2) = a,那么 a 的取值范围是:答案:a ≥ 06. 将下列二次根式化为最简形式:√(48) = √(16 * 3) = 4√3答案:4√3三、计算题7. 计算下列表达式的值:(5√2 + 3√3)^2答案:79 + 30√68. 简化下列二次根式:√(2/9) * √(18/4)答案:√(2 * 2) = 2四、解答题9. 证明:√(a^2 + b^2) = √a^2 + √b^2 只有在 a = b = 0 时成立。
答案:略(根据二次根式的性质进行证明)10. 解下列方程:x^2 - 4√3x + 12 = 0答案:x = 2√3五、综合题11. 已知 a, b 是正整数,且√a + √b = 9,求 a 和 b 的值。
答案:a = 1, b = 64 或 a = 4, b = 4912. 一个直角三角形的两条直角边分别是3√2 和 6,求斜边的长度。
答案:斜边长度为 9六、附加题13. 如果√(2x + 1) + √(2 - 2x) = 2,求 x 的值。
答案:x = 0注意:本试题及答案仅供参考,具体题目和答案可能会根据教学大纲和教材内容有所变动。
二次根式单元测试题及答案
二次根式单元测试题及答案题目1. 化简下列根式:$\sqrt{12}$答案:$\sqrt{12} = \sqrt{4 \cdot 3}=2\sqrt{3}$题目2. 计算下列各根式的值并化简:$\sqrt{9}+\sqrt{16}$答案:$\sqrt{9}+\sqrt{16} = 3+4=7$题目3. 计算下列各根式的值:$\sqrt{25} - \sqrt{9}$答案:$\sqrt{25} - \sqrt{9} = 5 - 3 = 2$题目4. 计算下列各根式的值:$2\sqrt{8} - 3\sqrt{18}$答案:$2\sqrt{8} - 3\sqrt{18} = 2\sqrt{4 \cdot 2} - 3\sqrt{9 \cdot 2} \\ = 2 \cdot 2\sqrt{2} - 3 \cdot 3\sqrt{2} \\= 4\sqrt{2} - 9\sqrt{2} \\= -5\sqrt{2}$题目5. 求下列各根式的值:$(\sqrt{5}+2)^2$答案:$(\sqrt{5}+2)^2 = (\sqrt{5}+2)(\sqrt{5}+2) \\= 5 + 2\sqrt{5} + 2\sqrt{5} + 4 \\= 9 + 4\sqrt{5}$题目6. 将下列各根式化为最简根式:$\sqrt{72}$答案:$\sqrt{72} = \sqrt{36 \cdot 2} = \sqrt{6^2 \cdot 2} \\= 6\sqrt{2}$题目7. 将下列各根式化为最简根式:$2\sqrt{50}$答案:$2\sqrt{50} = 2 \cdot \sqrt{25 \cdot 2} = 2 \cdot 5\sqrt{2} \\ = 10\sqrt{2}$题目8. 将下列各根式化为最简根式:$3\sqrt{27}$答案:$3\sqrt{27} = 3\sqrt{9 \cdot 3} = 3 \cdot 3\sqrt{3} \\= 9\sqrt{3}$题目9. 求解下列方程:$x^2 - 4 = 0$答案:$x^2 - 4 = 0 \\(x - 2)(x + 2) = 0 \\x - 2 = 0 \quad \text{或} \quad x + 2 = 0 \\x = 2 \quad \text{或} \quad x = -2$题目10. 求解下列方程:$2x^2 - 16 = 0$答案:$2x^2 - 16 = 0 \\2(x^2 - 8) = 0 \\x^2 - 8 = 0 \\(x - \sqrt{8})(x + \sqrt{8}) = 0 \\x - \sqrt{8} = 0 \quad \text{或} \quad x + \sqrt{8} = 0 \\x = \sqrt{8} \quad \text{或} \quad x = -\sqrt{8} \\x = 2\sqrt{2} \quad \text{或} \quad x = -2\sqrt{2}$题目11. 求解下列方程:$x^2 + 5x + 6 = 0$答案:$x^2 + 5x + 6 = 0 \\(x + 2)(x + 3) = 0 \\x + 2 = 0 \quad \text{或} \quad x + 3 = 0 \\x = -2 \quad \text{或} \quad x = -3$题目12. 求解下列方程:$2x^2 + 7x + 3 = 0$答案:$2x^2 + 7x + 3 = 0 \\(2x + 1)(x + 3) = 0 \\2x + 1 = 0 \quad \text{或} \quad x + 3 = 0 \\x = -\frac{1}{2} \quad \text{或} \quad x = -3$题目13. 解方程组:$$\begin{cases}x^2 + y^2 = 25 \\x + y = 7\end{cases}$$答案:将第二个方程展开得到 $y = 7-x$,代入第一个方程得到:$$x^2 + (7-x)^2 = 25 \\x^2 + 49 - 14x + x^2 = 25 \\2x^2 - 14x + 24 = 0 \\x^2 - 7x + 12 = 0 \\(x - 3)(x - 4) = 0 \\x - 3 = 0 \quad \text{或} \quad x - 4 = 0 \\x = 3 \quad \text{或} \quad x = 4$$代入第二个方程可得:当 $x = 3$ 时,$y = 7 - 3 = 4$;当 $x = 4$ 时,$y = 7 - 4 = 3$。
华师大版八年级数学下册第七章 二次根式 测试题.docx
第七章 二次根式 测试题一、选择题(每小题3分,共24分)1. 如果代数式有意义,那么x 的取值范围是( )A .x≥0B .x≠1C .x >0D .x≥0且x≠12. 下列二次根式中,是最简二次根式的是( ) A.xy 2 B.2ab C.21 D.422x x y + 3. 下列计算正确的是( )A .3B. C .2= D .4 4. 等式2111x x x -⋅+=-成立的条件是( )A.1x >B.1x <-C. ≥D. ≤5. 已知()2320x y x y -+++=,则x y +的值为( )A. 0B. 1-C. 1D.36. 估计31-2的值( )A .在1和2之间B .在2和3之间C .在3和4之间D .在4和5之间7. 设0>a ,0>b ,则下列运算中错误..的是( ) A.b a ab ⋅= B.b a b a +=+ C.a a =2)( D.b a b a =8. 下列二次根式中,不能与12合并的是( ) A.48 B.18 C.311 D.75- 二、填空题(每小题4分,共32分)9. 若242x x =,则x 的取值范围是 .10. 化简:= . 11. 计算()5082-÷的结果是 .12. 计算:18322-+= . 13. 当x= 时,二次根式1+x 取最小值,其最小值为 .14. 若整数x 满足|x|≤3,则使7x -为整数的x 的值可以是 (只需填一个).15.16. k ,m ,n 为整数,若135=k 15,450=15m ,180=6n ,则k ,m ,n 的大小关系为 .三、解答题(共64分)17.(每小题4分,共8分)计算:(1)75+28-200; (2)0293618(32)(12)23+--+-+-. 18.(8分)先化简,再求值:22321121a a a a a a-+÷-+-,其中3a =.19.(8分)是否存在这样的整数x ,使它同时满足下列两个条件:①式子20-x 和x -30有意义;②x 的值仍为整数.如果存在,求出x 的值;如果不存在,说明理由.20.(10分)已知直角三角形斜边长为(26+3)cm ,一直角边长为(6+23)cm ,求这个直角三角形的面积.21.(10分)先化简,再求值:(a +b )2+(a -b )(2a +b )-3a 2,其中a =-2-3,b =3-2.22.(10分)一个三角形的三边长分别为1545,20,5245x x x x. (1)求它的周长(要求结果化简);(2)请你给出一个适当的x 的值,使它的周长为整数,并求出此时三角形周长的值.23.(10分)如图是小华同学设计的一个计算机程序,请看懂后回答下列问题.(1)若输入的数x =5,则输出的结果是________;(2)若输出的结果是0且没有返回运算,则输入的数x 是________;(3)请你输入一个数,使它经过第一次运算时返回,经过第二次运算时可输出结果,你觉得可以输入的数是______,输出的数是________.第七章 二次根式测试题一、1. D 2. A 3. C 4. C 5. C 6. C 7. B 8. B二、9. 0x ≥10.11. 3 12. 32213. -1 0 14. -2或3 15. 1 16. m <k <n 三、17.(1)53-6 2.(2)0293618(32)(12)23+--+-+- 3322(12)1|12|2=--+++-. 3322121212=---++-. 3212=-. 18. 原式=2a .当3a =时,原式=3.19. 存在,x=25.20. 根据勾股定理,另一条直角边长为22)326()362(+-+=3(cm ).所以直角三角形的面积S =21×3×(326+)=(23336+)cm 2. 21. 原式=a 2+2ab +b 2+2a 2-ab -b 2-3a 2=ab .当a =-2-3,b =3-2时,原式=1.22.(1)周长1545205245x x x x=++= . (2)当20x =时,周长5520252=⨯=.(答案不唯一,符合题意即可) 23.(1) 6(2)±7 (3)答案不唯一,如分别填2,22- 6.初中数学试卷马鸣风萧萧。
第七章二次根式期末复习练习题(含答案)
课题:二次根式单元复习 授课人:慕寿建 备课时间:2016.6.21课型:习题课 授课时间:2016.6.28第1节8.1第4节8.2一、选择题1.9的值等于()A .3B .-3C .±3D .32.使13-x 有意义的x 的取值范围是()A .31>x B .31->x C .31≥x D .31-≥x 3.化简23)(-的结果是() A .3 B .-3 C .±3 D .94.下列运算错误的是()A .532=+B .632=∙C .326=÷D .222=-)(5.下列二次根式中属于最简二次根式的是()A .14B .48C .ba D .44+a 6.下列二次根式中,x 的取值范围是x ≥2的是()A .x -2B .x +2C .2-xD .21-x7.下面的等式总能成立的是()A . a a =2B .22a a a =C .ab b a =∙D .b a ab ∙=8.已知最简二次根式52-a 与3是同类二次根式,则a 的值可以是() A . 4 B .6 C .7 D .89.28-的结果是()A .6B .22C .2D .210.已知251,251+=-=b a ,则b a -的值为()A . 0B .1C .2D .-2二、填空题:11.计算:312+= .12.23)(-= . 13.化简:96= ,3625= ,412-= ,800-= , 均为正数)、、(z y x z y x 2312= .14.要使式子aa 2+有意义,则a 的取值范围为 . 15.若==-+++ab b a a 则,0224 .16.比较大小:53 62.17.若最简二次根式3532+-m m 与是同类二次根式,则m = .18.对于任意两个不相等的数a 、b 定义一种运算※如下:5232323,=-+=-+=※如※b a b a b a .那么12※4= . 三、解答题19.计算:5+-720.计算:++-+21.计算:+6a -3a 2281883120.1256321432a 18a 2a19.先化简,再求值:5,242442=-∙-+-x x x x x 其中)(.20.阅读下面问题:121212)12(1211-=-+-⨯=+))((; 232323)23(1231-=-+-⨯=+))((; )())(()(252525251251-=-+-⨯=+. 试求:(1)671+的值; (2)17231+的值;(3)为正整数)(n n n ++11的值.参考答案1. 考点:算术平方根.分析:此题考查的是9的算术平方根,需注意的是算术平方根必为非负数. 解答:解:∵39=, 故选A .点评:此题主要考查了算术平方根的定义,一个正数只有一个算术平方根,0的算术平方根是0.2. 考点:二次根式有意义的条件.分析:根据二次根式的性质,被开方数大于或等于0,解不等式即可. 解答:解:根据题意得:3x -1≥0,解得x ≥31.故选C . 点评:本题考查的知识点为:二次根式的被开方数是非负数.3. 考点:二次根式的性质与化简.分析:本题可先将根号内的数化简,再开方,根据开方的结果得出答案.解答:解:3932==-)( .故选A .点评:本题考查了二次根式的化简,解此类题目要注意式子为23)(-的算术平方根,结果为非负数.4. 考点:实数的运算.专题:计算题.分析:本题涉及二次根式的乘法、加法以及除法、二次根式的乘方.在计算时,需要针对每个考点分别进行计算,然后根据实数的运算法则求得计算结果. 解答:解:A 、532≠+,错误,故本选项符合题意; B 、 632=∙,正确,故本选项不符合题意; C 、 326=÷,正确,故本选项不符合题意;D 、222=-)(,正确,故本选项不符合题意.故选A . 点评:本题考查实数的综合运算能力,是各地中考题中常见的计算题型.解决此类题目的关键是熟练掌握二次根式的加法、乘法以及除法法则等考点的运算.5. 考点:最简二次根式.分析:B 、D 选项的被开方数中含有未开尽方的因数或因式;C 选项的被开方数中含有分母;因此这三个选项都不是最简二次根式.解答:解:因为:B 、3448=;C 、bab b a =; D 、1244+=+a a ; 所以这三项都不是最简二次根式.故选A .点评:在判断最简二次根式的过程中要注意:(1)在二次根式的被开方数中,只要含有分数或小数,就不是最简二次根式;(2)在二次根式的被开方数中的每一个因式(或因数),如果幂的指数等于或大于2,也不是最简二次根式.6. 考点:二次根式有意义的条件;分式有意义的条件.分析:根据分式有意义的条件为:分母不等于0;二次根式有意义的条件:被开方数大于或等于0,即可求解.解答:解:根据二次根式有意义的条件可知A 、当2-x ≥0时,二次根式有意义,即x ≤2,不符合题意;B 、当x +2≥0时,二次根式有意义,即x ≥-2,不符合题意;C 、当x -2≥0时,二次根式有意义,即x ≥2,符合题意;D 、当21-x ≥0且x -2≠0时,二次根式有意义,即x >2,不符合题意. 故选C .点评:本题考查的知识点为:分式有意义的条件为:分母不等于0;二次根式有意义的条件为:被开方数大于或等于0.7. 考点:二次根式的性质与化简.分析:考虑a 和b 小于零的情况及隐含条件,逐一判断.解答:解:A 、当a <0时不成立,故A 错误B 、当a <0式不成立,故B 错误.C 、由等式左边可知,a ≥0,b ≥0,符合二次根式积的乘法法则,正确;D 、当a <0,b <0时不成立,故D 错误.故选C .点评:本题考查二次根式的知识,正确理解二次根式乘法是解答问题的关键.8. 考点:同类二次根式.专题:计算题.分析:根据同类二次根式的被开方数相同可得出关于a 的方程,解出即可得出答案.解答:解:∵最简二次根式52-a 与3是同类二次根式, ∴2a -5=3,解得:a =4.故选A .点评:此题考查了同类二次根式的知识,解答本题需要掌握同类二次根式的被开方数相同这个知识点,难度一般.9. 考点:二次根式的加减法.分析:本题考查了二次根式的加减运算,应先化为最简二次根式,再将被开方数相同的二次根式进行合并.解答:解:原式=2222=-.故选C .点评:合并同类二次根式的实质是合并同类二次根式的系数,根指数与被开方数不变.10. 考点:分母有理化.专题:计算题.分析:先通分求出a -b ,再求b a -即可.解答:解:∵,,251251+=-=b a ∴4)25)(25(2525=+-+-+=-b a , ∴24==-b a . 故选C . 点评:本题考查了分母有理化,解题的关键是通分,合并同类项.11. 考点:二次根式的加减法.分析:本题考查了二次根式的加减运算,应先化为最简二次根式,再合并同类二次根式.解答:解:原式=33332=+.点评:同类二次根式是指几个二次根式化简成最简二次根式后,被开方数相同的二次根式.二次根式的加减运算,先化为最简二次根式,再将被开方数相同的二次根式进行合并.合并同类二次根式的实质是合并同类二次根式的系数,根指数与被开方数不变.12. 考点:实数的运算.分析:直接根据平方的定义求解即可.解答:解:∵332=)(,∴332-=-)(.点评:本题考查了数的平方运算,是基本的计算能力.13. 考点:二次根式的性质与化简.专题:计算题.分析:把96化为16×6,然后根据二次根式的性质计算;先把412化为假分数,然后根据二次根式的性质计算;把800化为400×2,然后根据二次根式的性质计算;把12x 3y 2z 化为4x 2y 2•3xz ,然后根据二次根式的性质计算.解答:解:6461696=⨯=;653625=;2349412-=-=-; 2202400800-=⨯-=-;xz xy xz y x z y x z y x 3234122223=∙=均为正数),,(.故答案为64;65;23-;220-;xz xy 32. 点评:本题考查了二次根式的性质与化简:2a =a (a ≥0),此题比较简单,掌握二次根式的性质是解答本题的关键.14. 考点:二次根式有意义的条件.专题:计算题.分析:根据二次根式的性质和分式的意义,被开方数大于或等于0,分母不等于0,可以求出x 的范围.解答:解:根据题意得:a +2≥0且a ≠0,解得:a ≥-2且a ≠0.故答案为:a ≥-2且a ≠0.点评:本题考查的知识点为:分式有意义,分母不为0;二次根式的被开方数是非负数.15. 考点:非负数的性质:算术平方根.专题:计算题.分析:根据非负数的性质列出方程求出a 、b 的值,代入所求代数式计算即可. 解答:解:∵若0224=-+++b a a ,∴可得:⎩⎨⎧=-+=+02204b a a , 解得:⎩⎨⎧=-=34b a , ∴ab =-12.故填-12.点评:本题考查了非负数的性质:几个非负数的和为0时,这几个非负数都为0.16. 考点:实数大小比较;二次根式的性质与化简. 专题:推理填空题. 分析:把根号外的因式平方后移入根号内,求出结果,再根据结果进行比较即可. 解答:解:24626245535322=⨯==⨯=,, ∵ 2445>,∴6253>,故答案为:>.点评:本题考查了二次根式的性质和实数的大小比较的应用,注意此题还可以有以下方法:45532=)( 24622=)(,再比较.17. 考点:同类二次根式.分析:根据同类根式及最简二次根式的定义列方程求解.解答:解:∵最简二次根式32-m 与35+m 是同类二次根式,∴m 2-3=5m +3,解得m =6或m =-1,当m =-1时,232-=-m 无意义,故m =6.点评:此题比较简单,解答此类题目时要注意二次根式成立的条件.18. 考点:二次根式的性质与化简.专题:压轴题;新定义.分析:根据新定义的运算法则a ※b =ba b a -+得出. 解答:解:12※4=2184412412==-+. 点评:主要考查了新定义题型,此类题目是近年来的热点,解题关键是严格按照新定义的运算法则进行计算即可.19. 原式==20.原式= =21.原式== 22. 考点:分式的化简求值. 专题:计算题. 分析:先把分式因式分解,约分化简为最简形式,再把数代入求值.解答:解:原式=)()()(22222+∙--x x x (3分) =242-x ;(6分) x =5时,212452422=-=-)(x .(8分) 点评:此题是分式与整式的乘法运算,分子、分母能因式分解的先因式分解;注意应该把x +2看成一个整体.23. 考点:分母有理化.专题:阅读型.分析:观察问题中的三个式子,不难发现规律:用平方差公式完成分母有理化. 解答:解:(1)原式=67676767-=-+-))(( (2)原式=1723172317231723-=-+-))(( (3)原式=n n n n n n n n -+=-+++-+1111))(( 点评:要将b a ±中的根号去掉,要用平方差公式b a b a b a -=-+))((.教学反思:通过测试,学生提高了运用知识点灵活解决问题的能力。
七年级数学下册《第七章 二次根式》练习题及答案
七年级数学下册《第七章 二次根式》练习题及答案1.下列各式,是二次根式的是( ) A.3 B.39 C.1+x D.22--x2.下列各式中,不一定是二次根式的为( ) A.a B.12+b C.0 D.2)(b a +3.在实数范围内,要使代数式2-x 有意义,则x 的取值范围是( )A.x ≥2B.x >2C.x ≠2D.x <24.若式子12-+a a 有意义,则实数a 的取值范围是( ) A.a ≥-2 B.a ≠1 C.a >1 D.a ≥-2且a ≠15.当x 为____________时,代数式5232+x 有意义. 6.要使xx -+-3112有意义,则符合条件的x 的整数值为_____________. 7.已知(x-y +3)2+y x +2=0,则x +y 的值为( )A.0B.-1C.1D.58.若62121--+-=x x y ,则xy 的值为( ) A.-2 B.2 C.-3 D.39.当a =_________时,代数式1+a +1取到最小值,这个最小值是___________.10.计算:(1)(9)2;(2)-(3)2;(3)2323⎪⎪⎭⎫ ⎝⎛-;(4)(2a )2.11.已知4422-=-+a b a ,求ab 的值.12.在式子2x (x >0),2,1+y (y =-2),x 2-(x >0),33,12+x ,x +y 中,二次根式有( )A.2个B.3个C.4个D.5个13.若式子2112+++x x 有意义,则实数x 的取值范围是( ) A.x >-2 B.x ≥-2且x ≠2 C.x ≥-2 D.x >-2且x ≠214.计算:-(5)2=____________.15.使式子13-x 有意义的x 的取值范围是_____________.16.若y =22332+-+-x x ,则2x +y =____________.17.已知x ,y 为实数,y =319922-+-+-x x x ,则x-6y 的值为____________. 18.函数y =52--x x 的自变量x 的取值范围是( ) A.x ≠5 B.x >2且x ≠5 C.x ≥2 D.x ≥2且x ≠519.若二次根式5-x 在实数范围内有意义,则x 的取值范围为___________.20.若|1001-a|+1002-a =a ,则a-10012=__________.21.观察下表中的式子,写出第n (n 为正整数)个式子(用含n 的代数式表示),并回答,这个式子一定是二次根式吗?为什么? 第1个第2个 第3个 第4个 … 112- 222- 332-442- …参考答案1.A2.A3.A4.D5.答案 全体实数解析 因为3x 2+2>0,所以无论x 为何值时,被开方数都是正数,故答案为全体实数.6.答案 1,2解析 要使xx -+-3112有意义,则2x-1≥0,且3-x >0,解得21≤x <3,所以符合条件的整数为1,2.7.C 8.C9.答案 -21;1 解析 ∵12+a ≥0,∴12+a 的最小值为0, ∴12+a +1的最小值为1.取最小值时,a =-21. 10.解析 (1)(9)2=9.(2)-(3)2=-3.(3)63293232=⨯=⎪⎪⎭⎫ ⎝⎛-.(4)(2a )2=a 2. 11.解析 ∵a 2-4a +4+2-b =(a-2)2+2-b =0∴a-2=0,b-2=0,即a =b =2,∴ab =2.12.B 13.C14.答案 -5 解析 原式=-515.答案 x ≥31 解析 根据题意可得被开方数3x-1≥0,解得x ≥31. 16.答案 5解析 根据题意可得⎩⎨⎧≥-≥-023032x x ,解得x =23,所以y =2,所以2x +y =2×23+2=5. 17.答案 -2解析 由题意得⎪⎩⎪⎨⎧≠-≥-≥-03090922x x x ,解得x =-3,∴y =61331-=--, ∴x-6y =-3-6×(-61)=-3+1=-2.故答案为-2.18.D19.答案 x ≥5解析 要使二次根式5-x 在实数范围内有意义,则x-5≥0,∴x ≥5.20.答案 1002解析 由题意得a-1002≥0,∴a ≥1002.由|1001-a|+1002-a =a ,得-1001+a +1002-a =a ,∴1002-a =1001, ∴a-1002=10012,∴a-10012=1002.21.解析第n 个式子是n n -2,一定是二次根式.理由: ∵n 为正整数,∴n 2≥n ,即n n -2的被开方数是非负数, ∴n n -2一定是二次根式.。
二次根式 练习题及答案
二次根式练习题一.填空题(共15小题)1.使代数式有意义的x的取值范围是.2.若代数式+有意义,则实数x的取值范围是.3.计算﹣的结果为.4.实数a,b在数轴上的位置如图所示,且|a|>|b|,则式子化简的结果为.5.已知y=++2022,则x2+y﹣3的值为.6.若实数x,y满足+(y﹣8)2=0,则=.7.如图,如果正方形ABCD的面积为12,正方形BEFG的面积为6,则△ADF的面积等于.8.化简:=.9.当x=﹣1时,代数式x2+2x+2022的值是.10.已知x=+3,则代数式x3﹣x2﹣26x+5的值为.11.若m=,则m5﹣2m4﹣2015m3=.12.若a=+3,b=3﹣,则的值为.13.若a=1+,b=1﹣,则代数式a2﹣ab+b2的值为.14.若m满足关系+=+,则m的值为.15.若a+6,当a,m,n均为正整数时,则的值为.16.计算:(1)(﹣)﹣2﹣(﹣1)2023+(π﹣2023)0;(2)[a3•a5+(3a4)2]÷a2;(3)(﹣)×;(4)2(﹣)﹣(2﹣4).17.计算下列各题(1);(2);(3);(4).18.计算:.参考答案与试题解析1.使代数式有意义的x的取值范围是x≥﹣2且x≠﹣1.【分析】根据二次根式的被开方数是非负数,分式的分母不等于0即可得出答案.【解答】解:∵x+2≥0且x+1≠0,∴x≥﹣2且x≠﹣1.故答案为:x≥﹣2且x≠﹣1.【点评】本题考查二次根式有意义的条件,分式有意义的条件,掌握二次根式的被开方数是非负数,分式的分母不等于0是解题的关键.2.若代数式+有意义,则实数x的取值范围是 3.5≤x≤5.【分析】根据二次根式的被开方数是非负数即可得出答案.【解答】解:根据题意得:,解得:3.5≤x≤5.故答案为:3.5≤x≤5.【点评】本题考查了二次根式有意义的条件,掌握二次根式的被开方数是非负数是解题的关键.3.计算﹣的结果为﹣.【分析】先化简每一个二次根式,然后再进行计算即可解答.【解答】解:﹣=﹣2=﹣,故答案为:﹣.【点评】本题考查了二次根式的混合运算,分母有理化,准确熟练地进行计算是解题的关键.4.实数a,b在数轴上的位置如图所示,且|a|>|b|,则式子化简的结果为2b﹣a.【分析】根据题意可得:|a|>|b|,a<0<b,从而可得a+b<0,a﹣b<0,然后利用二次根式的性质,绝对值的意义,进行化简计算,即可解答.【解答】解:∵|a|>|b|,a<0<b,∴a+b<0,a﹣b<0,∴=﹣a+(a+b)+(b﹣a)=﹣a+a+b+b﹣a=2b﹣a,故答案为:2b﹣a.【点评】本题考查了二次根式的性质与化简,实数与数轴,整式的加减,准确熟练地进行计算是解题的关键.5.已知y=++2022,则x2+y﹣3的值为2023.【分析】根据二次根式有意义的条件得到x2=4,进而求出y的值,代入代数式求值即可.【解答】解:根据题意得:x2﹣4≥0,4﹣x2≥0,∴x2=4,∴y=2022,∴原式=4+2022﹣3=2023.故答案为:2023.【点评】本题考查二次根式有意义的条件,掌握二次根式的被开方数是非负数是解题的关键.6.若实数x,y满足+(y﹣8)2=0,则=6.【分析】先根据算术平方根和偶次方的非负性可得,x﹣32=0,y﹣8=0,从而求出x,y 的值,然后代入式子中,进行计算即可解答.【解答】解:∵+(y﹣8)2=0,∴x﹣32=0,y﹣8=0,∴x=32,y=8,∴=+=4+2=6,故答案为:6.【点评】本题考查了二次根式的化简求值,准确熟练地进行计算是解题的关键.7.如图,如果正方形ABCD的面积为12,正方形BEFG的面积为6,则△ADF的面积等于6﹣3.【分析】先求出正方形的边长,根据S△ADF=AD•AG计算即可.【解答】解:∵正方形ABCD的面积为12,正方形BEFG的面积为6,∴AB=AD=2,BG=,∴S△ADF=AD•AG=×2×(2﹣)=6﹣3.故答案为:6﹣3.【点评】本题考查二次根式的应用,正方形的性质,三角形的面积公式等知识,解题的关键是灵活掌握三角形的面积公式,属于中考常考题型.8.化简:=2x﹣3.【分析】先根据题意得出x的取值范围,再进行进行乘方和开方的运算.【解答】解:∵x﹣2>0,∴x>2,1﹣x<0,原式化简为:x﹣2+x﹣1=2x﹣3,故答案为:2x﹣3.【点评】本题考查了二次根式的基本运算,解题关键在于通过x的取值正确去括号进行计算.9.当x=﹣1时,代数式x2+2x+2022的值是2034.【分析】将已知变形,得到x2+2x=12,即可得到答案.【解答】解:∵x=﹣1,∴x+1=,∴(x+1)2=13,即x2+2x+1=13,∴x2+2x=12,∴x2+2x+2022=2034;故答案为:2034.【点评】本题考查与二次根式相关的代数式求值,解题的关键是将已知变形,得到x2+2x =12.10.已知x=+3,则代数式x3﹣x2﹣26x+5的值为﹣15.【分析】把所求的式子变形为(x﹣1)(x2﹣26)﹣21,然后再把x的值代入进行计算即可解答.【解答】解:∵x=+3,∴x3﹣x2﹣26x+5=x3﹣x2﹣26x+26﹣26+5=x2(x﹣1)﹣26(x﹣1)﹣21=(x﹣1)(x2﹣26)﹣21=(+3﹣1)[(+3)2﹣26]﹣21=(+2)(6﹣12)﹣21=6(+2)(﹣2)﹣21=6×1﹣21=﹣15,故答案为:﹣15.【点评】本题考查了二次根式的化简求值,把所求的式子变形为(x﹣1)(x2﹣26)﹣21是解题的关键.11.若m=,则m5﹣2m4﹣2015m3=0.【分析】将m化简可得m=+1,代入到原式=m3[(m﹣1)2﹣2016]即可得.【解答】解:∵m====+1,∴原式=m3(m2﹣2m﹣2015)=m3[(m﹣1)2﹣2016]=m3[(+1﹣1)2﹣2016]=0,故答案为:0.【点评】本题主要考查二次根式的化简和整式的运算,熟练掌握二次根式的性质和整式运算的法则是解题的关键.12.若a=+3,b=3﹣,则的值为5.【分析】先求出a+b=6,ab=2,再将所求式子变形后整体代入.【解答】解:∵a=+3,b=3﹣,∴a+b=6,ab=2,∴====5,故答案为:5.【点评】本题考查二次根式变形求值,解题的关键是观察已知和所求式子的特点,求出a+b=6,ab=2,再整体代入计算.13.若a=1+,b=1﹣,则代数式a2﹣ab+b2的值为1.【分析】根据完全平方公式把所求的式子变形为(a+b)2﹣3ab,然后进行计算即可解答.【解答】解:∵a=1+,b=1﹣,∴a2﹣ab+b2=(a+b)2﹣3ab=(1++1﹣)2﹣3×(1+)×(1﹣)=22﹣3×(﹣1)=4+3=7,故答案为:7.【点评】本题考查了二次根式的化简求值,熟练掌握完全平方公式是解题的关键.14.若m满足关系+=+,则m的值为21.【分析】由二次根式的定义可得x+y=19,则有+=0,从而可求解.【解答】解:由题意得:x﹣19+y≥0,19﹣x﹣y≥0,则x+y≥19,x+y≤19,∴x+y=19,∴+=0,则3x+5y﹣2﹣m=0①,2x+3y﹣m=0②,①﹣②得:x+2y﹣2=0,解得:y=﹣17,则x﹣17=19,解得:x=36,∴2×36+3×(﹣17)﹣m=0,解得:m=21.故答案为:21.【点评】本题主要考查二次根式的加减法,解答的关键是由二次根式的定义得出x+y=19.15.若a+6,当a,m,n均为正整数时,则的值为2或2.【分析】通过完全平方公式去掉括号求出a=m2+3n2,2mn=6,根据a,m,n均为整数,分两种情况求出m,n,进一步求出a,从而求解.【解答】解:∵a+6,∴a+6=m2+2nm+3n2(a,m,n均为整数),∴a=m2+3n2,2mn=6,∴mn=3,①m=1,n=3,a=28,②m=3,n=1,a=12,故的值为2或2.【点评】本题主要考查了二次根式的混合运算,完全平方式,熟练掌握完全平方式的应用是解题关键.二.解答题(共3小题)16.计算:(1)(﹣)﹣2﹣(﹣1)2023+(π﹣2023)0;(2)[a3•a5+(3a4)2]÷a2;(3)(﹣)×;(4)2(﹣)﹣(2﹣4).【分析】(1)先根据负整数指数幂,零指数幂,有理数的乘方进行计算,再算加减即可;(2)先算括号内的乘方和乘方,再合并同类项,最后算除法即可;(3)先根据二次根式的性质进行计算,再根据二次根式的乘法法则进行计算即可;(4)先根据二次根式的乘法法则进行计算,再根据二次根式的加减法法则进行计算即可.【解答】解:(1)(﹣)﹣2﹣(﹣1)2023+(π﹣2023)0=4﹣(﹣1)+1=4+1+1=6;(2)[a3•a5+(3a4)2]÷a2=(a8+9a8)÷a2=10a8÷a2=10a6;(3)(﹣)×=(3﹣)×2=2×2=4×6=24;(4)2(﹣)﹣(2﹣4)=2﹣3﹣+2=4﹣4.【点评】本题考查了整式的混合运算,零指数幂,负整数指数幂,二次根式的混合运算等知识点,能正确根据整式的运算法则和二次根式的运算法则进行化简是解此题的关键,注意运算顺序.17.计算下列各题(1);(2);(3);(4).【分析】(1)类比多项式乘多项式的计算方法计算;(2)类比多项式除以单项式的方法计算;(3)利用平方差公式计算;(4)利用完全平方公式计算.【解答】解:(1)()×=4;(2)(4)÷2=2;(3)()()=5﹣3=2;(4)=18+6+5=23.【点评】此题考查二次根式的混合运算,注意先化简,再进一步利用计算公式和计算方法计算.18.计算:.【分析】先根据二次根式的性质,二次根式的乘法法则和完全平方公式进行计算,再根据二次根式的加减法则进行计算即可.【解答】解:=3﹣2+1﹣2﹣=3﹣2+1﹣2﹣4=﹣4.【点评】本题考查了二次根式的混合运算,能正确根据二次根式的运算法则进行计算是解此题的关键.。
(完整版)二次根式测试题附答案
二次根式测试题(1)时间:45分钟 分数:100分一、选择题(每小题2分,共20分)1. 下列式子一定是二次根式的是( )A .B .C .D .2--x x 22+x 22-x 2.若,则( )b b -=-3)3(2A .b>3 B .b<3 C .b≥3 D .b≤33.若有意义,则m 能取的最小整数值是( )13-m A .m=0 B .m=1 C .m=2 D .m=34.若x<0,则的结果是( )xx x 2-A .0 B .—2 C .0或—2 D .25.下列二次根式中属于最简二次根式的是( )A .B .C .D .1448b a 44+a 6.如果,那么( ))6(6-=-∙x x x x A .x≥0 B .x≥6 C .0≤x≤6 D .x 为一切实数7.小明的作业本上有以下四题:①;②;③;④24416a a =a a a 25105=⨯a aa a a =∙=112.做错的题是( )a a a =-23A .① B .② C .③ D .④8.化简的结果为( )6151+A . B . C . D .3011330303033011309.若最简二次根式的被开方数相同,则a 的值为( )a a 241-+与A .B .C .a=1D .a= —143-=a 34=a 10.化简得( ))22(28+-A .—2 B . C .2 D . 22-224-二、填空题(每小题2分,共20分)11.① ;② .=-2)3.0(=-2)52(12.二次根式有意义的条件是 .31-x 13.若m<0,则= .332||m m m ++14.成立的条件是 .1112-=-∙+x x x 15.比较大小: .321316. , .=∙y xy 82=∙271217.计算= .3393a a a a -+18.的关系是 .23231+-与19.若,则的值为 .35-=x 562++x x 20.化简的结果是 .⎪⎪⎭⎫ ⎝⎛--+1083114515三、解答题(第21~22小题各12分,第23小题24分,共48分)21.求使下列各式有意义的字母的取值范围:(1) (2)(3) (4)43-x a 831-42+m x 1-22.化简:(1) (2))169()144(-⨯-22531-(3) (4)5102421⨯-n m 21823.计算:(1) (2) 21437⎪⎪⎭⎫ ⎝⎛-225241⎪⎪⎭⎫ ⎝⎛--(3) (4) )459(43332-⨯⎪⎭⎫ ⎝⎛-⎪⎪⎭⎫ ⎝⎛-126312817(5) (6) 2484554+-+2332326--四、综合题(每小题6分,共12分)24.若代数式有意义,则x 的取值范围是什么?||112x x -+25.若x ,y 是实数,且,求的值.2111+-+-<x x y 1|1|--y y 二次根式测试题(2)时间:45分钟分数:100分一、选择题(每小题2分,共20分)1.下列说法正确的是( )A .若,则a<0B .a a -=20,2>=a a a 则若C . D . 5的平方根是4284b a b a =52.二次根式的值是( )13)3(2++m m A . B . C . D .02332223.化简的结果是( ))0(||2<<--y x x y x A .x y 2- B .y C .y x -2 D .y -4.若是二次根式,则a ,b 应满足的条件是( )ba A .a ,b 均为非负数 B .a ,b 同号C .a≥0,b>0D .0≥ba5.已知a<b ,化简二次根式的正确结果是( )b a 3-A . B . ab a --ab a -C . D .ab a aba -6.把根号外的因式移到根号内,得( )mm 1-A . B . C . D .m m -m --m-7.下列各式中,一定能成立的是( ).A .B .22)5.2()5.2(=-22)(a a =C .=x-1 D .122+-x x 3392+⋅-=-x x x 8.若x+y=0,则下列各式不成立的是( )A .B .022=-y x 033=+y x C . D .022=-y x 0=+y x 9.当时,二次根式的值为,则m 等于( )3-=x 7522++x x m 5A . B . C . D .22255510.已知,则x 等于( )1018222=++x x x x A .4 B .±2 C .2 D .±4二、填空题(每小题2分,共20分)11.若不是二次根式,则x 的取值范围是 .5-x 12.已知a<2, .=-2)2(a 13.当x= 时,二次根式取最小值,其最小值为 .1+x 14.计算: ; .=⨯÷182712=÷-)32274483(15.若一个正方体的长为,宽为,高为,则它的体积cm 62cm 3cm 2为 .3cm 16.若,则 .433+-+-=x x y =+y x 17.若的整数部分是a ,小数部分是b ,则 .3=-b a 318.若,则m 的取值范围是 .3)3(-∙=-m m m m 19.若 .=-⎪⎪⎭⎫ ⎝⎛-=-=y x y x 则,432311,13220.已知a ,b ,c 为三角形的三边,则222)()()(a c b a c b c b a -++--+-+= .三、解答题(21~25每小题4分,第26小题6分,第27小题8分,共44分)21. 22.21418122-+-3)154276485(÷+-23. 24. x xx x 3)1246(÷-21)2()12(18---+++25. 26.已知:,求的0)13(27132--+-132-=x 12+-x x 值.27.已知:。
二次根式练习题及答案
二次根式练习题及答案一、选择题1. 计算下列二次根式的结果:A. √16 = 4B. √25 = 5C. √36 = 6D. √49 = 7正确答案:A2. 以下哪个二次根式是同类二次根式?A. √2 和3√2B. √3 和√12C. √5 和2√5D. √7 和√49正确答案:B3. 计算下列二次根式的加法:√5 + √3 =A. √8B. √15C. √18D. 无法计算正确答案:D二、填空题4. 将下列二次根式化简:√121 = ____答案:115. 合并同类二次根式:3√2 + √2 = ____答案:4√26. 计算二次根式的除法:(√6 / √3) = ____答案:√2三、计算题7. 计算下列表达式的值:(√8 + √18) / √2解:首先化简根式,√8 = 2√2,√18 = 3√2,代入原式得:(2√2 + 3√2) / √2 = 5√2/ √2 = 58. 解二次根式方程:x√2 = √3解:将方程两边同时除以√2,得:x = √(3/2) = √6 / 2四、应用题9. 一个直角三角形的两条直角边分别为3和4,求斜边的长度。
解:根据勾股定理,斜边长度为:c = √(3² + 4²) = √(9 + 16) = √25 = 510. 一个正方形的面积为16平方厘米,求其边长。
解:设边长为a,则a² = 16,所以a = √16 = 4厘米。
五、证明题11. 证明√2是一个无理数。
证明:假设√2是有理数,即存在两个互质整数m和n,使得√2= m/n。
根据有理数的性质,可以设m和n的最大公约数为1。
将等式两边平方,得到2n² = m²,从而m²是偶数,所以m也是偶数,设m = 2k。
代入原等式,得到2n² = (2k)²,即n² = 2k²,说明n也是偶数,这与m和n互质矛盾。
二次根式定义及性质+测试题及答案(培优) 基础 好 打印
二次根式定义及性质化简公式:)0()(2≥=a a a 和⎩⎨⎧<-≥==)0()0(2a a a a a a例1 求下列二次根式有意义的条件:(1)1-x (2)x x -⋅+31 (3)31+x (4) 12+x(5)xx -+31 (6)2)1(-x (7)962+-x x (8)1062+-x x例2 已知满足求的平方根.例3 已知a 、b 满足等式.(1)求出a 、b 的值分别是多少?(2)试求的值.例4 已知△ABC 的三边长a ,b ,c 均为整数,且a 和b 满足试求△ABC 的c边的长.例5 已知,求的值.课堂同步练习一、选择题:1、下列各式一定是二次根式的是()A. B. C. D.2、若式子有意义,则x的取值范围是()A.x≥3 B.x≤3 C.x>3 D.x=33、函数的自变量x的取值范围是()A.B.C.D.4、,则的值为()A.-6 B. 9 C.6 D.-96、如果,那么()A. B. C. D.7、若的整数部分为,小数部分为,则的值是()A. B. C. D.8、在Rt△ABC中,∠C=90°,c为斜边,a、b为直角边,则化简的结果为()A.3a+b﹣cB.﹣a﹣3b+3cC.a+3b﹣3cD.2a9、若,为实数,且,则的值为()A.-1B.1C.1或7D.710、已知实数a满足,那么a﹣20002的值是( )A.1999B.2000C.2001D.2002二、填空题:11、函数的自变量的取值范围是____________.12、已知,则a b=13、当的值为最小值时,a的取值为.14、当1<x<2时,化简:+的结果为.15、已知x、y为实数,且y=﹣+4,则x﹣y=_________ .16、实数、在数轴上的位置如图所示,则化简的结果为 .17、若+|x+y﹣2|=0,则xy= .18、若,则a的取值范围是 .19、无论取任何实数,代数式都有意义,则的取值范围为 .20、化简:得.三、简答题:21、解方程组并求的值.22、已知y=,求3x+2y的算术平方根.求的平方根.23、已知:.24、已知:=0,求实数a,b的值.25、细心观察图形,认真分析各式,然后解答问题.(1)推算出S10的值;(2)请用含有n(n是正整数)的等式表示上述变化规律;(3)求出S12+S22+S32+…+S102的值.二次根式定义及性质同步测试题一、选择题:1、下列式子中:、、0、、、(a>0)二次根式的个数是()A.2个 B.3个 C.4个 D.5个2、若代数式在实数范围内有意义,则的取值范围是( )A. B. C. D.3、若代数式有意义,则实数x的取值范围是()A.B.C.D.且4、函数中自变量x的取值范围是()A. B. C. D.5、若二次根式有意义,则字母a应满足的条件是()A. B. C. D.6、若1<x<3,则|x﹣3|+的值为()A.2x﹣4 B.﹣2 C.4﹣2x D.2 7、估算+2的值是().A.在5和6之间 B.在6和7之间 C.在7和8之间 D.在8和9之间8、已知( )A. 2或12B. 2或-12C. -2或12D. -2或-12二、填空题:9、使得函数有意义的x的取值范围是;10、已知数a,b,c在数轴上的位置如图所示:化简:的结果是:___________________.11、若,则=12、已知,则x y的平方根为______.13、若=3,=2,且 ab<0,则 a﹣b= .14、观察分析下列数据,寻找规律:0,,,3,2 …那么第 10 个数据应是.第n个数应是。
二次根式经典测试题(附答案解析)
二次根式经典测试题(附答案解析)1. 问题:求下列二次根式的值并化简:$$\sqrt{9}$$解析:根据定义,$\sqrt{9}$表示求一个数的平方根,而9的平方根等于3,因此$\sqrt{9}=3$。
2. 问题:计算下列二次根式的值:$$\sqrt{16}+\sqrt{25}$$解析:根据定义,$\sqrt{16}$表示求一个数的平方根,而16的平方根等于4;同样,$\sqrt{25}$表示求一个数的平方根,而25的平方根等于5。
将两个平方根相加得到$$\sqrt{16}+\sqrt{25}=4+5=9$$3. 问题:化简下列二次根式:$$\sqrt{18}$$解析:18可以分解为$2\times9$,而$\sqrt{16}=\sqrt{2\times9}=\sqrt{2}\times\sqrt{9}=\sqrt{2}\times3=\sq rt{18}=3\sqrt{2}$4. 问题:将下列二次根式化为最简形式:$$\sqrt{48}$$解析:48可以分解为$16\times3$,而$\sqrt{48}=\sqrt{16\times3}=\sqrt{16}\times\sqrt{3}=4\sqrt{3}$5. 问题:计算下列二次根式的值:$$\sqrt{64}+\sqrt{81}-2\sqrt{36}$$解析:根据定义,$\sqrt{64}=8$,$\sqrt{81}=9$,$\sqrt{36}=6$。
将这三个值代入原式得到 $$\sqrt{64}+\sqrt{81}-2\sqrt{36}=8+9-2\times6=8+9-12=5$$6. 问题:对于一个正实数x,求下列表达式的值:$$(\sqrt{x}+2)(\sqrt{x}-2)$$解析:根据乘法公式$$(a+b)(a-b)=a^2-b^2$$,将表达式$(\sqrt{x}+2)(\sqrt{x}-2)$代入公式得到 $$(\sqrt{x}+2)(\sqrt{x}-2)=\sqrt{x}^2-(2)^2=x-4$$7. 问题:求下列方程的解集:$$\sqrt{x^2+6x+9}=3$$解析:根据定义,$\sqrt{a}=b$可以转化为$a=b^2$,将方程$\sqrt{x^2+6x+9}=3$转化为$x^2+6x+9=(3)^2=9$。
《二次根式》单元测试题含答案
《二次根式》单元测试题含答案《二次根式》单元测试题(一)判断题:(每小题1分,共5分)1.ab 2)2(-=-2ab .…………………( )【提示】2)2(-=|-2|=2.【答案】×. 2.3-2的倒数是3+2.( )【提示】231-=4323-+=-(3+2).【答案】×.3.2)1(-x =2)1(-x .…( )【提示】2)1(-x =|x -1|,2)1(-x =x -1(x ≥1).两式相等,必须x ≥1.但等式左边x 可取任何数.【答案】×. 4.ab 、31b a 3、bax 2-是同类二次根式.…( )【提示】31b a 3、bax 2-化成最简二次根式后再判断.【答案】√. 5.x 8,31,29x +都不是最简二次根式.( )29x +是最简二次根式.【答案】×. (二)填空题:(每小题2分,共20分) 6.当x __________时,式子31-x 有意义.【提示】x 何时有意义?x ≥0.分式何时有意义?分母不等于零.【答案】x ≥0且x ≠9. 7.化简-81527102÷31225a =_.【答案】-2a a .【点评】注意除法法则和积的算术平方根性质的运用.8.a -12-a 的有理化因式是____________.【提示】(a -12-a )(________)=a 2-22)1(-a .a +12-a .【答案】a +12-a . 9.当1<x <4时,|x -4|+122+-x x =________________.【提示】x 2-2x +1=( )2,x -1.当1<x <4时,x -4,x -1是正数还是负数?x -4是负数,x -1是正数.【答案】3.10.方程2(x -1)=x +1的解是____________.【提示】把方程整理成ax =b 的形式后,a 、b 分别是多少?12-,12+.【答案】x =3+22.11.已知a 、b 、c 为正数,d 为负数,化简2222dc abd c ab +-=______.【提示】22d c =|cd |=-cd . 【答案】ab +cd .【点评】∵ ab =2)(ab (ab >0),∴ ab -c 2d 2=(cd ab +)(cd ab -).12.比较大小:-721_________-341.【提示】27=28,43=48.【答案】<.【点评】先比较28,48的大小,再比较281,481的大小,最后比较-281与-481的大小. 13.化简:(7-52)2000·(-7-52)2001=______________.【提示】(-7-52)2001=(-7-52)2000·(_________)[-7-52.](7-52)·(-7-52)=?[1.]【答案】-7-52. 【点评】注意在化简过程中运用幂的运算法则和平方差公式. 14.若1+x +3-y =0,则(x -1)2+(y +3)2=____________.【答案】40.【点评】1+x ≥0,3-y ≥0.当1+x +3-y =0时,x +1=0,y -3=0.15.x ,y 分别为8-11的整数部分和小数部分,则2xy -y 2=____________. 【提示】∵ 3<11<4,∴ _______<8-11<__________.[4,5].由于8-11介于4与5之间,则其整数部分x =?小数部分y =?[x =4,y =4-11]【答案】5.【点评】求二次根式的整数部分和小数部分时,先要对无理数进行估算.在明确了二次根式的取值范围后,其整数部分和小数部分就不难确定了. (三)选择题:(每小题3分,共15分)16.已知233x x +=-x 3+x ,则………………( )(A )x ≤0 (B )x ≤-3 (C )x ≥-3 (D )-3≤x ≤0【答案】D .【点评】本题考查积的算术平方根性质成立的条件,(A )、(C )不正确是因为只考虑了其中一个算术平方根的意义.17.若x <y <0,则222y xy x +-+222y xy x ++=………………………( )(A )2x (B )2y (C )-2x (D )-2y 【提示】∵ x <y <0,∴ x -y <0,x +y <0. ∴ 222y xy x +-=2)(y x -=|x -y |=y -x .222y xy x ++=2)(y x +=|x +y |=-x -y .【答案】C .【点评】本题考查二次根式的性质2a =|a |.18.若0<x <1,则4)1(2+-x x -4)1(2-+xx 等于………………………( )(A )x2 (B )-x2 (C )-2x (D )2x【提示】(x -x 1)2+4=(x +x 1)2,(x +x 1)2-4=(x -x1)2.又∵ 0<x <1,∴ x +x1>0,x -x1<0.【答案】D .【点评】本题考查完全平方公式和二次根式的性质.(A )不正确是因为用性质时没有注意当0<x <1时,x -x1<0. 19.化简aa 3-(a <0)得………………………………………………………………( ) (A )a - (B )-a (C )-a - (D )a 【提示】3a -=2a a ⋅-=a -·2a =|a |a -=-a a -.【答案】C .20.当a <0,b <0时,-a +2ab -b 可变形为………………………………………( )(A )2)(b a + (B )-2)(b a - (C )2)(b a -+- (D )2)(b a ---【提示】∵ a <0,b <0,∴ -a >0,-b >0.并且-a =2)(a -,-b =2)(b -,ab =))((b a --. 【答案】C .【点评】本题考查逆向运用公式2)(a =a (a ≥0)和完全平方公式.注意(A )、(B )不正确是因为a <0,b <0时,a 、b 都没有意义.(四)在实数范围内因式分解:(每小题3分,共6分) 21.9x 2-5y 2;【提示】用平方差公式分解,并注意到5y 2=2)5(y .【答案】(3x +5y )(3x -5y ). 22.4x 4-4x 2+1.【提示】先用完全平方公式,再用平方差公式分解.【答案】(2x +1)2(2x -1)2. (五)计算题:(每小题6分,共24分) 23.(235+-)(235--);【提示】将35-看成一个整体,先用平方差公式,再用完全平方公式.【解】原式=(35-)2-2)2(=5-215+3-2=6-215.24.1145--7114--732+;【提示】先分别分母有理化,再合并同类二次根式. 【解】原式=1116)114(5-+-711)711(4-+-79)73(2--=4+11-11-7-3+7=1.25.(a 2mn -m ab mn +m nn m )÷a 2b 2mn ; 【提示】先将除法转化为乘法,再用乘法分配律展开,最后合并同类二次根式.【解】原式=(a 2m n -m ab mn +m n n m )·221b a nm =21b n m m n ⋅-mab 1n m m n ⋅+22b ma n nm n m ⋅ =21b -ab 1+221b a =2221b a ab a +-.26.(a +ba abb +-)÷(b ab a ++a ab b --ab b a +)(a ≠b ).【提示】本题应先将两个括号内的分式分别通分,然后分解因式并约分. 【解】原式=ba abb ab a +-++÷))(())(()()(b a b a ab b a b a b a b b b a a a -+-+-+--=ba ba ++÷))((2222b a b a ab b a b ab b ab a a -++----=ba ba ++·)())((b a ab b a b a ab +-+-=-b a +.【点评】本题如果先分母有理化,那么计算较烦琐.(六)求值:(每小题7分,共14分)27.已知x =2323-+,y =2323+-,求32234232y x y x y x xy x ++-的值. 【提示】先将已知条件化简,再将分式化简最后将已知条件代入求值.【解】∵ x =2323-+=2)23(+=5+26, y =2323+-=2)23(-=5-26.∴ x +y =10,x -y =46,xy =52-(26)2=1.32234232y x y x y x xy x ++-=22)())((y x y x y x y x x +-+=)(y x xy y x +-=10164⨯=652. 【点评】本题将x 、y 化简后,根据解题的需要,先分别求出“x +y ”、“x -y ”、“xy ”.从而使求值的过程更简捷. 28.当x =1-2时,求2222ax x a x x+-++222222ax x x a x x +-+-+221ax +的值.【提示】注意:x 2+a 2=222)(a x +,∴ x 2+a 2-x 22a x +=22a x +(22a x +-x ),x 2-x 22a x +=-x (22a x +-x ). 【解】原式=)(2222x a x a x x-++-)(22222x a x x a x x -++-+221ax +=)()()2(22222222222x a x a x x x a x x a x x a x x -++-+++-+- =)()(22222222222222x a x a x x x a x x a x a x x x -++-+++++-=)()(222222222x a x a x x a x x a x -+++-+=)()(22222222x a x a x x x a x a x -++-++=x1.当x =1-2时,原式=211-=-1-2.【点评】本题如果将前两个“分式”分拆成两个“分式”之差,那么化简会更简便.即原式=)(2222x a x a x x-++-)(22222x a x x a x x -++-+221ax +=)11(2222a x xa x +--+-)11(22x x a x --++221a x +=x1.七、解答题:(每小题8分,共16分) 29.计算(25+1)(211++321++431++…+100991+).【提示】先将每个部分分母有理化后,再计算. 【解】原式=(25+1)(1212--+2323--+3434--+…+9910099100--)=(25+1)[(12-)+(23-)+(34-)+…+(99100-)]=(25+1)(1100-) =9(25+1).【点评】本题第二个括号内有99个不同分母,不可能通分.这里采用的是先分母有理化,将分母化为整数,从而使每一项转化成两数之差,然后逐项相消.这种方法也叫做裂项相消法. 30.若x ,y 为实数,且y =x 41-+14-x +21.求xy y x ++2-xyy x +-2的值. 【提示】要使y 有意义,必须满足什么条件?].014041[⎩⎨⎧≥-≥-x x 你能求出x ,y 的值吗?].2141[⎪⎪⎩⎪⎪⎨⎧==y x【解】要使y 有意义,必须⎩⎨⎧≥-≥-014041[x x ,即⎪⎪⎩⎪⎪⎨⎧≥≤.4141x x ∴ x =41.当x=41时,y =21. 又∵xyy x ++2-xyy x +-2=2)(xy y x+-2)(xy y x -=|xy y x +|-|xyy x -|∵ x =41,y =21,∴y x<x y .∴ 原式=x y y x +-y x x y +=2yx 当x =41,y =21时,原式=22141=2.【点评】解本题的关键是利用二次根式的意义求出x 的值,进而求出y 的值.。
二次根式练习题50道(含答案)
二次根式 50 题(含解析)1.计算:2.先分解因式,再求值:b2-2b+1-a2,其中a=-3,b=+4.3.已知,求代数式(x+1)2-4(x+1)+4的值.4.先化简,再求值:.5.(1)计算:;(2)化简,求值:,其中x=-1.6.先化简、再求值:+,其中x=,y=.7.计算:(1)(-2)2+3×(-2)-()-2;(2)已知x=-1,求x2+3x-1的值.8.先化简,再求值:,其中.9.已知a=2+,b=2-,试求的值.10.先化简,再求值:,其中a=+1,b=.11.先化简,再求值:,其中,.12.先化简,再求值:,其中a=-1.13.先化简,再求值:(x+1)2-2x+1,其中x=.14.化简,将代入求值.15.已知:x=+1,y=-1,求下列各式的值.(1)x2+2xy+y2;(2)x2-y2.16.先化简,再求值:,其中.17.先化简,再求值:,其中.18.求代数式的值:,其中x=2+.19.已知a为实数,求代数式的值.20.已知:a=-1,求的值.21.已知x=1+,求代数式的值.22.先化简,再求值:,其中x=1+,y=1-.23.有这样一道题:计算-x2(x>2)的值,其中x=1005,某同学把“x=1 005”错抄成“x=1 050”,但他的计算结果是正确的,请回答这是怎么回事?试说明理由.24.已知:x=,y=-1,求x2+2y2-xy的值.25.已知实数x、y、a满足:,试问长度分别为x、y、a的三条线段能否组成一个三角形?如果能,请求出该三角形的面积;如果不能,请说明理由.26.我国古代数学家秦九韶在《数书九章》中记述了“三斜求积术”,即已知三角形的三边长,求它的面积.用现代式子表示即为:…①(其中a、b、c为三角形的三边长,s为面积).而另一个文明古国古希腊也有求三角形面积的海伦公式:s=…②(其中p=.)(1)若已知三角形的三边长分别为5,7,8,试分别运用公式①和公式②,计算该三角形的面积s;(2)你能否由公式①推导出公式②?请试试.27.(1)计算28.(2)解不等式组.29.已知a=+2,b=-2,则的值为()30.已知a=2,则代数式的值等于()31.已知x=,则代数式的值为()32.已知x=,则•(1+)的值是()33.若,则的值为()34.已知,则的值为()35.如果最简二次根式与是同类二次根式,则a=.36.若最简根式与是同类二次根式,则ab=.37.计算:①= ;②=.38.化简-= .39.化简-的结果是.40.计算:= .41.计算:+=.42.化简:= .43.化简:-+=.44.计算:= .45.先化简-(-),再求得它的近似值为(精确到0.01,≈1.414,≈1.732).46.化简:的结果为.47.计算:= .48.化简:= .49.化简:+(5-)=.50.计算:= .解析:1.解:原式=2+(2+)-(7+4)=--5.2.当a=-3,b=+4时,原式=×(+6)=3+6.3.解:原式=(x+1-2)2=(x-1)2,当时,原式==3.4.解:原式=-===.当时,=.5.解:(1)原式=4--4+2=;(2)原式===x+1,当x=-1时,原式=.6.解:原式=-===x-y,当x=,y=时,(2)方法一:当x=-1时,x2+3x-1=(-1)2+3(-1)-1=2-2+1+3-3-1=-1;方法二:因为x=-1,所以x+1=,所以(x+1)2=()2即x2+2x+1=2,所以x2+2x=1所以x2+3x-1=x2+2x+x-1=1+x-1=-1.8.解:原式====-x-4,当时,原式===.9.解:∵a=2+,b=2-,∴a+b=4,a-b=2,ab=1.而=,∴===8.10.原式==,∵∴.11.解:===,把,代入上式,得原式=.12.解:====;当a=-1时,原式====-(-1)=1.13.解:原式=x2+2x+1-2x+1=x2+2;当.14.解:原式=•=x-3;当x=3-,原式=3--3=.15.解:(1)当x=+1,y=-1时,原式=(x+y)2=(+1+-1)2=12;(2)当x=+1,y=-1时,原式=(x+y)(x-y)=(+1+-1)(+1-+1)=4.16.解:===x-2;当时,原式=.17.解:原式=a2-3-a2+6a=6a-3,当a=时,原式=6+3-3=6.18.解:原式=+=+=;当x=2+时,原式==.19.解:∵-a2≥0∴a2≤0而a2≥0∴a=0∴原式=.20.解:原式=,当a=-1时,原式=.21.解:原式=-==,当x=1+时,原式=.22.解:原式===;当x=1+,y=1-时,原式=.23.解:原式==+-x2=-x2=-2.∵化简结果与x的值无关,∴该同学虽然抄错了x的值,计算结果却是正确的.24.解:当时,x2+2y2-xy==.25.解:根据二次根式的意义,得,解得x+y=8,∴+=0,根据非负数的意义,得解得x=3,y=5,a=4,∴可以组成三角形,且为直角三角形,面积为6.26.解:(1)S=,=;P=(5+7+8)=10,又S=;(2)=(-)=,=(c+a-b)(c-a+b)(a+b+c)(a+b-c),=(2p-2a)(2p-2b)•2p•(2p-2c),=p(p-a)(p-b)(p-c),∴=.(说明:若在整个推导过程中,始终带根号运算当然也正确)27.解:27.(1)原式=3--+1=3--+1=+1;28.(2)由①得x+1>3-x,即x>1;由②得4x+16<3x+18,即x<2;不等式组的解集为1<x<2.29.解:原式=====5.30.解:当a=2时,=2-=2-=2-3-2=-3.31.解:=.32.当x=时,=-1,∴原式=1-()=2-.33.解:原式==•-•=a-b,34.解:∵a==,b==,∴==5.35.解:∵最简二次根式与是同类二次根式,∴3a-8=17-2a,解得:a=5.36.解:∵最简根式与是同类二次根式,∴,解得:,∴ab=1.37.解:①×===4;②-=2-=.38.解:原式=2-3=-.39.解:原式=2-=.故答案为:.40.解:原式=3-4+=0.41.解:原式=2+=3.42.解:原式=4-=3.43.(2010•聊城)化简:-+=.44.解:原式=2-=.45.解:原式=-(-)=-(-)=-+=3≈3×1.732≈5.196≈5.2046.解:原式=-20=-14.47.解:原式=2-3=-.48.解:=5.49.解:原式=+5-=5.50.解:原式=2-+=2.。
二次根式测试题及答案
二次根式测试题及答案### 二次根式测试题及答案#### 题目一:化简下列二次根式1. \(\sqrt{50}\)2. \(\sqrt{32}\)3. \(\sqrt{8}\)#### 答案一:1. \(\sqrt{50} = \sqrt{25 \times 2} = 5\sqrt{2}\)2. \(\sqrt{32} = \sqrt{16 \times 2} = 4\sqrt{2}\)3. \(\sqrt{8} = \sqrt{4 \times 2} = 2\sqrt{2}\)#### 题目二:合并同类二次根式合并下列同类二次根式:\(3\sqrt{2} + 5\sqrt{2} - 2\sqrt{3} + 2\sqrt{3}\)#### 答案二:\(3\sqrt{2} + 5\sqrt{2} - 2\sqrt{3} + 2\sqrt{3} = (3 + 5)\sqrt{2} + (-2 + 2)\sqrt{3} = 8\sqrt{2} + 0\)简化后得:\(8\sqrt{2}\)#### 题目三:二次根式的乘除法计算下列表达式的值:1. \((\sqrt{7} \times \sqrt{3})\)2. \((\frac{\sqrt{5}}{2}) \div (\sqrt{5})\)#### 答案三:1. \(\sqrt{7} \times \sqrt{3} = \sqrt{7 \times 3} =\sqrt{21}\)2. \(\frac{\sqrt{5}}{2} \div \sqrt{5} = \frac{\sqrt{5}}{2} \times \frac{1}{\sqrt{5}} = \frac{1}{2}\)#### 题目四:二次根式的混合运算计算下列表达式的值:\(\sqrt{48} - \frac{1}{\sqrt{3}} + 2\sqrt{6}\)#### 答案四:首先化简 \(\sqrt{48}\):\(\sqrt{48} = \sqrt{16 \times 3} = 4\sqrt{3}\)接着计算表达式:\(4\sqrt{3} - \frac{1}{\sqrt{3}} + 2\sqrt{6}\)将 \(\frac{1}{\sqrt{3}}\) 转换为有理化分母:\(\frac{1}{\sqrt{3}} = \frac{\sqrt{3}}{3}\)代入原表达式:\(4\sqrt{3} - \frac{\sqrt{3}}{3} + 2\sqrt{6}\)合并同类项:\(\frac{12\sqrt{3}}{3} - \frac{\sqrt{3}}{3} + 2\sqrt{6} = \frac{11\sqrt{3}}{3} + 2\sqrt{6}\)#### 题目五:二次根式的逆运算如果 \(\sqrt{18x} = 3\sqrt{2x}\),求 \(x\) 的值。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
11、 的整数部分是。
12、化简: =。
13、计算: =。
14、实数a在数轴上的位置如图所示,化简 =。
15、计算 =。
16、二次根式 , , , , , 中最简二次根式是。
17、下列计算错误的是。
A、 B、
C、 D、
18、计算: 的结果是。
三、解答题:
19、化简:
21、计算:
22、计算:
6、已知a<b,化简二次根式 正确的结果是()
A、 B、 C、 D、
7、下列各式中属于最简二次根式的是()
A、 B、 C、 D、
8、下列等式成立的是Leabharlann )A、 B、C、 D、
9、化简 的结果是()
A、 B、 C、 D、
10、若代数式 的值等于常数2,则a的取值范围是()
A、a≥3B、a≤1C、1≤a≤3D、a=1或a=3
二次根式测试题
一、选择题:
1、化简 的值为()
A、4B、-4C、±4D、16
2、估计 的值()
A、在3到4之间B、在4到5之间
C、在5到6之间D、在6到7之间
3、下列各数中,与 的积为有理数的是()
A、 B、 C、 D、
4、化简 得()
A、-2B、 C、2D、
5、下面与 是同类二次根式的是()
A、 B、 C、 D、
23、计算:
24、
25、
26、如图,数轴上表示1、 的对应点分别是A、B,点B关于点A的对称点为C,设点C所表示的数为x,求 的值。
27、化简:
四、拓展延伸:
28、若a、b是实数,且 ,试求 的值。