海洋科学导论论文

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

卫星海洋遥感技术的应用价值及发展建议

摘要:卫星海洋遥感,或称空间海洋学,是利用电磁波与大气和海洋的相互作用原理,从卫星平台观测和研究海洋的学科分支。它属于多学科紧密交叉的新兴学科,其内容涉及物理学、海洋学和信息学科,并与空间技术、光电子技术、微波技术、计算机技术、通讯技术密切相关。卫星海洋遥感是20世纪后期海洋科学取得重大进展的关键技术之一。与西方国家相比,中国对卫星海洋遥感技术的研发与应用起步较晚。十八大以来,国家对海洋资源开发日益重视,卫星海洋遥感技术在这方面将会起到重要作用。

关键词:卫星海洋遥感应用价值发展建议

正文:一、卫星海洋遥感系统

1、空间平台及轨道

装载传感器的空间运载工具称为空间平台,它包括人造卫星、宇宙飞船、天空实验室等。卫星作为海洋遥感的空间平台,除安装传感器外,还装备如设备:电源、热控制器、方位控制器、数据处理系统等。电源通常采用太阳能电池并与畜电池相连以提供夜间能源。热控制器为保证传感器及其它电子装置正常工作。方位控制器用于控制空间平台的方位。

2、卫星传感器

目前用于海洋观测的所有卫星传感器,均根据电磁辐射原理获取海洋信息。遥感技术采用的电磁波包括可见光、红外、微波。其中,可见光谱范围在0.4~0.7μm,红外波谱在1~100μm,微波波段在0.3-100GHz。传感器按工作方式可分为主动式和被动式。被动传感器如可见红外扫描辐射计,微波辐射计等;主动式如微波高度计、微波散射计、合成孔径雷达等。卫星传感器的种类很多,目前用于海洋研究的传感器主要有:

①海色传感器:主要用于探测海洋表层叶绿素浓度、悬移质浓度、海洋初级生产力、漫射衰减系数以及其他海洋光学参数。

②红外传感器:主要用于测量海表温度。

③微波高度计:主要用于测量平均海平面高度、大地水准面、有效波高、海面风速、海流、重力异常、降雨指数等。

④微波散射计:主要用于测量海面10m处风场。

⑤合成孔径雷达:主要用于探测波浪方向谱、中尺度涡旋、海洋内波、浅海地形、海面污染以及海表特征信息等。

⑥微波辐射计:主要用于测量海面温度、海面风速以及海冰、降雨、CO2海-气交换等。

3、数据传输

星载传感器通常产生测量电压或频率信号,然后进行数据编码。在采用二进制编码中,一般用0~255或0~1023或0~2047对辐射扫描数据进行数字化处理,每个象元要求8bit、10bit或12bit。由于海洋信息往往比陆地低许多,因此,对于专为海洋应用的传感器,可将数字化数据的最大值和最小值限制在一定范围内,在给定数据传输率的条件下,提高传感器的输出准确度。对于非扫描式传感器,由于其测量频率较低,可以在提高数据传输率的同时,尽可能提高数据分辨率。对于扫描式传感器,其数据几乎是连续产生,则须在采样率、数字化间隔及数据传输率之间求得平衡。一般情况下传感器自身还产生少量校准信号。此外,卫星还提供相关的位置、方位、环境参数以及电源数字化数据作为测试扫描信号的校准数据。在扫描传感器中,每个扫描数列都配有这种校准数据。这些信号都随数据流一起传输到地面接收站。

4、海洋卫星资料的反演

所谓卫星资料的反演,是指从卫星原始数据获得定量海洋环境参数的数学物理方法,从电磁场到物质性质或地球物理性质的逆运算。从卫星平台观测海洋,海洋信息经过复杂的海洋/大气系统而被星载传感器接收,然后再传输到卫星地面站。被动遥感(可见、红外、微波)的反演问题,主要是消除信息传输过程中海洋/大气的影响。主动遥感(微波为主)的反演问题,主要是从微波与海面相互作用中提取海洋信息。海洋信息往往比陆地信息小2-3个量级,并且海洋属于动态环境,因此,海洋卫星资料的反演问题更为复杂和重要。反演方法有准解析、数值模拟、统计回归或以上几种的结合。反演方法和模式有适用于全球的,也有适用于区域的。后者一般比前者有高的反演精度。一般来说,它是一个非线性系统。海洋/大气传输过程由一个不可解的积微分方程描述。电磁波与海洋相互作用的物理机制更为复杂。

二、卫星遥感对海洋科学的价值

洋科学三门学科交叉的产物,其理论基础为电磁波与海洋、大气的相互作用以及海洋/大气辐射传递。卫星海洋遥感涉及广阔的电磁波范围,包括可见光、红外和微波。可见光遥感利用太阳光源,红外遥感利用海面热辐射,微波遥感分为海面微波辐射被动源和星载微波雷达主动源。将来,激光可能成为星载主动源。

卫生海洋遥感的研究内容包括物理机制、海洋卫生传感器方案、反演理论和模型、图象处理与信号处理、卫生数据海洋学应用、海洋GIS等。

其次,卫星海洋遥感为海洋观测和研究提供了一个崭新的数据集。这个数据集覆盖了相当部分海洋环境参数和信息,包括海表温度、大气水汽、叶绿素浓度、悬移质浓度、DOM浓度、海洋初级生产力、海洋光学参数、大气气溶胶、海平面高度、大地水准面、海流、重力异常、海洋降雨、有效波高、海浪方向谱、海面白帽、内波、浅海地形、海面风场、海面油膜、海面污染、CO2海/气交换等方面。这个数据集的工作平台在离地球800~1000km的卫星上,与传统的船舶、浮标数据相比,具有以下无可比拟的优点:

(1)大面积同步测量,且具有很高或较高的空间分辨率。可满足区域海洋学研究乃至全球变化研究的需求。

(2)可满足动态观测和长期监测的需求。90年代,各国海洋卫星计划已构成10~20年时间尺度的连续观测,以满足海洋环境业务化监测和气候研究的迫切要求。

(3)实时或准实时性。可满足海洋动力学观测和海洋环境预报的需求。目前,卫星对于同一海域的观测时间间隔为半小时至一个月。

(4)卫星资料不仅具有大面积同步测量的特点,同时具有自动求面积平均值的特点,尤其适用于数值模型的检验和改进。卫星资料在海洋数值模式中的数据同化是当今的前沿研究课题之一。

(5)卫星观测可以涉及船舶、浮标不易抵达的海区。

第三,卫星海洋遥感多传感器资料可推动海洋科学交叉学科研究的发展。卫星海洋遥感各种传感器所提供的海洋环境参数和信息,涉及海洋动力学、海洋生物学、海岸带、全球变化、海气相互作用、海洋通量、海洋生态学等。90年代以来,国际上的海洋卫星计划提供了多传感器同步应用的条件。这样,不仅推动了卫星海洋遥感自身的深入发展,同时,推动了卫星海洋遥感与各海洋学分支的交叉研究以及海洋学各分支学科的交叉研究。

三、对海洋遥感技术发展的建议

为使我国海洋遥感技术得到健康发展, 特建议如下:

1:拓宽投资渠道, 尽早将海洋卫星列入国家航天计划, 系统开展海洋卫星预研。, 采取国内外多渠道的融资办法, 建立海洋卫星发展基金, 解决海洋卫星的经费间题。

相关文档
最新文档