第25章 概率初步复习
2024九年级数学上册“第二十五章 概率初步”必背知识点
2024九年级数学上册“第二十五章概率初步”必背知识点一、随机事件与概率1. 随机事件定义:在一定条件下,可能发生也可能不发生的事件,称为随机事件。
对比:与随机事件相对的是确定事件,确定事件又分为必然事件和不可能事件。
必然事件是事先能肯定它一定会发生的事件;不可能事件是事先能肯定它一定不会发生的事件。
2. 概率的定义一般定义:在大量重复实验中,如果事件A发生的频率m/n稳定在某个常数p附近,那么这个常数p就叫做事件A的概率,记为P(A)=p。
取值范围:概率的取值范围是0≤p≤1。
特别地,P(必然事件)=1,P(不可能事件)=0。
二、概率的计算方法1. 理论概率在一次试验中,如果包含n种可能的结果,并且它们发生的可能性都相等,事件A包含其中的m种结果,那么事件A发生的概率P(A)=m/n。
2. 列举法求概率列表法:当试验中存在两个元素且出现的所有可能的结果较多时,常用列表法列出所有可能的结果,再求出概率。
树状图法:当试验涉及三个或更多元素时,为不重不漏地列出所有可能的结果,通常采用树状图法。
三、用频率估计概率原理:在大量重复试验中,如果事件A发生的频率m/n 稳定于某一个常数p,那么可以认为事件A发生的概率为p。
即,频率可以作为概率的近似值,随着试验次数的增加,频率会越来越接近概率。
四、概率的应用与理解1. 概率的意义概率是对事件发生可能性大小的量的表现,它反映了随机事件的稳定性和规律性。
2. 游戏公平性判断游戏公平性需要计算每个事件的概率,并比较它们是否相等。
如果概率相等,则游戏公平;否则,游戏不公平。
五、综合应用概率知识在解决实际问题中的应用:如抽奖、天气预测、投资决策等领域的概率计算和分析。
示例题目1. 理论概率计算例题:从一副扑克牌中随机抽取一张,求抽到红桃的概率。
解析:一副扑克牌共有54张 (包括大王和小王),其中红桃有13张。
因此,抽到红桃的概率为P=13/54。
2. 列举法求概率例题:一个不透明的袋子中装有3个红球和2个白球,每个球除颜色外都相同。
人教版九年级上册25概率初步复习课件
P(两枚正面向上)= 4 .
变式 向空中抛掷三枚质地均匀的硬币,三枚硬币全部 正面向上的概率呢?
枚举法Leabharlann 列表法树状图法 √
解:三枚硬币分别记为第1枚、第2枚、第3枚,可以画出如下
树状图:
第1枚
正
反
第2枚
正反
正反
第3枚
正反 正反
正反 正反
由树状图可以看出,所有可能出现的结果共有12种,这些结 果的可能性相等,三枚正面向上的有1种.
特别的, 必然事件如“通常加热到100℃时,水沸腾”概率为1; 不可能事件如“任意画一个三角形,其内角和是360°”概率为0.
问题5.如何求随机事件的概率呢?
(2)掷一枚硬币,正面向上; (3)篮球队员投篮一次,投中;
思考1.掷一枚硬币,正面向上的概率为多少? 思考2.运动员投篮一次,投中的概率约为多少?
正
反
正 (正,正) (反,正)
反 (正,反) (反,反)
由此表可以看出,同时抛掷两枚硬币,可能出现的结果有 4 个,并且它们出现的可能性相等,两枚正面向上的有1种.
1
P(两枚正面向上)= 4 .
方法三 解:两枚硬币分别记为第1枚、第2枚,可以画出如下树状图
第1枚
正
反
第2枚
正反
正反
由树状图可以看出,所有可能出现的结果共有4种,这些结果 的可能性相等,两枚正面向上的有1种.
例题精讲
例3.如图所示是四张质地相同的卡片.将卡片洗匀后,背面朝上放置在 桌面上.
小贝和小晶想用以上四张卡片做游戏,游戏规则见信息图.你认为 这个游戏公平吗?请用列表法或画树状图法说明理由.
2236
游戏规则 随机抽取一张卡片,记下数字 放回,洗匀后再抽一张.将抽取的 第一张、第二张卡片上的数字分别 作为十位数字和个位数字,若组成 的两位数不超过 32,则小贝胜, 反之小晶胜.
九年级数学人教版(上册)第25章小结与复习
乙转盘
第一回 第二回
1
2
3
1
2
3
4
2
3
4
5
3
4
5
6
共有9种等可能结果,其中中奖的有4种;
∴P(乙)=
4; 9
(2)如果只考虑中奖因素,你将会选择去哪个超市
购物?说明理由.
选甲超市.理由如下:
∵P(甲)>P(乙), ∴选甲超市.
侵权必究
课堂小结
✓ 归纳总结 ✓ 构建脉络
侵权必究
课堂小结
必然事件
事 件 不可能事件
从这个袋子中摸出一个球,两次摸到的球颜色相同的概率是( A )
A. 2
B. 3
C. 8
D. 1 3
5
5
25
25
4. 一个袋中装有2个黑球3个白球,这些球除颜色外,大小、形状、质地完全相
同,在看不到球的情况下,随机的从这个袋子中摸出一个球不放回,再随机的
从这个袋子中摸出一个球,两次摸到的球颜色相同的概率是( A )
随机事件 与概率
概
率
初
步 列举法求
概
率
用频率估 计概率
侵权必究
概率
随机事件
定义
刻画随机事件发生可能 性大小的数值
计算 公式
P(A) m (m为试验总结果数, n
n为事件A包含的结果种数)
直接列举法 列表法
画树状图法
适合于两个试验因素或分两步进行 适合于三个试验因素或分三步进行
频率与概 率的关系
在大量重复试验中,频率具有 稳定性时才可以用来估计概率
那么重转一次,直到指针指向 4 3
某一份为止).
12
人教版数学九年级上册第25章:概率初步复习课件
-40%=60%,所以口袋中白色球的个数=10×60%=6,即布袋中白色球
的个数很可能是6.故选C.
章末复习
专题五 利用概率判断游戏的公平性
【要点指点】通过计算概率判断游戏是否公平是概率知识的一 个 重要应用, 解决游戏是否公平的问题, 应先计算游戏参与者获 胜的概率, 若概率相等, 则游戏公平;若概率不相等, 则游戏不公 平.
章末复习
例5 色盲是伴X染色体隐性先天遗传病, 患者中男性远多于女 生, 从 男性体检信息库中随机抽取体检表, 统计结果如下表:
根据表中数据, 估计在男性中, 男性患色盲的概率为___0_.0_7__ (结 果保留小数点后两位).
章末复习
分析 视察表格发现, 随着抽取的体检表的增多, 在男性中, 男性患色 盲的频率逐渐稳定在0.07附近, 所以估计在男性中, 男生患色盲的概 率为 0.07.
章末复习
例3 一个不透明的袋子中装有4个黑球, 2个白球, 这些球除颜色 不同 外其他都相同, 从袋子中随机摸出1个球, 摸到黑球的概率 是( D ).
章末复习
相关题3 如果从包括小军在内的 10名大学生中任选1名作 为 “保护母亲河”的志愿 者, 那么小军被选中的概 率是( C ).
解析 共有 10 种等可能的结果,小军被选中的结果有 1 种,故 P(小军 被选中)=110.
章末复习
解 (1)获奖的学生中男生3名, 女生4名, 男生、女生共7名, 故参加颁奖 大会的学生是男生的概率为 . (2)从获得美术奖、音乐奖的学生中各选取1名参加颁奖大会, 用列表法 列出所有可能的结果如下:
章末复习
∵共有12种等可能的结果, 其中是1名男生、1名女生的结果有6种, ∴从获得美术奖、音乐奖的学生中各选取1名参加颁奖大会, 刚好是 1名男生、1名女生的概率为
人教版九年级上册第二十五章概率初步期末复习课件
专题二:概率计算
一般地,如果在一次试验中,有n种可能的结果,并且它们发 生的可能性都相等,事件A包含其中的m种结果,那么事件A发生 的概率P(A)= m .
n
1.周末期间小美和小梅到影城看电影,影城同时在五个放映室
(1室、2室、3室、4室、5室)播放五部不同的电影,他们各自在这
2.某校举办了学生“诗词大赛”.比赛项目为:A.唐诗;B.宋词;C. 论语;D.三字经.比赛形式分“单人组”和“双人组”. (1)小丽参加“单人组”,她从中随机抽取一个比赛项目,恰好抽中 “三字经”的概率是多少? (2)小红和小明组成一个小组参加“双人组”比赛,比赛规则:同一 小组的两名队员的比赛项目不能相同,且每人只能随机抽取一次, 则恰好小红抽中“唐诗”且小明抽中“宋词”的概率是多少?请用 画树状图或列表的方法进行说明.
1.一个不透明的袋子中装有红、白两种颜色的小球,这些球除颜色 外都相同,其中红球有1个,若从中随机摸出一个球,这个球是白 球的概率是 2 .
3
(1)求袋子中白球的个数; (2)随机摸出一个球后,放回并搅匀,再随机摸出一个球,求两 次都摸到相同颜色的小球的概率.
解:(1)设袋子中白球有x个,根据题意,得 x 2 .解得x=2. x 1 3
第二十五章概率
期末考试复习
专题一:概率
在一定条件下,有些事件必然会发生,这样的事件称为必 然事件;有些事件必然不会发生,这样的事件称为不可能事件; 必然事件和不可能事件统称为确定性事件.可能发生也可能不 发生的事件,称为随机事件.
若事件A必然发生,则P(A)=1;若事件A不可能发生,则P(A)=0; 若事件A是随机事件,则P(A)的取值范围是0<P(A)<1.
五个放映室任选一个,每个放映室被选中的可能性都相同,则小美
第25章 概率初步 人教版九年级数学上册章末总结复习课件(51张PPT)
热考题型
01
题型一(事件分类)
1. 下列事件中,①打开电视,它正在播放广告;②太阳绕着地球转;③掷一枚
正方体骰子,点数“3”朝上;④13人中至少有2人的生日是同一个月.属于随
机事件的个数是 2
.
2. 一盒乒乓球中共有6只,其中2只次品,4只正品,正品和次品大小和形状完
全相同,每次任取3只,出现了下列事件,指出这些事件分别是什么事件.
等,事件A包含其中的m种结果,那么事件A发生的概率为:() = .
0
事件发生的可能性越来越小
1
概率的值
不可能事件
必然事件
事件发生的可能性越来越大
02
基础巩固(概率)
求简单随机事件
的概率的方法
03
基础巩固(用列举法求概率)
在一次试验中,如果可能出现的结果只有有限个,且各种结果出现的可能性
大小相等,那么我们可以通过列举试验结果的方法,求出随机事件发生的概率,
1)3只正品.
随机事件
2)至少有一只次品.
随机事件
3)3只次品.
不可能事件
4)至少有一只正品.
必然事件
01
题型一(事件分类)
3. 某班从三名男生(含小强)和五名女生中选四名学生参加学校举行的“中华
古诗文朗诵大赛”,规定女生选n名.
1)当n为何值时,男生小强参加是确定事件?
2)当n为何值时,男生小强参加是随机事件?
个固定数的附近摆动,显示出一定的稳定性.因此可以用随机事件发生的频率
来估计该事件发生的概率.
04
基础巩固(用频率估计概率)
区别
联系
频率
概率
试验值或使用时的统计值
人教版九年级第二十五章概率初步知识点
第二十五章概率初步知识点总结25.1 概率1.随机事件(1)确定事件事先能肯定它一定会发生的事件称为必然事件,事先能肯定它一定不会发生的事件称为不可能事件,必然事件和不可能事件都是确定的.(2)随机事件在一定条件下,可能发生也可能不发生的事件,称为随机事件.(3)事件分为确定事件和不确定事件(随机事件),确定事件又分为必然事件和不可能事件,其中,①必然事件发生的概率为1,即P(必然事件)=1;②不可能事件发生的概率为0,即P(不可能事件)=0;③如果A为不确定事件(随机事件),那么0<P(A)<1.随机事件发生的可能性(概率)的计算方法:2.可能性大小(1)理论计算又分为如下两种情况:第一种:只涉及一步实验的随机事件发生的概率,如:根据概率的大小与面积的关系,对一类概率模型进行的计算;第二种:通过列表法、列举法、树状图来计算涉及两步或两步以上实验的随机事件发生的概率,如:配紫色,对游戏是否公平的计算.(2)实验估算又分为如下两种情况:第一种:利用实验的方法进行概率估算.要知道当实验次数非常大时,实验频率可作为事件发生的概率的估计值,即大量实验频率稳定于理论概率.第二种:利用模拟实验的方法进行概率估算.如,利用计算器产生随机数来模拟实验.3.概率的意义(1)一般地,在大量重复实验中,如果事件A发生的频率mn会稳定在某个常数p附近,那么这个常数p就叫做事件A的概率,记为P(A)=p.(2)概率是频率(多个)的波动稳定值,是对事件发生可能性大小的量的表现.(3)概率取值范围:0≤p≤1.(4)必然发生的事件的概率P(A)=1;不可能发生事件的概率P(A)=0.(4)事件发生的可能性越大,概率越接近与1,事件发生的可能性越小,概率越接近于0.(5)通过设计简单的概率模型,在不确定的情境中做出合理的决策;概率与实际生活联系密切,通过理解什么是游戏对双方公平,用概率的语言说明游戏的公平性,并能按要求设计游戏的概率模型,以及结合具体实际问题,体会概率与统计之间的关系,可以解决一些实际问题.25.2 用列举法求概率1.概率的公式(1)随机事件A的概率P(A)=事件A可能出现的结果数所有可能出现的结果数.(2)P(必然事件)=1.(3)P(不可能事件)=0.2. 几何概型的概率问题是指具有下列特征的一些随机现象的概率问题:设在空间上有一区域G,又区域g包含在区域G内(如图),而区域G与g都是可以度量的(可求面积),现随机地向G内投掷一点M,假设点M必落在G中,且点M落在区域G的任何部分区域g内的概率只与g的度量(长度、面积、体积等)成正比,而与g的位置和形状无关.具有这种性质的随机试验(掷点),称为几何概型.关于几何概型的随机事件“向区域G中任意投掷一个点M,点M落在G内的部分区域g”的概率P定义为:g的度量与G的度量之比,即P=g的测度G的测度简单来说:求概率时,已知和未知与几何有关的就是几何概率.计算方法是长度比,面积比,体积比等.3.列举法和树状法(1)当试验中存在两个元素且出现的所有可能的结果较多时,我们常用列表的方式,列出所有可能的结果,再求出概率.(2)列表的目的在于不重不漏地列举出所有可能的结果求出n,再从中选出符合事件A或B的结果数目m,求出概率.(3)列举法(树形图法)求概率的关键在于列举出所有可能的结果,列表法是一种,但当一个事件涉及三个或更多元素时,为不重不漏地列出所有可能的结果,通常采用树形图.(4)树形图列举法一般是选择一个元素再和其他元素分别组合,依次列出,象树的枝丫形式,最末端的枝丫个数就是总的可能的结果n.(5)当有两个元素时,可用树形图列举,也可以列表列举.4.游戏公平性(1)判断游戏公平性需要先计算每个事件的概率,然后比较概率的大小,概率相等就公平,否则就不公平.(2)概率=所求情况数总情况数.25.3 利用频率估计概率1. 利用频率估计概率(1)大量重复实验时,事件发生的频率在某个固定位置左右摆动,并且摆动的幅度越来越小,根据这个频率稳定性定理,可以用频率的集中趋势来估计概率,这个固定的近似值就是这个事件的概率.(2)用频率估计概率得到的是近似值,随实验次数的增多,值越来越精确.(3)当实验的所有可能结果不是有限个或结果个数很多,或各种可能结果发生的可能性不相等时,一般通过统计频率来估计概率.2.模拟实验(1)在一些有关抽取实物实验中通常用摸取卡片代替了实际的物品或人抽取,这样的实验称为模拟实验.(2)模拟实验是用卡片、小球编号等形式代替实物进行实验,或用计算机编号等进行实验,目的在于省时、省力,但能达到同样的效果.(3)模拟实验只能用更简便方法完成,验证实验目的,但不能改变实验目的,这部分内容根据《新课标》要求,只要设计出一个模拟实验即可.。
九年级数学_第25章概率初步复习课件_
第25章复习 ┃ 知识归类
┃知识归纳┃
1.事件
在一定条件下, 可能发生也可能不发生 的事件,叫做随 机事件.
确定事件包括 必然 事件和 不可能 事件.
[注意] 随机事件发生的可能性是有大小的,不同的随机事 件发生的可能性的大小有可能不同. 2.概率的意义
Hale Waihona Puke 数学·新课标(RJ)第25章复习 ┃ 知识归类 一般地,如果在一次试验中,有n种可能的结果,并且它们 发生的可能性都相等,事件A包含其中的m种结果,那么事件A m 发生的概率P(A)= n . 0≤P(A)≤ 1 A [注意] 事件A发生的概率的取值范围 ,当 1 A 为不可能事件时, P(A) = 为必然事件时, P(A) = ;当 . 0 3.求随机事件概率的三种方法 (1) 直接列举 法;(2) 列表 法;(3) 树形图 法.
方法技巧 计算有关面积问题的概率,首先应分析哪些事件的发生与 哪部分面积有关,再根据面积的计算方法求有关的比值. 概率 P= 事件所有可能结果所组成的图形的面积 . 所有可能结果所组成的图形的面积
数学·新课标(RJ)
第25章复习 ┃ 考点攻略 ► 考点五 概率与公平性
例5 四张质地相同的卡片如图 25-3所示,将卡片洗匀后, 背面朝上放置在桌面上.
红 黑
白 白,白
白,红 白,黑
红 红,白
红,红 红,黑
黑 黑,白
黑,红 黑,黑
数学·新课标(RJ)
第25章复习 ┃ 考点攻略
(2)∵乙摸到与甲相同颜色的球有三种情况, 3 1 ∴乙能取胜的概率为 = . 9 3
方法技巧 当事件中涉及两个因素,并且事件发生的可能性相等时,通 常采用列表法或树形图法计算概率; 当事件中涉及三个或三个以 上因素,并且事件发生的可能性相等时,通常采用树形图法计算 概率.
人教版九年级上册数学《概率》概率初步研讨复习说课教学课件
课件
课件 课件
课件 课件
课件 课件
课件 课件
课件
课件
A.
1
5
B.
C.
3
5
D.
第二十五章 概率初步
2
5
4
5
上一页
返回导航
下一页
数学·九年级(上)·配人教
9.【贵州毕节中考】平行四边形 ABCD 中,AC、BD 是两条对角线,现从以下
四个关系:①AB=BC;②AC=BD;③AC⊥BD;④AB⊥BC 中随机取出一个作为
课件 课件
课件 课件
课件 课件
课件
课件
m
等,事件 A 包含其中的 m 种结果,那么事件 A 发生的概率 P(A)= n .
m
注意:在 P(A)= n 中,①当 A 为必然事件时,P(A)=1;②当 A 为不可能事件时,
P(A)=0;③当 A 为随机事件时,0<P(A)<1.
第二十五章 概率初步
上一页
以练助学
名 师 点 睛
课件
课件
课件
课件
课件
课件
课件
个 人 简 历 : 课件 /jianli/
课件
课件
手 抄 报 : 课 件/shouchaobao/
课件
课件 课件
课件 课件
课件 课件
课件 课件
课件
课件
知识点1
概率的意义
一般地,对于一个随机事件A,我们把刻画其发生可能性大小的数值,称为随
机事件A发生的概率,记为P(A).
4
第二十五章 概率初步
上一页
返回导航
九年级数学上册25概率初步复习课件新版新人教版
典例精析
【解析】(1)设A,B,C,D,E分别表示大拇指、食指、中指、无名指、小拇指, 列表如下:
乙A
B
C
D
E
甲
A AA AB AC AD AE
B BA BB BC BD BE
C CA CB CC CD CE
D DA DB DC DD DE
E EA EB EC ED EE
典例精析
由表格可知,共有25种等可能的结果.甲伸出小拇指取胜有1种
老师没提了一个问题,同学们就应当立即主动地去思考,积极地寻找答案,然后和老师的解答进行比较。通过超前思考,可以把注意力集中在对这些“难点”的理解 上,保证“好钢用在刀刃上”,从而避免了没有重点的泛泛而听。通过将自己的思考跟老师的讲解做比较,还可以发现自己对新知识理解的不妥之处,及时消除知识 的“隐患”。
类型归纳
【自主解答】 (1)树状图法:
类型归纳
列表法:
ABCD
A
AB AC AD
B BA
BC BD
C CA CB
CD
D DA DB DC
(2)一共有12种情况,符合条件的有2种,即 P 2 1 . 12 6
类型归纳
【主题升华】
求随机事件概率的类型及策略
1.有限等可能性事件:
(1)事件只包含一个因素:用列举的方法,根据公式P= n 求得
九年级上册
第二十五章 概率初步复习课
知识梳理
类型归纳
类型一、事件类型的辨别 【主题训练1】(攀枝花中考)下列叙述正确的是( ) A.“如果a,b是实数,那么a+b=b+a”是不确定事件 B.某种彩票的中奖概率为 ,是指买7张彩票一定有一张中奖
C.为了了解一批炮弹的杀伤1 力,采用普查的调查方式比较合适 D.“某班50位同学中恰有27位同学生日是同一天”是随机事件
九年级数学上册第二十五章概率初步知识点归纳总结(精华版)(带答案)
九年级数学上册第二十五章概率初步知识点归纳总结(精华版)单选题1、七巧板是我国古代劳动人民的发明之一,被誉为“东方模板”,它是由五块等腰直角三角形、一块正方形和一块平行四边形共七块板组成的.如图是一个用七巧板拼成的正方形,如果在此正方形中随机取一点,那么此点取自黑色部分的概率为( )A .932B .516C .38D .716答案:C分析:首先设正方形的面积,再表示出阴影部分面积,然后可得概率.解:设“东方模板”的面积为4,则阴影部分三角形面积为1,平行四边形面积为12,则点取自黑色部分的概率为:1+124=38,故选C .小提示:此题主要考查了概率,关键是表示图形的面积和阴影部分面积.2、在一个不透明的口袋中,放置3个黄球,1个红球和n 个蓝球,这些小球除颜色外其余均相同,课外兴趣小组每次摸出一个球记录下颜色后再放回,并且统计了蓝球出现的频率(如图所示),则n 的值最可能是( )A .4B .5C .6D .7 答案:C分析:根据图知,经过大量实验,蓝球出现的频率稳定在0.6附近,再根据频率公式逐项判断即可.解:根据图知,经过大量实验,蓝球出现的频率稳定在0.6附近, 则n1+3+n =0.6,当n =4时,41+3+4=0.5≠0.6,故A 不符合题意; 当n =5时,51+3+5=59≠0.6,故B 不符合题意; 当n =6时,61+3+6=0.6,故C 符合题意; 当n =7时,71+3+7=711≠0.6,故D 不符合题意;∴n 的值最可能是6, 故选:C .小提示:本题考查频数与频率,能从图中获取到蓝球出现的频率稳定在0.6附近是解答的关键.3、如图,电路连接完好,且各元件工作正常.随机闭合开关S 1,S 2,S 3中的两个,能让两个小灯泡同时发光的概率为( )A .16B .12C .23D .13答案:D分析:首先根据题意画出树状图,然后由树状图求得所有等可能的结果与能让两个小灯泡同时发光的情况,再利用概率公式求解即可求得答案. 解:画树状图得:∵共有6种等可能的结果,能让两个小灯泡同时发光的有2种情况,∴能让两个小灯泡同时发光的概率为26=13;故选:D.小提示:本题考查的是用列表法或画树状图法求概率.列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件,树状图法适合两步或两步以上完成的事件.注意概率=所求情况数与总情况数之比.4、一只不透明的袋子中装有若干个白球和红球,共计20个,这些球除颜色外都相同.将球搅匀,每次从中随机摸出一个球,记下颜色后放回、再搅匀、再摸球,通过大量重复摸球试验后,发现摸到白球的频率稳定于0.3,由此可估计袋子中红球的个数约为()A.6B.14C.5D.20答案:B分析:根据白球的概率可估计红球的概率,即可求解.解:红球的个数为:20×(1−0.3)=14(个),故选:B.小提示:本题考查用频率估计概率,当进行大量重复试验时,频率稳定在概率附近.5、一个口袋中有3个黑球和若干个白球,在不允许将球倒出来数的前提下,小明为估计其中的白球数,采用了如下的方法:从口袋中随机摸出一球,记下颜色,然后把它放回口袋中,摇匀后再随机摸出一球,记下颜色,再放回,不断重复上述过程.小明共摸了100次,其中80次摸到白球.根据上述数据,小明可估计口袋中的白球大约有()A.18个B.15个C.12个D.10个答案:C分析:小明共摸了100次,其中80次摸到白球,20次摸到黑球,摸到黑球与摸到白球的次数之比为1:4,由此可估计口袋中黑球和白球个数之比为1:4;即可计算出白球数.解:由题可得:3÷100−8080=12(个).所以答案是:12.小提示:本题考查的是通过样本去估计总体,只需将样本“成比例地放大”为总体即可.一般来说,用样本去估计总体时,样本越具有代表性、容量越大,这时对总体的估计也就越精确.6、小颖有两顶帽子,分别为红色和黑色,有三条围巾,分别为红色、黑色和白色,她随机拿出一顶帽子和一条围巾戴上,恰好为红色帽子和红色围巾的概率是( ) A .12B .23C .16D .56答案:C分析:利用列表法或树状图即可解决.分别用r 、b 代表红色帽子、黑色帽子,用R 、B 、W 分别代表红色围巾、黑色围巾、白色围巾,列表如下:1种,根据概率公式,恰好为红色帽子和红色围巾的概率是16. 故选:C .小提示:本题考查了简单事件的概率,常用列表法或画树状图来求解.7、不透明袋中装有除颜色外完全相同的a 个白球、b 个红球,则任意摸出一个球是红球的概率是( ) A .ba+b B .ba C .aa+b D .ab 答案:A分析:根据概率公式直接求解即可. ∵共有(a +b)个球,其中红球b 个∴从中任意摸出一球,摸出红球的概率是ba+b . 故选A .小提示:本题考查了简单概率公式的计算,熟悉概率公式是解题的关键.8、如图所示的是由8个全等的小正方形组成的图案,假设可以随意在图中取一点,那么这个点取在阴影部分的概率是( )A .38B .12C .58D .1 答案:A分析:根据阴影部分的面积所占比例得出概率即可. 解:由图知,阴影部分的面积占图案面积的38,即这个点取在阴影部分的概率是38,故选:A .小提示:本题主要考查几何概率的知识,熟练根据几何图形的面积得出概率是解题的关键. 9、如图,若随机向8×8正方形网格内投针,则针尖落在阴影部分的概率为( )A .12B .58C .9π64D .2564 答案:D分析:利用割补法求得阴影面积,再根据几何概率计算求值即可; 解:将上边和左边的弓形面积补到下边和右边可得阴影面积为5×5=25, 该图形总面积为8×8=64, ∴针尖落在阴影部分的概率=2564, 故选: D .小提示:本题考查了几何概率:事件的概率可以用部分线段的长度(部分区域的面积)和整条线段的长度(整个区域的面积)的比来表示.10、如图是一个游戏转盘.自由转动转盘,当转盘停止转动后,指针落在数字1,2,3,4所示区域内可能性最大的是( )A.1号B.2号C.3号D.4号答案:C分析:根据圆周角可得1区域的圆心角度数,然后计算各个区域的可能性,比较大小即可得.解:1区域的圆心角为:360°−50°−125°−65°=120°,∴落在1区域的可能性为:120°360°=13,落在2区域的可能性为:50°360°=536,落在3区域的可能性为:125°360°=2572,落在4区域的可能性为:65°360°=1372,∵536<1372<13<2572,∴落在3区域的可能性最大,故选:C.小提示:题目主要考查可能性的计算及大小比较,理解题意,掌握可能性的计算方法是解题关键.填空题11、一个事件经过500次的试验,某种结果发生的频率为0.32,那么在这一次试验中,该种结果发生的概率估计值是___________.答案:0.32分析:由题意依据大量重复实验时,事件发生的频率在某个固定位置左右摆动,并且摆动的幅度越来越小,根据这个频率稳定性定理,可以用频率的集中趋势来估计概率,这个固定的近似值就是这个事件的概率进行分析即可.解:一个事件经过500次的试验,某种结果发生的频率为0.32,那么在这一次试验中,该种结果发生的概率估计值是0.32.所以答案是:0.32.小提示:本题考查利用频率估计概率,解答本题的关键是掌握频率稳定性定理,可以用频率的集中趋势来估计概率,这个固定的近似值就是这个事件的概率.12、如图,数学活动小组自制了一个飞镖盘.若向飞镖盘内投掷飞镖(落在边界线重新投掷),则飞镖落在阴影区域的概率是_____.答案:13分析:利用阴影部分面积除以总面积=投掷在阴影区域的概率,进而得出答案.解:由题意可得,投掷在阴影区域的概率是:39=13.所以答案是:13.小提示:此题主要考查了几何概率,求出阴影部分面积与总面积的比值是解题关键.13、疫情期间,进入学校都要进入测温通道,体温正常才可进入学校.某校有3个测温通道,分别记为A,B,C通道.学生可随机选取其中的一个通道测温进校园,某日早晨,小王和小李两位同学在进入校园时,恰好选择不同通道测温进校园的概率是_____________.答案:23分析:画树状图展示所有9种等可能的情况数,找出符合条件的情况数,然后根据概率公式求解即可.画树状图为:共有9种等可能的情况,其中小王和小李从不同通道测温进校园的有6种情况,侧小王和小李两位同学在进入校园时,恰好选择不同通道测温进校园的概率是69=23,所以答案是:23.小提示:本题考查了列表法与树状图法:利用列表法或树状图法展示所有可能的结果求出,再从中选出符合事件A 或B 的结果数目m ,然后根据概率公式计算事件A 或事件B 的概率.14、小强、小亮、小文三位同学玩投硬币游戏.三人同时各投出一枚均匀硬币,若出现三个正面向上或三个反面向上,则小强赢;若出现两个正面向上和一个反面向上,则小亮赢;若出现一个正面向上和两个反面向上,则小文赢.有下列说法:①小强赢的概率最小;②小文和小亮赢的概率相等;③小文赢的概率是38;④这是一个公平的游戏.其中,正确的是__________(填序号). 答案:①②③分析:利用树状图得出三人分别赢得概率,然后依次判断即可. 解:画树状图得:所以共有8种可能的情况.三个正面向上或三个反面向上的情况有2种,所以P (小强赢)=28=14;出现2个正面向上一个反面向上的情况有3种,所以P (小亮赢)=38;出现一个正面向上2个反面向上的情况有3种,,所以P (小文赢)=38, ∵14<38,∴小强赢的概率最小,①正确; 小亮和小文赢的概率均为38,②正确; 小文赢的概率为38,③正确;三个人赢的概率不一样,这个游戏不公平,④错误; 所以答案是:①②③.小提示:题目主要考查利用树状图求概率,熟练掌握运用树状图求概率的方法是解题关键.15、有三张完全一样正面分别写有字母A ,B ,C 的卡片.将其背面朝上并洗匀,从中随机抽取一张,记下卡片上的字母后放回洗匀,再从中随机抽取一张,则抽取的两张卡片上的字母相同的概率是_________. 答案:13分析:根据题意列出图表得出所有等情况数和抽取的两张卡片上的字母相同的情况数,然后根据概率公式即可得出答案.解:根据题意列表如下:3种情况, 所以P (抽取的两张卡片上的字母相同)=39=13.小提示:此题考查的是用列表法或树状图法求概率.列表法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件;树状图法适合两步或两步以上完成的事件;解题时要注意此题是放回实验还是不放回实验. 解答题16、寒冬战疫,西安常安,感谢每一位为这座城拼命的人!一个不透明的口袋里装有分别标有汉字“西”、“安”、“常”、“安”的四个小球,除汉字不同之外,小球没有任何区别,每次摸球前先搅拌均匀再摸球. (1)若从中任取一球,球上的汉字刚好是“安”的概率为多少?(2)甲从中任取一球,不放回,再从中任取一球,请用画树状图或列表法,求出甲取出的两个球上的汉字恰能组成“西安”的概率。
第25章 概率初步 人教版数学九年级上册章末复习课件(34张PPT)
列举法 列表法
概率求法 面积法 画树状图法
频率估计概率
知识梳理
1.事件的概念 (1)在一定条件下,可__能__发__生__也__可__能__不__发__生_ 的事件,叫做随机事件. (2)确定事件包括_必_然_事件和_不_可_能_事件.
知识梳理
2.概率的意义 (1)一般地,如果在一次试验中,有n种可能的结 果,并且它们发生的可能性都相等,事件A包m含其中 的m种结果,那么事件A发生的概率P(A)= n .
规则如下: ①在一个不透明的袋子中装一个红球(延安)、一个白球 (西安)、一个黄球(汉中)和一个黑球(安康),这四 个球除颜色不同外,其余完全相同; ②小英父亲先将袋中球摇匀,让小英从袋中随机摸出一球, 父亲记录下其颜色,并将这个球放回袋中摇匀,然后让小 英母亲从袋中随机摸出一球,父亲记录下它的颜色; ③若两人所摸出球的颜色相同,则去该球所表示的城市旅 游,否则,前面的记录作废,按规则②重新摸球,直到两 人所摸出球的颜色相同为止.
按照上面的规则,请你解答下列问题: (1)已知小英的理想旅游城市是西安,小英和母亲随机 各摸球一次,均摸出白球的概率是多少?
解:(1)画树状图得
延安
西安
共有16种等可能的结果,均摸出白球的只有
一种可能,其概率为 1
16
.
汉中 安康
(2)已知小英母亲的理想旅游城市是汉中,小英和母亲 随机各摸球一次,至少有一人摸出黄球的概率是多少? 解: (2)由树状图得
2.掷两枚质地均匀的骰子,下列事件中,属于 随机事件的为( B )
A. 点数的和为1 C. 点数的和大于12
B. 点数的和为6 D. 点数的和小于13
考点二:概率的意义
3.从-1,0,
第25章 概率初步 初中数学人教版九年级上册知识点精讲精练
第二十五章概率初步知识点思维导图知识点一:随机事件与概率1. 事件的类型事件的类型定义举例必然事件在一定条件下,必然会发生的事件,称为必然事件.在一个只装有红球的袋中摸球,摸出红球.确定性事件不可能事件在一定条件下,必然不会发生的事件,称为不可能事件.在一个只装有红球的袋中摸球,摸出白球.随机事件(不确定性事件)在一定条件下,可能发生也可能不发生的事件,称为随机事件.在一个装有红球和白球的袋中摸球,摸出红球.2. 事件发生的可能性一般地,随机事件发生的可能性是有大小的,不同的随机事件发生的可能性的大小有可能不同.(1)必然事件:试验中必然发生的事件,其发生的可能性为100%或1;(2)不可能事件:试验中不可能发生的事件,其发生的可能性为0;(3)随机事件:试验中可能发生也可能不发生的事件,其发生的可能性介于0和1之间.3. 概率:一般地,对于一个随机事件A,我们把刻画其发生可能性大小的数值,称为随机事件A发生的概率,记为P(A).4. 概率的计算一般地,如果在一次试验中,有n种可能的结果,并且它们发生的可能性都相等,事件A包含其中的m种结果,那么事件A发生的概率P(A)=,0≤P(A)≤1.当A为必然事件时,P(A)=1;当A为不可能事件时,P(A)=0.5. 事件发生的可能性与概率的关系事件发生的可能性越大,它的概率越接近1;反之,事件发生的可能性越小,它的概率越接近0.6. 计算简单事件的概率的主要类型(1)个数类型:如摸球、掷骰子等可以表示出所有可能出现的结果的试验;(2)面积类型:如果随机试验是向S区域内掷一点,那么掷在区域A(A在S内)内的概率P=.【例1】一个不透明的口袋中装有只有颜色不同的5个球,其中有3个白球和2个黑球.(1)求从中随机取出一个黑球的概率;(2)若往口袋中再放入x个白球和8个黑球,从口袋中随机取出一个白球的概率是,求x的值.【例1】【解析】(1)由题意知从中随机取出一个球共有5种情况,其中是黑球的有2种可能,根据概率公式计算可得;(2)利用概率公式:,列出关于x的分式方程,解之可得.【答案】解:(1)∵口袋中共装有5个球,其中黑球有2个,∴从中随机取出一个黑球的概率是.(2)根据题意,得,解得x=2,经检验,x=2是分式方程的根,所以x=2.【巩固】1. 投掷两枚质地均匀的骰子,骰子的六个面上分别刻有1到6的点数,则下列事件为随机事件的是()A. 两枚骰子向上一面的点数之和大于1B. 两枚骰子向上一面的点数之和等于1C. 两枚骰子向上一面的点数之和大于12D. 两枚骰子向上一面的点数之和等于122. 如图,六边形广场由6个大小完全相同的灰色和白色正三角形组成,一只小鸟在广场上随机停留,刚好落在灰色正三角形区域的概率为_____________.【巩固答案】1. D3.知识点二:用直接列举法(枚举法)求概率当事件涉及的对象比较单一且出现的等可能结果数目较少时,就可以直接列举出所有等可能的结果,再利用概率公式P(A)=(在一次试验中,有n种等可能的结果,事件A包含其中的m种结果)求事件发生的概率.注意:(1)直接列举试验结果时,要有一定的顺序性,保证结果不重不漏.(2)用列举法求概率的前提有两个:①所有可能出现的结果是有限个;②每个结果出现的可能性相等.(3)所求概率是一个准确数,一般用分数表示.【例2】有4根细木棒,长度分别为2 cm,3 cm,4 cm,5 cm,从中任选3根,恰好能搭成一个三角形的概率是__________.【例2】【解析】从4根细木棒中任选3根,有①2 cm,3 cm,4 cm;②3 cm,4 cm,5 cm;③2 cm,3 cm,5 cm;④2 cm,4 cm,5 cm,共4种选法,恰好能搭成一个三角形的有①②④共3种,故恰好能搭成一个三角形的概率是.【答案】【巩固】1. 为支援某贫困山区,小慧准备通过爱心热线捐款,她只记得号码的前5位,后3位由5,1,2这三个数字组成,但具体顺序忘记了. 则她第一次就拨通正确电话的概率是()A. B. C. D.2. 小明和他的爸爸妈妈共3人站成一排拍照,他的爸爸妈妈相邻的概率是()A. B. C. D.【巩固答案】1. C2. D知识点三:用列表法求概率1. 列表法列表法就是用表格的形式反映事件发生的各种结果出现的次数和方式,以及某一事件发生的可能的次数和方式,并求出概率的方法.2. 适用条件当一次试验涉及两个因素,并且可能出现的等可能结果数目较多时,为不重不漏地列出所有可能的结果,常采用列表法.3. 具体步骤(1)选其中的一次操作(或一个条件)为横行,另一次操作(或另一个条件)为竖行,列出表格;(2)运用概率公式P(A)=计算概率.注意:用列表法列举所有可能出现的结果时,要注意“放回”与“不放回”的区别.【例3】不透明袋子中装有红、绿小球各一个,除颜色外无其他差别,随机摸出一个小球后,放回并摇匀,再随机摸出一个,两次都摸到红球的概率为( )A.B.C.D.【例3】【解析】两次摸球的所有可能出现的结果列表如下:红球绿球红球(红球,红球)(绿球,红球)绿球(红球,绿球)(绿球,绿球)由表可知,共有4种等可能的结果,其中两次都是红球的结果只有1种,所以P (两次都摸到红球)=. 故选D.【答案】D 【巩固】1. “学雷锋”活动月中,“飞翼”班组织学生开展志愿者服务活动,小晴和小霞从“图书馆、博物馆、科技馆”三个场馆中随机选择一个参加活动,两个恰好选择同一场馆的概率是( )A.B.C.D.2. 某校举行以“激情五月,唱响青春”为主题的演讲比赛,决赛阶段只剩下甲、乙、丙、丁四名同学,则甲、乙同学获得前两名的概率是( )A.B.C.D.3. 一个盒子中装有标号为1,2,3,4,5的五个小球,这些球除标号外都相同,从中随机摸出两个小球,则摸出的小球标号之和大于5的概率为( )A.B.C.D.【巩固答案】1.A 2. D 3. C第一次第二次知识点四:用画树状图法求概率1. 画树状图法画树状图法是用树状图的形式反映事件发生的各种情况出现的次数和方式,以及某一事件发生的次数和方式,并求出概率的方法.2. 适用条件当一次试验涉及三个或更多个因素时,列表就不方便了,为不重不漏地列出所有等可能的结果,通常采用画树状图法来求事件发生的概率.注意:(1)当试验包含两步时,用列表法比较方便,当然此时也可以用画树状图法;当试验包含三步或三步以上时,不能用列表法,用画树状图法比较方便.(2)树状图中,从左到右(或从上往下),每一条路径都表示一种可能的结果,并且每种结果出现的可能性相同.【例4】小刚一家三口参加“懂法纪,知敬畏”网上答题活动,每人获得一次抽奖机会,有三个彩球,分别代表特等奖,一等奖,谢谢参与,随机点击其中一个,翻开即为所得奖项. 三人都随机点击其中一个,则三人获得的奖项都不相同的概率是()A. B. C. D.【例4】【解析】用A、B、C分别表示特等奖,一等奖和谢谢参与,画树状图如下:由树状图可知,共有27种等可能的结果,三人获得的奖项都不相同的结果有6种,∴P(三人获得的奖项都不相同)==. 故选D.【答案】D【巩固】1. 经过某十字路口的汽车,可能直行,也可能左转或右转,如果这三种可能性大小相同,那么两辆汽车经过这个十字路口时,恰好选择同一方向的概率是()A. B. C. D.2. 小明与两位同学进行乒乓球比赛,用“手心、手背”游戏确定出场顺序. 设每人每次出手心、手背的可能性相同. 若有一人与另外两人不同,则此人最后出场. 三人同时出手一次,小明最后出场比赛的概率为___________.【巩固答案】1. C2.知识点五:用频率估计概率1. 频率:试验中,某事件发生的次数与总次数的比值叫做频率.2. 用频率估计概率:从长期实践中,人们观察到,对一般的随机事件,在做大量重复试验时,随着试验次数的增加,一个事件出现的频率,总在一个固定数的附近摆动,显示出一定的稳定性. 因此,我们可以通过大量的重复试验,用一个随机事件发生的频率去估计它的概率.3. 适用对象:当试验的所有可能结果不是有限个,或各种结果发生的可能性不相等时,可通过事件发生的频率来估计概率.4. 计算方法:一般地,在大量重复试验中,如果时间A发生的频率稳定于某个常数p,那么估计事件A发生的概率P(A)=p.5. 频率与概率的关系区别:频率是试验值或使用时的统计值,与试验人、试验时间、试验地点等有关;概率是理论值,与其他外界因素无关.联系:试验次数越多,频率越趋向于概率.【例5】某学习小组做“用频率估计概率”的试验时,统计了某一结果出现的频率,绘制了如下折线统计图,则符合这一结果的试验最有可能是()A. 袋中装有大小和质地都相同的3个红球和2个黄球,从中随机取一个,取到红球B. 掷一枚质地均匀的正六面体骰子,向上的面的点数是偶数C. 先后两次掷一枚质地均匀的硬币,两次都出现反面D. 先后两次掷一枚质地均匀的正六面体骰子,两次向上的面的点数之和是7或超过9【例5】【解析】A项,取到红球的概率为;B 项,向上的面的点数是偶数的概率为;C 项,先后两次掷一枚质地均匀的硬币,等可能的结果有(正,正),(正,反),(反,正),(反,反),共4种,所以两次都出现反面的概率为;D 项,列表如下:123456123456723456783456789456789105678910116789101112由表可知共有36种等可能的结果,其中两次向上的面的点数之和为7或超过9的结果有12种,所以所求概率为. 结合题图可知选D.【答案】D【巩固】第一次和第二次1. 不透明的盒子中有白球和黄球若干个,它们除了颜色外其他完全相同,某同学进行了如下试验:每次摸出一个小球,记下颜色后放回盒中,如此重复400次,其中摸出白球100次. 由此估计摸出黄球的概率为()A. B. C. D.2. 下列说法合理的是()A. 小明在10次抛图钉的试验中发现3次钉尖朝上,由此他说钉尖朝上的概率是B. 抛掷一枚质地均匀的正六面体骰子,出现6的概率是的意思是每6次就有1次掷得6C. 某彩票的中奖机会是2%,则买100张彩票一定会有2张中奖D. 在一次课堂进行的试验中,甲、乙两组同学估计硬币落地后,正面朝上的概率分别为0.48和0.51【巩固答案】1. D2. D。
人教版九年级数学上册第25章概率初步_复习课件
(3
123456
的点数
1
234567
2
345678
3
456789
4
5 6 7 8 9 10
5
6 7 8 9 10 11
6
7 8 9 10 11 12
(3)列表如下:
概率初步
小红投掷
的点数 小颖投掷
123456
的点数
1
234567
2
345678
3
456789
概率初步
能力提高
概率初步
1、你能说出几个与必然事件、随机事件、不可能 事件相联系的成语吗?
如:必然事件:种瓜得瓜,种豆得豆,黑白分明。 随机事件:海市蜃楼,守株待兔。
不可能事件:海枯石烂,画饼充饥,拔苗助长。
2、在一个不透明的口袋中装有除颜色外其余都 相同的1个红球,2个黄球,如果每一次先从袋中 摸出1个球后不再放回,第二次再从袋中摸出1个 球,那么两次都摸到黄球的概率是多少?
当试验的所有可能结果不是有限个, 或各种可能结果发生的可能性不相等时, 常常是通过统计频率来估计概率,即在同 样条件下,大量重复试验所得到的随机事 件发生的频率的稳定值来估计这个事件 发生的概率。
概率初步
概率初步
2、一副扑克除大王外共52张,在看不 见牌的情况下,随机抽一张,是黑桃 的概率是____
课本P171 1、2、3、4
概率初步
祝:同学们愉快!
概率初步
(2)小颖的说法是错误的.这是因为, “5点朝上”的频率最大并不能说明“5 点朝上”这一事件发生的频率最大.只 有当实验的次数足够大时,该事件发生 的频率稳定在事件发生的概率附近.
小红的判断是错误的,因为事件 发生具有随机性,故“6点朝上”的 次数不一定是100次.
人教版九年级数学上册第25章《概率初步》知识小结与复习
(2006年广东茂名市第10题)
为了估计湖里有多少条鱼,先从湖里捕捞 100条鱼都做上标记,然后放回湖中去,经 过一段时间,待有标记的鱼完全混合于鱼群 后,第二次再捕捞100条鱼,发现其中10条
有标记,那么你估计湖里大约有鱼 D
A. 500条 B. 600条 C. 800 条 D. 1000条
“建模”——数学思想
(1)请你完成下面表示 游戏一个回合所有可能出现 的结果的树状图;
(2)求一个回合能确 定两人先下棋的概率.
游戏规则
三人手中各持有一枚质 地均匀的硬币,他们同 时将手中硬币抛落到水 平地面为一个回合.落 地后,三枚硬币中,恰 有两枚正面向上或者反 面向上的两人先下棋; 若三枚硬币均为正面向 上或反面向上,则不能 确定其中两人先下棋.
概率的计算方法
具有等可
随 机
简单的随
事
机事件
能性
件
不具有等
概
可能性
率
的
计 算
复杂的随 机事件
摸拟试验
概率定义 树状图 列表 试验法
有放回摸球
无放回摸球
理论计算
试验估算 小明的方法: 多次逐个抽查
小亮的方法: 多次抽样调查
一、知识回顾
1、事先能肯定它_一__定__发生的事件称为必 然事件,它发生的概率是_____1__.
下列事件中,确定事件是( )
A、掷一枚六面分别标有1—6数字的均 匀骰子,骰子停止转动后偶数点朝上
B、从一副完整的扑克牌中任意抽出一 张牌,花色是红桃
C、任意选择电视的某一频道,正在播 放动画片
D、在同一年出生的367名学生中,至 少有两人的生日是同一天
在多次试验中,某个事件出现的次数 叫 频数 ,
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第25章概率初步复习
知识点总结:
确定事件:必然事件(p = 1)可能事件(p = 0)
不确定事件:可能事件(也称随机事件)(0<p<1)
实验方法:用多次实验得到的频率值去估计概率.
概率分析预测法:直接列举法、列表法、树状图(注意:放回和不放回,有无顺序)
概率:中考分值一般3-6分,题型以选择,填空常见,更多以解答题目为主,难易度为中。
考察内容:①简答事件的概率求解,图表法和数形图法②利用概率解决实际,公平性问题等③注意概率知识与方程相结合的综合性试题,选材贴近生活,越来越新。
突破方法:①牢固掌握概率的求解思想和方法。
注意面积比②注重概率在实际问题中的应用③要关注概率与方程相结合的综合性试题,加大训练力度,形成能力。
试题训练:
一、选择题:
1.下列事件属于必然事件的是()
A.周五要测验B.明年中考650分能读天河高中
-︒
C.太阳从东边升起D.测量某地气温,200C
2.一个不透明的袋中装有除颜色外均相同的5个红球和3个黄球,从中随机摸出一个,摸到黄球的概率是()
A. B. C. D.
3.把标有号码1,2,3,……,10的10个乒乓球放在一个箱子中,摇匀后,从中任意取一
个,号码为小于7的奇数的概率是()
4.下列事件是确定事件的为()
A.太平洋中的水常年不干B.男生比女生高,
C.计算机随机产生的两位数是偶数D.星期天是晴天
5.如图,甲为四等分数字转盘,乙为三等分数字转盘.同时自由转动
两个转盘,当转盘停止转动后(若指针指在边界处则重转),两个转盘
指针指向数字之和不超过4的概率是()
A.B. C.D.
6.某超级市场失窃,大量的商品在夜间被罪犯用汽车运走。
三个嫌疑犯被警察局传讯,警察局已经掌握了以下事实:(1)罪犯不在A、B、C三人之外;(2)C作案时总得有A作从犯;(3)B 不会开车。
在此案中能肯定的作案对象是()
A.嫌疑犯A B.嫌疑犯B C.嫌疑犯C D.嫌疑犯A和C
7、有一个正方体,6个面上分别标有1~6这6个整数,投掷这个正方体一次,则出现向上
一面的数字是偶数的概率为()
A.1
3
B.
1
6
C.
1
2
D.
1
4
8、将三个均匀的六面分别标有1、2、3、4、5、6的正方体同时掷出,出现的数字分别为
a b c
、、,则a b c
、、正好是直角三角形三边长的概率是()
A.
1
216
B.
1
72
C.
1
12
D.
1
36
9、为了防控输入性甲型H1N1流感,某市医院成立隔离治疗发热流涕病人防控小组,决定从内科5位骨干医师中(含有甲)抽调3人组成,则甲一定抽调到防控小组的概率是()
A.3
5
B.
2
5
C.
4
5
D.
1
5
10、每道选择题均有4个答案选项,只有一个选项是正确的,某同学有两道题不会做,他以
“抓阄”的方式选定其中的一个选项,该同学的这两道题全选对的概率是()
A、1
2
B、
1
4
C、
1
8
D、
1
16
二、填空题:(每小题3分,共18分)
11.一个口袋中装有4个白球,2个红球,6个黄球,摇匀后随机从中摸出一个球是白球的概率是。
12.若1000张奖券中有200张可以中奖,则从中任抽1张能中奖的概率为______。
13.在4张小卡片上分别写出实数0 ,1
3
,从中任意抽取一张卡片,•抽到无理
数的概率是_______.
14.对于平面内任意一个四边形ABCD,现从以下四个关系式①AB=CD;②AD=BC;
③AB∥CD;④∠A=∠C中任取两个作为条件,能够得出这个四边形ABCD是平行四边形的概率是
15.小华与父母一同从重庆乘火车到广安邓小平故居参观.火车车厢里每排有左、中、右三个座位,小华一家三口随意坐某排的三个座位,则小华恰好坐在中间的概率
是。
16.某班有49位学生,其中有23位女生. 在一次活动中,班上每一位学生的名字都各自写在一张小纸条上,放入一盒中搅匀. 如果老师闭上眼睛从盒中随机抽出一张纸条,那么抽到写有女生名字纸条的概率是。
三、解答题:(每小题13分,共52分)
17、有红、白、蓝三种颜色的小球各一个,它们除颜色外没有其它任何区别。
现将3个小球
放入编号为①、②、③的三个盒子里,规定每个盒子里放一个,且只能放一个小球。
(1)请用树形图或其它适当的形式列举出3个小球放入盒子的所有可能情况;
(2)求红球恰好被放入②号盒子的概率。
18、一只口袋中放着若干只红球和白球,这两种球除了颜色以外没有任何其他区别,袋中的
球已经搅匀,蒙上眼睛从口袋中取出一只球,取出红球的概率是1
4
.
(1)取出白球的概率是多少?
(2)如果袋中的白球有18只,那么袋中的红球有多少只?
19.将分别标有数字1、2、3的三张卡片洗匀后,背面朝上放在桌面上,
(1)随机地抽取一张,求抽取卡片标有数字为奇数的概率;
(2)用列表法或画树状图分析,随机地抽取一张作为十位上的数字(不放回),再抽取一张作为个位上的数字,能组成哪些两位数?恰好是“32”的概率是多少?
20、小红每天骑自行车上学都要经过三个安装有红绿灯的路口。
假如每个路口红灯和绿灯亮的时间相同,那么,小红从家随时出发去学校,她至少遇到一次红灯的概率是多少?不遇到红灯的概率是多少?(请用树状图分析)
21.在一个不透明的纸箱里装有红、黄、蓝三种颜色的小球,它们除颜色外完全相同,其中
红球有2个,黄球有1个,蓝球有1个. 现有一张电影票,小明和小亮决定通过摸球游戏定输赢(赢的一方得电影票).游戏规则是:两人各摸1次球,先由小明从纸箱里随机摸出1个球,记录颜色后放回,将小球摇匀,再由小亮随机摸出1个球.若两人摸到的球颜色相同,则小明赢,否则小亮赢.这个游戏规则对双方公平吗?请你利用树状图或列表法说明理由.
22.如下图,小红袋子中有4张除数字外完全相同的卡片,小明袋子中有3张除数字外完全相同的卡片,若先从小红袋子中抽出一张数字为a 的卡片,再从小明袋子中抽出一张数字为b 的卡片,两张卡片中的数字,记为(a ,b )。
(1)请用树形图或列表法列出(a ,b )的所有可能的结果;
(2)求在(a ,b )中,使方程2
10ax bx ++=没有实数根的结果。