14.2.1平方差公式-市级优质课一等奖

合集下载

平方差公式 公开课大赛(省)优【一等奖教案】

平方差公式    公开课大赛(省)优【一等奖教案】

14.2乘法公式14.2.1平方差公式1.掌握平方差公式的推导和运用,以及对平方差公式的几何背景的理解.(重点)2.掌握平方差公式的应用.(重点)一、情境导入1.教师引导学生回忆多项式与多项式相乘的法则.学生积极举手回答.多项式与多项式相乘的法则:多项式与多项式相乘,先用一个多项式的每一项分别乘以另一个多项式的每一项,再把所得的积相加.2.教师肯定学生的表现,并讲解一种特殊形式的多项式与多项式相乘——平方差公式.二、合作探究探究点:平方差公式【类型一】判断能否应用平方差公式进行计算下列运算中,可用平方差公式计算的是( )A.(x+y)(x+y)B.(-x+y)(x-y)C.(-x-y)(y-x)D.(x+y)(-x-y)解析:A中含x、y的项符号相同,不能用平方差公式计算,错误;B中(-x+y)(x-y)=-(x-y)(x-y),含x、y的项符号相同,不能用平方差公式计算,错误;C中(-x-y)(y -x)=(x+y)(x-y),含x的项符号相同,含y的项符号相反,能用平方差公式计算,正确;D中(x+y)(-x-y)=-(x+y)(x+y),含x、y的项符号相同,不能用平方差公式计算,错误;故选C.方法总结:对于平方差公式,注意两个多项式均为二项式且两个二项式中有一项完全相同,另一项互为相反数.【类型二】直接应用平方差公式进行计算利用平方差公式计算:(1)(3x-5)(3x+5);(2)(-2a-b)(b-2a);(3)(-7m+8n)(-8n-7m);(4)(x-2)(x+2)(x2+4).解析:直接利用平方差公式进行计算即可.解:(1)(3x -5)(3x +5)=(3x )2-52=9x 2-25;(2)(-2a -b )(b -2a )=(-2a )2-b 2=4a 2-b 2;(3)(-7m +8n )(-8n -7m )=(-7m )2-(8n )2=49m 2-64n 2;(4)(x -2)(x +2)(x 2+4)=(x 2-4)(x 2+4)=x 4-16.方法总结:应用平方差公式计算时,应注意以下几个问题:(1)左边是两个二项式相乘,并且这两个二项式中有一项完全相同,另一项互为相反数;(2)右边是相同项的平方减去相反项的平方;(3)公式中的a 和b 可以是具体数,也可以是单项式或多项式.【类型三】 平方差公式的连续使用求2(3+1)(3+1)(3+1)(3+1)的值.解析:根据平方差公式,可把2看成是(3-1),再根据平方差公式即可算出结果.解:2(3+1)(32+1)(34+1)(38+1)=(3-1)(3+1)(32+1)(34+1)(38+1)=(32-1)(32+1)(34+1)(38+1)=(34-1)(34+1)(38+1)=(38-1)(38+1)=316-1.方法总结:连续使用平方差公式,直到不能使用为止.【类型四】 应用平方差公式进行简便运算利用平方差公式简算:(1)2013×1923;(2)13.2×12.8. 解析:(1)把2013×1923写成(20+13)×(20-13),然后利用平方差公式进行计算;(2)把13.2×12.8写成(13+0.2)×(13-0.2),然后利用平方差公式进行计算.解:(1)2013×1923=(20+13)×(20-13)=400-19=39989; (2)13.2×12.8=(13+0.2)×(13-0.2)=169-0.04=168.96.方法总结:熟记平方差公式的结构并构造出公式结构是解题的关键.【类型五】 化简求值先化简,再求值:(2x -y )(y +2x )-(2y +x )(2y -x ),其中x =1,y =2.解析:利用平方差公式展开并合并同类项,然后把x 、y 的值代入进行计算即可得解.解:(2x -y )(y +2x )-(2y +x )(2y -x )=4x 2-y 2-(4y 2-x 2)=4x 2-y 2-4y 2+x 2=5x 2-5y 2.当x =1,y =2时,原式=5×12-5×22=-15.方法总结:利用平方差公式先化简再求值,切忌代入数值直接计算.【类型六】 利用平方差公式探究整式的整除性问题对于任意的正整数n ,整式(3n +1)(3n -1)-(3-n )(3+n )的值一定是10的倍数吗?解析:利用平方差公式对代数式化简,再判断是否是10的倍数.解:原式=9n 2-1-(9-n 2)=10n 2-10=10(n +1)(n -1),∵n 为正整数,∴(n -1)(n+1)为整数,即(3n +1)(3n -1)-(3-n )(3+n )的值是10的倍数.方法总结:对于平方差中的a 和b 可以是具体的数,也可以是单项式或多项式,在探究整除性或倍数问题时,要注意这方面的问题.【类型七】 平方差公式的实际应用王大伯家把一块边长为a 米的正方形土地租给了邻居李大妈.今年王大伯对李大妈说:“我把这块地一边减少4米,另外一边增加4米,继续租给你,你看如何?”李大妈一听,就答应了.你认为李大妈吃亏了吗?为什么?解析:根据题意先求出原正方形的面积,再求出改变边长后的面积,然后比较二者的大小即可.解:李大妈吃亏了.理由:原正方形的面积为a 2,改变边长后面积为(a +4)(a -4)=a2-16,∵a 2>a 2-16,∴李大妈吃亏了.方法总结:解决实际问题的关键是根据题意列出算式,然后根据公式化简解决问题.【类型八】 平方差公式的几何背景如图①,在边长为a 的正方形中剪去一个边长为b 的小正方形(a >b ),把剩下部分拼成一个梯形(如图②),利用这两幅图形的面积,可以验证的乘法公式是______________.解析:∵左图中阴影部分的面积是a 2-b 2,右图中梯形的面积是12(2a +2b )(a -b )=(a +b )(a -b ),∴a 2-b 2=(a +b )(a -b ),即可验证的乘法公式为:(a +b )(a -b )=a 2-b 2.方法总结:通过几何图形之间的数量关系可对平方差公式做出几何解释.三、板书设计平方差公式文字语言:两数和与这两数差的积,等于它们的平方差符号语言:(a +b )(a -b )=a 2-b 2学生通过“做一做”发现平方差公式,同时通过“试一试”用几何方法证明公式的正确性.通过这两种方式的演算,让学生理解平方差公式.本节教学内容较多,因此教材中的练习可以让学生在课后完成.第2课时 含30°角的直角三角形的性质1.理解并掌握含30°角的直角三角形的性质定理.(重点)2.能灵活运用含30°角的直角三角形的性质定理解决有关问题.(难点)一、情境导入问题:1.我们学习过直角三角形,直角三角形的角之间都有什么数量关系?2.用你的30°角的直角三角尺,把斜边和30°角所对的直角边量一量,你有什么发现? 今天,我们先来看一个特殊的直角三角形,看它的边角具有什么性质.二、合作探究探究点:含30°角的直角三角形的性质【类型一】 利用含30°角的直角三角形的性质求线段长如图,在Rt △ABC 中,∠ACB =90°,∠B =30°,CD 是斜边AB 上的高,AD =3cm ,则AB 的长度是( )A .3cmB .6cmC .9cmD .12cm解析:在Rt △ABC 中,∵CD 是斜边AB 上的高,∴∠ADC =90°,∴∠ACD =∠B =30°.在Rt △ACD 中,AC =2AD =6cm ,在Rt △ABC 中,AB =2AC =12cm.∴AB 的长度是12cm.故选D.方法总结:运用含30°角的直角三角形的性质求线段长时,要分清线段所在的直角三角形.【类型二】 与角平分线或垂直平分线性质的综合运用如图,∠AOP =∠BOP =15°,PC ∥OA 交OB 于C ,PD ⊥OA 于D ,若PC =3,则PD等于( )A .3B .2C .1.5D .1解析:如图,过点P 作PE ⊥OB 于E ,∵PC ∥OA ,∴∠AOP =∠CPO ,∴∠PCE =∠BOP +∠CPO =∠BOP +∠AOP =∠AOB =30°.又∵PC =3,∴PE =12PC =12×3=1.5.∵∠AOP =∠BOP ,PD ⊥OA ,∴PD =PE =1.5.故选C.方法总结:含30°角的直角三角形与角平分线、垂直平分线的综合运用时,关键是寻找或作辅助线构造含30°角的直角三角形.【类型三】 利用含30°角的直角三角形的性质探究线段之间的倍、分关系如图,在△ABC 中,∠C =90°,AD 是∠BAC 的平分线,过点D 作DE ⊥AB .DE 恰好是∠ADB 的平分线.CD 与DB 有怎样的数量关系?请说明理由.解析:由条件先证△AED ≌△BED ,得出∠BAD =∠CAD =∠B ,求得∠B =30°,即可得到CD =12DB . 解:CD =12DB .理由如下:∵DE ⊥AB ,∴∠AED =∠BED =90°.∵DE 是∠ADB 的平分线,∴∠ADE =∠BDE .又∵DE =DE ,∴△AED ≌△BED (ASA),∴AD =BD ,∠DAE =∠B .∵∠BAD =∠CAD =12∠BAC ,∴∠BAD =∠CAD =∠B .∵∠BAD +∠CAD +∠B =90°,∴∠B =∠BAD =∠CAD =30°.在Rt △ACD 中,∵∠CAD =30°,∴CD =12AD =12BD ,即CD =12DB . 方法总结:含30°角的直角三角形的性质是表示线段倍分关系的一个重要的依据,如果问题中出现探究线段倍分关系的结论时,要联想此性质.【类型四】 利用含30°角的直角三角形解决实际问题某市在“旧城改造”中计划在市内一块如图所示的三角形空地上种植某种草皮以美化环境,已知AC =50m ,AB =40m ,∠BAC =150°,这种草皮每平方米的售价是a 元,求购买这种草皮至少需要多少元?解析:作BD ⊥CA 交CA 的延长线于点D .在Rt △ABD 中,利用30°角所对的直角边是斜边的一半求BD ,即△ABC 的高.运用三角形面积公式计算面积求解.解:如图所示,作BD ⊥CA 于D 点.∵∠BAC =150°,∴∠DAB =30°.∵AB =40m ,∴BD =12AB =20m ,∴S △ABC =12×50×20=500(m 2).已知这种草皮每平方米a 元,所以一共需要500a 元.方法总结:解此题的关键在于作出CA 边上的高,根据相关的性质推出高BD 的长度,正确的计算出△ABC 的面积.三、板书设计含30°角的直角三角形的性质 性质:在直角三角形中,如果一个锐角是30°,那么它所对的直角边等于斜边的一半.本节课借助于教学活动的开展,有效地激发了学生的探究热情和学习兴趣,从而引导学生通过自主探究以及合作交流等活动探究并归纳出本节课所学的新知识,促进了学生思维能力的提高.不足之处是部分学生的综合运用知识解决问题的能力还有待于在今后的教学和作业中进行进一步的训练和提高.。

数学--平方差公式名师公开课获奖课件百校联赛一等奖课件

数学--平方差公式名师公开课获奖课件百校联赛一等奖课件

例3 先化简,再求值:(2x-y)(y+2x)-(2y+x)(2y -x),其中x=1,y=2.
解:原式=4x2-y2-(4y2-x2) =4x2-y2-4y2+x2 =5x2-5y2.
当x=1,y=2时,
原式=5×12-5×22=-15.
例4:先化简,再求值:(x+1)(x-1)+x2(1-x)+ x3,其中x=2.
(2)根据你旳猜测计算: ①(1-2)(1+2+22+23+24+25)=___-6_3____; ②2+22+23+…+2n=_2_n+__1-__2__(n为正整数); ③(x-1)(x99+x98+x97+…+x2+x+1)=_x_1_00_-__1__;
备用复习题
例4 对于任意旳正整数n,整式(3n+1)(3n-1)- (3-n)(3+n)旳值一定是10旳整数倍吗?
平方差公式;对于不能直接
应用公式旳,可能要经过变
形才能够应用
拓展提升 8.已知x≠1,计算:(1+x)(1-x)=1-x2,(1-x)(1+ x+x2)=1-x3,(1-x)(1+x+x2+x3)= (1)观察以上各式并猜测:(1-x)(1+x+x2+…+xn) =__1_-__x_n_+1_;(n为正整数)
(1)(a-2)(a+2)(a2 + 4) 解:原式=(a2-4)(a2+4)
=a4-16.
(2) (x-y)(x+y)(x2+y2)(x4+y4).
解:原式=(x2-y2)(x2+y2)(x4+y4) =(x4-y4)(x4+y4) =x8-y8.
(3)经过以上规律请你进行下面旳探索: ①(a-b)(a+b)=_a_2_-__b_2__; ②(a-b)(a2+ab+b2)=_a_3_-__b_3__; ③(a-b)(a3+a2b+ab2+b3)=__a_4-__b_4__.

人教数学八上14.2.1平方差公式[黄老师]【市一等奖】优质课

人教数学八上14.2.1平方差公式[黄老师]【市一等奖】优质课

教学目标知识与技能(1)理解平方差公式的本质,即结构的不变性,字母的可变性,形成正向产生式:“﹙□+△﹚﹙□–△﹚”→“□² –△²”;(2)能运用公式进行计算,达到正用公式的水平.过程与方法(1)使学生经历公式的独立建构过程,感悟从具体到抽象地研究问题的方法,培养学生抽象概括的能力,在验证平方差公式的过程中,感知数形结合思想;(2)培养学生的问题解决能力,为学生提供运用平方差公式来研究实际问题的探究空间.情感态度价值观体会数学源于实际,高于实际,运用于实际的科学价值与文化价值.2学情分析平方差公式是在学习了有理数运算、列简单的代数式、一次方程及不等式、整式的加减及整式乘法等知识的基础上,在学生已经掌握了多项式乘法之后,自然过渡到具有特殊形式的多项式的乘法,是从一般到特殊的认知规律的典型范例.对它的学习和研究,不仅给出了特殊的多项式乘法的简便算法,而且为以后的因式分解、分式的化简、二次根式中的分母有理化、解一元二次方程、函数等内容奠定了基础,同时也为完全平方公式的学习提供了方法. 学生学习平方差公式的困难在于对公式的结构特征以及公式中字母的广泛的理解.3重点难点【教学重点】平方差公式的本质的理解与运用;【教学难点】1.平方差公式的本质,即结构的不变性,字母的可变性;2.平方差公式的变式运用.4教学过程4.1 第一学时4.1.1教学活动活动1【导入】速算王的绝招(一)速算王的绝招在一次智力抢答赛中,主持人提供了两道题:1.103×97=?;2. 2001×1999=?主持人话音刚落,就立刻有一个学生刷地站起来抢答说:“第一题等于9991,第二题等于3999999。

”其速度之快,简直就是脱口而出。

同学们,你知道他是如何计算的吗?你想不想掌握他的简便、快速的运算招数呢?活动2【活动】动手操作(二)动手操作1.现有两个数,不知其大小,请你随意用两个字母来表示这两个数;2.请把这两个数的和与差分别表示出来。

《平方差公式》优质课一等奖课件

《平方差公式》优质课一等奖课件

学以致用
3.运用平方差公式进行简便计算: (1)2018 2 2017 2; (2) 102×98; (3) 20152-2014×2016.
通过合理变形,利 用平方差公式,可 以简化运算.
4计算:(增因式变化)
(1) (x+1)(x-1)(x2+1);
(2)
x
1 2
x2
1 4
x
1 2
.
(2y+1)(2y-1)=(2y)2-2y+2y -12=(2y)2-12 =4y2-1
(a+b)(a-b) =a2-ab+ab-b2=a2-b2
2.想一想:观察上述计算结果有什么特征? 是否每个式子的计算结果都有这种特征? 什么形式的式子具备这种特征?
平方差公式
(a+b)(a
知识要点 −b)=
a2−b2
1.a、b可以是单项式或多项式
2.a、b中带系数或指数要连同系数
和指数一起进行平方
3.对于不能应用公式的,要按照乘法 法则进行运算
相同项 相反项 套公式
a b (a+b)(a-b)=a2-b2
拓展训练
计算:(2+1)(22+1)(24+ 1)(28+1)(216+1)(232+1)+1 解:原式=(2-1)(2+1)(22+1)(24+1)(28+1)(216+1)(232+1)+1
2y)
(2y)2
(-2a-3b)(2a-3b) -3b 2a (-3b)2-(2a)2 9b2-4a2
2.计算:
(1) 2 x y y 2 x 3 3
(2)xy 1xy 1

【市级优质课】14.2.1平方差公式-获奖课件

【市级优质课】14.2.1平方差公式-获奖课件
平方差 公式
两数和与这两数差的积, 等于这两数的平方的差.
用自己的语 言叙述你的
发现。
用式子表示,即:
(a+b)(a−b)= a2−b2.
慧眼识 公 式
特征 结构
(a+b)(a−b)=a2−b2
(1) 公式左边两个二项式必须是 相同两数的和与差相乘; 即左边两括号内的第一项相等、 第二项符号相反[互为相反数(式)];
(2) 公式右边是这两个数的平方差; 即右边是左边括号内的第一项的平方 减去第二项的平方.
(3) 公式中的 a和b 可以代表数, 也可以是代数式.
你能分辨吗?
下列式子中哪些可以用平方差公式运算?
⑴ (b-8)(b+8) (2) (2+a)(a-2)
(3) (-4k+mn)(-4k-mn)
(4)(-x-1)(x+1)
灰太狼开了租地公司,一天他把一边 长为a米的正方形土地租给慢羊羊种植. 有一年他对慢羊羊说:“我把这块地的一 边增加5米,另一边减少5米,再继续租给 你, 你也没吃亏,你看如何?”慢羊羊一听 觉得没有吃亏,就答应了.回到羊村,就把 这件事对喜羊羊他们讲了,大家一听,都 说道:“村长,您吃亏了!” 慢羊羊村长很 吃惊……
=(3x)2-22 =9x2-4; (2) (-x+2y)(-x-2y)
=(-x)2-(2y)2
= x2-4y2
填一填 我们每天都
在努力
(1) (15-7xy)(15+7xy)
能力挑战
初级
=
(
15
2
)-( 7xy
2
)=( 225

49x2
y2
)
(2)(- 0.5x-0.3y)( 0.5x - 0.3y )

人教版八年级数学上册14.2.1《平方差公式》一等奖优秀教学设计

人教版八年级数学上册14.2.1《平方差公式》一等奖优秀教学设计

人教版义务教育课程标准实验教科书八年级上册
14.2.1平方差公式教学设计
一、教材分析
1、地位作用:乘法公式是《整式运算》中的重要一节,是对整式乘法的概括与综合运用,是今后因式分解、分式运算、二次方程求解等后续学习的基础。

它对培养学生符号感和抽象概括能力有着重要的作用。

同时,在利用公式过程中,所反映出的转化思想、整体化思想以及应用意识,都将对学生产生潜移默化的影响,对提高学生的数学素养有着积极的作用。

2、教学目标:
(1)会推导平方差公式,理解平方差公式的结构特征。

(2)能够运用平方差公式进行整式乘法的运算。

3、教学重、难点
教学重点:掌握平方差公式的结构特点及正确运用公式。

教学难点:理解公式推导的过程及字母的广泛含义。

突破难点的方法:通过让学生观察算式,运算出结果后,总结平方差公式的结构特征。

二、教学准备:多媒体课件、导学案、
三、教学过程
四、反思小结布置作业
谈一谈:这节课我们主要学习了什么内容?你有哪些收获?
作业布置、课后延伸。

人教版八年级数学上册14.2.1平方差公式一等奖优秀教学设计

人教版八年级数学上册14.2.1平方差公式一等奖优秀教学设计

人教版义务教育课程标准实验教科书八年级上册14.2.1平方差公式教学设计一、教材分析1、地位作用:《平方差公式》是八年级上学期“14.2乘法公式”(第一课时),是在学生已经掌握了多项式乘法之后,自然过渡到具有特殊形式的多项式的乘法,是从一般到特殊的认知规律的典型范例。

对它的学习和研究,不仅给出了特殊的多项式乘法的简便算法,而且在设计的过程中尽量与生活中的实际问题相联系,设计一些活动增加知识的趣味性,这样可以培养学生对数学学习的兴趣,设计的习题也很有梯度,由浅入深,适应学生的需要。

为以后的因式分解、分式的化简等内容奠定了基础,在教学中具有很重要地位。

2、教学目标:1、知识技能:(1)探索并理解平方差公式的本质,即结构的不变性,字母的可变性;(2)会推导平方差公式,并能运用公式进行简单的运算。

2、数学思考:(1)经历公式的猜想、证明过程,构建以数的眼光看式子的数学素养;(2)从几何角度来证明公式是新的尝试,让学生感受到数学的趣味性,体会几何与代数的相辅相成,数与形结合思想之妙。

3、解决问题:(1)培养学生的数学符号感和推理能力;(2)设计了运用平方差公式来解决实际问题解决的例子, 为学生提供运用平方差公式来研究等周问题的探究问题,以培养学生的问题解决能力和数学探究能力,体现了现代数学教育的价值取向.4、情感态度:在计算过程中发现规律,并能用符号表示,从而体会数学的简洁美。

并在运用数学知识解决问题的活动中获取成功的体验,建立学习的自信心.3、教学重、难点教学重点:(1)平方差公式的推导;(2)平方差公式本质的理解与运用。

教学难点:平方差公式的本质,即结构的不变性,字母的可变性。

突破难点的方法:通过观察和体验公式的简洁性并通过分析公式的本质特征即:结构的不变性,字母的可变性。

从而掌握平方差公式。

二、教学准备:多媒体课件、导学案。

三、教学过程设计教学内容与教师活动学生活动设计意图一、创设情景引入课题教师先使用ppt提供了两道题:1.92×88= 2. 102×98=老师提问:同学们,要计算这2道题,你打算用什么办法?学生:可以用竖式计算。

2.1平方差公式一等奖创新教学设计

2.1平方差公式一等奖创新教学设计

2.1平方差公式一等奖创新教学设计14.2乘法公式14.2.1 平方差公式教学设计【教材分析】本节课选自人教版八年级上册第14章2.1乘法公式的第一课时《平方差公式》.它是继多项式乘以多项式之后的重要教学内容,是对多项式乘法中出现的特殊的算式的归纳总结,又是今后学习因式分解、分式化简、根式的分母有理化、解一元二次方程等代数运算及变形的前提基础;同时,它也是初中数学系统学习的第一个乘法公式,是学生初步认识公式结构,逐步形成符号意识,开始产生模型思想,进一步强化求简意识的经典范例,是代数运算以及解决许多数学问题的重要基础。

在此基础上掌握有特殊规律的式子结构并记住这一特殊式子结构为运算提高速度,增强学生自信心,所以引导学生掌握和善于发现事物规律是有趣的,也很有用的。

【学情分析】学生已经具备了整式加、减、乘等数式运算基础,以及小学学习过的正方形、矩形等图形基础.已经较熟练地掌握了多项式乘法,为验证平方差公式做了知识准备;并且通过日常的课堂教学的培养,学生已经具备了一定的小组合作能力、探究能力、归纳分析能力,能通过合作交流完成一定的学习任务。

【教学目标】1.理解平方差公式的推导过程,了解平方差公式的几何背景;2.掌握平方差公式的结构特征,会运用平方差公式进行简单运算;3. 经历平方差公式的探索过程,领悟平方差公式的变式应用,能创作平方差公式的变式题目.【教学重点、难点】1.教学重点:探究平方差公式,剖析平方差公式的结构,灵活运用平方差公式.2.教学难点:掌握公式在运用中的变化规律,深层次理解公式结构,自主创作变式题目.【课前准备】多媒体课件、卡纸、练习草稿等。

【教学方法】用找搭档方式,使两个式子相乘可以用平方差公式直接计算。

运用开放式教学策略组织课堂教学。

【教学构思】从生活中的情境导入→产生计算高手→抛出疑问(什么公式)→复习引入→新知探究→变式应用→思维拓展→总结升华→课后拓展→课时检测 .【教学过程设计】第一环节:创设情境,导入新课(PPT)【设计意图】老师从身边的神算手实景引入,从而引发学生好奇心和求知欲。

平方差公式 优质课获奖课件

平方差公式   优质课获奖课件

2.教材例4:运用完全平方公式计算: (1)1022=(100+2)2=1002+2×100×2+22 =10 000+400+4 =10 404; (2)992=(100-1)2=1002-2×100×1+12 =10 000-200+1 =9 801. 此处可先让学生独立思考,然后自主发言,口述解题思路, 可先不给出题目中“运用完全平方公式计算”的要求,允许 他们算法的多样化,但要求明白每种算法的局限和优越性.
四、再探新知 1.现有下图所示三种规格的卡片各若干张,请你根据 二次三项式a2+2ab+b2,选取相应种类和数量的卡片, 尝试拼成一个正方形,并讨论该正方形的代数意义:
2.你能根据下图说明(a-b)2=a2-2ab+b2吗?
第1小题由小组合作共同完成拼图游戏,比一比哪个小组 快?第2小题借助多媒体课件,直观演示面积的变化,帮 助学生联想代数恒等式:(a-b)2=a2-b2-2b(a-b)=a2- 2ab+b2.
在解此例的过程中,应注意边辩析各项的符号特征,边 对照两个公式的结构特征,教师应完整详细地书写解题过 程,帮助学生理解这一公式的拓展应用,突破难点.
七、课堂小结 谈一谈:你对完全平方公式有了哪些认识?它与平方差 公式有什么区别和联系? 作业:教材第112页习题14.2第2题,第3题的(1)(3)(4), 第4题.
在完全平方公式的探求过程中,学生表现出观察角度的差 异:有些学生只是侧重观察某个单独的式子,而不知道将 几个式子联系起来看;有些学生则观察入微,表现出了较 强的观察力.教师要抓住这个契机,适当对学生进行学法 指导.对于公式的特点,则应当左右兼顾,特别是公式的 左边,它是正确应用公式的前提.
通过几个这样的运算例子,让学生观察算式与结果间的结 构特征.

平方差公式课件(市一等奖)

平方差公式课件(市一等奖)

平方差公式的特点
形式特点:形如a^2 - b^2 = (a+b)(a-b) 结构特点:左边是两个相同的二项式相减,右边是两个相同的二项式相加 符号特点:当a、b同号时,结果为正;当a、b异号时,结果为负 代数式特点:左边是两个相同的代数式相减,右边是两个相同的代数式相加
平方差公式的应用
第四章
练习与巩固
第六章
基础练习题
计算(a+b)^2的值
计算(a^2-b^2)^2的值
计算(a-b)^2的值 计算(a^2+b^2)^2的值
提升练习题
计算(a+b)(a-b)的值 计算(2x+y)(2x-y)的值 计算(3a+2b)(3a-2b)的值 计算(-5m+6n)(-5m-6n)的值
综合练习题
文字,以便观者准确地理解您传达的思想
归纳法证明法:通过归纳法,从特殊到一般,逐步推导出平方差公式的结论。 以上是几种常见
04
的平方差公式的证明方法,可以根据不同的需求和实际情况选择合适的方法进行证明。
以上是几种常见的平方差公式的证明方法,可以根据不同的需求和实际情况选
择合适的方法进行证明。
证明过程演示
平方差公式的应用范围
代数式变形:利用 平方差公式对代数 式进行变形和化简
计算:利用平方差 公式计算一些数学 表达式的结果
证明:利用平方差 公式证明一些数学 命题
应用题:利用平方 差公式解决一些实 际问题
平方差公式的应用实例
计算平方差公式 中的a和b的值
计算平方差公式 中的c的值
计算平方差公式 中的d的值
计算平方差公式 中的e的值
平方差公式的应用技巧
识别平方差公式形式:首先需要识别题目中的平方差公式形式,以便正确应用。

平方差公式优质课教学设计一等奖及点评

平方差公式优质课教学设计一等奖及点评

平方差公式优质课教学设计一等奖及点评本节课的教学内容是平方差公式,它是初中数学系统研究的第一个乘法公式,也是今后研究代数运算及变形的前提基础。

本节课的教学目标是让学生了解平方差公式的几何背景,掌握平方差公式的结构特征,能够灵活运用平方差公式进行简单运算,并且能够创作平方差公式的变式题组。

针对学生的年龄特点、思维品质和认知基础,我们采用变式教学模式和开放式教学策略,设计了两条主线:“问题主线”和“情境主线”,并将其贯穿整个教学过程,旨在引导学生从问题中探究、在情境中实践,不断拓展思维,提高求简意识。

在教学过程中,我们首先进行了问题导入,通过一个土地租赁事件引出了平方差公式的问题。

接下来,我们将学生分成小组,进行新知探究和变式应用的环节,让学生自主发现平方差公式的结构和特征,并通过实际问题的应用来加深对公式的理解。

在思维拓展和问题创作的环节,我们引导学生通过变式思维来创作平方差公式的变式题组,并通过总结升华和课时检测来检验学生的研究成果。

通过本节课的教学设计,我们旨在让学生在实践中掌握平方差公式,提高求简意识和变式思维能力,为以后的数学研究打下坚实的基础。

设计说明:本节课板书设计分为三个部分,知识归纳、公式探究和公式应用。

知识归纳部分列出了平方差公式的表达式和方法;公式探究部分从“形”和“数”的角度来解释公式的本质;公式应用部分则分为直接应用和构造应用两个方面,列出了具体的例子和方法。

整个板书设计简洁明了,重点突出,便于学生理解和记忆。

知识归纳:1.公式:(a+b)(a-b) = a2-b22.方法:直接应用、构造应用、拓展应用3.应用:解决各种数学问题公式探究:1.从“形”的角度:公式的形式和结构2.从“数”的角度:公式的意义和运算规律公式应用:一.直接应用:准确找出公式中的a,b,代入公式进行计算二.构造应用:构造出公式的结构,运用或多次运用公式三.拓展应用:掌握代数式变式策略,从正、逆两个角度创作变式题组设计说明:课后延伸部分为学生提供了更多的练和思考题目,既巩固了所学的知识,又拓展了学生的思维能力。

《平方差公式》教学设计一等奖

《平方差公式》教学设计一等奖

《平方差公式》教学设计一等奖《《平方差公式》教学设计一等奖》这是优秀的教学设计一等奖文章,希望可以对您的学习工作中带来帮助!1、《平方差公式》教学设计一等奖教学建议一、知识结构二、重点、难点分析本节教学的重点是掌握公式的结构特征及正确运用公式.难点是公式推导的理解及字母的广泛含义.平方差公式是进一步学习完全平方公式、进行相关代数运算与变形的重要知识基础.1.平方差公式是由多项式乘法直接计算得出的:与一般式多项式的乘法一样,积的项数是多项式项数的积,即四项.合并同类项后仅得两项.2.这一公式的结构特征:左边是两个二项式相乘,这两个二项式中有一项完全相同,另一项互为相反数;右边是乘式中两项的平方差,即相同项的平方与相反项的平方差.公式中的字母可以表示具体的数(正数和负数),也可以表示单项式或多项式等代数式.只要符合公式的结构特征,就可运用这一公式.例如在运用公式的过程中,有时需要变形,例如,变形为,两个数就可以看清楚了.3.关于平方差公式的特征,在学习时应注意:(1)左边是两个二项式相乘,并且这两上二项式中有一项完全相同,另一项互为相反数.(2)右边是乘式中两项的平方差(相同项的平方减去相反项的平方).(3)公式中的和可以是具体数,也可以是单项式或多项式.(4)对于形如两数和与这两数差相乘,就可以运用上述公式来计算.三、教法建议1.可以将“两个二项式相乘,积可能有几项”的问题作为课题引入,目的是激发学生的学习兴趣,使学生能在两个二项式相乘其积可能为四项、三项、两项中找出积为两项的特征,上升到一定的理论认识,加以实践检验,从而培养学生观察、概括的`能力.2.通过学生自己的试算、观察、发现、总结、归纳,得出为什么有的两个二项式相乘,其积为两项,因为其中两项是两个数的平方差,而另两项恰是互为相反数,合并同类项时为零,即(a+b)(a-b)=a2+ab-ab-b2=a2-b2.这样得出平方差公式,并且把这类乘法的实质讲清楚了.3.通过例题、练习与小结,教会学生如何正确应用平方差公式.这里特别要求学生注意公式的结构,教师可以用对应思想来加强对公式结构的理解和训练,如计算(1+2x)(1-2x),(1+2x)(1-2x)=12-(2x)2=1-4x2↓↓↓↓↑↑(a+b)(a-b)=a2-b2.这样,学生就能正确应用公式进行计算,不容易出差错.另外,在计算中不一定用一种模式刻板地应用公式,可以结合以前学过的运算法则,经过变形后灵活应用公式,培养学生解题的灵活性.教学目标1.使学生理解和掌握平方差公式,并会用公式进行计算;2.注意培养学生分析、综合和抽象、概括以及运算能力.教学重点和难点重点:平方差公式的应用.难点:用公式的结构特征判断题目能否使用公式.教学过程设计一、师生共同研究平方差公式我们已经学过了多项式的乘法,两个二项式相乘,在合并同类项前应该有几项?合并同类项以后,积可能会是三项吗?积可能是二项吗?请举出例子.让学生动脑、动笔进行探讨,并发表自己的见解.教师根据学生的回答,引导学生进一步思考:两个二项式相乘,乘式具备什么特征时,积才会是二项式?为什么具备这些特点的两个二项式相乘,积会是两项呢?而它们的积又有什么特征?(当乘式是两个数之和以及这两个数之差相乘时,积是二项式.这是因为具备这样特点的两个二项式相乘,积的四项中,会出现互为相反数的两项,合并这两项的结果为零,于是就剩下两项了.而它们的积等于乘式中这两个数的平方差)继而指出,在多项式的乘法中,对于某些特殊形式的多项式相乘,我们把它写成公式,并加以熟记,以便遇到类似形式的多项式相乘时就可以直接运用公式进行计算.以后经常遇到(a+b)(a-b)这种乘法,所以把(a+b)(a-b)=a2-b2作为公式,叫做乘法的平方差公式.在此基础上,让学生用语言叙述公式.二、运用举例变式练习例1计算(1+2x)(1-2x).解:(1+2x)(1-2x)=12-(2x)2=1-4x2.教师引导学生分析题目条件是否符合平方差公式特征,并让学生说出本题中a,b分别表示什么.例2计算(b2+2a3)(2a3-b2).解:(b2+2a3)(2a3-b2)=(2a3+b2)(2a3-b2)=(2a3)2-(b2)2=4a6-b4.教师引导学生发现,只需将(b2+2a3)中的两项交换位置,就可用平方差公式进行计算.课堂练习运用平方差公式计算:(l)(x+a)(x-a);(2)(m+n)(m-n);(3)(a+3b)(a-3b);(4)(1-5y)(l+5y).例3计算(-4a-1)(-4a+1).让学生在练习本上计算,教师巡视学生解题情况,让采用不同解法的两个学生进行板演.解法1:(-4a-1)(-4a+1)=[-(4a+l)][-(4a-l)]=(4a+1)(4a-l)=(4a)2-l2=16a2-1.解法2:(-4a-l)(-4a+l)=(-4a)2-l=16a2-1.根据学生板演,教师指出两种解法都很正确,解法1先用了提出负号的办法,使两乘式首项都变成正的,而后看出两数的和与这两数的差相乘的形式,应用平方差公式,写出结果.解法2把-4a看成一个数,把1看成另一个数,直接写出(-4a)2-l2后得出结果.采用解法2的同学比较注意平方差公式的特征,能看到问题的本质,运算简捷.因此,我们在计算中,先要分析题目的数字特征,然后正确应用平方差公式,就能比较简捷地得到答案.课堂练习1.口答下列各题:(l)(-a+b)(a+b);(2)(a-b)(b+a);(3)(-a-b)(-a+b);(4)(a-b)(-a-b).2.计算下列各题:(1)(4x-5y)(4x+5y);(2)(-2x2+5)(-2x2-5);教师巡视学生练习情况,请不同解法的学生,或发生错误的学生板演,教师和学生一起分析解法.三、小结1.什么是平方差公式?2.运用公式要注意什么?(1)要符合公式特征才能运用平方差公式;(2)有些式子表面不能应用公式,但实质能应用公式,要注意变形.四、作业1.运用平方差公式计算:(l)(x+2y)(x-2y);(2)(2a-3b)(3b+2a);(3)(-1+3x)(-1-3x);(4)(-2b-5)(2b-5);(5)(2x3+15)(2x3-15);(6)(0.3x-0.l)(0.3x+l);2.计算:(1)(x+y)(x-y)+(2x+y)(2x+y);(2)(2a-b)(2a+b)-(2b-3a)(3a+2b);(3)x(x-3)-(x+7)(x-7);(4)(2x-5)(x-2)+(3x-4)(3x+4).2、《平方差公式》教学设计一等奖教学目的进一步使学生理解掌握平方差公式,并通过小结使学生理解公式数学表达式与文字表达式在应用上的差异.教学重点和难点:公式的应用及推广.教学过程:一、复习提问1.(1)用较简单的代数式表示下图纸片的面积.(2)沿直线裁一刀,将不规则的右图重新拼接成一个矩形,并用代数式表示出你新拼图形的面积.讲评要点:沿HD、GD裁开均可,但一定要让学生在裁开之前知道HD=BC=GD=FE=a-b,这样裁开后才能重新拼成一个矩形.希望推出公式:a2-b2=(a+b)(a-b)2.(1)叙述平方差公式的数学表达式及文字表达式;(2)试比较公式的两种表达式在应用上的差异.说明:平方差公式的`数学表达式在使用上有三个优点.(1)公式具体,易于理解;(2)公式的特征也表现得突出,易于初学的人套用(3)形式简洁.但数学表达式中的a与b有概括性及抽象性,这样也就造成对具体问题存在一个判定a、b的问题,否则容易对公式产生各种主观上的误解.依照公式的文字表达式可写出下面两个正确的式子:经对比,可以让人们体会到公式的文字表达式抽象、准确、概括.因而也就欠明确(如结果不知是谁与谁的平方差).故在使用平方差公式时,要全面理解公式的实质,灵活运用公式的两种表达式,比如用文字公式判断一个题目能否使用平方差公式,用数学公式确定公式中的a 与b,这样才能使自己的计算即准确又灵活.3.判断正误:(1)(4x+3b)(4x-3b)=4x2-3b2;()(2)(4x+3b)(4x-3b)=16x2-9;()(3)(4x+3b)(4x-3b)=4x2+9b2;()(4)(4x+3b)(4x-3b)=4x2-9b2;()二、新课例1 运用平方差公式计算:(1)102 (2)(y+2)(y-2)(y2+4).解:(1)10298 (2)(y+2)(y-2)(y2+4)=(100+2)(100-2) =(y2-4)(y2+4)=1002-22=10000-4 =(y2)2-42=y4-16.=9996;2.运用平方差公式计算:(1)103 (2)(x+3)(x-3)(x2+9);(3)59.8 (4)(x- )(x2+ )(x+ ).3.请每位同学自编两道能运用平方差公式计算的题目.例2 填空:(1)a2-4=(a+2)();(2)25-x2=(5-x)();(3)m2-n2=()();思考题:什么样的二项式才能逆用平方差公式写成两数和与这两数的差的积?(某两数平方差的二项式可逆用平方差公式写成两数和与这两数的差的积)练习1.x2-25=()();2.4m2-49=(2m-7)();3.a4-m4=(a2+m2)()=(a2+m2)()();例3 计算:(1)(a+b-3)(a+b+3); (2)(m2+n-7)(m2-n-7).解:(1)(a+b-3)(a+b+3) (2)(m2+n-7)(m2-n-7)=[(a+b)-3][(a+b)+3] =[(m2-7)+n][(m2-7)-n]=(a+b)2-9=a2+2ab+b2-9. =(m2-7)2-n2=m4-14m2+49-n2.三、小结1.什么是平方差公式?一般两个二项式相乘的积应是几项式?2.平方差公式中字母a、b可以是那些形式?3.怎样判断一个多项式的乘法问题是否可以用平方差公式?四、布置作业1.运用平方差公式计算:(1)(a2+b)(a2-b);(2)(-4m2+5n)(4m2+5n);(3)(x2-y2)(x2+y2);(4)(9a2+7b2)(7b2-9a2).2.运用平方差公式计算:(1)69 (2)53 (3)503 (4)40 39 .3、《平方差公式》教学设计一等奖教学目标理解两个完全平方公式的结构,灵活运用完全平方公式进行运算。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

利用平方差公式计算:
相 信
(1)(a+3b)(a - 3b) (2)(3+2a)(-3+2a)

=(a)2-(3b)2
=a2-9b2 ;
=(2a+3)(2a-3)

=(2a)2-32

=4 a2-9;

(3)51×49
=(50+1)(50-1) =502-12
(5)(3x+4)(3x-4)-(2x+3)(3x-2)
(1+x)(1-x) (-3+a)(-3-a)
1 x 12-x2 -3 a (-3)2-a2
(1+a)(-1+a)
a1
a2-12
(0.3x-1)(1+0.3x) 0.3x 1 ( 0.3x)2-12
拓展练习
本题是公式的变式训练,以加深对公式本质特征的理解.
下列式子可用平方差公式计算吗? 为什么? 如果能够, 怎样计算?
特征:
两个二项 式相乘
(a+b)(a-b)=a2-b2
特征:
相同项
(a+b)(a-b)=a2-b2
特征:
符号相 反的项
(a+b)(a-b)=a2-b2
特征:
(相同项)2-(符号相反项)2
说明: (a+b)(a-b)=a2-b2
怎样验证?
❖公式中字母a、b可以是具体数字,也可 以是单项式或多项式。


=(9x2-16) -(6x2+5x -6)
=2500-1
=3x2-5x- 10
=2499
拓展提升
1.计算 20042 - 2003×2005; 解: 20042 - 2003×2005
= 20042 - (2004-1)(2004+1)
= 20042- (20042-12 )
= 20042- 20042+12 =1
( 2 1 )2 2 ( 1 )2 4 ( 1 )2 8 ( 1 )2 1 ( 6 1 )2 3 ( 2 1 )
5、思考 (a+b+c)(a+b-c)能用平方差 公式运算吗? 若能结果是哪两数的平方 差?
❖重点:只要符合公式的结构特征, 就可以运用这一公式。
代数法验证
(a+b)(a-b) = a2-b2
(a+b)(a-b) = a2-ab+ab-b2 = a2-b2
a
a-b
a
b
a-b b
a
b
a-b
几何图形验证
结论: (a+b)(a-b)=a2-b2
1、找一找、填一填
(a-b)(a+b)
a b a2-b2
例1、用平方差公式计算
计算:(x+2y)(x-2y)
解:原式= x2 - (2y)2 =x2 - 4y2
注意
1、先把要计算的 式子与公式对照, 2、哪个是 a
哪个是 b
(a + b ) ( a – b ) = a2 - b2
例2 运用平方差公式计算:
(1) (b+2a)(2a-b);
解:(b+2a)(2a-b) =(2a+b)(2a-b) =(2a)2-b2 =4a2-b2.
§14.2.1 平方差公式
小明同学去商店买了单价是9.8元/千克 的糖果10.2千克,售货员刚拿起计算器, 小明就说出应付99.96元,结果与售货员计 算出的结果相吻合.售货员很惊讶地说: “你真是个神童!小明同学说:“过奖 了,我只是利用了在数学上刚学过的一个 公式.”
多项式与多项式是如何相乘的?
(2a2b2)2(a2b2)(2a2)2(b2)24a4b4
3) ( 5 a 2 b ) 5 a ( 2 b ) ( 5 a ) 2 ( 2 b ) 2 2 a 2 5 4 b 2
分析:应先观察是哪两个数的和与这两个数的差 错
(5a2b)5 (a2b)(2b)2(5a)24b225a2
(a+b)(m+n) =am+an +bm+bn
算一算,比一比,看谁算得又快又准
计算下列各题
①(x + 4)( x-4) ② (6m+ n)(6m-n)
①(x + 4)( x-4)=x2 - 16 (x + 4)( x-4)= x2 - 42
② (6m+ n)(6m-n)=36m2 - n2 (6m+ n)(6m-n)=(6m)2 - n2
(x + 4)( x-4)= x2 - 42 (6m+ n)(6m-n)=(6m)2 - n2
它们的结果有什么特点?
平方差公式:
(a+b)(a−b)= a2−b2
两数和与这两数差的积,
等于 这两数的平方差.
(a+b)(a-b)=a2-b2
特征:
两个数的这和两个数的这差两数的平方差
(a+b)(a-b)=a2-b2
(2) (-x+2y)(-x-2y). 解: (-x+2y)(-x-2y)
=(-x)2-(2y)2 = x2-4y2
购物问题
解:10.2×9.8 = (1 0 0.2)(1 0 0.2) = 1020.22
=100-0.04
=99.96(元).
例3 计算:
(y+2) (y-2) – (y-1) (y+5) . 解:(y+2)(y-2)- (y-1)(y+5)
(1) (a+b)(a−b) ; (不能) (第一个数不完全一样 )
(2) (a−b)(b−a) ;
(不能)
(3) (a+2b)(2b+a); (不能)
(4) (a−b)(a+b) ;
(能) −(a2 −b2)= −a2 + b2 ;
(5) (2x+y)(y−2x). (不能)
(a + b ) ( a – b ) = a2 - b2
= y2-22-(y2+4y-5) = y2-4-y2-4y+5 = - 4y + 1.
2、下列计算对不对?如果不对,怎样改正?
1) (x6 )x (6 )x26错
分析:最后结果应是两项的平方差
(x6)(x6)x2 62x2 36 2) (2a2b2)2 (a2b2)2a4b4 错
分析:应将 2 a 2 当作一个整体,用括号括起来再平方
2、利用平方差公式计算:
(a-2)(a+2)(a2 + 4) 解:原式=(a2-4)(a2+4)
=a4-16
1.本节课你有何收获? 2.你还有什么疑问吗?
一个公式:(a+b)(a-b)=a2-b2
两种作用 (1)简化某些多项式的乘法运算 (2)提供有理数乘法的速算方法
三个表示 公式中的a,b可表示 (1)具体数 (2)单项式 (3)多项式
相关文档
最新文档