随机变量及其概率习题

合集下载

随机变量及其概率分布典型例题

随机变量及其概率分布典型例题
现方式做保护处理对用户上传分享的文档内容本身不做任何修改或编辑并不能对任何下载内容负责
概率与数理统计课件
天津科技大学理学院数学系
第8讲 随机变量及其概率分布习题课
第8讲 随机变量及其概率分布习题课
教学目的:通过对随机变量(一维,二维为主)及其概率分布的归纳总结, 及典型
知识要点回顾:
1. 一维随机变量及其分布函数. 2. 离散型随机变量及其概率分
5. 二维随机变量(X,Y)及其分布
函数F(x,y).
6. 二维随机变量的边际分布函
布列.
3. 连续型随机变量及其概率密
数及边际概率密度.
7. 随机变量的独立性. 8. 随机变量函数的分布.
度函数.
4. 常用的随机变量.
1 1
0 0
e
x y
dxdy 1 e1 .


2
随机变量及其概率分布典型例题解析
X \Y 7.设二维随机变量 X , Y 的联合概率分布为 1 2 1 1
5 20 3 20 2 20 3 20
返回
2
6 20 1 20
.求(1) X Y ; (2) X Y 的概率分布.
1 1 P X k 2 1 k 3. 3 ,故 P X k 3 ,即 F k 3 ,从而
5) 3 x 6时,F x dx
dx 0dx 1.
6
0 x
1

1) 1



f x, y dxdy
题的分析讲解,使学生对概部分内容有较深的理解与认识.
教学重点:随机变量(离散型,连续型),分布函数,六个重要的分布(两点, 二

随机变量及其分布列习题(含解析)

随机变量及其分布列习题(含解析)

一.解答题(共8小题)1.(1)100件产品中有10件次品,从中有放回地任取5件,求其中次品数ξ的分布列;(2)某批数量较大的商品的次品率为10%,从中任意地连续抽取5件,求其中次品数η的分布列.2.为创建国家级文明城市,某城市号召出租车司机在高考期间至少进行一次“爱心送考”,该城市某出租车公司共200名司机,他们进行“爱心送考”的次数统计如图所示.(1)求该出租车公司的司机进行“爱心送考”的人均次数;(2)从这200名司机中任选2人,设这2人进行送考次数之差的绝对值为随机变量X,求X的概率分布.3.从6名男生和4名女生中随机选出3名同学参加一项竞技测试.(1)求选出的3名同学中至少有1名女生的概率;(2)设ξ表示选出的3名同学中男生的人数,求ξ的分布列.4.甲袋中有2个黑球,4个白球,乙袋中有3个黑球,3个白球,从两袋中各取一球.(Ⅰ)求“两球颜色相同”的概率;(Ⅱ)设ξ表示所取白球的个数,求ξ的概率分布列.5.设X是一个离散型随机变量,其分布列为:X−101P1﹣2q q2(1)求q的值;(2)求P(X<0),P(X<1).6.某射手进行射击训练,假设每次射击击中目标的概率为,且每次射击的结果互不影响.(1)求射手在3次射击中,至少有两次连续击中目标的概率(用数字作答);(2)求射手第3次击中目标时,恰好射击了4次的概率(用数字作答);(3)设随机变量ξ表示射手第3次击中目标时已射击的次数,求ξ的分布列.7.袋中有3个红球,4个黑球,从袋中任取4个球.(1)求红球个数X的分布列;(2)若取到一个红球得2分,取到一个黑球得1分,求得分不小于6分的概率.8.从5名男生和3名女生中任选2人去参加学校组织的“低碳杯”知识抢答赛,用ξ表示选出的女生的人数.(1)求随机变量ξ的分布列;(2)求事件“选出的2学生至少有一女生”的概率.参考答案与试题解析一.解答题(共8小题)1.(1)100件产品中有10件次品,从中有放回地任取5件,求其中次品数ξ的分布列;(2)某批数量较大的商品的次品率为10%,从中任意地连续抽取5件,求其中次品数η的分布列.【解答】解:(1)由题意知ξ的可能取值为0,1,2,3,4,5,每次取出次品的概率为:,相当于5次独立重复实验,ξ~B(5,),P(ξ=0)==0.59059,P(ξ=1)==0.32805,P(ξ=2)==0.07329,P(ξ=3)==0.0081,P(ξ=4)==0.00045,P(ξ=5)==0.00001,∴ξ的分布列为:ξ012345P0.590590.328050.07290.00810.000450.00001(2)由题意知η的可能取值为0,1,2,3,4,5,且η~B(5,0.1),∴η的分布列为:η012345P0.590590.328050.07290.00810.000450.000012.为创建国家级文明城市,某城市号召出租车司机在高考期间至少进行一次“爱心送考”,该城市某出租车公司共200名司机,他们进行“爱心送考”的次数统计如图所示.(1)求该出租车公司的司机进行“爱心送考”的人均次数;(2)从这200名司机中任选2人,设这2人进行送考次数之差的绝对值为随机变量X,求X的概率分布.【解答】解:(1)由统计图得200名司机中送考1次的有20人,送考2次的有100人,送考3次的有80人,∴该出租车公司的司机进行“爱心送考”的人均次数为;(2)从该公司任选两名司机,记“这两人中﹣人送考1次,另一人送考2次”为事件A,“这两人中一人送考2次,另一人送考3次“为事件B,“这两人中﹣人送考1次,另一人送考3次”为事件C,“这两人送考次数相同”为事件D,由题意知X的所有可能取值为0,1,2,,,,所以X的分布列为:X012P3.从6名男生和4名女生中随机选出3名同学参加一项竞技测试.(1)求选出的3名同学中至少有1名女生的概率;(2)设ξ表示选出的3名同学中男生的人数,求ξ的分布列.【解答】解:(1)由意可知,选出的3名同学全是男生的概率为=,∴选出的3名同学中至少有1名女生的概率为P=1﹣=.(2)根据题意,ξ的可能取值为0,1,2,3,P(ξ=0)==,P(ξ=1)==,P(ξ=2)==,P(ξ=3)==,∴ξ的分布列为:ξ0123P4.甲袋中有2个黑球,4个白球,乙袋中有3个黑球,3个白球,从两袋中各取一球.(Ⅰ)求“两球颜色相同”的概率;(Ⅱ)设ξ表示所取白球的个数,求ξ的概率分布列.【解答】解:(I)从甲中取出黑球的概率为,取出白球的概率为,从乙中取出黑球的概率为,取出白球的概率为,故“两球颜色相同”的概率P=.(II)由题意可得,ξ所有可能取值为0,1,2,P(ξ=0)==,P(ξ=1)=,P(ξ=2)=,故ξ的分布列为:ξ012P5.设X是一个离散型随机变量,其分布列为:X−101P1﹣2q q2(1)求q的值;(2)求P(X<0),P(X<1).【解答】解:(1)依题意,得,解得或(舍去),所以.(2)由(1)得,,所以,.6.某射手进行射击训练,假设每次射击击中目标的概率为,且每次射击的结果互不影响.(1)求射手在3次射击中,至少有两次连续击中目标的概率(用数字作答);(2)求射手第3次击中目标时,恰好射击了4次的概率(用数字作答);(3)设随机变量ξ表示射手第3次击中目标时已射击的次数,求ξ的分布列.【解答】解:(1)设事件该射手第i次射击,击中目标为A i,i=1,2,3,则,所以,事件射手在3次射击中,至少有两次连续击中目标可表示为,因为事件,,A1A2A3互斥,所以又事件A1,A2,A3相互独立,所以==;(2)事件射手第3次击中目标时,恰好射击了4次等于事件前3次中恰好击中两次目标且第四次击中目标,又各次击中目标的概率为,所以前3次中恰有两次击中目标的概率为,第四次击中目标的概率为,所以事件射手第3次击中目标时,恰好射击了4次的概率;(3)由已知ξ的取值有3,4,5,⋅⋅⋅,n,⋅⋅⋅,又,,,⋅⋅⋅,,所以随机变量ξ的分布列为:ξ345…n…P……7.袋中有3个红球,4个黑球,从袋中任取4个球.(1)求红球个数X的分布列;(2)若取到一个红球得2分,取到一个黑球得1分,求得分不小于6分的概率.【解答】解:(1)由题意可得,X可能取值为0,1,2,3,P(X=0)=,P(X=1)=,P(X=2)=,P(X=3)=,故X的分布列为:X0123P(2)设得分为Y,则得分Y可以取4,5,6,7,分别对应4个黑球,3黑1红,2黑2红,1黑3红四种情况,P(Y≥6)=P(Y=6)+P(Y=7)=,故得分不小于6分的概率为.8.从5名男生和3名女生中任选2人去参加学校组织的“低碳杯”知识抢答赛,用ξ表示选出的女生的人数.(1)求随机变量ξ的分布列;(2)求事件“选出的2学生至少有一女生”的概率.【解答】解:(1)由题意得ξ的可能取值为0,1,2,P(ξ=0)==,P(ξ=1)==,P(ξ=2)==,∴随机变量ξ的分布列为:ξ012P(2)事件“选出的2学生至少有一女生”的概率为:P=P(ξ=1)+P(ξ=2)==.。

《概率论与数理统计》习题随机变量及其分布

《概率论与数理统计》习题随机变量及其分布

第二章 随机变量及其分布一. 填空题1. 设随机变量X ~B(2, p), Y ~B(3, p), 若P(X ≥ 1) =95, 则P(Y ≥ 1) = _________. 解. 94951)1(1)0(=-=≥-==X P X P 94)1(2=-p , 31=p 2719321)0(1)1(3=⎪⎭⎫⎝⎛-==-=≥Y P Y P2. 已知随机变量X 只能取-1, 0, 1, 2四个数值, 其相应的概率依次为cc c c 162,85,43,21, 则c = ______. 解. 2,16321628543211==+++=c cc c c c 3. 用随机变量X 的分布函数F(x)表示下述概率: P(X ≤ a) = ________. P(X = a) = ________.P(X > a) = ________. P(x 1 < X ≤ x 2) = ________.解. P(X ≤ a) = F(a) P(X = a) = P(X ≤ a)-P(X < a) = F(a)-F(a -0) P(X > a) = 1-F(a) P(x 1 < X ≤ x 2) = F(x 2)-F(x 1)4. 设k 在(0, 5)上服从均匀分布, 则02442=+++k kx x 有实根的概率为_____.解. k 的分布密度为⎪⎩⎪⎨⎧=051)(k f 其它50≤≤kP{02442=+++k kx x 有实根} = P{03216162≥--k k } = P{k ≤-1或k ≥ 2} =535152=⎰dk 5. 已知2}{,}{kbk Y P k a k X P =-===(k = 1, 2, 3), X 与Y 独立, 则a = ____, b = ____, 联合概率分布_____, Z = X + Y 的概率分布为_____. 解. 116,132==++a a a a . 4936,194==++b b b b(X, Y)的联合分布为ab = 216α, 539=α α249)3()1()3,1()2(==-===-===-=abY P X P Y X P Z P α66)2,1()3,2()1(=-==+-===-=Y X P Y X P Z Pα251)1,1()2,2()3,3()0(=-==+-==+-====Y X P Y X P Y X P Z P α126)2,3()1,2()1(=-==+-====Y X P Y X P Z P α723)1()3()1,3()2(==-===-====abY P X P Y X P Z P6. 已知(X, Y)联合密度为⎩⎨⎧+=0)sin(),(y x c y x ϕ 其它4,0π≤≤y x , 则c = ______, Y 的边缘概率密度=)(y Y ϕ______.解.12,1)sin(4/04/0+==+⎰⎰c dxdy y x c ππ所以⎩⎨⎧++=0)sin()12(),(y x y x ϕ 其它4,0π≤≤y x当 40π≤≤y 时))4cos()(cos 12()sin()12(),()(4y y dx y x dx y x y Y +-+=++==⎰⎰∞+∞-πϕϕπ所以⎪⎩⎪⎨⎧+-+=0))4cos()(cos 12()(y y y Y πϕ 其它40π≤≤y7. 设平面区域D 由曲线2,1,01e x x y xy ====及直线围成, 二维随机变量(X, Y)在D 上服从均匀分布, 则(X, Y)关于X 的边缘密度在x = 2处的值为_______. 解. D 的面积 =2121=⎰e dx x. 所以二维随机变量(X, Y)的密度为: ⎪⎩⎪⎨⎧=021),(y x ϕ 其它D y x ∈),(下面求X 的边沿密度:当x < 1或x > e 2时0)(=x X ϕ当1 ≤ x ≤ e 2时 ⎰⎰===∞+∞-x X xdy dy y x x 102121),()(ϕϕ, 所以41)2(=X ϕ.8. 若X 1, X 2, …, X n 是正态总体N(μ, σ2)的一组简单随机样本, 则)(121n X X X nX +++=服从______. 解. 独立正态分布随机变量的线性函数服从正态分布.μ==⎪⎭⎫ ⎝⎛∑∑==n i i n i i X E n X n E 11)(11, nX D nX n D ni in i i 2121)(11σ==⎪⎭⎫ ⎝⎛∑∑==所以 ),(~2nN X σμ9. 如果(X, Y)的联合分布用下列表格给出,且X 与Y 相互独立, 则α = ______, β = _______.解.213161)1(,181)3(,91)2(,31)2(=+==+==+==++==Y P Y P Y P X P βαβα 132)3()2()1(=++==+=+=βαY P Y P Y P⎪⎪⎩⎪⎪⎨⎧+++=======+++=======)181)(31()3()2()3,2()91)(31()2()2()2,2(ββαβαβααY P X P Y X P Y P X P Y X P两式相除得βαβα=++18191, 解得 βα2=, 92,91==αβ.10. 设(X, Y)的联合分布律为则 i. Z = X + Y 的分布律 ______. ii. V = X -Y 的分布律______. iii. U= X 2 + Y -2的分布律_______. 解.二. 单项选择题1. 如下四个函数哪个是随机变量X 的分布函数(A)⎪⎪⎩⎪⎪⎨⎧=221)(x F 0022≥<≤--<x x x , (B) ⎪⎩⎪⎨⎧=1sin 0)(x x F ππ≥<≤<x x x 00(C) ⎪⎩⎪⎨⎧=1sin 0)(x x F 2/2/00ππ≥<≤<x x x , (D) ⎪⎪⎩⎪⎪⎨⎧+=1310)(x x F 212100≥<≤<x x x解. (A)不满足F(+∞) = 1, 排除(A); (B)不满足单增, 排除(B); (D)不满足F(1/2 + 0) = F(1/2), 排除(D); (C)是答案.2. ),4,2,0(!/)( ===-k k e c k X P k λλ是随机变量X 的概率分布, 则λ, c 一定满足 (A) λ > 0 (B) c > 0 (C) c λ > 0 (D) c > 0, 且 λ > 0解. 因为),4,2,0(!/)( ===-k k e c k X P k λλ, 所以c > 0. 而k 为偶数, 所以λ可以为负. 所以(B)是答案.3. X ~N(1, 1), 概率密度为ϕ(x), 则(A)5.0)0()0(=≥=≤X P X p (B)),(),()(+∞-∞∈-=x x x ϕϕ (C) 5.0)1()1(=≥=≤X P X p (D) ),(),(1)(+∞-∞∈--=x x F x F 解. 因为E(X) = μ = 1, 所以5.0)1()1(=≥=≤X P X p . (C)是答案.4. X, Y 相互独立, 且都服从区间[0, 1]上的均匀分布, 则服从区间或区域上的均匀分布的随机变量是(A) (X, Y) (B) X + Y (C) X 2 (D) X -Y解. X ~⎩⎨⎧=01)(x ϕ 其它10≤≤x , Y ~⎩⎨⎧=01)(y ϕ 其它10≤≤y . 所以(X, Y)~⎩⎨⎧=01),(y x ϕ其它1,0≤≤y x .所以(A)是答案.5. 设函数⎪⎪⎩⎪⎪⎨⎧=120)(xx F 1100>≤<≤x x x 则(A) F(x)是随机变量X 的分布函数. (B) 不是分布函数.(C) 离散型分布函数. (D)连续型分布函数.解. 因为不满足F(1 + 0) = F(1), 所以F(x)不是分布函数, (B)是答案.6. 设X, Y 是相互独立的两个随机变量, 它们的分布函数为)(),(y F x F Y X , 则Z = max(X, Y)的分布函数是(A) )(z F Z = max{)(),(z F z F Y X } (B) )(z F Z = max{|)(||,)(|z F z F Y X } (C) )(z F Z = )()(z F z F Y X (D) 都不是解. }{}),{max()()(z Y z X P z Y X P z Z P z F Z ≤≤=≤=≤=且 )()()()(z F z F z Y P z X P Y X =≤≤因为独立. (C)是答案.7. 设X, Y 是相互独立的两个随机变量, 其分布函数分别为)(),(y F x F Y X , 则Z = min(X, Y)的分布函数是(A) )(z F Z = )(z F X (B) )(z F Z = )(z F Y(C) )(z F Z = min{)(),(z F z F Y X } (D) )(z F Z = 1-[1-)(z F X ][1-)(z F Y ] 解. }{1}),{min(1)(1)()(z Y z X P z Y X P z Z P z Z P z F Z >>-=>-=>-=≤=且 )](1)][(1[1)](1)][(1[1z F z F z Y P z X P Y X ---=≤-≤--因为独立 (D)是答案.8. 设X 的密度函数为)(x ϕ, 而,)1(1)(2x x +=πϕ 则Y = 2X 的概率密度是(A))41(12y +π (B) )4(22y +π (C) )1(12y +π (D) y arctan 1π 解. )2()2(}2{)()(yF y X P y X P y Y P y F X Y =≤=≤=≤= )4(2)2(112121)2()2()]([)(22''y y y y F y F y X X Y Y +=⎪⎭⎫ ⎝⎛+⋅=⋅=⎪⎭⎫ ⎝⎛==ππϕϕ (B)是答案.9. 设随机变量(X, Y)的联合分布函数为⎩⎨⎧=+-0),()(y x e y x ϕ 其它0,0>>y x , 则2YX Z +=的分布密度是(A) ⎪⎩⎪⎨⎧=+-021)()(y x Z e Z ϕ 其它0,0>>y x (B) ⎪⎩⎪⎨⎧=+-0)(2y x Z e z ϕ 其它0,0>>y x(C) ⎩⎨⎧=-04)(2z Z ze Z ϕ 00≤>z z (D) ⎪⎩⎪⎨⎧=-021)(zZ eZ ϕ 00≤>z z解. 2YX Z +=是一维随机变量, 密度函数是一元函数, 排除(A), (B).21210=⎰∞+-dz e z , 所以(D)不是答案. (C)是答案. 注: 排除法做单项选择题是经常使用而且很有效的方法. 该题也可直接计算Z 的密度:当z < 0时0)(=z F Z当z ≥ 0时⎰⎰≤+=≤+=≤+=≤=zy x Z dxdy y x z Y X P z YX P z Z P z F 2),()2()2()()(ϕ =12222020+--=⎥⎦⎤⎢⎣⎡-----⎰⎰z z z xz y x e ze dx dy e e==)()('z F z ZZ ϕ⎩⎨⎧-042z ze 00≤>z z , (C)是答案.10. 设两个相互独立的随机变量X 和 Y 分别服从正态分布N(0, 1)和N(1, 1), 则下列结论正确的是(A) P{X + Y ≤ 0} = 1/2 (B) P{X + Y ≤ 1} = 1/2 (C) P{X -Y ≤ 0} = 1/2 (D) P{X -Y ≤ 1} = 1/2解. 因为X 和 Y 分别服从正态分布N(0, 1)和N(1, 1), 且X 和 Y 相互独立, 所以 X + Y ~ N(1, 2), X -Y ~ N(-1, 2) 于是P{X + Y ≤ 1} = 1/2, (B)是答案.11. 设随机变量X 服从指数分布, 则Y = min{X, 2}的分布函数是(A) 是连续函数 (B) 至少有两个间断点 (C) 是阶梯函数 (D) 恰好有一个间断点 解. 分布函数:))2,(m i n (1))2,(m i n ()()(y X P y X P y Y P y F Y >-=≤=≤= 当y ≥ 2时101))2,(m i n (1)(=-=>-=y X P y F Y 当0 ≤ y < 2时)2,(1))2,(m i n (1)(y y X y X P y F Y >>-=>-= ye y X P y X P λ--=≤=>-=1)()(1当y < 0时)2,(1))2,(m i n(1)(y y X y X P y F Y >>-=>-= 0)()(1=≤=>-=y X P y X P于是 ⎪⎩⎪⎨⎧-=-011)(yY e y F λ 0202<<≤≥y y y 只有y = 2一个间断点, (D)是答案.三. 计算题1. 某射手有5发子弹, 射击一次的命中率为0.9, 如果他命中目标就停止射击, 不命中就一直到用完5发子弹, 求所用子弹数X 的分布密度. 解. 假设X 表示所用子弹数. X = 1, 2, 3, 4, 5.P(X = i) = P(前i -1次不中, 第i 次命中) = 9.0)1.0(1⋅-i , i = 1, 2, 3, 4.当i = 5时, 只要前四次不中, 无论第五次中与不中, 都要结束射击(因为只有五发子弹). 所以 P(X = 5) = 4)1.0(. 于是分布律为2. 设一批产品中有10件正品, 3件次品, 现一件一件地随机取出, 分别求出在下列各情形中直到取得正品为止所需次数X 的分布密度.i. 每次取出的产品不放回; ii. 每次取出的产品经检验后放回, 再抽取; iii. 每次取出一件产品后总以一件正品放回, 再抽取.解. 假设A i 表示第i 次取出正品(i = 1, 2, 3, …) i.13)()1(1===A P X P1331210)()|()()2(11212⋅====A P A A P A A P X P1331221110)()|()|()()3(11223321⋅⋅====P P A P A P X P1331221111)()|()|()|()4(1122334⋅⋅⋅===A P A A P A A P A A P X Pii. 每次抽取后将原产品放回1310133)()()()()(11111---⎪⎭⎫⎝⎛====k k k k k A P A P A P A A A p k X P , (k = 1, 2, …)iii. 每次抽取后总以一个正品放回X 1 2 3 4p13101311133⋅ 1312132133⋅⋅ 1331321311⋅⋅⋅ 1310)()1(1===A P X P1331311)()|()()2(11212⋅====A P A A P A A P X P1331321312)()|()|()()3(112123321⋅⋅====A P A A P A A A P A A A P X P 1331321311)()|()|()|()4(1121231234⋅⋅⋅===A P A A P A A A P A A A A P X P3. 随机变量X 的密度为⎪⎩⎪⎨⎧-=01)(2x cx ϕ 其它1||<x , 求: i. 常数c; ii. X 落在)21,21(-内的概率. 解. πππϕ1,22|arcsin 21)(110112====-==⎰⎰-∞+∞-c c c x c dx xc dx x3162|a r c s i n 211))2/1,2/1((2/102/12/12=⋅==-=-∈⎰-ππππx x dxX P 4. 随机变量X 分布密度为i. 2102)(x x -⎪⎩⎪⎨⎧=πϕ 其它1||<x , ii. ⎪⎩⎪⎨⎧-=02)(x x x ϕ 其它2110≤≤<≤x x求i., ii 的分布函数F(x).解. i. 当x ≤ 1时 ⎰⎰∞-∞-===x xdt dt t x F 00)()(ϕ当-1< x < 1时 ⎰⎰∞--++-=-==x x x x xdt t dt t x F 21arcsin 1112)()(212πππϕ 当x ≥ 1时⎰⎰∞--=-==xdt t dt t x F 112)()(112πϕ所以 ⎪⎪⎩⎪⎪⎨⎧++-=121arcsin 110)(2x x xx F ππ 1111≥<<--≤x x xii. 当x < 0时 ⎰⎰∞-∞-===x xdt dt t x F 00)()(ϕ当0 ≤ x < 1时 ⎰⎰∞-===x x x t d t dt t x F 2)()(2ϕ当1 ≤ x < 2时 122)2()()(2110-+-=-+==⎰⎰⎰∞-x x dt t tdt dt t x F x xϕ当2 ≤ x 时 1)2()()(2110⎰⎰⎰∞-=-+==x dt t tdt dt t x F ϕ所以 ⎪⎪⎪⎩⎪⎪⎪⎨⎧-+-=112220)(22x x x x F 221100≥<≤<≤<x x x x5. 设测量从某地到某一目标的距离时带有的随机误差X 具有分布密度函数⎪⎪⎭⎫ ⎝⎛--=3200)20(exp 2401)(2x x πϕ, -∞ < x < +∞ 试求: i. 测量误差的绝对值不超过30的概率;ii. 接连独立测量三次, 至少有一次误差的绝对值不超过30的概率.解. 因为⎪⎪⎭⎫ ⎝⎛--=3200)20(exp 2401)(2x x πϕ, -∞ < x < +∞, 所以X ~N(20, 402). i. {}⎭⎬⎫⎩⎨⎧<-<-=<<-=<25.0402025.13030)30|(|X P X P X P )25.1()25.0(-Φ-Φ=1)25.1()25.0()25.1(1()25.0(-Φ+Φ=Φ--Φ= 18944.05987.0-+== 0.4931.(其中Φ(x)为N(0, 1)的分布函数)ii. P(至少有一次误差的绝对值不超过30) = 1-P(三次误差的绝对值都超过30) =88.012.01)4931.0(13=-=- 6. 设电子元件的寿命X 具有密度为⎪⎩⎪⎨⎧=0100)(2x x ϕ 100100≤<x x问在150小时内, i. 三只元件中没有一只损坏的概率是多少? ii. 三只电子元件全损坏的概率是多少? iii. 只有一个电子元件损坏的概率是多少?解. X 的密度⎪⎩⎪⎨⎧=0100)(2x x ϕ 100100≤<x x . 所以31100)150(1501002==<⎰dx x X P . 令p = P(X ≥ 150) = 1-31= 32.i. P(150小时内三只元件没有一只损坏) =2783=p ii. P(150小时内三只元件全部损坏) =271)1(3=-piii. P(150小时内三只元件只有一只损坏) =943231213=⎪⎭⎫⎝⎛⎪⎭⎫ ⎝⎛c7. 对圆片直径进行测量, 其值在[5, 6]上服从均匀分布, 求圆片面积的概率分布. 解. 直径D 的分布密度为⎩⎨⎧=01)(d ϕ其它65≤≤d假设42D X π=, X 的分布函数为F(x).)()()(2x D P x X P x F ≤=≤=π当x ≤ 0时, F(x) = 0 当x > 0时⎭⎬⎫⎩⎨⎧≤≤-=≤=≤=πππx D xP x D P x X P x F 44)()()(2 当时即425,54ππ<<x xF(x) = 0 当时即πππ925,645≤≤≤≤x x⎭⎬⎫⎩⎨⎧≤≤-=≤=≤=πππx D xP x D P x X P x F 44)()()(2=54145-=⎰ππxdt x当 x > 9π时1)()(65===⎰⎰∞-dt dt t x F x ϕ所以 ⎪⎪⎩⎪⎪⎨⎧-=1540)(πxx F ππππ99425425>≤≤<x x x密度⎪⎩⎪⎨⎧==01)(')(x x F x πϕ 其它ππ9425≤≤x8. 已知X 服从参数 p = 0.6的0-1分布在X = 0, X = 1下, 关于Y 的条件分布分别为表1、表2所示表1 表2Y 1 2 3 Y 1 2 3 P(Y|X = 0)41 21 41 P(Y|X = 1) 21 61 31 求(X, Y)的联合概率分布, 以及在Y ≠ 1时, 关于X 的条件分布.解. X 的分布律为(X, Y)3.05321)1()1|1()1,1(=⋅=======X P X Y P Y X P 1.05361)1()1|2()2,1(=⋅=======X P X Y P Y X P2.05331)1()1|3()3,1(=⋅=======X P X Y P Y X P1.05241)0()0|1()1,0(=⋅=======X P X Y P Y X P2.05221)0()0|2()2,0(=⋅=======X P X Y P Y X P1.05241)0()0|3()3,0(=⋅=======X P X Y P Y X P所以Y 的分布律为5.06.03.0)1()1,0()1|0(==≠≠==≠=Y P Y X P Y X P5.06.03.0)1()1,1()1|1(==≠≠==≠=Y P Y X P Y X P所以9. 设随机变量X 与Y 相互独立, 并在区间[0, 9]上服从均匀分布, 求随机变量YXZ =的分布密度.解. X ~⎪⎩⎪⎨⎧=091)(x X ϕ 其它90≤≤x , Y ~⎪⎩⎪⎨⎧=091)(x Y ϕ 其它90≤≤y因为X, Y 相互独立, 所以(X, Y)联合密度为(X, Y)~⎪⎩⎪⎨⎧=0811),(y x ϕ 其它9,0≤≤y x , )()()(z X Y P z Z P z F Z ≤=≤= 当 z ≤ 0时0)(=z F Z 当 0 < z < 1时z z dxdy Xz Y P z X Y P z Z P z F D Z 219928181)()()()(1=⋅⋅==≤=≤=≤=⎰⎰ 当z ≥ 1时⎰⎰=≤=≤=≤=2811)()()()(D Z dxdy Xz Y P z X Y P z Z P z F zz 211)992181(811-=⋅-⋅=所以 ⎪⎪⎩⎪⎪⎨⎧==2'21210)()(zz F z Z Z ϕ 1100≥<<≤z z z 10. 设(X, Y)的密度为⎩⎨⎧--=0)1(24),(y x y y x ϕ 其它1,0,0<+>>y x y x求: i.)21|(),|(),(=x y x y x X ϕϕϕ, ii. )21|(),|(),(=y x y x y Y ϕϕϕ 解.i.⎰∞+∞-=dy y x x X ),()(ϕϕ当x ≤ 0 或 x ≥ 1时0),()(==⎰∞+∞-dy y x x X ϕϕ当0 < x < 1时310)1(4)1(24),()(x dy y x y dy y x x x X -=--==⎰⎰-∞+∞-ϕϕ所以 ⎩⎨⎧-=0)1(4)(3x x X ϕ 其它10<<x所以 ⎪⎩⎪⎨⎧---==0)1()1(6)(),()|(3x y x y x y x x y X ϕϕϕ 其它1,0,0<+>>y x y x 所以 ⎩⎨⎧-==0)21(24)21|(y y x y ϕ 其它210<<yii.⎰∞+∞-=dx y x y Y ),()(ϕϕ当y ≤ 0 或 y ≥ 1时0),()(==⎰∞+∞-dx y x y Y ϕϕ当0 < y < 1时210)1(12)1(24),()(y y dx y x y dx y x y y Y -=--==⎰⎰-∞+∞-ϕϕ所以 ⎩⎨⎧-=0)1(12)(2y y y Y ϕ 其它10<<y所以 ⎪⎩⎪⎨⎧---==0)1()1(2)(),()|(2y y x y y x y x Y ϕϕϕ其它1,0,0<+>>y x y x 所以 ⎩⎨⎧-==0)21(4)21|(x y x ϕ 其它210<<x。

离散型随机变量及其分布列练习题和答案

离散型随机变量及其分布列练习题和答案

离散型变量强化1.每次试验的成功率为(01)p p <<,重复进行10次试验,其中前7次都未成功后3次都成功的概率为( )()A 33710(1)C p p - ()B 33310(1)C p p - ()C 37(1)p p - ()D 73(1)p p - 2.投篮测试中,每人投3次,至少投中2次才能通过测试,已知某同学每次投篮投中的概率为,且各次投篮是否投中相互独立,则该同学通过测试的概率为( )(A ) (B ) (C ) (D )3.甲、乙两队参加乒乓球团体比赛,甲队与乙队实力之比为3:2,比赛时均能正常发挥技术水平,则在5局3胜制中,甲打完4局才胜的概率为( )()A 23332()55C ⋅ ()B 22332()()53C ()C 33432()()55C ()D 33421()()33C 4.某地区气象台统计,该地区下雨的概率是154,刮三级以上风的概率为152,既刮风又下雨的概率为101,则在下雨天里,刮风的概率为( )A.2258 B.21 C.83 D.43 5.从4名男生和2名女生中任选3人参加演讲比赛,设随机变量ξ表示所选3人中女生的人数,则P (ξ≤1)等于( ).6.一袋中有5个白球,3个红球,现从袋中往外取球,每次任取一个记下颜色后放回,直到红球出现10次时停止,设停止时共取了ξ次球,则==)12(ξP ( ) A.2101012)85()83(⋅C B.83)85()83(29911⨯C C.29911)83()85(⋅C D. 29911)85()83(⋅C 7.袋中有5个球,3个白球,2个黑球,现每次取一个,无放回地抽取两次,第二次抽到白球的概率为( ) A.53 B.43 C.21 D. 1038.6位同学参加百米短跑初赛,赛场有6条跑道,已知甲同学排在第一跑道,则乙同学排在第二跑道的概率( ) A 52 B.51 C.92 D. 73 9.一个袋中有9张标有1,2,3,…,9的票,从中依次取两张,则在第一张是奇数的条件下第二张也是奇数的概率( ) A.52 B.51 C.21 D. 7310.位于坐标原点的一个质点P 按下述规则移动:质点每次移动一个单位;移动的方向为向上或向右,并且向上向右的概率都是21,质点P 移动5次后位于点(2,3)的概率是( )A.3)21( B.525)21(C C.335)21(C D.53525)21(C C 11.若样本数据1x ,2x ,⋅⋅⋅,10x 的标准差为8,则数据121x -,221x -,⋅⋅⋅,1021x -的标准差为( )(A )8 (B )15 (C )16 (D )3212.设某项试验的成功率是失败率的2倍,用随机变量ξ描述一次试验的成功次数,则)0(=ξP 等于( ) B. 21 C. 31 D.32 解答题13.种植某种树苗,成活率为90%,现在种植这种树苗5棵,试求:⑴全部成活的概率; ⑵全部死亡的概率;⑶恰好成活3棵的概率; ⑷至少成活4棵的概率14.某高中共派出足球、排球、篮球三个球队参加市学校运动会,它们获得冠军的概率分别为12,13,23.(1)求该高中获得冠军个数X 的分布列;(2)若球队获得冠军,则给其所在学校加5分,否则加2分,求该高中得分η的分布列.15.实力相等的甲、乙两队参加乒乓球团体比赛,规定5局3胜制(即5局内谁先赢3局就算胜出并停止比赛). 试分别求甲打完3局、4局、5局才能取胜的概率;(2)求按比赛规则甲获胜的概率.16.某商场举行有奖促销活动,顾客购买一定金额商品后即可抽奖,每次抽奖都从装有4个红球、6个白球的甲箱和装有5个红球、5个白球的乙箱中,各随机摸出1个球,在摸出的2个球中,若都是红球,则获一等奖;若只有1个红球,则获二等奖;若没有红球,则不获奖.(1)求顾客抽奖1次能获奖的概率;(2)若某顾客有3次抽奖机会,记该顾客在3次抽奖中获一等奖的次数为X ,求X 的分布列.。

Ch2随机变量及其概率分布习题

Ch2随机变量及其概率分布习题

3 设某人买一种数字型体育彩票,每一注号码中大奖的概率为107 。
(1) 若每期买一注,共买了 n 期,求没有中大奖的概率; (2)若每期买 10 注(号码全不同),共买了 n 期,求没有中大奖的概率。
解:(1)没有中大奖的概率是 p1 1107 n ;
(2)每一期没有中大奖的概率是 p
(2)求 PX 2.5 的值。
解 由题意可判断各次抽样结果是相互独立的,停止时已检查了 X 件产品,说明第 X 次抽
样才有可能抽到不合格品。 X 的取值有 1、2、3、4、5,有
P( X k) p(1 p)k1, k 1, 2,3, 4 ,
P( X 5) (1 p)4 ;
(2) P(X 2.5) P( X 1) P( X 2) p p(1 p) p(2 p) 。
(2)求诊断正确的概率; (3)此人被诊断为有病的概率。
解 (1)用 X 表示诊断此人有病的专家的人数, X 的取值有 1、2、3、4、5。在此人有病
的条件下,诊断此人有病的概率为:
P( X 3) P( X 3) P( X 4) P( X 5) C53 (1 0.1)3 0.12 C54 (1 0.1)4 0.1 C55 (1 0.1)5 0.991
Y 取每一值的概率分布为:
p y 0 p1 , p y 1 1 p1 p2 , p y 2 1 p1 1 p2 p3 , p y 3 1 p1 1 p2 1 p3 . 6. 从一批不合格频率为 p 0 p 1 的产品中随机抽查产品。如果查到不合格品就停止检
查,且最多查 5 件产品。设停止时已检查了 X 件产品。 (1)求 X 的概率分布律;
解 (1)用 X 表示男婴的个数,则 X 可取值有 0、1、2、3,至少有 1 名男婴的概率可表

概率论与数理统计随机变量及其分布习题课

概率论与数理统计随机变量及其分布习题课
2
01 排列及其逆序数
解 以X表示此人外出时电话铃响的次数, 由题意知X~π(2t), t表示外出的总时间,则X的的分布律为
当t=10/60=1/6时, (1)
,故所求概率为
(2)设外出最长时间为t(单位:h), 因为X~π(2t),
3
01 排列及其逆序数
因此无电话打进的概率为

要使


解之得
0.3466小时约为21分钟,因此,某人应控制外出时间小
16
01 排列及其逆序数
ꢀ例8 设随机变量
,记
, 则A. p随着 μ的增加而增加
C. p随着μ的增加而减少
B. p随着 σ的增加而增加 D. p随着σ的增加而减少

因为 为单调增函数, p σ
,
所以 随着 的增加而增加
应选B.
17
01 排列及其逆序数
ꢀ例9 测量某距离时,随机误差X(单位:cm)具有密度函数:
则性。
6
01 排列及其逆序数 ꢀ例3 设随机变量X的概率密度为 为X的分布函数, 求 解 由题意知,X的分布函数为
因此,
F(x)
7
01 排列及其逆序数 ꢀ例4 设某加油站每周补给一次油,如果这个加油站每 周的销售量(单位:千升)为一随机变量,其密度函数为
试问该加油站的储油罐需要多大,才能把一周内断油的概 率控制在5%以下?
,求
解 当y≤0时,Y的密度函数为 当y>0时,Y的分布函数为
的分布. ;
对上式两边关于y求导,得
20
01 排列及其逆序数 即
这是伽玛分布
的概率密度函数.
21
01 排列及其逆序数
ꢀ例11 设电流I是一个随机变量,它均匀分布在9A~11A 之间.若此电流通过2Ω的电阻,在其上消耗的功率W=2I2, 求W的概率密度.

概率论与数理统计+第二章+随机变量及其分布+练习题答案

概率论与数理统计+第二章+随机变量及其分布+练习题答案

滨州学院《概率论与数理统计》(公共课)练习题第二章 随机变量及其分布一、填空题 10.712设一本书的各页的印刷错误个数X 服从泊松分布律.已知有一个和两个印刷错误的页数相同,则随意抽查的4页中无印刷错误的概率p = 0.0003 .3⎪⎪⎩⎪⎪⎨⎧≥<≤<≤<=≤=.若,;,若;,若;,若 3 1 324544 21 51 1 0 }{)(x x x x x X x F P 4{}12525.032)05.0()02(25.0=-=---=<≤F F X P . 例2.11设随机变量X 的概率密度函数为⎪⎩⎪⎨⎧≤≤≤≤=其它06310)(9231x x x f ;若k 使得32)(=≥k X P ,则k 的取值范围是 . 【[1,3]】例2.13 设X 服从二项分布),(p n B ,且已知)2()1(===X P X P ,)3(2)2(===X P X P ,则)4(=X P = . 【24310】 例2.14若随机变量X 服从正态分布)0)(,(2>σσμN ,且二次方程042=++X y y 无实根的概率是21,则=μ . 【4】2.22 (1)24310;(2)4;(3)2922;(4)649;(5))0(2)1(ln 221)(+∞<<--=y y Y I e y y f π〖选择题〗1 [ C ]2 [ C ]3 [ C ]例2.1 【C 】例2.2 【A 】 例2.3 【B 】例2.5 【A 】例2.16设随机变量X ,Y 相互独立均服从正态分布)4,1(N , 若概率21)1(=<-bY aX P ,则(A)1,2==b a(B) 2,1==b a(C) 1,2=-=b a(D) 2,1-==b a 【A 】例2.18 设X 为随机变量, 若矩阵⎪⎪⎪⎭⎫ ⎝⎛--=01020232X A 的特征根全为实数的概率为0.5, 则(A)X 服从区间[0,2]上的均匀分布 (B) X 服从二项分布B(2, 0.5) (C) X 服从参数为1的指数分布 (D) X 服从标准正态分布 【A 】2.23 (1)A ;(2)B ;(3)C ;(4)C ;(5)B 解答题〗 〖解答题〗例2.30解 不妨假设正立方体容器的边长为1.引进事件:{}0==X A ,即事件A 表示“小孔出现在容器的下底面”.由于小孔出现在正立方体的6个侧面是等可能的,易见 61)(=A P .从而,{}61===)(0A X P P.对于任意x <0,显然()=x F 0;而()610=F .由于小孔出现的部位是随机性,可见对于任意)75.0,0(∈x ,有(){}{}.641646100xx x X X x F +=+=≤<+≤=P P 该式中4x 表示容器的四个侧面x 以下的总面积,而容器6个侧面的总面积为6.对于任意x ≥0.75,显然()1=x F.于是,最后得()⎪⎪⎩⎪⎪⎨⎧≥<≤+<=.若若若 75.0 , 1 , 75.00 , 641, 0 , 0 x x x x x F例2.31(分布函数)解 因X 服从指数分布,且21==λX E (百小时),故分布参数λ=0.5,故X的分布函数为()⎩⎨⎧≤>-=-.,若;,若0 0 0 e 15.0x x x G x 易见,{}1.0min ,X Y=.设)(y F 是Y 的分布函数,则对于y <0,)(y F =0;对于y >0.1,)(y F =1;对于1.00≤≤y ,有{}{}.,y y G y X y X y Y y F 5.0e 1)(}1.0 min{}{)(--==≤=≤=≤=P P P 于是,{}.10 min ,X Y=的分布函数为()⎪⎩⎪⎨⎧≥<≤-<=-.,若,若,,若 1.0 1 , 1.00 e 1 0 0 5.0y y y y F y例2.33解 试验次数X 是一随机变量.为求X 的概率分布,引进事件:j B ={第j 次试验成功}(j =1,2,…,n ).显然P(j B ) = p .而由于试验的独立性,知事件n B B B ,,,21 …相互独立.设试验进行到成功或n 次为止,则X 的可能值为1,2,…,n 且1}1{B X==;对于2≤k ≤n-1,.;;;,111111112111)(}{ )(}1{)12()(}{}{ }{------======-≤≤=======k n k k k n k k q B B n X p B X n k pq B B B k X B B B n X B B B k X P P P P P P于是,X 的概率分布为有限几何分布:⎪⎪⎭⎫ ⎝⎛---1121321~n n q pq pq pq pn n X . 例2.35解 以ν表示抽到的30件产品中不合格品的件数,则ν服从参数为(30,0.02)的二项分布:.;;4545.0}0{1}1{3340.002.098.030}1{5455.098.0}0{2930==-=≥=⨯⨯=====ννννP P P P1) 不合格品不少于两件的概率.1205.002.098.03098.01}1{}0{1}2{2930=⨯⨯--==-=-=≥=ννναP P P2) 在已经发现一件不合格品的条件下,不合格品不少于两件的条件概率{}.2652.0}1{}2{}1{}2,1{12≈≥≥=≥≥≥=≥≥=νννννννβP P P P P 例2.36解 由条件知每台设备出现故障的概率为0.08.以ν表示10台设备中同时出现故障的台数,则ν服从参数为(10,0.08)的二项分布.需要安排的值班人数k 应满足条件:95.0}{≥≤k νP .需要对不同的k 进行试算.首先,设k =1和k =2,相应得{}{}{}{}{}{}.,95.09599.008.092.008.092.01092.021281.008.092.01092.010128210910910≥≈⨯⨯+⨯⨯+==+≤=≤≈⨯⨯+==+==≤C ννννννP P P P P P因此,至少需要安排2个人值班.例2.37解 设X ——一周5个工作日停用的天数;Y ——一周所创利润.X 服从参数为(5,0.2)的二项分布.因此,有.,,,057.0205.0410.0328.01}3{205.08.02.010}2{410.08.02.05}1{328.08.0}0{3245=---=≥=⨯⨯===⨯⨯=====X X X X P P P P一周所创利润Y 是X 的函数:⎪⎪⎩⎪⎪⎨⎧≥-====3.,若2,,若1,,若,,若X X X X Y 2 2 7 0 10 ⎪⎪⎭⎫ ⎝⎛-328.0410.0205.0057.010722~Y . 例2.38(二项分布)解 设n ——至少出现一件不合格品所要生产产品的件数,则n 件产品中不合格品的件数n ν服从参数为(n ,0.01)的二项分布;按题意,n 应满足条件., 0729.29899.0ln 05.0ln 95.099.01}0{1}1{≈≥≥-==-=≥n nn n ννP P 于是,为至少出现一件不合格品的概率超过95%,最少需要298.0729×3≈895分,将近14小时55分.例3.41解 由条件知X +Y 是一日内到过该商店的顾客的人数,服从参数为λ的泊松分布.设X ——一日内到过该商店的顾客中购货的人数.由条件知,在一日内有n 个顾客到过该商店的条件下,购货人数的条件概率分布为{}().;),2,1,0(1m n m p p C n Y X m X mn m m n ≥=-==+=- P由全概率公式可见,对于m =0,1,2,…,有{}{}{}()[]()()()()[]()()[]()()().p mp mk km m n mn m mn nmn mm nmn n mn mm nmn m p m p p k m p p m n m p n p p C n p p Cn Y X n Y X m Xm X λλλλλλλλλλλλλλλ---∞=-∞=--∞=--∞=--∞===-=--=-=⎥⎦⎤⎢⎣⎡-==+=+===∑∑∑∑∑e ! e e ! 1!1e!1!1e!!1ee ! 110P P P于是,一日内到过该商店的顾客中购货的人数X 服从参数为p λ的泊松分布.同理,Y 服从参数为)1(p -λ的泊松分布.例2.44 解 以()t ν表示t =90天内售出的电冰箱台数.可以假设()t ν服从参数为t λ的泊松分布.由条件知()λν77E ==56,从而λ=8(台).这样,()t ν服从参数为t λ=8t 的泊松分布: (){}()() ,2,1,0 e !88===-k k t k t tkνP .随机变量X 的可能值为自然数m =0,1,2,….记t a λ=.由全概率公式,有{}(){}(){}()()()()()()()(), pa m pa a a m k k a m m n mn ammn a n m n m m nmn m pa m pa k qa m pa m n qa m pan a q p C n a n a m X m X ---∞=-∞=--∞=--∞====-=======∑∑∑∑e !e e ! ! e!! e ! e ! 0ννP P P 其中6.390805.0=⨯⨯==t p pa λ.因此返修件数X 服从参数为3.6的泊松分布:{}() ,2,1,0 e !6.36.3===-m m m X m P .例2.47解 由条件知{}{}{}{},⎪⎭⎫ ⎝⎛--≈⎥⎦⎤⎢⎣⎡--⎪⎭⎫ ⎝⎛--=⎭⎬⎫⎩⎨⎧-≤-≤--=≤≤-=≤-≤--=≤--=>-=310821)36(310821310823108310812011 1 025.0a a a X a X a a X a a a X a a X ΦΦΦP P P P P其中()x Φ是标准正态分布函数.由熟知的事实()975.096.1=Φ,可见.;;94.5696.131082 0.975031082≈≈-≈⎪⎭⎫⎝⎛-a a a Φ 例2.48 解 由条件知()210,0~N X.设ν为100次独立重复测量中事件{}6.19 >X 出现的次数,则{}05.096.1106.19 =⎭⎬⎫⎩⎨⎧>=>=X X p P P .易见ν服从参数为(100 , 0.05)的二项分布,近似服从参数为5的泊松分布.因此{}{}{}{}{}().87.05.125115.125105.095.0299100 05.095.010095.012101313555529899100≈++-=---≈⨯⨯⨯-⨯⨯--==-=-=-=<-=≥=----e e e e ννννναP P P P P 〖证明题〗例2.52(分布函数)证明 只需验证)()()(21x bF x aF x F +=满足分布函数的三条基本性质.由条件知a 和b 非负且a +b =1.由于)(1x F 和)(2x F 都是分布函数,可见对于任意,有1)()()(021=+≤+=≤b a x bF x aF x F对于任意实数21x x <,由于)2,1)(()(21=≤i x F x F i i ,可见,)()()()()()(2222112111x F x bF x aF x bF x aF x F =+≤+=即)(x F 单调不减.由)(1x F 和)(2x F 的右连续性,可见)(x F 也右连续.最后,.;1)(lim )(lim )(lim 0)(lim )(lim )(lim 2121=+==+=+∞→+∞→+∞→-∞→-∞→-∞→x F b x F a x F x F b x F a x F x x x x x x于是)()()(21x bF x aF x F +=也是分布函数.例2.53(分布函数) 证明 指数分布函数为)0(e 1)(≥-=-x x F x λ设}{P )(y Y y G ≤=为Y=)(X F 的分布函数.由于分布函数)(x F 的值域为(0,1),可见当0≤y时0)(=y G ;当1≥y 时1)(=y G .设10<<y ,有.y y F y X y y Y y G X =⎪⎭⎫⎝⎛--=⎭⎬⎫⎩⎨⎧--≤=≤-=≤=-)1ln(1)1ln(1}e 1{}{)(λλλP P P 于是,)(y G 是区间(0,1)上的均匀分布函数,从而Y=例2.4 【π2=C ;5)arctan 2(πe】例2.6 连续型随机变量X 的分布函数为:x B A x F arctan )(+=,∞<<∞-x试求:(1)常数A 、B ;(2))11(<<-X P ;(3)随机变量X 的概率密度.【(1)π1,21==B A ;(2)21;(3))1(12x +π】 例2.7 设随机变量X 具有对称的密度函数,即)()(x f x f =-,证明对任意的0>a ,有(1)⎰-=-=-adx x f a F a F 0)(21)(1)((2)1)(2)|(|-=<a F a X P (3) ))(1(2)|(|a F a X P -=>问题3: 已知实际背景, 求随机变量的分布律与分布函数(或密度函数)例2.8 一袋中装有4个球,球上分别记有号码1,2,3,4。

概率论与数理统计 第三章 二维随机变量及其概率分布 例题

概率论与数理统计 第三章 二维随机变量及其概率分布 例题

1.甲乙两人独立地进行两次射击,命中率分别为0.2、0.5,把X、Y分别表示甲乙命中的次数,求(X,Y)联合分布律。

2.袋中有两只白球,两只红球,从中任取两只以X、Y表示其中黑球、白球的数目,求(X,Y)联合分布律。

3.设,且P{}=1,求(,)的联合分布律,并指出,是否独立。

4.设随机变量X的分布律为Y=,求(X,Y)联合分布律。

5.设(X,Y)的概率分布为且事件{X=0}与{X+Y=1}独立求a,b。

6. 设某班车起点上车人数X服从参数λ(λ>0)的泊松分布,每位乘客中途下车的概率为P (0<P<1)相互独立。

以Y表示中途下车的人数。

(1)求在发车时有n个人的情况下,中途m个人下车的概率;(2)求(X,Y)联合分布律。

7. 设二维随机变量(X,Y)联合分布函数F(x.y)=A(B+arctan) (C+arctan)。

(1)A、B、C (2)(X,Y)的联合密度f(x,y) (3)(X,Y)的边缘密度,概率论与数理统计第三章二维随机变量及其概率分布例题8.设f(x,y)=为二维随机变量(X,Y)的联合密度函数,求:其它(1)C的值(2), (3)P{X+Y1}并判别X与Y是否独立。

为(X,Y)的密度函数,求:9.设f(x,y)=其它(3)P{X>1/2|Y>0}为(X,Y)的密度函数,求10. 设f(x,y)=其它11. 设f(x,y)=为(X,Y)的密度函数,求()的联合分布其它函数。

12.设X,Y独立,均服从(0,1)上的均匀分布,Z的密度函数。

13. 设f(x,y)=()为(X,Y)的密度函数,Z=X+Y,求的密度函其它数。

概率论与数理统计第三章二维随机变量及其概率分布例题14.设X,Y独立,X~N(μ,),Y~V(-π,π),Z=X+Y,求,结果用Φ( x)表示。

15.设(X,Y)的联合密度函数为f(x,y)=,Z=X+Y,求Z的概率密度。

为(X,Y)的密度函数,Z=X+2Y,求的密度函数。

探索概率与统计随机变量与概率分布练习题

探索概率与统计随机变量与概率分布练习题

探索概率与统计随机变量与概率分布练习题在概率与统计的学习中,随机变量与概率分布是重要的概念和工具。

随机变量是随机事件结果的数值描述,而概率分布则描述了随机变量取各个值的概率。

为了更好地掌握这些概念,以下将给出几个探索概率与统计的随机变量与概率分布的练习题。

题目一:某公司招聘的应聘者中,有60%是男性,40%是女性。

现在随机选择5个应聘者,问至少有一个女性的概率是多少?解析:根据题目可知,应聘者的性别是一个随机变量,男性的概率为0.6,女性的概率为0.4。

现在需要计算至少有一个女性的概率,我们可以利用概率的补集来计算。

首先,计算一个女性都没有的概率。

根据乘法原理,选择5个男性的概率为(0.6)^5 = 0.07776。

然后,通过概率的补集,可以得到至少有一个女性的概率为1-0.07776 = 0.92224。

综上所述,至少有一个女性的概率为0.92224。

题目二:某学校的学生身高数据服从正态分布,均值为170cm,标准差为5cm。

现在随机选择一个学生,问他身高在165cm到175cm之间的概率是多少?解析:根据题目可知,学生的身高是一个随机变量,服从正态分布,均值为170cm,标准差为5cm。

现在需要计算身高在165cm到175cm之间的概率。

首先,计算标准差对应的Z值。

Z = (175 - 170) / 5 = 1,Z = (165 - 170) / 5 = -1。

然后,查找标准正态分布表或使用统计软件计算Z值对应的概率。

查找表格可知,Z = 1 对应的概率为0.8413,Z = -1 对应的概率为0.1587。

所以,身高在165cm到175cm之间的概率为0.8413 - 0.1587 = 0.6826。

综上所述,身高在165cm到175cm之间的概率为0.6826。

题目三:某地区中学生骑自行车上学的时间服从指数分布,平均时间为30分钟。

现在随机选择一个学生,问他上学时间不超过40分钟的概率是多少?解析:根据题目可知,学生的上学时间是一个随机变量,服从指数分布,平均时间为30分钟。

概率习题及答案第二章第二章习题

概率习题及答案第二章第二章习题

第二章 随机变量及其分布练习题1. 设X 为随机变量,且kk X P 21)(==( ,2,1=k ), 则 (1)判断上面的式子是否为X 的概率分布; (2)若是,试求)为偶数X P (和)5(≥X P .2.设随机变量X 的概率分布为λλ-==e k C k X P k!)(( ,2,1=k ), 且0>λ,求常数C .3. 设一次试验成功的概率为)10(<<p p ,不断进行重复试验,直到首次成功为止。

用随机变量X 表示试验的次数,求X 的概率分布。

4. 设自动生产线在调整以后出现废品的概率为p =0.1,当生产过程中出现废品时立即进行调整,X 代表在两次调整之间生产的合格品数,试求(1)X 的概率分布; (2))5(≥X P 。

5. 一张考卷上有5道选择题,每道题列出4个可能答案,其中有1个答案是正确的。

求某学生靠猜测能答对至少4道题的概率是多少?6. 为了保证设备正常工作,需要配备适当数量的维修人员。

根据经验每台设备发生故障的概率为0.01,各台设备工作情况相互独立。

(1)若由1人负责维修20台设备,求设备发生故障后不能及时维修的概率;(2)设有设备100台,1台发生故障由1人处理,问至少需配备多少维修人员,才能保证设备发生故障而不能及时维修的概率不超过0.01?7. 设随机变量X 服从参数为λ的Poisson(泊松)分布,且21)0(==X P ,求(1)λ; (2))1(>X P .8. 设书籍上每页的印刷错误的个数X 服从Poisson(泊松)分布。

经统计发现在某本书上,有一个印刷错误与有两个印刷错误的页数相同,求任意检验4页,每页上都没有印刷错误的概率。

9. 在长度为的时间间隔内,某急救中心收到紧急呼救的次数服从参数为的Poisson 分布,而与时间间隔的起点无关(时间以小时计),求(1)某一天从中午12时至下午3时没有收到紧急呼救的概率; (2)某一天从中午12时至下午5时收到1次紧急呼救的概率; 10. 已知X 的概率分布为:X-2 -10 1 2 3 P2a101 3aaa2a试求(1)a ; (2)12-=X Y 的概率分布。

二、随机变量及其分布(答案)

二、随机变量及其分布(答案)

概率论与数理统计练习题系第二章专业班姓名随机变量及其分布(一)学号一.选择题:1 .设X是失散型随机变量,以下可以作为X的概率分布是[B]X x1x2x3x4X x1x2x3x4( A)1111(B)1111 p p248162488X x1x2x3x4(D)X x1x2x3x4( C)1111p1111 p23412234122 .设随机变量ξ的分布列为X0123C ] p0.10.30.4F ( x) 为其分布函数,则 F ( 2) = [0.2( A)(B)( C)(D)1二、填空题:1 .设随机变量X的概率分布为X012,则 a = p a0.20.52 .某产品 15 件,其中有次品 2 件。

现从中任取3 件,则抽得次品数X 的概率分布为P(X 0)C13366, P( x1)C21 C13236, P( xC22 C1313 C153105C1531052)105C1533 .设射手每次击中目标的概率为, 连续射击10 次,则击中目标次数X 的概率分布为P( X k ) C10k(0.7)k (0.3)10 k(k0,1, 2,L ,10)三、计算题:1 .同时掷两颗骰子,设随机变量X为“两颗骰子点数之和”求:( 1)X的概率分布;(2)P( X3) ;(3)P( X12)解:(1)P( X2)1P( X3)2P( X4)3P(X 5)4,,,,36363636P( X6)5,P( X7) 6 , P( X5 436 8), P(X 9)363636P( X10)3 ,P( X11)2 ,P( X 1363612)36所以 X 的概率分布列:X 2 34 5 6 7 89 10 11 12P12 34 5 6 5 4 3 2 1363636363636 3636363636(2) P(X3) 336( 3) P(X>12)=02 .产品有一、 二、三等品及废品四种, 其中一、 二、三等品及废品率分别为 60%,10%,20%及 10%,任取一个产品检查其质量,试用随机变量X 描述检查结果。

第二章 《随机变量及其分布》练习题

第二章 《随机变量及其分布》练习题

第二章 《随机变量及其分布》练习题一、选择题1.任意抛掷三枚均匀硬币,恰有2枚正面朝上的概率为( )A .34 B .38 C .13 D .142.在4次独立重复试验中,事件A 发生的概率相同,若事件A 至少发生1次的概率为6581,则事件A 在1次试验中发生的概率为( )A .13 B .25 C .56 D .343.若X ~B (10,0.8),则P (X =8)等于( )A .C 810×0.88×0.22B .C 810×0.82×0.28 C .0.88×0.22D .0.82×0.284.若X 是一个随机变量,则E (X -E (X ))的值为( )A .无法求B .0C .E (X )D .2E (X )5.某人从家乘车到单位,途中有3个交通岗.假设在各交通岗遇到红灯的事件是相互独立的,且概率都是0.4,则此人上班途中遇红灯次数的均值为( ) A .0.4 B .1.2 C .0.43D .0.66.已知随机变量ξ的概率分布如下表所示:且η=2ξ+3,则E (η)等于( )A.35 B.65 C.215 D.1257.随机变量ξ的分布列为则ξ的数学期望是( )A .2B .2.1C .2.3D .随m 的变化而变化8.某班有14的学生数学成绩优秀,如果从班中随机地找出5名学生,那么其中数学成绩优秀的学生数ξ~B ⎝⎛⎭⎫5,14,则E (-ξ)的值为( ) A.14 B .-14 C.54 D .-549.有10张卡片,其中8张标有数字2,2张标有数字5,从中任意抽出3张卡片,设3张卡片上的数字之和为X ,则X 的数学期望是( )A .7.8 B .8 C .16 D .15.6 10.设随机变量ξ的分布列如下表:且E (ξ)=1.6,则a -b 等于( D .-0.411.设一随机试验的结果只有A 和A 且P (A )=m ,令随机变量ξ=⎩⎪⎨⎪⎧1,A 发生0,A 不发生,则ξ的方差D (ξ)等于( )A .mB .2m (1-m )C .m (m -1)D .m (1-m )12.由以往的统计资料表明,甲、乙两运动员在比赛中得分情况为:D .无法确定 13.已知随机变量ξ,η满足ξ+η=8,且ξ服从二项分布ξ~B (10,0.6),则E (η)和D (η)的值分别是( )A .6和2.4B .2和2.4C .2和5.6D .6和5.614.随机变量X 的分布列如下:若E (X )=158,则D (X )等于( ) A.732 B.932 C.3364 D.556415.若随机变量ξ的分布列为P (ξ=m )=13,P (ξ=n )=a ,若E (ξ)=2,则D (ξ)的最小值等于( )A .0B .2C .4D .无法计算16.某班举行了一次“心有灵犀”的活动,教师把一张写有成语的纸条出示给A 组的某个同学,这个同学再用身体语言把成语的意思传递给本组其他同学.若小组内同学甲猜对成语的概率是0.4,同学乙猜对成语的概率是0.5,且规定猜对得1分,猜不对得0分,则这两个同学各猜1次,得分之和X (单位:分)的数学期望为( )A .0.9 B .0.8 C .1.2 D .1.117.有10张卡片,其中8张标有数字2,2张标有数字5,从中任意抽出3张卡片,设3张卡片上的数字之和为X ,则X 的数学期望是( )A .7.8 B .8 C .16 D .15.6二、填空题1.一射手对靶射击,直到第一次命中为止,每次命中的概率为0.6,现有4颗子弹,命中后的剩余子弹数目X 的期望为________.2.袋中装有6个红球,4个白球,从中任取1个球,记下颜色后再放回,连续摸取4次,设X 是取得红球的次数,则E (X )=________.3.随机变量ξ的取值为0,1,2.若P (ξ=0)=15,E (ξ)=1,则D (ξ)=________.4.节日期间,某种鲜花的进价是每束2.5元,售价是每束5元,节后对没有卖出的鲜花以每束1.6元处理.根据前5年节日期间对这种鲜花需求量ξ(束)的统计(如下表),若进这种鲜花500束在今年节日期间销售,则利润的均值是________元.三、解答题1.某师范大学志愿者支教团体有6名男同学,4名女同学.在这10名同学中,3名同学来自数学系,其余7名同学来自物理、化学等其他互不相同的七个系.现从这10名同学中随机选取3名同学,到希望小学进行支教活动(每位同学被选到的可能性相同). (Ⅰ)求选出的3名同学来自互不相同的系的概率;(Ⅱ)设X 为选出的3名同学中女同学的人数,求随机变量X 的分布列和数学期望.2.现有甲、乙两个靶,某射手向甲靶射击一次,命中的概率为34;向乙靶射击一次命中的概率为23,该射手每次射击的结果相互独立.假设该射手进行一次测试,先向甲靶射击两次,若两次都命中,则通过测试;若两次中只命中一次,则再向乙靶射击一次,命中也可通过测试,其它情况均不能通过测试.(1)求该射手通过测试的概率;(2)求该射手在这次测试中命中的次数X 的分布列及数学期望.3.在“出彩中国人”的一期比赛中,有6位歌手(1~6)登台演出,由现场的百家大众媒体投票选出最受欢迎的出彩之星,各家媒体独立地在投票器上选出3位出彩候选人,其中媒体甲是1号歌手的歌迷,他必选1号,另在2号至6号中随机的选2名;媒体乙不欣赏2号歌手,他必不选2号;媒体丙对6位歌手的演唱没有偏爱,因此在1至6号歌手中随机的选出3名.(1)求媒体甲选中3号且媒体乙未选中3号歌手的概率;(2)用X表示3号歌手得到媒体甲、乙、丙的票数之和,求X的分布列及数学期望.4.某学校举行知识竞赛,第一轮选拔共设有A、B、C、D四个问题,规则如下:①每位参加者计分器的初始分均为10分,答对问题A、B、C、D分别加1分、2分、3分、6分,答错任一题减2分;②每回答一题,计分器显示累计分数,当累计分数小于8分时,答题结束,淘汰出局;当累计分数大于或等于14分时,答题结束,进入下一轮;当答完四题,累计分数仍不足14分时,答题结束,淘汰出局;③每位参加者按问题A、B、C、D顺序作答,直至答题结束.假设甲同学对问题A、B、C、D回答正确的概率依次为34、12、13、14,且各题回答正确与否相互之间没有影响.(1)求甲同学能进入下一轮的概率;(2)用ξ表示甲同学本轮答题结束时答题的个数,求ξ的分布列和数学期望E(ξ).第二章 《随机变量及其分布》练习题一、选择题1.任意抛掷三枚均匀硬币,恰有2枚正面朝上的概率为( )A .34 B .38 C .13 D .14[解析] 抛一枚硬币,正面朝上的概率为12,则抛三枚硬币,恰有2枚朝上的概率为P =C 23⎝⎛⎭⎫122×12=38. 2.在4次独立重复试验中,事件A 发生的概率相同,若事件A 至少发生1次的概率为6581,则事件A 在1次试验中发生的概率为( )A .13 B .25 C .56 D .34[解析] 事件A 在一次试验中发生的概率为p ,由题意得1-C 04p 0(1-p )4=6581,所以1-p =23,p =13, 3.若X ~B (10,0.8),则P (X =8)等于( )A .C 810×0.88×0.22B .C 810×0.82×0.28 C .0.88×0.22D .0.82×0.28[解析] ∵X ~B (10,0.8),∴P (X =k )=C k 100.8k (1-0.8)10-k ,∴P (X =8)=C 8100.88·0.22,故选A . 4.若X 是一个随机变量,则E (X -E (X ))的值为( )A .无法求B .0C .E (X )D .2E (X )[解析] 只要认识到E (X )是一个常数,则可直接运用均值的性质求解.∵E (aX +b )=aE (X )+b ,而E (X )为常数,∴E (X -E (X ))=E (X )-E (X )=0. [答案] B5.某人从家乘车到单位,途中有3个交通岗.假设在各交通岗遇到红灯的事件是相互独立的,且概率都是0.4,则此人上班途中遇红灯次数的均值为( )A .0.4B .1.2C .0.43D .0.6[解析] ∵途中遇红灯的次数X 服从二项分布,即X ~B (3,0.4),∴E (X )=3×0.4=1.2. [答案] B 6.已知随机变量ξ的概率分布如下表所示:且η=2ξ+3,则E (η)等于( )A.35 B.65 C.215 D.125解析:E (ξ)=0×715+1×715+2×115=35,E (η)=E (2ξ+3)=2E (ξ)+3=2×35+3=215.答案:C7.随机变量ξ的分布列为则ξ的数学期望是( )A .2B .2.1C .2.3D .随m 的变化而变化解析:∵0.2+0.5+m =1,∴m =0.3,∴E (ξ)=1×0.2+2×0.5+3×0.3=2.1.答案:B8.某班有14的学生数学成绩优秀,如果从班中随机地找出5名学生,那么其中数学成绩优秀的学生数ξ~B ⎝⎛⎭⎫5,14,则E (-ξ)的值为( )A.14 B .-14 C.54 D .-54 解析:∵E (ξ)=5×14=54,∴E (-ξ)=-E (ξ)=-54,故选D.9.有10张卡片,其中8张标有数字2,2张标有数字5,从中任意抽出3张卡片,设3张卡片上的数字之和为X ,则X 的数学期望是( )A .7.8 B .8 C .16 D .15.6解析:X 的取值为6,9,12,P (X =6)=C 38C 310=715,P (X =9)=C 28C 12C 310=715,P (X =12)=C 18C 22C 310=115.E (X )=6×715+9×715+12×115=7.8.答案:A10.设随机变量ξ的分布列如下表:且E (ξ)=1.6,则a -b 等于( D .-0.4解析:根据题意,⎩⎪⎨⎪⎧ 0.1+a +b +0.1=1,0×0.1+a +2×b +3×0.1=1.6,解得⎩⎪⎨⎪⎧a =0.3b =0.5.所以a -b =-0.2.答案C11.设一随机试验的结果只有A 和A 且P (A )=m ,令随机变量ξ=⎩⎪⎨⎪⎧1,A 发生0,A 不发生,则ξ的方差D (ξ)等于( )A .mB .2m (1-m )C .m (m -1)D .m (1-m ) 解析:依题意ξ服从两点分布,∴D (ξ)=m (1-m ),故选D.12.由以往的统计资料表明,甲、乙两运动员在比赛中得分情况为:A .甲B .乙C .甲、乙均可D .无法确定解析:E (ξ1)=E (ξ2)=1.1,D (ξ1)=1.12×0.2+0.12×0.5+0.92×0.3=0.49,D (ξ2)=1.12×0.3+0.12×0.3+0.92×0.4=0.69,∴D (ξ1)<D (ξ2),即甲比乙得分稳定,选甲参加较好,故选A.13.已知随机变量ξ,η满足ξ+η=8,且ξ服从二项分布ξ~B (10,0.6),则E (η)和D (η)的值分别是( )A .6和2.4 B .2和2.4 C .2和5.6D .6和5.6解析:由已知E (ξ)=10×0.6=6,D (ξ)=10×0.6×0.4=2.4.∵ξ+η=8,∴η=8-ξ.∴E (η)=-E (ξ)+8=2,D (ξ)=(-1)2D (ξ)=2.4.答案:B 14.随机变量X 的分布列如下:若E (X )=158,则D (X )等于( ) A.732 B.932 C.3364 D.5564解析:由⎩⎪⎨⎪⎧1×0.5+2x +3y =158,0.5+x +y =1,得⎩⎨⎧x =18,y =38.所以D (X )=⎝⎛⎭⎫1-1582×12+⎝⎛⎭⎫2-1582×18+⎝⎛⎭⎫3-1582×38=5564. 答案:D15.若随机变量ξ的分布列为P (ξ=m )=13,P (ξ=n )=a ,若E (ξ)=2,则D (ξ)的最小值等于( )A .0B .2C .4D .无法计算解析:由于分布列中,概率和为1,则a +13=1,a =23. ∵E (ξ)=2,∴m 3+2n3=2.∴m =6-2n .∴D (ξ)=13×(m -2)2+23×(n -2)2=23×(n -2)2+13×(6-2n -2)2=2n 2-8n +8=2(n -2)2.∴n =2时,D (ξ)取最小值0.答案:A16.某班举行了一次“心有灵犀”的活动,教师把一张写有成语的纸条出示给A 组的某个同学,这个同学再用身体语言把成语的意思传递给本组其他同学.若小组内同学甲猜对成语的概率是0.4,同学乙猜对成语的概率是0.5,且规定猜对得1分,猜不对得0分,则这两个同学各猜1次,得分之和X (单位:分)的数学期望为( )A .0.9 B .0.8 C .1.2D .1.1[解析] X 的取值为0、1、2,P (X =0)=(1-0.4)(1-0.5)=0.3, P (X =1)=0.4×(1-0.5)+(1-0.4)×0.5=0.5, P (X =2)=0.4×0.5=0.2,∴E (X )=0×0.3+1×0.5+2×0.2=0.9. [答案] A17.有10张卡片,其中8张标有数字2,2张标有数字5,从中任意抽出3张卡片,设3张卡片上的数字之和为X ,则X 的数学期望是( )A .7.8 B .8 C .16 D .15.6[解析] X 的取值为6、9、12,P (X =6)=C 38C 310=715,P (X =9)=C 28C 12C 310=715,P (X =12)=C 18C 22C 310=115. E (X )=6×715+9×715+12×115=7.8. [答案] A二、填空题1.一射手对靶射击,直到第一次命中为止,每次命中的概率为0.6,现有4颗子弹,命中后的剩余子弹数目X 的期望为________.解析:X 的可能取值为3,2,1,0,P (X =3)=0.6;P (X =2)=0.4×0.6=0.24;P (X =1)=0.42×0.6=0.096;P (X =0)=0.43=0.064.所以E (X )=3×0.6+2×0.24+1×0.096+0×0.064=2.376.2.袋中装有6个红球,4个白球,从中任取1个球,记下颜色后再放回,连续摸取4次,设X 是取得红球的次数,则E (X )=________.解析:每一次摸得红球的概率为610=35,由X ~B ⎝⎛⎭⎫4,35,则E (X )=4×35=125. 3.随机变量ξ的取值为0,1,2.若P (ξ=0)=15,E (ξ)=1,则D (ξ)=________.解析:由题意设P (ξ=1)=p ,则ξ的分布列如下由E (ξ)=1,可得p =35,所以D (ξ)=12×15+02×35+12×15=25. 答案:254.节日期间,某种鲜花的进价是每束2.5元,售价是每束5元,节后对没有卖出的鲜花以每束1.6元处理.根据前5年节日期间对这种鲜花需求量ξ(束)的统计(如下表),若进这种鲜花500束在今年节日期间销售,则利润的均值是________元.解析:节日期间这种鲜花需求量的均值为E (ξ)=200×0.20+300×0.35+400×0.30+500×0.15=340(束).设利润为η,则η=5ξ+1.6×(500-ξ)-500×2.5=3.4ξ-450, 所以E (η)=3.4E (ξ)-450=3.4×340-450=706(元). 三、解答题1.某师范大学志愿者支教团体有6名男同学,4名女同学.在这10名同学中,3名同学来自数学系,其余7名同学来自物理、化学等其他互不相同的七个系.现从这10名同学中随机选取3名同学,到希望小学进行支教活动(每位同学被选到的可能性相同). (Ⅰ)求选出的3名同学来自互不相同的系的概率;(Ⅱ)设X 为选出的3名同学中女同学的人数,求随机变量X 的分布列和数学期望. 解:(Ⅰ)3A 设“选出的名同学来自互不相同的系”为事件,1203373731049()60C C C C P A C346310()(0,1,2,3)k k c c p xk k c (Ⅱ)随机变量X 的所有可能值为0,1,2,3.随机变量X 的分布列为数学期望113161236210305E X .2.现有甲、乙两个靶,某射手向甲靶射击一次,命中的概率为34;向乙靶射击一次命中的概率为23,该射手每次射击的结果相互独立.假设该射手进行一次测试,先向甲靶射击两次,若两次都命中,则通过测试;若两次中只命中一次,则再向乙靶射击一次,命中也可通过测试,其它情况均不能通过测试.(1)求该射手通过测试的概率;(2)求该射手在这次测试中命中的次数X 的分布列及数学期望.[解析] (1)设“该射手通过测试”为事件A ,“向甲靶射击两次都命中”为事件B ,“向甲靶射击两次中只命中一次,则再向乙靶射击一次,命中”为事件C .事件B ,C 互斥,且A =B +C .所以该射手通过测试的概率P (A )=P (B )+P (C )=⎝⎛⎭⎫342+C 12·34·⎝⎛⎭⎫1-34·23=1316. (2)由题意知,X =0,1,2. P (X =0)=⎝⎛⎭⎫1-342=116;P (X =1)=C 12·34·⎝⎛⎭⎫1-34·⎝⎛⎭⎫1-23=18;P (X =2)=P (A )=1316. 所以该射手在这次测试中命中的次数X 的分布列为该射手在这次测试中命中的次数X 的数学期望为E (X )=0×116+1×18+2×1316=74.3.在“出彩中国人”的一期比赛中,有6位歌手(1~6)登台演出,由现场的百家大众媒体投票选出最受欢迎的出彩之星,各家媒体独立地在投票器上选出3位出彩候选人,其中媒体甲是1号歌手的歌迷,他必选1号,另在2号至6号中随机的选2名;媒体乙不欣赏2号歌手,他必不选2号;媒体丙对6位歌手的演唱没有偏爱,因此在1至6号歌手中随机的选出3名.(1)求媒体甲选中3号且媒体乙未选中3号歌手的概率;(2)用X 表示3号歌手得到媒体甲、乙、丙的票数之和,求X 的分布列及数学期望.[分析] (1)设A 表示事件:“媒体甲选中3号歌手”,B 表示事件“媒体乙选中3号歌手”,C 表示事件“媒体丙选中3号歌手”,由等可能事件概率公式求出P (A ),P (B ),由此利用相互独立事件的概率乘法公式和对立事件的概率公式能求出媒体甲选中3号歌手且媒体乙未选中3号歌手的概率.(2)先由等可能事件概率计算公式求出P (C ),由已知得X 的可能取值为0,1,2,3,分别求出相应的概率,由此能求出X 的分布列及数学期望.[解析] (1)设A 表示事件“媒体甲选中3号歌手”,B 表示事件“媒体乙选中3号歌手”,C 表示事件“媒体丙选中3号歌手”, P (A )=C 14C 25=25,P (B )=C 24C 35=35,媒体甲选中3号且媒体乙未选中3号歌手的概率为P (A B )=P (A )(1-P (B ))=25×(1-35)=425.(2)P (C )=C 25C 36=12,由已知得X 的可能取值为0,1,2,3,P (X =0)=P (A B C )=(1-25)(1-35)(1-12)=325,P (X =1)=P (A B C )+P (A B C )+P (A B C )=25(1-35)(1-12)+(1-25)×35×(1-12)+(1-25)(1-35)×12=1950, P (X =2)=P (AB C )+P (A B C )+P (A BC )=25×35×(1-12)+25(1-35)×12+(1-25)×35×12=1950,P (X =3)=P (ABC )=25×35×12=325,∴X 的分布列为E (X )=0×325+1×1950+2×1950+3×325=32.114.某学校举行知识竞赛,第一轮选拔共设有A 、B 、C 、D 四个问题,规则如下:①每位参加者计分器的初始分均为10分,答对问题A 、B 、C 、D 分别加1分、2分、3分、6分,答错任一题减2分;②每回答一题,计分器显示累计分数,当累计分数小于8分时,答题结束,淘汰出局;当累计分数大于或等于14分时,答题结束,进入下一轮;当答完四题,累计分数仍不足14分时,答题结束,淘汰出局;③每位参加者按问题A 、B 、C 、D 顺序作答,直至答题结束.假设甲同学对问题A 、B 、C 、D 回答正确的概率依次为34、12、13、14,且各题回答正确与否相互之间没有影响.(1)求甲同学能进入下一轮的概率;(2)用ξ表示甲同学本轮答题结束时答题的个数,求ξ的分布列和数学期望E (ξ).[解析] 设A 、B 、C 、D 分别表示甲同学能正确回答第一、二、三、四个问题的事件,A -、B -、C -、D-分别为A 、B 、C 、D 的对立事件(例如A -表示甲同学第一题回答错误).由题设条件知,P (A )=34,P (B )=12,P (C )=13,P (D )=14,P (A -)=14,P (B -)=12,P (C -)=23,P (D -)=34. (1)记“甲同学能进入下一轮”为事件W ,则由题设条件知W =ABC +AB C -D +A B -CD +A -BCD +A-B C -D ,∵A 、B 、C 、D 各事件相互独立,∴P (W )=P (A )·P (B )·P (C )+P (A )·P (B )·P (C -)·P (D )+P (A )·P (B -)·P (C )·P (D )+P (A -)·P (B )·P (C )·P (D )+P (A -)·P (B )·P (C -)·P (D )=34×12×13+34×12×23×14+34×12×13×14+14×12×13×14+14×12×23×14=14. (2)由题意知,ξ的可能取值为2、3、4,则P (ξ=2)=P (A -B -)=P (A -)·P (B -)=14×12=18, P (ξ=3)=P (ABC +A B -C -)=P (A )P (B )P (C )+P (A )P (B -)P (C -)=34×12×13+34×12×23=38. P (ξ=4)=1-P (ξ=2)-P (ξ=3)=1-18-38=12, ∴ξ的分布列为∴E (ξ)=2×18+3×38+4×12=278.。

随机变量及其概率分布练习题

随机变量及其概率分布练习题

随机变量及其概率分布练习题(共90分)一.选择题(每题2分共20分)2.F(X)是随机变量X 的分布函数,则下列结论不正确的是( )A.≤0F(x )1≤B.F(x )=P{X=x }C.F(x )=P{X x ≤}D.F(∞+)=1, F(∞-)=03.设随机变量X 的分布律为如下表格:F(x)为其分布函数,则F(5)=( ) X0 2 4 6 P 0.1 0.2 0.3 0.4A.0.3B.0.5C.0.6D.0.44.下列函数可以作为随机变量分布函数的是( ) 4x 01≤≤x 2x 10<≤xA.F(x)=B.F(x)=1 其它2 其它-1 x<0 0 x<0C.F(x)= 2x 10<≤xD.F(x)= 2x 5.00<≤x 1 其它 1 x ≥0.54x 31<<-x 5.设X 的密度函数为f(x)= 则P{-2<x<2}=( ) 0, 其它A. 0B.83C. 43D. 856. 以下函数可作为随机变量X 的概率密度的是( )A.f(x)=.;11,0,其它<<-⎩⎨⎧x xB.f(x)=.;11,,02其它<<-⎩⎨⎧x xC.f(x)=.;11,0,21其它<<-⎪⎩⎪⎨⎧x D.f(x)=.;11,0,2其它<<-⎩⎨⎧x7.设随机变量X~N(1,4),5.0)0(,8413.0)1(=Φ=Φ,则事件{13X ≤≤}的概率为() A.0.1385 B.0.2413 C.0.2934 D.0.34138.已知随机变量X 的分布函数为( )F(x)= ⎪⎪⎪⎪⎩⎪⎪⎪⎪⎨⎧≥<≤<≤<313132102100x x x x ,则P }{1X ==A . 61B .21C .32D .19.已知连续型随机变量X 服从区间[a ,b ]上的均匀分布,则概率=⎭⎬⎫⎩⎨⎧+<32b a X P ( )A .0B .31C .32D .110、设随机变量X 在区间[2,6]上服从均匀分布,则P{2<x<4}=( )A.P{5<x<7}B.p{1<x<3}C.P{3<x<5}D.P{4.5<x<6.5}二.填空题(每题2分共20分)2.设连续型随机变量X 的分布函数为如下F(x), 则X 的概率密度)(x f 为( ) 0 x<0F(x)= 2x, 5.00<≤x1 x ≥0.53.设随机变量X 的分布为P{X=k}=10k,k=0,1,2,3,4,则P{0.5<X ≤2}=( )4.设随机变量X ~N(2,9),已知标准正态分布函数值=Φ)1(0.8413,为使P{X<a}<0.8413,则常数a<( )5.某人掷五次骰子,则在五次中得到点为6的次数X 的分布率为P{X=i}=( ) i=0,1,2,3,4,56.设随机变量X 服从区间[]10,0上的均匀分布,则P (X>4)=_ _.7.在[]T ,0内通过某交通路口的汽车数X 服从泊松分布,且已知P{X=4}=3P{X=3},则在[]T ,0内至少有一辆汽车通过的概率为_ _.8.已知随机变量X 的分布函数为F(x)=⎪⎪⎪⎩⎪⎪⎪⎨⎧≥<≤<≤<3x 13x 1321x 0210x 0 则P{2<X ≤4}=_ _.9.已知随机变量X 的概率密度为f(x)=ce -|x|,-∞<x<+∞,则c=_ _.10.设随机变量X 的概率分布为F (x )为其分布函数,则F (3)=_ _.三.计算题。

第二章随机变量及其分布练习题

第二章随机变量及其分布练习题

第二章随机变量及其分布练习题1.甲、乙两人各进行一次射击,甲击中目标的概率是0.8,乙击中目标的概率是0.6,则两人都击中目标的概率是〔 〕A.1.4 B.0.9C.0.6 D.0.48 2.设随机变量1~62X B ⎛⎫ ⎪⎝⎭,,则(3)P X =等于〔 〕 A.516 B.316 C.58 D.7163.设随机变量X 的概率分布列为X1 2 3 P 16 13 12则E (X +2)的值为 ( ).A.113 B .9 C.133 D.734.两台相互独立工作的电脑,产生故障的概率分别为a ,b ,则产生故障的电脑台数的均值为〔 〕A.abB.a b + C.1ab - D.1a b --5.某一般高校招生体育专业测试合格分数线确定为60分.甲、乙、丙三名考生独立参加测试,他们能到达合格的概率分别是0.9,0.8,0.75,则三人中至少有一人达标的概率为( )A .0.015B .0.005 6.设随机变量~()X B n p ,,则22()()DX EX 等于〔 〕 A.2p B.2(1)p - C.np D.2(1)p p -7.对标有不同编号的6件正品和4件次品的产品进行检测,不放回地依次摸出2件.在第一次摸出正品的条件下,第二次也摸到正品的概率是().A.35 B.25 C.110 D.598.从1,2,3,4,5中任取2个不同的数,事件A=“取到的2个数之和为偶数〞,事件B=“取到的2个数均为偶数〞,则P(B|A)=().A.18 B.14 C.25 D.129.设随机变量ξ服从正态分布N(0,1),P(ξ>1)=p,则P(-1<ξ<0)等于().A.12p B.1-p C.1-2p D.12-p10.已知随机变量X服从正态分布N(μ,σ2),且P(μ-2σ<X<μ+2σ)=0.954 4,P(μ-σ<X<μ+σ)=0.682 6.假设μ=4,σ=1,则P(5<X<6)=( ) A.0.135 9 B.0.135 8C.0.271 8 D.0.271 611.甲、乙两人进行乒乓球比赛,比赛规则为“3局2胜〞,即以先赢2局者为胜.依据经验,每局比赛中甲获胜的概率为0.6,则本次比赛甲获胜的概率是().A.0.216 B.0.36 C.0.432 D.0.648 12.马老师从课本上抄录一个随机变量ξ的概率分布列如下表:处字迹模糊,但能断定这两个“?〞处的数值相同.据此,小牛给出了正确答案E(ξ)=________.13.如图,EFGH是以O为圆心、半径为1的圆的内接正方形.将一颗豆子随机地扔到该圆内,用A表示事件“豆子落在正方形EFGH内〞,B表示事件“豆子落在扇形OHE(阴影局部)内〞,则(1)P(A)=________;(2)P(B|A)=________.14.某灯泡厂生产大批灯泡,其次品率为1.5%,从中任意地陆续取出100个,则其中正品数X的均值为个,方差为.15.某大厦的一部电梯从底层出发后只能在第18、19、20层停靠,假设该电梯在底层载有5位乘客,且每位乘客在这三层的每一层下电梯的概率均为1 3,用X表示这5位乘客在第20层下电梯的人数,则P(X=4)=________.16.在口袋中有不同编号的3个白球和2个黑球.如果不放回地依次取两个球,求在第1次取到白球的条件下,第2次也取到白球的概率.17.某商场为刺激消费,拟按以下方案进行促销:顾客每消费500元便得到奖券一张,每张奖券的中奖概率为12,假设中奖,商场返回忆客现金100元.某顾客现购置价格为2 300元的台式电脑一台,得到奖券4张.(1)设该顾客中奖的奖券张数为X,求X的分布列;(2)设该顾客购置台式电脑的实际支出为Y元,用X表示Y,并求Y的数学期望.18.某公司“咨询热线〞共有8路外线,经长期统计发觉,在8点到10点这段时间内,外线同时打入情况如下表所示:同时0 1 2 3 4 5 6 7 8打入个数x概率p 0.13 0.35 0.27 0.14 0.08 0.02 0.01 0 0〔1〕假设这段时间内,公司只安排了2位接线员〔一个接线员一次只能接一个〕①求至少一路不能一次接通的概率;②在一周五个工作日中,如果有三个工作日的这段时间〔8点至10点〕内至少一路不能一次接通,那么公司的形象将受到损害,现用至少一路不能一次接通的概率表示公司形象的“损害度〞,求上述情况下公司形象的“损害度〞.〔2〕求一周五个工作日的这段时间〔8点至10点〕内,同时打入数X的均值.19.某仪表厂从供给商处购置元器件20件,双方协商的验货规则是:从中任取3件进行质量检测,假设3件中无不合格品,则这批元器件被接受,否则就要重新对这批元器件逐个检查.(1)假设该批元器件的不合格率为10%,求需对这批元器件逐个检查的概率;(2)假设该批元器件的不合格率为20%,求3件中不合格元器件个数的分布列与期望.20.某商店试销某种商品20天,获得如下数据:日销售量(件)012 3频数159 5该商品3件,当天营业结束后检查存货.假设发觉存量少于2件,则当天进货补充至3件,否则不进货.将频率视为概率.(1)求当天商店不进货的概率;(2)记X为第二天开始营业时该商品的件数.求X的分布列和数学期望.21.设每个工作日甲、乙、丙、丁4人需使用某种设备的概率分别为0.6,0.5,0.5,0.4,各人是否需使用设备相互独立.(1)求同一工作日至少3人需使用设备的概率;(2)X表示同一工作日需使用设备的人数,求X的数学期望.。

(完整版)概率论与数理统计教程习题(第二章随机变量及其分布)(1)答案

(完整版)概率论与数理统计教程习题(第二章随机变量及其分布)(1)答案

概率论与数理统计练习题系 专业 班 姓名 学号第六章 随机变量数字特征一.填空题1. 若随机变量X 的概率函数为1.03.03.01.02.043211pX-,则=≤)2(X P 0.6 ;=>)3(X P 0.1 ;=>=)04(X X P 0.125 .2. 若随机变量X 服从泊松分布)3(P ,则=≥)2(X P 8006.0413≈--e.3. 若随机变量X 的概率函数为).4,3,2,1(,2)(=⋅==-k c k X P k则=c1516. 4.设A ,B 为两个随机事件,且A 与B 相互独立,P (A )=0.3,P (B )=0.4,则()P AB =____________.(0.18)5.设事件A 、B 互不相容,已知()0.4=P A ,()0.5=P B ,则()=P AB 0.16. 盒中有4个棋子,其中2个白子,2个黑子,今有1人随机地从盒中取出2个棋子,则这2个棋子颜色相同的概率为____________.(13) 7.设随机变量X 服从[0,1]上的均匀分布,则()E X =____________.(12) 8.设随机变量X 服从参数为3的泊松分布,则概率密度函数为 __.(k 33(=,0,1,2k!P X k e k -==L )) 9.某种电器使用寿命X (单位:小时)服从参数为140000λ=的指数分布,则此种电器的平均使用寿命为____________小时.(40000)10在3男生2女生中任取3人,用X 表示取到女生人数,则X 的概率函数为11.若随机变量X 的概率密度为)(,1)(2+∞<<-∞+=x x a x f ,则=a π1;=>)0(X P 0.5 ;==)0(X P 0 .12.若随机变量)1,1(~-U X ,则X 的概率密度为 1(1,1)()2x f x ⎧∈-⎪=⎨⎪⎩其它13.若随机变量)4(~e X ,则=≥)4(X P ;=<<)53(X P .14..设随机变量X 的可能取值为0,1,2,相应的概率分布为0.6 , 0.3 ,0.1,则()E X = 0.515.设X为正态分布的随机变量,概率密度为2(1)8()x f x +-=,则2(21)E X -= 916.已知X ~B (n,p ),且E (X )=8,D (X )=4.8,则n= 。

《概率论与数理统计》习题随机变量及其分布

《概率论与数理统计》习题随机变量及其分布

第二章 随机变量及其分布一. 填空题1. 设随机变量X ~B(2, p), Y ~B(3, p), 若P(X ? 1) =95, 则P(Y ? 1) = _________. 解. 94951)1(1)0(=-=≥-==X P X P 94)1(2=-p , 31=p 2719321)0(1)1(3=⎪⎭⎫⎝⎛-==-=≥Y P Y P2. 已知随机变量X 只能取-1, 0, 1, 2四个数值, 其相应的概率依次为cc c c 162,85,43,21, 则c = ______. 解. 2,16321628543211==+++=c cc c c c 3. 用随机变量X 的分布函数F(x)表示下述概率:P(X ? a) = ________. P(X = a) = ________.P(X > a) = ________. P(x 1 < X ? x 2) = ________.解. P(X ? a) = F(a) P(X = a) = P(X ? a)-P(X < a) = F(a)-F(a -0) P(X > a) = 1-F(a) P(x 1 < X ? x 2) = F(x 2)-F(x 1)4. 设k 在(0, 5)上服从均匀分布, 则02442=+++k kx x 有实根的概率为_____.解. k 的分布密度为⎪⎩⎪⎨⎧=051)(k f 其它50≤≤kP{02442=+++k kx x 有实根} = P{03216162≥--k k } = P{k ?-1或k ? 2} =535152=⎰dk 5. 已知2}{,}{kbk Y P k a k X P =-===(k= 1, 2, 3), X 与Y 独立, 则a = ____, b = ____, 联合概率分布_____, Z = X + Y 的概率分布为_____. 解. 116,132==++a a a a . 4936,194==++b b b b(X, Y)的联合分布为ab = 216?, 539=α α249)3()1()3,1()2(==-===-===-=abY P X P Y X P Z P α66)2,1()3,2()1(=-==+-===-=Y X P Y X P Z Pα251)1,1()2,2()3,3()0(=-==+-==+-====Y X P Y X P Y X P Z P α126)2,3()1,2()1(=-==+-====Y X P Y X P Z P α723)1()3()1,3()2(==-===-====abY P X P Y X P Z P6. 已知(X, Y)联合密度为⎩⎨⎧+=0)sin(),(y x c y x ϕ 其它4,0π≤≤y x , 则c = ______, Y 的边缘概率密度=)(y Y ϕ______.解.12,1)sin(4/04/0+==+⎰⎰c dxdy y x c ππ所以⎩⎨⎧++=0)sin()12(),(y x y x ϕ 其它4,0π≤≤y x当 40π≤≤y 时))4cos()(cos 12()sin()12(),()(4y y dx y x dx y x y Y +-+=++==⎰⎰∞+∞-πϕϕπ所以 ⎪⎩⎪⎨⎧+-+=0))4cos()(cos 12()(y y y Y πϕ 其它40π≤≤y7. 设平面区域D 由曲线2,1,01e x x y xy ====及直线围成, 二维随机变量(X, Y)在D 上服从均匀分布, 则(X, Y)关于X 的边缘密度在x = 2处的值为_______. 解. D 的面积 =2121=⎰e dx x. 所以二维随机变量(X, Y)的密度为: ⎪⎩⎪⎨⎧=021),(y x ϕ 其它D y x ∈),(下面求X 的边沿密度:当x < 1或x > e 2时 0)(=x X ϕ 当1 ? x ? e 2时 ⎰⎰===∞+∞-x X x dy dy y x x 102121),()(ϕϕ, 所以41)2(=X ϕ. 8. 若X 1, X 2, …, X n 是正态总体N(?, ?2)的一组简单随机样本, 则)(121n X X X nX +++=服从______. 解. 独立正态分布随机变量的线性函数服从正态分布.μ==⎪⎭⎫ ⎝⎛∑∑==n i i n i i X E n X n E 11)(11, nX D nX n D ni in i i 2121)(11σ==⎪⎭⎫ ⎝⎛∑∑==所以 ),(~2nN X σμ9. 如果(X, Y)的联合分布用下列表格给出,且X 与Y 相互独立, 则? = ______, ? = _______.解.21/3 ? ?213161)1(,181)3(,91)2(,31)2(=+==+==+==++==Y P Y P Y P X P βαβα 132)3()2()1(=++==+=+=βαY P Y P Y P⎪⎪⎩⎪⎪⎨⎧+++=======+++=======)181)(31()3()2()3,2()91)(31()2()2()2,2(ββαβαβααY P X P Y X P Y P X P Y X P两式相除得βαβα=++18191, 解得 βα2=, 92,91==αβ.10. 设(X, Y)的联合分布律为则 i. Z = X + Y 的分布律 ______. ii. V = X -Y 的分布律______.iii. U= X 2+ Y -2的分布律_______. 解.二. 单项选择题1. 如下四个函数哪个是随机变量X 的分布函数(A)⎪⎪⎩⎪⎪⎨⎧=2210)(x F 0022≥<≤--<x x x , (B) ⎪⎩⎪⎨⎧=1sin 0)(x x F ππ≥<≤<x x x 00(C) ⎪⎩⎪⎨⎧=1sin 0)(x x F 2/2/00ππ≥<≤<x x x , (D) ⎪⎪⎩⎪⎪⎨⎧+=1310)(x x F 212100≥<≤<x x x解. (A)不满足F(+?) = 1, 排除(A); (B)不满足单增, 排除(B); (D)不满足F(1/2 + 0) = F(1/2), 排除(D); (C)是答案. 2. ),4,2,0(!/)( ===-k k ec k X P kλλ是随机变量X 的概率分布, 则?, c 一定满足(A) ? > 0 (B) c > 0 (C) c ? > 0 (D) c > 0, 且 ? > 0 解. 因为),4,2,0(!/)( ===-k k ec k X P kλλ, 所以c > 0. 而k 为偶数, 所以?可以为负. 所以(B)是答案.3. X ~N(1, 1), 概率密度为?(x), 则(A)5.0)0()0(=≥=≤X P X p (B)),(),()(+∞-∞∈-=x x x ϕϕ (C) 5.0)1()1(=≥=≤X P X p (D) ),(),(1)(+∞-∞∈--=x x F x F 解. 因为E(X) = ? = 1, 所以5.0)1()1(=≥=≤X P X p . (C)是答案.4. X, Y 相互独立, 且都服从区间[0, 1]上的均匀分布, 则服从区间或区域上的均匀分布的随机变量是(A) (X, Y) (B) X + Y (C) X 2(D) X -Y 解. X ~⎩⎨⎧=01)(x ϕ其它10≤≤x , Y ~⎩⎨⎧=01)(y ϕ其它10≤≤y . 所以(X, Y)~⎩⎨⎧=01),(y x ϕ 其它1,0≤≤y x .所以(A)是答案.5. 设函数⎪⎪⎩⎪⎪⎨⎧=120)(xx F 1100>≤<≤x x x 则(A) F(x)是随机变量X 的分布函数. (B) 不是分布函数.(C) 离散型分布函数. (D)连续型分布函数.解. 因为不满足F(1 + 0) = F(1), 所以F(x)不是分布函数, (B)是答案.6. 设X, Y 是相互独立的两个随机变量, 它们的分布函数为)(),(y F x F Y X , 则Z = max(X,Y)的分布函数是(A) )(z F Z = max{)(),(z F z F Y X } (B) )(z F Z = max{|)(||,)(|z F z F Y X } (C) )(z F Z = )()(z F z F Y X (D) 都不是解. }{}),{m ax ()()(z Y z X P z Y X P z Z P z F Z ≤≤=≤=≤=且 )()()()(z F z F z Y P z X P Y X =≤≤因为独立. (C)是答案.7. 设X, Y 是相互独立的两个随机变量, 其分布函数分别为)(),(y F x F Y X , 则Z = min(X, Y)的分布函数是(A) )(z F Z = )(z F X (B) )(z F Z = )(z F Y(C) )(z F Z = min{)(),(z F z F Y X } (D) )(z F Z = 1-[1-)(z F X ][1-)(z F Y ] 解. }{1}),{m in(1)(1)()(z Y z X P z Y X P z Z P z Z P z F Z >>-=>-=>-=≤=且 )](1)][(1[1)](1)][(1[1z F z F z Y P z X P Y X ---=≤-≤--因为独立 (D)是答案.8. 设X 的密度函数为)(x ϕ, 而,)1(1)(2x x +=πϕ 则Y = 2X 的概率密度是(A))41(12y +π (B) )4(22y +π (C) )1(12y +π (D) y arctan 1π解. )2()2(}2{)()(yF y X P y X P y Y P y F X Y =≤=≤=≤= )4(2)2(112121)2()2()]([)(22''y y y y F y F y X X Y Y +=⎪⎭⎫ ⎝⎛+⋅=⋅=⎪⎭⎫ ⎝⎛==ππϕϕ (B)是答案.9. 设随机变量(X, Y)的联合分布函数为⎩⎨⎧=+-0),()(y x e y x ϕ 其它0,0>>y x , 则2YX Z +=的分布密度是 (A) ⎪⎩⎪⎨⎧=+-021)()(y x Z e Z ϕ 其它0,0>>y x (B) ⎪⎩⎪⎨⎧=+-0)(2y x Z e z ϕ 其它0,0>>y x(C) ⎩⎨⎧=-04)(2z Z ze Z ϕ 00≤>z z (D) ⎪⎩⎪⎨⎧=-021)(zZ eZ ϕ 00≤>z z解. 2YX Z +=是一维随机变量, 密度函数是一元函数, 排除(A), (B). 21210=⎰∞+-dz e z , 所以(D)不是答案. (C)是答案.注: 排除法做单项选择题是经常使用而且很有效的方法. 该题也可直接计算Z 的密度: 当z < 0时0)(=z F Z当z ? 0时⎰⎰≤+=≤+=≤+=≤=zy x Z dxdy y x z Y X P z YX P z Z P z F 2),()2()2()()(ϕ =12222020+--=⎥⎦⎤⎢⎣⎡-----⎰⎰z z z xz y x e ze dx dy e e==)()('z F z ZZ ϕ⎩⎨⎧-042z ze 00≤>z z , (C)是答案.10. 设两个相互独立的随机变量X 和 Y 分别服从正态分布N(0, 1)和N(1, 1), 则下列结论正确的是(A) P{X + Y ? 0} = 1/2 (B) P{X + Y ? 1} = 1/2 (C) P{X -Y ? 0} = 1/2 (D) P{X -Y ? 1} = 1/2解. 因为X 和 Y 分别服从正态分布N(0, 1)和N(1, 1), 且X 和 Y 相互独立, 所以 X + Y ~ N(1, 2), X -Y ~ N(-1, 2) 于是P{X + Y ? 1} = 1/2, (B)是答案.11. 设随机变量X 服从指数分布, 则Y = min{X, 2}的分布函数是(A) 是连续函数 (B) 至少有两个间断点 (C) 是阶梯函数 (D) 恰好有一个间断点解. 分布函数:))2,(m in(1))2,(m in()()(y X P y X P y Y P y F Y >-=≤=≤= 当y ? 2时101))2,(m in(1)(=-=>-=y X P y F Y 当0 ? y < 2时)2,(1))2,(m in(1)(y y X y X P y F Y >>-=>-= ye y X P y X P λ--=≤=>-=1)()(1当y < 0时)2,(1))2,(m in(1)(y y X y X P y F Y >>-=>-=0)()(1=≤=>-=y X P y X P于是 ⎪⎩⎪⎨⎧-=-011)(yY e y F λ 0202<<≤≥y y y 只有y = 2一个间断点, (D)是答案.三. 计算题1. 某射手有5发子弹, 射击一次的命中率为, 如果他命中目标就停止射击, 不命中就一直到用完5发子弹, 求所用子弹数X 的分布密度. 解. 假设X 表示所用子弹数. X = 1, 2, 3, 4, 5.P(X = i) = P(前i -1次不中, 第i 次命中) = 9.0)1.0(1⋅-i , i = 1, 2, 3, 4.当i = 5时, 只要前四次不中, 无论第五次中与不中, 都要结束射击(因为只有五发子弹). 所以 P(X = 5) = 4)1.0(. 于是分布律为2. 设一批产品中有10件正品, 3件次品, 现一件一件地随机取出, 分别求出在下列各情形中直到取得正品为止所需次数X 的分布密度. i. 每次取出的产品不放回; ii. 每次取出的产品经检验后放回, 再抽取; iii. 每次取出一件产品后总以一件正品放回, 再抽取.解. 假设A i 表示第i 次取出正品(i = 1, 2, 3, …) i.13)()1(1===A P X P 1331210)()|()()2(11212⋅====A P A A P A A P X P1331221110)()|()|()()3(11223321⋅⋅====A P A A P A A P A A A P X P1331221111)()|()|()|()4(1122334⋅⋅⋅===A P A A P A A P A A P XPii. 每次抽取后将原产品放回1310133)()()()()(11111---⎪⎭⎫⎝⎛====k k k k k A P A P A P A A A p k X P , (k = 1, 2, …)iii. 每次抽取后总以一个正品放回13)()1(1===A P X P 1331311)()|()()2(11212⋅====A P A A P A A P X P1331321312)()|()|()()3(112123321⋅⋅====A P A A P A A A P A A A P X P 1331321311)()|()|()|()4(1121231234⋅⋅⋅===A P A A P A A A P A A A A P X P3. 随机变量X 的密度为⎪⎩⎪⎨⎧-=01)(2x cx ϕ 其它1||<x , 求: i. 常数c; ii. X 落在)21,21(-内的概率. 解. πππϕ1,22|arcsin 21)(110112====-==⎰⎰-∞+∞-c c c x c dx xc dx x3162|arcsin 211))2/1,2/1((2/102/12/12=⋅==-=-∈⎰-ππππx x dx X P 4. 随机变量X 分布密度为i. 2102)(x x -⎪⎩⎪⎨⎧=πϕ 其它1||<x , ii. ⎪⎩⎪⎨⎧-=02)(x x x ϕ 其它2110≤≤<≤x x求i., ii 的分布函数F(x).解. i. 当x ? 1时 ⎰⎰∞-∞-===x xdt dt t x F 00)()(ϕ当-1< x < 1时 ⎰⎰∞--++-=-==x x x x xdt t dt t x F 21arcsin 1112)()(212πππϕ 当x ? 1时 ⎰⎰∞--=-==x dt t dt t x F 112)()(112πϕ所以 ⎪⎪⎩⎪⎪⎨⎧++-=121arcsin 110)(2x x x x F ππ 1111≥<<--≤x x xii. 当x < 0时 ⎰⎰∞-∞-===x xdt dt t x F 00)()(ϕ当0 ? x < 1时 ⎰⎰∞-===x x x tdt dt t x F 2)()(2ϕ当1 ? x < 2时 122)2()()(2110-+-=-+==⎰⎰⎰∞-x x dt t tdt dt t x F x x ϕ当2 ? x 时 1)2()()(2110⎰⎰⎰∞-=-+==x dt t tdt dt t x F ϕ所以 ⎪⎪⎪⎩⎪⎪⎪⎨⎧-+-=112220)(22x x x x F 221100≥<≤<≤<x x x x5. 设测量从某地到某一目标的距离时带有的随机误差X 具有分布密度函数⎪⎪⎭⎫ ⎝⎛--=3200)20(exp 2401)(2x x πϕ, -? < x < +? 试求: i. 测量误差的绝对值不超过30的概率;ii. 接连独立测量三次, 至少有一次误差的绝对值不超过30的概率.解. 因为⎪⎪⎭⎫ ⎝⎛--=3200)20(exp 2401)(2x x πϕ, -? < x < +?, 所以X ~N(20, 402). i. {}⎭⎬⎫⎩⎨⎧<-<-=<<-=<25.0402025.13030)30|(|X P X P X P )25.1()25.0(-Φ-Φ=1)25.1()25.0()25.1(1()25.0(-Φ+Φ=Φ--Φ= 18944.05987.0-+== .(其中?(x)为N(0, 1)的分布函数)ii. P(至少有一次误差的绝对值不超过30) = 1-P(三次误差的绝对值都超过30)=88.012.01)4931.0(13=-=- 6. 设电子元件的寿命X 具有密度为⎪⎩⎪⎨⎧=0100)(2x x ϕ 100100≤<x x问在150小时内, i. 三只元件中没有一只损坏的概率是多少 ii. 三只电子元件全损坏的概率是多少 iii. 只有一个电子元件损坏的概率是多少解. X 的密度⎪⎩⎪⎨⎧=0100)(2x x ϕ 100100≤<x x . 所以31100)150(1501002==<⎰dx x X P . 令p = P(X ? 150) = 1-31= 32.i. P(150小时内三只元件没有一只损坏) =2783=p ii. P(150小时内三只元件全部损坏) =271)1(3=-piii. P(150小时内三只元件只有一只损坏) =943231213=⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛c 7. 对圆片直径进行测量, 其值在[5, 6]上服从均匀分布, 求圆片面积的概率分布.解. 直径D 的分布密度为⎩⎨⎧=01)(d ϕ 其它65≤≤d假设42D X π=, X 的分布函数为F(x).)()()(2x D P x X P x F ≤=≤=π当x ? 0时, F(x) = 0当x > 0时⎭⎬⎫⎩⎨⎧≤≤-=≤=≤=πππx D xP x D P x X P x F 44)()()(2 当时即425,54ππ<<x xF(x) = 0 当时即πππ925,645≤≤≤≤x x⎭⎬⎫⎩⎨⎧≤≤-=≤=≤=πππx D xP x D P x X P x F 44)()()(2 =54145-=⎰ππxdt x当 x > 9?时 1)()(65===⎰⎰∞-dt dt t x F x ϕ所以 ⎪⎪⎩⎪⎪⎨⎧-=1540)(πxx Fππππ99425425>≤≤<x x x 密度⎪⎩⎪⎨⎧==01)(')(x x F x πϕ 其它ππ9425≤≤x8. 已知X 服从参数 p = 的0-1分布在X = 0, X = 1下, 关于Y 的条件分布分别为表1、表2所示表1 表2Y 1 2 3 Y 1 2 3 P(Y|X = 0)41 21 41 P(Y|X = 1) 21 61 31 求(X, Y)的联合概率分布, 以及在Y ? 1时, 关于X 的条件分布.解. X(X, Y)3.05321)1()1|1()1,1(=⋅=======X P X Y P Y X P 1.05361)1()1|2()2,1(=⋅=======X P X Y P Y X P2.05331)1()1|3()3,1(=⋅=======X P X Y P Y X P1.05241)0()0|1()1,0(=⋅=======X P X Y P Y X P2.05221)0()0|2()2,0(=⋅=======X P X Y P Y XP1.05241)0()0|3()3,0(=⋅=======X P X Y P Y X P 所以Y 的分布律为5.06.03.0)1()1,0()1|0(==≠≠==≠=Y P Y X P Y X P5.06.03.0)1()1,1()1|1(==≠≠==≠=Y P Y X P Y X P所以9. 设随机变量X 与Y 相互独立, 并在区间[0, 9]上服从均匀分布, 求随机变量YXZ =的分布密度.解. X ~⎪⎩⎪⎨⎧=091)(x X ϕ 其它90≤≤x , Y ~⎪⎩⎪⎨⎧=091)(x Y ϕ 其它90≤≤y因为X, Y 相互独立, 所以(X, Y)联合密度为(X, Y)~⎪⎩⎪⎨⎧=0811),(y x ϕ 其它9,0≤≤y x , )()()(z X Y P z Z P z F Z ≤=≤=当 z ? 0时0)(=z F Z 当 0 < z < 1时z z dxdy Xz Y P z X Y P z Z P z F D Z 219928181)()()()(1=⋅⋅==≤=≤=≤=⎰⎰ 当z ? 1时⎰⎰=≤=≤=≤=2811)()()()(D Z dxdy Xz Y P z X Y P z Z P z F zz 211)992181(811-=⋅-⋅=所以 ⎪⎪⎩⎪⎪⎨⎧==2'21210)()(zz F z Z Z ϕ 1100≥<<≤z z z D 210. 设(X, Y)的密度为⎩⎨⎧--=0)1(24),(y x y y x ϕ 其它1,0,0<+>>y x y x求: i.)21|(),|(),(=x y x y x X ϕϕϕ, ii. )21|(),|(),(=y x y x y Y ϕϕϕ 解. i. ⎰∞+∞-=dy y x x X ),()(ϕϕ当x ? 0 或 x ? 1时0),()(==⎰∞+∞-dy y x x X ϕϕ当0 < x < 1时310)1(4)1(24),()(x dy y x y dy y x x x X -=--==⎰⎰-∞+∞-ϕϕ所以 ⎩⎨⎧-=0)1(4)(3x x X ϕ 其它10<<x所以 ⎪⎩⎪⎨⎧---==0)1()1(6)(),()|(3x y x y x y x x y X ϕϕϕ 其它1,0,0<+>>y x y x 所以 ⎩⎨⎧-==0)21(24)21|(y y x y ϕ 其它210<<yii. ⎰∞+∞-=dx y x y Y ),()(ϕϕ当y ? 0 或 y ? 1时0),()(==⎰∞+∞-dx y x y Y ϕϕ当0 < y < 1时210)1(12)1(24),()(y y dx y x y dx y x y y Y -=--==⎰⎰-∞+∞-ϕϕ所以 ⎩⎨⎧-=0)1(12)(2y y y Y ϕ 其它10<<y所以 ⎪⎩⎪⎨⎧---==0)1()1(2)(),()|(2y y x y y x y x Y ϕϕϕ其它1,0,0<+>>y x y x 所以 ⎩⎨⎧-==0)21(4)21|(x y x ϕ 其它210<<x。

概率论与数理统计+第二章+随机变量及其分布+练习题

概率论与数理统计+第二章+随机变量及其分布+练习题

滨州学院《概率论与数理统计》(公共课)练习题第二章 随机变量及其分布一、填空题1.假设X 是在区间(0,1)内取值的连续型随机变量,而X Y -=1,已知{}75.029.0=≤X P ,则满足{}25.0=≤K Y P 的常数k= .2.设一本书的各页的印刷错误个数X 服从泊松分布律.已知有一个和两个印刷错误的页数相同,则随意抽查的4页中无印刷错误的概率p= .3.设10件产品中恰好有2件不合格品,从中一件一件地抽出产品直到抽到合格品为止,则最后抽出产品件数X 的分布函数为 .4.设随机变量X 的分布函数为()⎪⎪⎩⎪⎪⎨⎧≥<≤<≤<=,,若;,若;,若;,若3 131 210 20 0x x x x x x F ,则P {}25.0<≤X = .5.设随机变量X 的概率密度函数为⎪⎩⎪⎨⎧≤≤≤≤=其它06310)(9231x x x f ;若k 使得32)(=≥k X P ,则k 的取值范围是 .6.设X 服从二项分布),(p n B ,且已知)2()1(===X P X P ,)3(2)2(===X P X P ,则)4(=X P = .7.若随机变量X 服从正态分布)0)(,(2>σσμN ,且二次方程042=++X y y 无实根的概率是21,则=μ . 8 .设X 服从二项分布),(p n B ,且已知)2()1(===X P X P ,)3(2)2(===X P X P ,则)4(=X P = .9.若随机变量X 服从正态分布)0)(,(2>σσμN ,且二次方程042=++X y y 无实根的概率是21,则=μ . 10.已知离散型随机变量X 的可能取值为5202,,,-,相应的概率依次为a 1,a 23,a45,a87,求)0|2|(|≥≤X X P = . 11.设随机变量X 的概率密度函数为⎩⎨⎧<<=其它0102)(x x x f ,Y 表示对X 的3次独立重复观察中事件}21{≤X 出现的次数,则)2(=Y P = . 12.已知随机变量X 服从正态分布)4,2(N ,则2/X e Y =的概率密度)(y f Y = .二、选择题1.设随机变量X 和Y 相互独立,其分布函数相应为)(1x F 和)(2y F ,则随机变量{}Y X U ,max =的分布函数为=)(u F ( ). (A) {})(),(max 21u F u F ; (B) {})(1),(1min 21u F u F --; (C) )()(21u F u F ; (D) ()[]()[]u F u F 211 11---.2.设随机变量),(~2σμN X ,则随σ的增大,概率{}σμ≤-X P ( ). (A) 单调增大; (B) 单调减小; (C) 保持不变; (D) 增减不定.3.假设X 是只有两个可能值的离散型随机变量,Y 是连续型随机变量,且X 和Y 相互独立,则随机变量Y X +的分布函数( ).(A) 是阶梯函数; (B) 恰好有一个间断点;(C) 是连续函数; (D) 恰好有两个间断点. 4.下列函数中,可以做随机变量的分布函数的是( ). (A)211)(x x F +=; (B)x x F arctan 2143)(π+=;(C)⎪⎩⎪⎨⎧>+≤=0,10,0)(x x x x x F ; (D) x x F arctan 21)(π+=.5.设函数⎪⎩⎪⎨⎧≥<≤<=1110200)(x x xx x F ,则)(x F ( ). (A )是随机变量的分布函数 ; (B )不是随机变量的分布函数; (C )是离散型随机变量的分布函数;(D )是连续型随机变量的分布函数 .6.已知随机变量X 的分布列为: ,2,1,0,!2)(===k k Ck X P k ,则常数C 等于( ). (A )1-e ; (B )2-e ; (C )3-e ; (D )4-e .7.设21,X X 是任意两个连续型随机变量,它们的概率密度函数分别为)(),(21x f x f ,分布函数分别为)(),(21x F x F ,则( ).(A ))(32)(3121x f x f +必为某一随机变量的概率密度; (B ))()(21x f x f 必为某一随机变量的概率密度; (C ))()(21x F x F +必为某一随机变量的分布函数; (D ))()(21x F x F -必为某一随机变量的分布函数.8.设随机变量Y X ,相互独立均服从正态分布)4,1(N , 若概率21)1(=<-bY aX P ,则( ).(A)1,2==b a ; (B) 2,1==b a ; (C) 1,2=-=b a ; (D) 2,1-==b a .⎪⎪⎪⎭⎫ ⎝⎛--=01020232X A 的特征根全为实数9.设X 为随机变量, 若矩阵的概率为0.5, 则( ).(A) X 服从区间[0,2]上的均匀分布; (B) X 服从二项分布B(2, 0.5); (C) X 服从参数为1的指数分布; (D) X 服从标准正态分布.10.设函数⎪⎩⎪⎨⎧≥<≤<=1110200)(x x xx x F ,则)(x F ( ). (A )是随机变量的分布函数; (B )不是随机变量的分布函数; (C )是离散型随机变量的分布函数; (D )是连续型随机变量的分布函数 .11.已知随机变量X 的分布列为: ,2,1,0,!2)(===k k Ck X P k ,则常数C 等于( ). (A )1-e ; (B )2-e ; (C )3-e ; (D )4-e .12.设随机变量X 服从参数为0>λ的泊松分布, 设8.0)11(=≤=X X P ,则λ等于( ).(A ) 0.8; (B ) 2 ; (C ) 4 ; (D ) 0.25.13.已知)7,1(~23N X ,则)21(<<X P 等于( ).(A ))1()2(Φ-Φ; (B ))1()2(3Φ-Φ; (C )21)1(-Φ; (D ))2()3(33Φ-Φ.14.设随机变量X 的任一线性函数0,≠+=a b aX Y 则下面命题不成立的是( ). (A) 如果X 是连续型随机变量, 则Y 也是连续型随机变量; (B) 如果X 是泊松分布, 则Y 也是泊松分布; (C) 如果X 是均匀分布, 则Y 也是均匀分布;(D) 如果X 是正态分布, 则Y 也是正态分布. 三、解答题1.一个正立方体容器盛有3/4的液体, 假设在其6个侧面(含上、下两个底面)的随机部位出现了一个小孔,液体经此小孔流出.求剩余液体液面的高度X 的分布函数)(x F .2.假设一装置启动后无故障工作的时间X (小时)服从指数分布,平均无故障工作的时间为2百小时;每次启动(在无故障的情形下)只需工作10小时便自行关机.试求该装置每次启动无故障工作的时间Y 的分布函数.3.设试验E 是一伯努利试验,其成功的概率为p, 而失败的概率为q=1-p .现在将E 独立地一次接一次地进行直到成功或完成n 次试验为止,其中n ≥2是给定的自然数.试求所作试验次数X 的概率分布.4.假设某自动生产线上产品的不合格品率为0.02,试求随意抽取的30件中, (1) 不合格品不少于两件的概率α;(2) 在已经发现一件不合格品的条件下,不合格品不少于两件的概率β.5.假设有10台设备,每台的可靠性(无故障工作的概率)为0.92,每台出现故障时需要由一人进行调整.问为保证在95%的情况下当设备出现故障时都能及时得到调整,至少需要安排几个人值班?6.假设一部机器在一个工作日因故停用的概率为0.2.一周使用5个工作日可创利润10万元;使用4个工作日可创利润7万元;使用3个工作日只创利润2万元;停用3天及多于3天亏损2万元.求所创利润的概率分布.7.某生产线平均每三分钟生产一件产品,假设不合格品率为0.01.问为使至少出现一件不合格品的概率超过95%最少需要多长时间?8.假设一日内到过某商店的顾客数服从参数为λ的泊松分布,而每个顾客实际购货的概率为p .分别以X 和Y 表示一日内到过该商店的顾客中购货和未购货的人数,分别求X 和Y 的概率分布.9.假设一商店每周(7天)平均售出56台电冰箱,其中因为质量问题要求返修的占5‰ .试求一个季度(90天)售出的电冰箱中返修件数X 的概率分布.10.假设随机变量X 服从正态分布)9 108(,N ,求满足{}01.0 =≥-a a X P 的常数a . 11.假设随机测量的误差()210,0~N X ,求在100次独立重复测量中,至少三次测量的绝对误差大于19.6的概率α的近似值.12.设)(1x F 和)(2x F 都是随机变量的分布函数,a 和b 是非负常数且1=+b a ,证明)()()(21x bF x aF x F +=具有随机变量的分布函数的基本性质.13.假设随机变量X 服从参数为λ的指数分布,)(x F 是其分布函数,证明随机变量Y =)(X F 在区间(0,1)上服从均匀分布.14.设随机变量X 的概率密度函数为xx e e Cx f -+=)(试求:(1)常数C ;(2)在对X 进行的5次独立观察中,X 的取值都小于1的概率. 15.连续型随机变量X 的分布函数为:x B A x F arctan )(+=,∞<<∞-x试求:(1)常数A 、B ;(2))11(<<-X P ;(3)随机变量X 的概率密度.16.设随机变量X 具有对称的密度函数,即)()(x f x f =-,证明对任意的0>a ,有(1)⎰-=-=-adx x f a F a F 0)(21)(1)((2)1)(2)|(|-=<a F a X P (3)))(1(2)|(|a F a X P -=>17.一袋中装有4个球,球上分别记有号码1,2,3,4.从中任意取2个球,以X 记取出的球中小的号码.求X 的分布列与分布函数.18.使用了t 小时的计算机,在以后t ∆小时内损坏的概率等于)(t o t ∆+λ,其中λ为不依赖于t 的常数,假设在不相重叠的时间内,计算机损坏与否相互独立,求计算机在T 小时内损坏的概率.19.过平面上一点)1,0(任作一直线L 与x 轴的夹角为α,设α服从区间),0(π上的均匀分布,求(1)此直线在x 轴上的截距Z 的概率密度; (2)截距Z 在1到2之间的概率.20.设离散型随机变量X 的概率分布为 ,2,1,0,)(===n ap n X P n ,而且X 取奇数值的概率为73,试求常数a, p 的值. 21.设随机变量t 服从数学期望为21的指数分布,求方程042=++tx x 有实根的概率. 22.设随机变量X 的概率密度为∞<<∞-=-+-x e x f x x,1)(122π试求:(1)2X Y =的概率密度;(2))211(+<<X P 23. 设随机变量X 的概率密度为+∞<<∞-=-x e x f x ,21)(||, 求(1)||X Y =的分布函数)(y F Y ; (2)证明对任意的实数0,0>>b a ,均有 )()|(b Y P a Y b a Y P ≥=≥+≥. 24.设随机变量X 的概率密度函数为⎪⎩⎪⎨⎧≤≤=其他08131)(32x x x f()x F 是X 的分布函数,求随机变量()x F Y =的分布函数.25.假设一设备开机后无故障工作的时间X 服从指数分布,平均无故障工作的时间为5小时, 设备定时开机, 出现故障时自动关机, 而无故障的情况下工作2小时便关机, (1)试求该设备每次开机无故障工作的时间Y 的分布函数)(y F Y ,(2) 求Ye Z =的分布函数,并判断Z 是否为连续型随机变量.26.设随机变量X 的可能取值为 ,,,2,1k ,且 ,2,1,21)(===k k X P k ,令 ⎩⎨⎧-=是奇数如果是偶数如果X 1X 1Y试求二次方程022=++Y t t 无实根的概率.27. 连续型随机变量X 的分布函数为:x B A x F arctan )(+=,∞<<∞-x , 试求:(1)常数A 、B ;(2))11(<<-X P ;(3)随机变量X 的概率密度. 28.设随机变量X 的概率密度函数为xx ee Cx f -+=)( 试求:(1)常数C ;(2)在对X 进行的5次独立观察中,X 的取值都小于1的概率;(3)求)0(>X P .29.过平面上一点)1,0(任作一直线L 与x 轴的夹角为α,设α服从区间),0(π上的均匀分布,求(1)此直线在x 轴上的截距Z 的概率密度; (2)截距Z 在1到2之间的概率.30. 设X X 1n ,, 为i.i.d. ~ 0-1分布(即贝努利分布),参数为p. 试对固定正整数k ≤ n ,求(1)P X k i i n ()==∑1;(2)P X k X i n i n(,)===∑11;(3)P( min{n: )},2,1,0k n X n ==≠. 31.设X 为只取正整数值的随机变量,则下列命题等价: (1)X 服从几何分布.(2) ,1,0,)()|(=>=>+>n m m X P n X n m X P . (3) ,1,0,,2,1)()|(====>+=n m m X P n X n m X P .。

数学-随机变量及其分布 试题版

数学-随机变量及其分布 试题版

第七章随机变量及其分布目录第七章随机变量及其分布 27.1条件概率与全概率公式 27.1.1条件概率 27.1.2全概率公式 3习题7.1 47.2离散型随机变量及其分布列 5习题7.2 67.3离散型随机变量的数字特征 77.3.1离散型随机变量的均值 77.3.2离散型随机变量的方差 9习题7.3 107.4二项分布与超几何分布 117.4.1二项分布 117.4.2超几何分布 13习题7.4 147.5正态分布 15习题7.5 16复习参考题7 17随机变量及其分布7.1条件概率与全概率公式7.1.1条件概率思考原理一般地,设A,B为两个随机事件,且P(A)>0,我们称P(B∣A)=P(AB) P(A)为在事件A发生的条件下,事件B发生的条件概率,简称条件概率(conditional probability ).思考原理由条件概率的定义,对任意两个事件A与B,若P(A)>0,则P(AB)=P(A)P(B∣A)我们称上式为概率的乘法公式(multiplication formula).1在5道试题中有3道代数题和2道几何题,每次从中随机抽出1道题,抽出的题不再放回.求:(1)第1次抽到代数题目第2次抽到几何题的概率;(2)在第1次抽到代数题的条件下,第2次抽到几何题的概率.2已知3张奖券中只有1张有奖,甲、乙、丙3名同学依次无放回地各抽一张.他们中奖的概率与抽奖的次序有关吗?3银行储蓄卡的密码由6位数字组成.某人在银行自助取款机上取钱时,忘记了密码的最后1位数字,求:(1)任意按最后1位数字,不超过2次就按对的概率;(2)如果记得密码的最后1位是偶数,不超过2次就按对的概率.练习1.设A⊆B,且P(A)=0.3,P(B)=0.6.根据事件包含关系的意义及条件概率的意义,直接写出P(B∣A)和P(A∣B)的值再由条件概率公式进行验证.2.从一副不含大小王的52张扑克牌中,每次从中随机抽出1张扑克牌,抽出的牌不再放回.已知第1次抽到A牌,求第2次抽到A牌的概率.3.袋子中有10个大小相同的小球,其中7个白球,3个黑球.每次从袋子中随机摸出1个球,摸出的球不再放回.求:(1)在第1次摸到白球的条件下,第2次摸到白球的概率;(2)两次都摸到白球的概率.7.1.2全概率公式探究公式一般地,设A 1,A 2,⋯,A n 是一组两两互斥的事件,A 1∪A 2∪⋯∪A n =Ω,且P A i >0,i =1,2,⋯,n ,则对任意的事件B ⊆Ω,有P (B )=ni =1 P A i P B ∣A i .我们称上面的公式为全概率公式(t otalprobability formula ).4某学校有A ,B 两家餐厅,王同学第1天午餐时随机地选择一家餐厅用餐.如果第1天去A 餐厅,那么第2天去A 餐厅的概率为0.6;如果第1天去B 餐厅,那么第2天去A 餐厅的概率为0.8.计算王同学第2天去A 餐厅用餐的概率.5有3台车床加工同一型号的零件,第1台加工的次品率为6%,第2,3台加工的次品率均为5%,加工出来的零件混放在一起.已知第1,2,3台车床加工的零件数分别占总数的25%,30%,45%.(1)任取一个零件,计算它是次品的概率;(2)如果取到的零件是次品,计算它是第式£=1,2,3)台车床加工的概率.探究公式贝叶斯公式(Bayes formula ):设A 1,A 2,⋯,A n 是一组两两互斥的事件,A 1∪A 2∪⋯∪A n =Ω,且P A i >0,i =1,2,⋯,n ,则对任意的事件B ⊆Ω,贝叶斯公式是由英国数学家贝叶斯(T .Bayes ,1702-1761)发现的,它用来描述两个条件概率之间的关系.P (B )>0,有P A i ∣B =P A i P B ∣A iP (B )=P A i P B ∣A ink =1P A k P B ∣A k,i =1,2,⋯,n6在数字通信中心信号是由数字0和1组成的序列.由于随机因素的干扰,发送的信号0或1有可能被错误地接收为1或0.已知发送信号0时,接收为0和1的概率分别为0.9和0.1;发送信号1时,接收为1和0的概率分别为0.95和0.05.假设发送信号0和1是等可能的.(1)分别求接收的信号为0和1的概率;(2)已知接收的信号为0,求发送的信号是1的概率.练习1.现有12道四选一的单选题,学生张君对其中9道题有思路,3道题完全没有思路.有思路的题做对的概率为0.9,没有思路的题只好任意猜一个答案,猜对答案的概率为0.25.张君从这12道题中随机选择1题,求他做对该题的概率.2.两批同种规格的产品,第一批占40%,次品率为5%;第二批占60%,次品率为4%.将两批产品混合,从混合产品中任取1件.(1)求这件产品是合格品的概率;(2)已知取到的是合格品,求它取自第一批产品的概率.习题7.1复习巩固1.为了研究不同性别学生患色盲的比例,调查了某学校2000名学生,数据如下表所示.男女合计色盲60262非色盲11407981938合计12008002000从这2000人中随机选择1个人.(1)已知选到的是男生,求他患色盲的概率;(2)已知选到的学生患色盲,求他是男生的概率.2.从人群中随机选出1人,设B=“选出的人患有心脏病”,C=“选出的人是年龄大于50岁的心脏病患者”,请你判断P(B)和P(C)的大小,并说明理由.3.甲、乙两人同时向一目标射击,已知甲命中目标的概率为0.6,乙命中目标的概率为0.5.已知目标至少被命中1次,求甲命中目标的概率.4.甲和乙两个箱子中各装有10个球,其中甲箱中有5个红球、5个白球,乙箱中有8个红球、2个白球.掷一枚质地均匀的骰子,如果点数为1或2,从甲箱子随机摸出1个球;如果点数为3,4,5,6,从乙箱子中随机摸出1个球.求摸到红球的概率.5.在A、B、C三个地区爆发了流感,这三个地区分别有6%、5%、4%的人患了流感假设这三个地区的人口数的比为5:7:8,现从这三个地区中任意选取一个人.(1)求这个人患流感的概率;(2)如果此人患流感,求此人选自A地区的概率.6.已知P(A)>0,P(B)>0,P(B∣A)=P(B),证明:P(A∣B)=P(A).综合运用7.一批产品共有100件,其中5件为不合格品.收货方从中不放回地随机抽取产品进行检验,并按以下规则判断是否接受这批产品:如果抽检的第1件产品不合格,则拒绝整批产品;如果抽检的第1件产品合格,则再抽1件,如果抽检的第2件产品合格,则接受整批产品,否则拒绝整批产品.求这批产品被拒绝的概率.8.在孟德尔豌豆试验中,子二代的基因型为DD、Dd、dd,其中D为显性基因,d为隐性基因,且这三种基因型的比为1:2:1.如果在子二代中任意选取2颗豌豆作为父本杂交,那么子三代中基因型为dd的概率是多大?9.证明条件概率的性质(1)和(2).拓广探索10.证明:当P(AB)>0时,P(ABC)=P(A)P(B∣A)P(C∣AB).据此你能发现计算P A1A2⋅⋅⋅A n的公式吗?7.2离散型随机变量及其分布列思考原理一般地,对于随机试验样本空间Ω中的每个样本点ω,都有唯一的实数X (ω)与之对应,我们称X 为随机变量(random var iable ).思考原理可能取值为有限个或可以一一列举的随机变量,我们称为离散型随机变量(discrete random var iable ).通常用大写英文字母表示随机变量,例如X ,Y ,Z ;用小写英文字母表示随机变量的取值,例如x ,y ,z .思考原理一般地,设离散型随机变量X 的可能取值为x 1,x 2,⋯,x n ,我们称X 取每一个值x i 的概率P X =x i =p i ,i =1,2,⋯,n为X 的概率分布列(list of probability distribution ),简称分布列.探究公式对于只有两个可能结果的随机试验,用A 表示“成功”,A表示“失败”,定义X =1,A 发生,0,A发生.如果P (A )=p ,则P (A)=1-p ,那么X 的分布列如表7.2-3所示.表7.2-3X 01P1-pp我们称X 服从两点分布(two -po int distribution )或0-1分布.1一批产品中次品率为5%,随机抽取1件,定义X =1,抽到次品,0,抽到正品. 求X 的分布列.2某学校高二年级有200名学生,他们的体育综合测试成绩分5个等级,每个等级对应的分数和人数如表7.2-4所示.表7.2-4等级不及格及格中等良优分数12345人数2050604030从这200名学生中任意选取1人,求所选同学分数X 的分布列,以及P (X ≥4).3一批笔记本电脑共有10台,其中A 品牌3台,B 品牌7台.如果从中随机挑选2台,求这2台电脑中A 品牌台数的分布列.练习1.举出两个离散型随机变量的例子.2.下列随机试验的结果能否用离散型随机变量表示?若能,请写出各随机变量可能的取值,并说明这些值所表示的随机试验的结果.(1)抛掷2枚骰子,所得点数之和;(2)某足球队在5次点球中射进的球数;(3)任意抽取一瓶标有1500mL的饮料,其实际含量与规定含量之差.3.篮球运动员在比赛中每次罚球命中得1分,不中得0分.已知某运动员罚球命中的概率为0.7,求他罚球1次的得分的分布列.4.抛掷一枚质地均匀的硬币2次,写出正面向上次数X的分布列.习题7.2复习巩固1.张同学从学校回家要经过4个红绿灯路口,每个路口可能遇到红灯或绿灯.(1)写出随机试验的样本空间;(2)设他可能遇到红灯的次数为X,写出X的可能取值,并说明这些值所表示的随机事件.2.某位同学求得一个离散型随机变量的分布列为:X0123P0.20.30.150.45试说明该同学的计算结果是否正确.3.在某项体能测试中,跑1km时间不超过4min为优秀.某位同学跑1km所花费的时间X是离散型随机变量吗?如果只关心该同学是否能够取得优秀成绩,应该如何定义随机变量?4.某位射箭运动员命中目标的环数X的分布列为:X678910P0.050.150.250.350.20如果命中9环或10环为优秀,那么他一次射击成绩为优秀的概率是多少?综合运用5.老师要从10篇课文中随机抽3篇让学生背诵,规定至少要背出其中2篇才能及格,某同学只能背诵其中的6篇,试求:(1)抽到他能背诵的课文的数量的分布列;(2)他能及格的概率.6.某种资格证考试,每位考生一年内最多有3次考试机会.一旦某次考试通过,便可领取资格证书.不再参加以后的考试,否则就继续参加考试,直到用完3次机会.李明决定参加考试,如果他每次参加考试通过的概率依次为0.6,0.7,0.8,且每次考试是否通过相互独立,试求:(1)李明在一年内参加考试次数X的分布列;(2)李明在一年内领到资格证书的概率.7.3离散型随机变量的数字特征7.3.1离散型随机变量的均值探究公式一般地,若离散型随机变量X的分布列如表7.3-2所示,表7.3-2X x1x2⋯x nP p1p2⋯p n则称E(X)=x1p1+x2p2+⋯+x n p nn=x i p ii=1为随机变量X的均值(m ean)或数学期望(mathematical exp ectation),数学期望简称期望.1在篮球比赛中,罚球命中1次得1分,不中得0分.如果某运动员罚球命中的概率为0.8.那么他罚球1次的得分X的均值是多少?2抛掷一枚质地均匀的骰子,设出现的点数为X,求X的均值.3猜歌名游戏是根据歌曲的主旋律制成的铃声来猜歌名.某嘉宾参加猜歌名节目,猜对每首歌曲的歌名相互独立,猜对三首歌曲A,B,C歌名的概率及猜对时获得相应的公益基金如表7.3-3所示.表7.3-3歌曲A B:C 猜对的概率0.80.60.4获得的公益基金额/元100020003000规则如下:按照A,B,C的顺序猜,只有猜对当前歌曲的歌名才有资格猜下一首.求嘉宾获得的公益基金总额X的分布列及均值.探究公式一般地,下面的结论成立:E(aX+b)=aE(X)+b.4根据天气预报,某地区近期有小洪水的概率为0.25,有大洪水的概率为0.01,该地区某工地上有一台大型设备,遇到大洪水时要损失60600元,遇到小洪水时要损失10000元.为保护设备,有以下3种方案:方案1运走设备,搬运费为3800元;方案2建保护围墙,建设费为2000元,但围墙只能防小洪水;方案3不采取措施.工地的领导该如何决策呢?练习1.已知随机变量X的分布列为:X12345P0.10.30.40.10.1(1)求E(X);(2)求E(3X+2).2.抛掷一枚硬币,规定正面向上得1分,反面向上得-1分,求得分X的均值.3.甲、乙两台机床生产同一种零件,它们生产的产量相同,在1h内生产出的次品数分别为X1,X2其分布列分别为:甲机床次品数的分布列X10123P0.40.30.20.1乙机床次品数的分布列X2012P0.30.50.2哪台机床更好?请解释你所得出结论的实际含义?7.3.2离散型随机变量的方差探究公式我们称D (X )=x 1-E (X ) 2p 1+x 2-E (X ) 2p 2+⋯+x n -E (X ) 2p n=ni =1 x i -E (X ) 2p i为随机变量X 的方差(va r iance ),有时也记为V ar (X ),并称D (X )为随机变量X 的标准差(s ta n dard deviation ),记为σ(X ).探究公式在方差的计算中,利用下面的结论经常可以使计算简化.D (X )=ni =1 x i -E (X ) 2p i=n i =1 x 2i -2E (X )x i +(E (X ))2p i=ni =1x 2i p i -2E (X )ni =1x i p i +(E (X ))2ni =1p i=ni =1x 2i p i -(E (X ))2.5抛掷一枚质地均匀的骰子,求掷出的点数X 的方差.6投资A ,B 两种股票,每股收益的分布列分别如表7.3-9和表7.3-10所示.表7.3-9股票A 收益的分布列收益X /元-102概率0.10.30.6表7.3-10股票B 收益的分布列收益Y /元012概率0.30.40.3(1)投资哪种股票的期望收益大?(2)投资哪种股票的风险较高?练习1.已知随机变量X 的分布列为:X 1234P0.20.30.40.1求D (X )和σ(2X +7).2.若随机变量X 满足P (X =c )=1,其中c 为常数,求D (X ).3.甲、乙两个班级同学分别目测数学教科书的长度,其误差(精确到1cm )X 和Y 的分布列如下:甲班的目测误差分布列X-2-1012P0.10.20.40.20.1乙班的目测误差分布列Y-2-1012P0.050.150.60.150.05先直观判断X和Y的分布哪一个离散程度大,再分别计算X和Y的方差,验证你的判断.!习题7.3复习巩固1.某品牌手机投放市场,每部手机可能发生按定价售出、打折后售出、没有售出而收回三种情况.按定价售出每部利润100元,打折后售出每部利润0元,没有售出而收回每部利润-300元.据市场分析,发生这三种情况的概率分别为0.6,0.3,0.1.求每部手机获利的均值和方差.2.现要发行10000张彩票,其中中奖金额为2元的彩票1000张,10元的彩票300张,50元的彩票100张,100元的彩票50张,1000元的彩票5张.1张彩票可能中奖金额的均值是多少元?3.随机变量X的分布列为P(X=0)=0.2,P(X=1)=a,P(X=2)=b,若E(X)=1,求a和b.4.在单项选择题中,每道题有4个选项,其中仅有一个选项正确.如果从四个选项中随机选一个,选对的概率为0.25.请给选对和选错分别赋予合适的分值,使得随机选择时得分的均值为0.5.证明:D(aX+b)=a2D(X).综合运用6.有A和B两道谜语,张某猜对A谜语的概率为0.8,猜对得奖金10元;猜对B谜语的概率为0.5,猜对得奖金20元,规则规定:只有在猜对第一道谜语的情况下,才有资格猜第二道.如果猜谜顺序由张某选择,他应该选择先猜哪一道谜语?7.甲、乙两种品牌的手表,它们的日走时误差分别为X和Y(单位:s),其分布列为:甲品牌的走时误差分布列X-101P0.10.80.1乙品牌的走时误差分布列Y-2-1012P0.10.20.40.20.1试比较甲、乙两种品牌手表的性能.拓广探索8.设E(X)=μ,a是不等于μ的常数,探究X相对于μ的偏离程度与X相对于a的偏离程度的大小,并说明结论的意义.7.4二项分布与超几何分布7.4.1二项分布思考原理我们把只包含两个可能结果的试验叫做伯努利试验(Bernoulli trials ).思考原理我们将一个伯努利试验独立地重复进行n 次所组成的随机试验称为n 重伯努利试验.显然,n 重伯努利试验具有如下共同特征:(1)同一个伯努利试验重复做n 次;(2)各次试验的结果相互独立.探究公式一般地,在n 重伯努利试验中,设每次试验中事件A 发生的概率为p (0<p <1),用X 表示事件A 发生的次数,则X 的分布列为P (X =k )=C k n p k (1-p )n -k ,k =0,1,2,⋯,n如果随机变量X 的分布列具有上式的形式,则称随机变量X 服从二项分布(binomialdistribution ),记作X ∼B (n ,p ).1将一枚质地均匀的硬币重复抛掷10次,求:(1)恰好出现5次正面朝上的概率;(2)正面朝上出现的频率在0.4,0.6 内的概率.2如图是一块高尔顿板的示意图.在一块木板上钉着若干排相互平行但相互错开的圆柱形小木钉,小木钉之间留有适当的空隙作为通道,前面挡有一块玻璃.将小球从顶端放入,小球下落的过程中,每次碰到小木钉后都等可能地向左或向右落下,最后落入底部的格子中.格子从左到右分别编号为0,1,2,⋯,10,用X 表示小球最后落入格子的号码,求X 的分布列.3甲、乙两选手进行象棋比赛,如果每局比赛甲获胜的概率为0.6,乙获胜的概率为0.4,那么采用3局2胜制还是采用5局3胜制对甲更看利?归纳一般地,确定一个二项分布模型的步骤如下:(1)明确伯努利试验及事件A的意义,确定事件A发生的概率p;(2)确定重复试验的次数n,并判断各次试验的独立性;(3)设X为n次独立重复试验中事件A发生的次数,则X∼B(n,p).探究公式一般地,可以证明:如果X∼B(n,p),那么E(X)=np,D(X)=np(1-p).练习1.将一枚质地均匀的硬币连续抛掷4次,X表示“正面朝上”出现的次数.(1)求X的分布列;(2)E(X)=,D(X)=.2.鸡接种一种疫苗后,有80%不会感染某种病毒.如果5只鸡接种了疫苗,求:(1)没有鸡感染病毒的概率;(2)恰好有1只鸡感染病毒的概率.3.判断下列表述正确与否,并说明理由:(1)12道四选一的单选题,随机猜结果,猜对答案的题目数X~B(12,0.25);(2)100件产品中包含10件次品,不放回地随机抽取6件,其中的次品数Y~B(6,0.1).4.举出两个服从二项分布的随机变量的例子.7.4.2超几何分布探究公式一般地,假设一批产品共有N件,其中有M件次品.从N件产品中随机抽取n件(不放回),用X 表示抽取的n件产品中的次品数,则X的分布列为P(X=k)=C k M C n-k N-kC n N,k=m,m+1,m+2,⋯,r其中n,N,M∈N∗,M≤N,n≤N,m=max{0,n-N+M},r=min{n,M}.如果随机变量X的分布列具有上式的形式,那么称随机变量X服从超几何分布(hypergeometric distribution).探究公式随机变量X服从超几何分布,则E(X)=nM N4从50名学生中随机选出5名学生代表,求甲被选中的概率.5一批零件共有30个,其中有3个不合格.随机抽取10个零件进行检测,求至少有1件不合格的概率.6一个袋子中有100个大小相同的球,其中有40个黄球、60个白球,从中随机地摸出20个球作为样本.用X表示样本中黄球的个数.(1)分别就有放回摸球和不放回摸球,求X的分布列;(2)分别就有放回摸球和不放回摸球,用样本中黄球的比例估计总体中黄球的比例,求误差不超过0.1的概率:练习1.一箱24罐的饮料中4罐有奖券,每张奖券奖励饮料一罐,从中任意抽取2罐,求这2罐中有奖券的概率.2.学校要从12名候选人中选4名同学组成学生会,已知有4名候选人来自甲班.假设每名候选人都有相同的机会被选到,求甲班恰有2名同学被选到的概率.3.举出两个服从超几何分布的随机变量的例子.习题7.4复习巩固1.抛掷一枚骰子,当出现5点或6点时,就说这次试验成功,求在30次试验中成功次数X的均值和方差.2.若某射手每次射击击中目标的概率为0.9,每次射击的结果相互独立,则在他连续4次的射击中,恰好有一次未击中目标的概率是多大.3.如图,一个质点在随机外力的作用下,从原点0出发,每隔1s等可能地向左或向右移动一个单位,共移动6次.求下列事件的概率.(1)质点回到原点;(2)质点位于4的位置.4.从一副不含大小王的52张扑克牌中任意抽出5张,求至少有2张A牌的概率(精确到0.00001).综合运用5.某射手每次射击击中目标的概率为0.8,共进行10次射击,求(精确到0.01):(1)恰有8次击中目标的概率;(2)至少有8次击中目标的概率.6.有一个摸奖游戏,在一个口袋中装有10个红球和20个白球,这些球除颜色外完全相同,一次从中摸出5个球,至少摸到3个红球就中奖.求中奖的概率(精确到0.001).7.一个车间有3台车床,它们各自独立工作.设同时发生故障的车床数为X,在下列两种情形下分别求X的分布列.(1)假设这3台车床型号相同,它们发生故障的概率都是20%;(2)这3台车床中有A型号2台,B型号1台,A型车床发生故障的概率为10%,B型车床发生故障的概率为20%.拓广探索8.某药厂研制一种新药,宣称对治疗某种疾病的有效率为90%.随机选择了10个病人,经过使用该药治疗后,治愈的人数不超过6人,你是否怀疑药厂的宣传.7.5正态分布思考原理取值往往充满某个区间甚至整个实轴,但取一点的概率为0,我们称这类随机变量为连续型随机变量(continuous random var iable).思考原理对任意的x∈R,f(x)>0,它的图象在x轴的上方.可以证明x轴和曲线之间的区域的面积为1.我们称f(x)为正态密度函数,称它的图象为正态密度曲线,简称正态曲线,如图7.5-4所示.若随机变量X的概率分布密度函数为f(x),则称随机变量X服从正态分布(normal distribution ),记为X∼Nμ,σ2.特别地,当μ=0,σ=1时,称随机变量X服从标准正态分布.思考原理由X的密度函数及图象可以发现,正态曲线还有以下特点:(1)曲线是单峰的,它关于直线x=μ对称;(2)曲线在x=μ处达到峰值1;σ2π(3)当|x|无限增大时,曲线无限接近x轴.探究公式若X∼Nμ,σ2,则E(X)=μ,D(X)=σ2.1李明上学有时坐公交车,有时骑自行车.他各记录了50次坐公交车和骑自行车所花的时间,经数据分析得到:坐公交车平均用时30min,样本方差为36;骑自行车平均用时34min,样本方差为4.假设坐公交车用时X和骑自行车用时Y都服从正态分布.(1)估计X,Y的分布中的参数;(2)根据(1)中的估计结果,利用信息技术工具画出X和Y的分布密度曲线;(3)如果某天有38min可用,李明应选择哪种交通工具?如果某天只有34min可用,又应该选择哪种交通工具?请说明理由.练习1.设随机变量X~N(0,1),则X的密度函数为,P X≤0≈,P X ≤1≈,P X≤1≈,P(X>1)≈.(精确到0.0001.)2.设随机变量X~N0,22,随机变量Y~N0,32,画出分布密度曲线草图,并指出P(X≤-2)与P(X≤2)的关系,以及P(|X|≤1)与P(|Y|≤1)之间的大小关系.3.举出两个服从正态分布的随机变量的例子.习题7.5复习巩固1.对某地区数学考试成绩的数据分析,男生成绩X服从正态分布N72,82,女生成绩Y服从正态分布N74,62.请你从不同角度比较男、女生的考试成绩.2.某市高二年级男生的身高X(单位:cm)近似服从正态分布N170,52,随机选择一名本市高二年级的男生,求下列事件的概率:(1)165<X≤175;(2)X≤165;(3)X>175.3.若X~Nμ,σ2,则X位于区域[μ,μ+σ]内的概率是多少?综合运用4.袋装食盐标准质量为400g,规定误差的绝对值不超过4g就认为合格.假设误差服从正态分布,随机抽取100袋食盐,误差的样本均值为0,样本方差为4.请你估计这批袋装食盐的合格率.复习参考题7复习巩固1.举例说明P(B)与P(B∣A)没有确定的大小关系.2.抛掷两枚质地均匀的骰子,求:(1)两个点数都出现偶数的概率;(2)已知第一枚骰子的点数是偶数的条件下,第二枚骰子的点数也是偶数的概率.3.假设有两箱零件,第一箱内装有10件,其中有2件次品;第二箱内装有20件,其中有3件次品.现从两箱中随意挑选一箱,然后从该箱中随机取1个零件.(1)求取出的零件是次品的概率;(2)已知取出的是次品,求它是从第一箱取出的概率.4.已知离散型随机变量X的分布列如下表所示:X012P0.361-2q q2求:(1)常数q的值;(2)E(X)和D(X).5.已知随机变量X取可能的值1,2,⋯,n是等可能的,且E(X)=10,求n的值.6.已知每门大炮击中目标的概率都是0.3,现存n门大炮同时对某一目标各射击一次.(1)当n=10时,求恰好击中目标3次的概率(精确到0.001);(2)如果使目标至少被击中一次的概率超过95%,至少需要多少门大炮?综合运用7.长时间玩手机可能影响视力.据调查,某校学生大约40%的人近视,而该校大约有20%的学生每天玩手机超过1h,这些人的近视率约为50%.现从每天玩手机不超过1h的学生中任意调查一名学生,求他近视的概率.8.某商场要在国庆节开展促销活动,促销活动可以在商场内举行,也可以在商场外举行.统计资料表明,每年国庆节商场内的促销活动可获得利润2万元;商场外的促销活动,如果不遇到有雨天气可获得利润8万元,如果遇到有雨天气则会带来经济损失3万元.9月30日气象台预报国庆节当地的降水概率是40%,商场应该选择哪种促销方式?9.一份某种意外伤害保险费为20元,保险金额为50万元.某城市的一家保险公司一年能销售10万份保单,而需要赔付的概率为10-5.利用计算工具求(精确到0.0001):(1)这家保险公司亏本的概率;(2)这家保险公司一年内获利不少于100万元的概率.拓广探索10.甲、乙、丙三人相互做传球训练,第1次由甲将球传出,每次传球时,传球者都等可能地将球传给另外两个人中的任何一人,求n次传球后球在甲手中的概率.11.某单位有10000名职工,想通过验血的方法筛查乙肝病毒携带者.假设携带病毒的人占5%,如果对每个人的血样逐一化验,就需要化验10000次.统计专家提出了一种化验方法:随机地按5人一组分组,然后将各组5个人的血样混合再化验.如果混合血样呈阴性,说明这5个人全部阴性;如果混合血样呈阳性,说明其中至少有一人的血样呈阳性,就。

第二章 随机变量及其分布习题

第二章 随机变量及其分布习题

第二章 随机变量及其分布习题一 、填空题1. 设随机变量ξ的分布律为NaK P ==)(ξ(K=1,2, N ),则常数=a 。

2. 盒内有5个零件,其中2件次品,从中任取3件,用ξ表示取出的次品数,则ξ的概率分布为 。

3.设)(x F 是离散型随机变量的分布函数,若______)(==b P ξ,则)()()(a F b F b a P -=<<ξ成立。

4.设离散型随机变量ξ的分布函数为 ⎝⎛≥+<≤-<≤--<=221321110)(x b a x a x ax x F ,且21)2(==ξP ,则___________________,______,的分布律为ξ==b a 5. 设连续型随机变量ξ的概率密度为⎪⎩⎪⎨⎧≤>=-00)(2x x kex f x则 ____)2(____,)2(____,)21(___,=<===≤<=ξξξP P P k6. 设5个晶体管中有2个次品,3个正品,如果每次从中任取1个进行测试,测试后的产品不放回,直到把2个次品都找到为止,则需要进行的测试次数ξ是一个随机变量,则________)2(______,)5(=≤==ξξP P7. 设随机变量ξ的概率密度为8)1(2)(--=x kex f (+∞<<∞-x ),则=k 。

8. 两个随机变量ηξ,相互独立的充要条件是______9. 设连续型随机变量ξ的概率密度为⎩⎨⎧<≥=-0)(x x e x f x,则ξ的函数ξη=的概率密度________)(=y ηϕ 10. 设随机变量ξ的概率密度为⎩⎨⎧>><<=其他)0,0(,10)(k b x kx x f b,且________________,,75.0)21(===>b k P 则ξ 二 、选择题1 .kk p x P 2)(==ξ)2,1( =k 为一随机变量ξ的分布律的必要条件是( ) (A )k x 非负 (B )k x 为整数(C )20≤≤k p (D )2≥k p 2 . 若函数)(x f y =是一随机变量ξ的概率密度,则( )一定成立(A ))(x f 的定义域为[0,1] (B ))(x f 的值域为[0,1] (C) )(x f 非负(D) )(x f 在),(∞∞-内连续3.如果)(x F 是( ),则)(x F 一定不可以是连续型随机变量的分布函数( ) (A )非负函数 (B )连续函数(C )有界函数 (D )单调减少函数 4.下列函数中,( )可以作为连续型随机变量的分布函数(A))(x F = ⎩⎨⎧≥<010x x e x(B )G(x)= ⎩⎨⎧≥<-01x x e x(C)=Φ)(x ⎩⎨⎧≥-<010x ex x(D) H(x)= ⎩⎨⎧≥+<-0100x ex x 5 . 设)(ηξ, 的联合概率密度为⎪⎩⎪⎨⎧≤+=其他11),(22y x y x f π则ηξ与为( )的随机变量(A )独立同分布 (B )独立不同分布(C )不独立同分布 (D )不独立也不同分布三、计算题1. 掷两颗骰子,用ξ表示点数之和,求ξ的概率分布。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

习题二 一、填空题1. 已知随机变量X 只能取-1, 0, 1, 2四个数值, 其相应的概率依次为cc c c 162,85,43,21, 则c = 2______. 解. 2,16321628543211==+++=c cc c c c2. 某射手每次命中目标的概率为,若独立射击了三次,则三次中命中目标次数为k 的概率==)(k X P 3,2,1,0,)2.0()8.0(33=-k C k k k .3. 设X 服从参数为p 的两点分布,则X 的分布函数为 ⎪⎩⎪⎨⎧≥<≤-<=1 ,110 ,10 ,0)(x x p x x F .4. 设随机变量X ~B (2, p ), Y ~B (3, p ), 若95)1(=≥X P , 则)1(≥Y P = 19/27 . 解. 94951)1(1)0(=-=≥-==X P X P 94)1(2=-p , 31=p 2719321)0(1)1(3=⎪⎭⎫ ⎝⎛-==-=≥Y P Y P . 5. 设随机变量X 服从泊松分布,且)2()1(===X P X P ,则==)4(X P 223e -. 6. 已知连续型随机变量X 的分布函数为⎩⎨⎧≤>+=-0 ,00,)(2x x Be A x F x ,则=A 1 ,=B 1- ,=<<)221(x P 41---e e ,=)(x f⎩⎨⎧≤>-0 ,00,22x x e x . 7. 设随机变量X 的概率密度函数⎩⎨⎧∈=其它 ,0]2,0[ ,)(x Ax x f , 则=A ,)(x F =⎪⎪⎩⎪⎪⎨⎧>≤≤<2,120 ,4,02x x xx ; =≤)21|(|x P116.8. 设随机变量X 的概率密度为⎪⎩⎪⎨⎧∈∈=其它若若 ,0]6,3[ ,9/2]1,0[ ,3/1)(x x x f ,若k 使得32)(=≥k X P , 则k 的取值范围是13k ≤≤.9. 某公共汽车站有甲,乙,丙三人,分别等1,2,3路车,设每人等车的时间(分钟)都服从[0,5]上的均匀分布,则三人中至少有两人等车时间不超过2分钟的概率为.10. 设k 在(0, 5)上服从均匀分布, 则02442=+++k kx x 有实根的概率为___3/5__.解. k 的分布密度为⎪⎩⎪⎨⎧=051)(k f 其它50≤≤k .P{02442=+++k kx x 有实根} = P{03216162≥--k k }= P{k -1或k 2} =535152=⎰dk . 11. 设),(~2σμN X 则X Y μσ-=服从的分布为 )1,0(~N Y .12. 设),(~2σμN X 则Y aX b =+服从的分布为 ),(22σ+μa b a N . 13. 若随机变量X ~),2(2σN ,且P (2<X <4)=, 则P (X <0)= . 14.设)2,3(~2N X ,若)()(c X p c X p ≥=<,则=c 3 . 15. 设随机变量X 和2X Y =的概率分布分别为12210120.10.20.3X Pp p --30140.60.2Y Pp则123,,p p p 分别为,,.16. 设随机变量X 服从(0,2)上的均匀分布,则随机变量2X Y =在(0,4)内的概率密度)(y f Y 为 ⎪⎩⎪⎨⎧<<=其它,)( ,040 41y y y f Y 。

二、选择题1. 随机变量X 的分布律为:01230.10.30.40.2X P()F x 为其分布函数,则(2)F =( C )。

(A)0.2;(B)0.4;(C)0.8;(D)1.2. 如下四个函数哪个不能成为随机变量X 的分布函数 (B )(A) 10, 01/3, 01; 1/2, 121, 2x x F xx x <⎧⎪≤<⎪=⎨≤<⎪⎪≥⎩()(B) 20, 0 ();ln , 0x F x x x x ≤⎧⎪=⎨>⎪⎩ 2330, 01, 0(C) ()/4, 02 ; (D) ().0, 01, 2x x e x F x x x F x x x -<⎧⎧-≥⎪=≤<=⎨⎨<⎩⎪≥⎩解. (A)不满足F(+) = 1, 排除(A); (B)不满足单增, 排除(B); (D)不满足F(1/2 + 0) = F(1/2), 排除(D); (C)是答案.3. 设函数 ⎩⎨⎧∈=其它,0],[ ,sin )(b a x x x f , )(x f 可能是某个随机变量的概率密度函数,区间[]b a ,是(A )。

(A) ;,]20[π (B) ];22[ππ,- (C) ];,0[π (D) ).2,0(π4.设随机变量X 服从参数为λ的泊松分布,且},2{}1{===X P X P 则}2{>X P 的值为( B ).(A) 2-e ; (B) 251e-; (C) 241e-; (D) 221e-. 5. 每张奖券中尾奖的概率为110,某人购买了20张号码杂乱的奖券,设中尾奖的张数为ξ,则ξ服从( A )分布。

(A) 二项; (B) 泊松; (C) 指数; (D) 正态.6.连续型随机变量X 的密度函数)(x f 必满足条件( D ). (A)1)(0≤≤x f ;(B))(x f 为偶函数; (C) )(x f 单调不减 ;(D)()1f x dx +∞-∞=⎰.7.设随机变量X 的密度函数为X x F x f x f x f 是且)(),()(),(=-的分布函数,则对任意实数a 有(B )(A) ;)(1)(0⎰-=-adx x f a F (B);)(21)(0⎰-=-a dx x f a F (C) ;)()(a F a F =- (D).1)(2)( -=-a F a F8.设X的密度函数为01()0,x f x ≤≤=⎪⎩其他,则1{}4P X >为( A ).(A)78;(B)14⎰;(C) 141-⎰; (D)32. 9.设A,B 为随机事件,,0)(=AB P 则( B ).(A).φ=AB(B) AB 未必是不可能事件(C) A 与B 对立 (D) P(A)=0或P(B)=0 10.设X 服从]5,1[上的均匀分布,则( D ). (A)4}{ab b X a P -=≤≤ (B)43}63{=<<X P (C) 1}40{=<<X P(D)21}31{=≤<-X P 11.设X 服从参数为91的指数分布,则=<<}93{X P ( C ). (A))93()99(F F -;(B))11(913ee -; (C) ee 113-;(D)⎰-939dx ex .12.设随机变量~(0,1)X N , X 的分布函数为()x Φ,则{||2}P X >的值为( A )。

(A )2[1(2)]Φ-; (B )2(2)1Φ-; (C );2(2)Φ- (D )12(2)Φ-.13.设),4,(~μN X 则( C ). (A))1,0(~4N X μ-; (B) 21}0{=≤X P ; (C) )1(1}2{Φ-=>-μX P ;(D) 0≥μ.14.若)1,1(~N X ,记其密度函数为)(x f ,分布函数为)(x F ,则(C ). (A){0}{0}P X P X ≤=≥; (B))(1)(x F x F --=; (C) {1}{1}P X P X ≤=≥;(D))()(x f x f -=.15. 设随机变量X ~),2, (σμN 则随σ的增大,概率)|(|σμ<-X P (C ) (A) 单调增大; (B) 单调减少; (C) 保持不变; (D) 增减不变.16. 设随机变量X 服从正态分布Y N ),,(211σμ服从正态分布 ),,(222σμN 且 }1{}1{21<-><-μμY P X P ,则必有(A ).(A )12;σσ< (B )12;σσ> (C )12;μμ< (D ).21μμ>17.设随机变量X 的分布函数为),(x F 则随机变量12+=X Y 的分布函数)(y G 是(A ).111(A) ()(); (B) ()(1);22211(C) ()2()1; (D) ()().22G y F y G y F y G y F y G y F y =-=+=+=-18. 设随机变量X 的密度函数是21(), 2 (1)X f x Y X x π==+则的密度函数是(B ).(A );)41(1)(2y y f Y +=π (B );)4(2)(2y y f Y +=π (C );)1(1)(2y y f Y +=π (D ).1)(arctgy y f Yπ=三、解答题1. 设在15只同类型零件中有2只是次品,在其中取三次,每次任取一只,作不放回抽样,以X 表示取出次品的只数,求X 的分布律。

解:任取三只,其中新含次品个数X 可能为0,1,2个。

3522)0(315313===C C X P 3512)1(31521312=⨯==C C C X P 351)2(31511322=⨯==C C C X P 再列为下表X : 0, 1, 2 P :351,3512,3522 566530.0}4{}3{=≥=>X P X P2. 袋中有6个球,分别标有数字1,2,2,2,3,3,从中任取一个球,令X 为取出的球的号码,试求X 的分布律及分布函数。

解 X 的分布列为P61 21 31由分布函数的计算公式得X 的分布函数为 ⎪⎪⎪⎩⎪⎪⎪⎨⎧≥<≤<≤<=3 ,132 ,3221 ,611,0)(x x x x x F3. 已知离散型随机变量X 的分布律为:(1)0.2,(2)0.3P X P X ====,(3)0.5P X ==,试写出X 的分布函数。

解X 的分布律为1230.20.30.5X P所以X 的分布函数为0,1,0.2,12,()0.5,23,1,3.x x F x x x <⎧⎪≤<⎪=⎨≤<⎪⎪≥⎩4. 某射手有5发子弹, 射击一次的命中率为, 如果他命中目标就停止射击, 不命中就一直到用完5发子弹, 求所用子弹数X 的分布律. 解. 假设X 表示所用子弹数. X = 1, 2, 3, 4, 5.P (X = i ) = P (前i -1次不中, 第i 次命中) = 9.0)1.0(1⋅-i , i = 1, 2, 3, 4.当i =5时, 只要前四次不中, 无论第五次中与不中, 都要结束射击(因为只有五发子弹). 所以P(X = 5) =+5)1.0(9.0)1.0(4⋅4)1.0(=. 于是分布律为5. 设一批产品中有10件正品, 3件次品, 现一件一件地随机取出, 分别求出在下列各情形中直到取得正品为止所需次数X 的分布律.(i ). 每次取出的产品不放回; (ii ). 每次取出的产品经检验后放回, 再抽取; (iii) . 每次取出一件产品后总以一件正品放回, 再抽取. 解. 假设A i 表示第i 次取出正品(i = 1, 2, 3, …) (i). 13)()1(1===A P X P1331210)()|()()2(11212⋅====A P A A P A A P X P 1331221110)()|()|()()3(11223321⋅⋅====A P A A P A A P A A A P X P 1331221111)()|()|()|()4(1122334⋅⋅⋅===A P A A P A A P A A P X P(ii). 每次抽取后将原产品放回1310133)()()()()(11111---⎪⎭⎫⎝⎛====k k k k k A P A P A P A A A p k X P ΛΛ, (k = 1, 2, …)(iii).13)()1(1===A P X P 1331311)()|()()2(11212⋅====A P A A P A A P X P1331321312)()|()|()()3(112123321⋅⋅====A P A A P A A A P A A A P X P 1331321311)()|()|()|()4(1121231234⋅⋅⋅===A P A A P A A A P A A A A P X P6.一实习生用一台机器接连生产了三个同种零件,第i 个零件是不合格品的概率1(1,2,3)1i p i i ==+,以X 表示三个零件中合格品的个数,求X 的分布律。

相关文档
最新文档