奥数-时钟问题
奥数-时钟快慢问题
时钟问题可以看做是一个特殊的圆形轨道上2人追及或相遇问题,不过这里的两个“人”分别是时钟的分针和时针。
我们通常把研究时钟上时针和分针的问题称为时钟问题,其中包括时钟的快慢,时钟的周期,时钟上时针与分针所成的角度等等。
时钟问题有别于其他行程问题是因为它的速度和总路程的度量方式不再是常规的米每秒或者千米每小时,而是2个指针“每分钟走多少角度”或者“每分钟走多少小格”。
对于正常的时钟,具体为:整个钟面为360度,上面有12个大格,每个大格为30度;60个小格,每个小格为6度。
分针速度:每分钟走1小格,每分钟走6度时针速度:每分钟走112小格,每分钟走0.5度注意:但是在许多时钟问题中,往往我们会遇到各种“怪钟”,或者是“坏了的钟”,它们的时针和分针每分钟走的度数会与常规的时钟不同,这就需要我们要学会对不同的问题进行独立的分析。
要把时钟问题当做行程问题来看,分针快,时针慢,所以分针与时针的问题,就是他们之间的追及问题。
另外,在解时钟的快慢问题中,要学会十字交叉法。
例如:时钟问题需要记住标准的钟,时针与分针从一次重合到下一次重合,所需时间为56511分。
【例 1】小明上午 8点要到学校上课,可是家里的闹钟早晨 6点10分就停了,他上足发条但忘了对表就急急忙忙上学去了,到学校一看还提前了10分。
中午12点放学,小明回到家一看钟才11点整。
如果小明上学、下学在路上用的时间相同,那么,他家的闹钟停了多少分?【考点】行程问题之时钟问题【难度】☆☆【题型】解答【解析】根据题意可知,小明从上学到放学一共经过的时间是290分钟(11点减去6点10分),在校时间为250分钟(8点到12点,再加上提前到的10分钟)所以上下学共经过290-250=40(分钟),即从家到学校需要20分钟,所以从家出来的时间为7:30(8:00-10分-20分)即他家的闹钟停了1小时20分钟,即80分钟。
【答案】80分钟【巩固】星期天早晨,小明发现闹钟因电池能量耗尽停走了。
五年级时钟问题奥数题及答案【三篇】
五年级时钟问题奥数题及答案【三篇】
【第二篇】
时钟的表盘上按标准的方式标着1,2,3,…,11,12这12个数,在其上任意做n个120°的扇形,每一个都恰好覆盖4个数,每两个覆盖的数不全相同.如果从这任做的n个扇形中总能恰好取出3个覆盖整个钟面的全部12个数,求n的最小值.
解答:(1)当时,有可能不能覆盖12个数,比如每块扇形错开1个数摆放,盖住的数分别是:(12,1,2,3);(1,2,3,4);(2,3,4,5);(3,4,5,6);(4,5,6,7);(5,6,7,8);(6,7,8,9);(7,8,9,10),都没盖住11,其中的3个扇形当然也不可能盖住全部12个数.
(2)每个扇形覆盖4个数的情况可能是:
(1,2,3,4)(5,6,7,8)(9,10,11,12)覆盖全部12个数
(2,3,4,5)(6,7,8,9)(10,11,12,1)覆盖全部12个数
(3,4,5,6)(7,8,9,10)(11,12,1,2)覆盖全部12个数
(4,5,6,7)(8,9,10,11)(12,1,2,3)覆盖全部12个数
当时,至少有3个扇形在上面4个组中的一组里,恰好覆盖整个钟面的全部12个数.
所以n的最小值是9.
【第三篇】。
五年级时钟问题奥数题及答案【三篇】
【导语】成功根本没有秘诀可⾔,如果有的话,就有两个:第⼀个就是坚持到底,永不⾔弃;第⼆个就是当你想放弃的时候,回过头来看看第⼀个秘诀,坚持到底,永不⾔弃,学习也是⼀样需要多做练习。
以下是⽆忧考为⼤家整理的《五年级时钟问题奥数题及答案【三篇】》供您查阅。
【第⼀篇】
现在是3点,什么时候时针与分针第⼀次重合?
【第⼆篇】
时钟的表盘上按标准的⽅式标着1,2,3,…,11,12这12个数,在其上任意做n个120°的扇形,每⼀个都恰好覆盖4个数,每两个覆盖的数不全相同.如果从这任做的n个扇形中总能恰好取出3个覆盖整个钟⾯的全部12个数,求n的最⼩值.
解答:(1)当时,有可能不能覆盖12个数,⽐如每块扇形错开1个数摆放,盖住的数分别是:(12,1,2,3);(1,2,3,4);(2,3,4,5);(3,4,5,6);(4,5,6,7);(5,6,7,8);(6,7,8,9);
(7,8,9,10),都没盖住11,其中的3个扇形当然也不可能盖住全部12个数.
(2)每个扇形覆盖4个数的情况可能是:
(1,2,3,4)(5,6,7,8)(9,10,11,12)覆盖全部12个数
(2,3,4,5)(6,7,8,9)(10,11,12,1)覆盖全部12个数
(3,4,5,6)(7,8,9,10)(11,12,1,2)覆盖全部12个数
(4,5,6,7)(8,9,10,11)(12,1,2,3)覆盖全部12个数
当时,⾄少有3个扇形在上⾯4个组中的⼀组⾥,恰好覆盖整个钟⾯的全部12个数.
所以n的最⼩值是9.
【第三篇】。
小学奥数钟表问题
小学奥数钟表问题
(类似行程问题)
时钟问题主要有3大类题型:
第一类是追及问题(注意时针分针关系的时候往往有两种情况);
第二类是相遇问题(时针分针永远不会是相遇的关系,但是当时针分针与某一刻度夹角相等时,可以求出路程和);
第三种就是走不准问题,这一类问题中最关键的一点:找到表与现实时间的比例关系。
注:
1、指针速度单位:分针每分钟走6度,时针每分钟走0.5度,秒针每分钟走360度;
【例1】四点到五点之间,时钟的时针与分针在什么时刻成直角?
1、爷爷在晚上7点多出去散步,出去的时候时针与分针正好在一条直线上,
2、一只钟表的时针与分针均指在4和6
分针的正中央,问这是什么时刻?
3、小亮晚上9点整将手表对准,他在早晨8点到校时,却迟到了10分钟,那么小明的手表每小时慢几分钟?
4、科技馆有一只奇妙的钟,一圈共有20格。
每过7分钟,指针跳一次就要跳过9个格,今天早上8点整的时候,指针恰好从0跳到9,问:昨晚8点整的时候时针指着几?
解:
昨晚8点整到今天早上8点整,12x60=720分钟
720/7=102 (6)
今天早上8点整,指针恰好从0跳到9,昨晚8点整到今天早上8点整,指针跳动103次
103x9=927
927/20=46 (7)
9-7=2
昨晚8点整的时候时针指着2。
时钟的初中奥数题目(3)份
时钟的初中奥数题目(3)份时钟的初中奥数题目1一只挂钟,每小时慢5分钟,标准时间中午12点时,把钟与标准时间对准。
现在是标准时间下午5点30分,问,再经过多长时间,该挂钟才能走到5点30分?分析:1、这钟每小时慢5分钟,也就是当标准钟走60分时,这挂钟只能走60-5=55(分),即速度是标准钟速度的=2、因每小时慢5分,标准钟从中午12点走到下午5点30分时,此挂钟共慢了5×(17-12)=27(分),也就是此挂钟要差27分才到5点30分。
3、此挂钟走到5点30分,按标准时间还要走27分,因它的速度是标准时钟速度的,实际走完这27分所要时间应是27÷。
解:5×(17-12)=27(分)27÷=30(分)答:再经过30分钟,该挂钟才能走到5点30分。
时钟的初中奥数题目2星期天,小明在室内阳光下看书,看书之前,小明看了一眼挂钟,发现时针与分针正好处在一条直线上。
看完书之后,巧得很,时针与分针又恰好在同一条直线上。
看书期间,小明听到挂钟一共敲过三下。
(每整点,是几点敲几下;半点敲一下)请你算一算小明从几点开始看书?看到几点结束的?分析:连半点敲声在内,一共敲了三下,说明小明看书的时间是在中午12点以后。
12点以后时针与分针:第一次成一条直线时刻是:(0+30)÷(1-)=30÷=32(分)即12点32分。
第二次成一条直线时刻是:(5×1+30)÷(1-)=35÷=38(分)即1点38分。
第三次成一条直线的时刻是:(5×2+30)÷(1-)=40÷=43(分)即2点43分。
如果从12点32分开始,到1点38分,只敲2下,到2点43分,就共敲5下(不合题意)如果从1点38分开始到2点43分,共敲3下。
因此,小明应从1点38分开始看书,到2点43分时结束的.。
时钟的初中奥数题目3时钟问题解法与算法公式解题关键:时钟问题属于行程问题中的追及问题。
小学生奥数时钟问题、概率问题、分类枚举练习题
小学生奥数时钟问题、概率问题、分类枚举练习题1.小学生奥数时钟问题练习题篇一1、小明出去玩的时候,看了一下钟,时针在2和3之间,分针指向6,他回来的时候时针在6和7之间,分针指向6,小明一共外出了几小时?答案与解析:出去的时候:2:30,回来的时候6:30,一共出去4个小时。
2、有一架时钟,每到整点都用响声报点,到几点就响几下。
这架时钟一昼夜响多少下?点拨:整点时间,几点响几下,就是一点时钟响1下,亮点时响2下,三点时响3下……十二点时响12下,一昼夜是24小时,时针要转两圈,可以先算出转一圈响的下数,在乘以2,就是一昼夜响的下数了。
解:1+2+3+……+12=(1+12)*122=13*6=78(下)78*2=156(下)答:一共要响156下。
2.小学生奥数时钟问题练习题篇二1、小强家有一个闹钟,每时比标准时间快3分。
有一天晚上10点整,小强对准了闹钟,他想第二天早晨6∶00起床,他应该将闹钟的铃定在几点几分?【分析】小强家的闹钟比标准时间走得快,因此需要定闹钟时需要多设置一些。
晚上10点到第二天早晨6点共隔了8个小时,闹钟每小时快3分钟,即可求解【解】(6+12-10)*3=24(分钟)6点+24分=6点24分【答】他应该将闹钟的铃定在6点24分2、6个人各拿一只水桶到水龙头接水,水龙头注满6个人的水桶所需时间分别是5分钟、4分钟、3分钟、10分钟、7分钟、6分钟。
现在只有这一个水龙头可用,问怎样安排这6人的打水次序,可使他们总的等候时间短?这个短时间是多少?答案与解析:第一个人接水时,包括他本人在内,共有6个人等候,第二个人接水时,有5个人等候;第6个人接水时,只有他1个人等候。
可见,等候的人越多(一开始时),接水时间应当越短,这样总的等候时间才会少,因此,应当把接水时间按从少到多顺序排列等候接水,这个短时间是3×6+4×5+5×4+6×3+7×2+10=100(分)。
小学奥数趣味学习《时钟问题》典型例题及解答
小学奥数趣味学习《时钟问题》典型例题及解答时钟问题就是研究钟面上时针与分针关系的问题,如两针重合、两针垂直、两针成一线、两针夹角为60度等,这类问题可转化为行程问题中的追及问题。
时钟的数量关系:分针的速度是时针的12倍,二者的速度差为5.5度/分。
通常按追及问题来对待,也可以按差倍问题来计算。
解题思路和方法:将两针重合,两针垂直,两针成一线,两针夹角60°等为“追及问题”后可以直接利用公式。
例题1:钟面上从时针指向8开始,再经过多少分钟,时针正好与分针第一次重合?(精确到1分)解:1、此类题型可以把钟面看成一个环形跑道,那么本题就相当于行程问题中的追及问题,即分针与时针之间的路程差是240°。
2、分针每分钟比时针多转6°-0.5°=5.5°,所以需要240÷5.5≈44(分钟)。
也就是从8时开始,再经过44分钟,时针正好与分针第一次重合。
例题2:从早晨6点到傍晚6点,钟面上时针和分针一共重合了多少次?解:我们可以把钟面看成一个环形跑道,这样分针和时针的转动就可以转化成追及问题。
从早晨6点到傍晚6点,一共经过了12小时,12个小时分针要跑12圈,时针只能跑1圈,分针比时针多跑12-1=11(圈)。
而分针每比时针多跑1圈,就会追上时针一次,也就是和时针重合1次,所以12小时内两针一共重合了11次。
例题3:一部记录中国军队时代变迁的纪录片时长有两个多小时,小明发现,纪录片播放结束时,手表上时针、分针的位置正好与开始时时针、分针的位置交换了一下,这部纪录片时长多少分钟?(精确到1分)解:1、解决本题的关键是认识到时针与分针合走的路程是1080°,进而转化成相遇问题来解决。
2、两个多小时,分针与时针位置正好交换,所以分针与时针所走的路程和正好是三圈,也就是分针和时针合走了360°×3=1080°,而分针和时针每分钟的合走6°+0.5°=6.5°,所以合走1080°需要1080÷6.5≈166(分钟),即这部纪录片时长166分钟。
小学奥数:时钟问题.专项练习及答案解析[汇编]
1.行程问题中时钟的标准制定;2.时钟的时针与分针的追及与相遇问题的判断及计算;3.时钟的周期问题.时钟问题知识点说明时钟问题可以看做是一个特殊的圆形轨道上2人追及或相遇问题,不过这里的两个“人”分别是时钟的分针和时针。
我们通常把研究时钟上时针和分针的问题称为时钟问题,其中包括时钟的快慢,时钟的周期,时钟上时针与分针所成的角度等等。
时钟问题有别于其他行程问题是因为它的速度和总路程的度量方式不再是常规的米每秒或者千米每小时,而是2个指针“每分钟走多少角度”或者“每分钟走多少小格”。
对于正常的时钟,具体为:整个钟面为360度,上面有12个大格,每个大格为30度;60个小格,每个小格为6度。
分针速度:每分钟走1小格,每分钟走6度时针速度:每分钟走112小格,每分钟走0.5度注意:但是在许多时钟问题中,往往我们会遇到各种“怪钟”,或者是“坏了的钟”,它们的时针和分针每分钟走的度数会与常规的时钟不同,这就需要我们要学会对不同的问题进行独立的分析。
要把时钟问题当做行程问题来看,分针快,时针慢,所以分针与时针的问题,就是他们之间的追及问题。
另外,在解时钟的快慢问题中,要学会十字交叉法。
例如:时钟问题需要记住标准的钟,时针与分针从一次重合到下一次重合,所需时间为56511分。
模块一、时针与分针的追及与相遇问题【例 1】当时钟表示1点45分时,时针和分针所成的钝角是多少度?【考点】行程问题之时钟问题【难度】1星【题型】解答例题精讲知识点拨教学目标时钟问题【解析】142.5度【答案】142.5度【巩固】在16点16分这个时刻,钟表盘面上时针和分针的夹角是____度.【考点】行程问题之时钟问题【难度】1星【题型】填空【关键词】希望杯,六年级,一试【解析】16点的时候夹角为120度,每分钟,分针转6度,时针转0.5度,16:16的时候夹角为120-6×16+0.5×16=32度.【答案】32度【例 2】有一座时钟现在显示10时整.那么,经过多少分钟,分针与时针第一次重合;再经过多少分钟,分针与时针第二次重合?【考点】行程问题之时钟问题【难度】2星【题型】解答【解析】在10点时,时针所在位置为刻度10,分针所在位置为刻度12;当两针重合时,分针必须追上50个小刻度,设分针速度为“l”,有时针速度为“112”,于是需要时间:1650(1)541211.所以,再过65411分钟,时针与分针将第一次重合.第二次重合时显然为12点整,所以再经过65 (1210)6054651111分钟,时针与分针第二次重合.标准的时钟,每隔56511分钟,时针与分针重合一次.我们来熟悉一下常见钟表(机械)的构成:一般时钟的表盘大刻度有12个,即为小时数;小刻度有60个,即为分钟数.所以时针一圈需要12小时,分针一圈需要60分钟(1小时),时针的速度为分针速度的112.如果设分针的速度为单位“l”,那么时针的速度为“112”.【答案】65411分钟【巩固】钟表的时针与分针在4点多少分第一次重合?【考点】行程问题之时钟问题【难度】2星【题型】解答【解析】此题属于追及问题,追及路程是20格,速度差是11111212,所以追及时间是:11920211211(分)。
2023年小学奥数时钟问题题库学生版
时钟问题时钟问题知识点阐明时钟问题可以看做是一种特殊旳圆形轨道上2人追及或相遇问题,不过这里旳两个“人”分别是时钟旳分针和时针。
我们一般把研究时钟上时针和分针旳问题称为时钟问题,其中包括时钟旳快慢,时钟旳周期,时钟上时针与分针所成旳角度等等。
时钟问题有别于其他行程问题是由于它旳速度和总旅程旳度量方式不再是常规旳米每秒或者千米每小时,而是2个指针“每分钟走多少角度”或者“每分钟走多少小格”。
对于正常旳时钟,详细为:整个钟面为360度,上面有12个大格,每个大格为30度;60个小格,每个小格为6度。
分针速度:每分钟走1小格,每分钟走6度小格,每分钟走0.5度时针速度:每分钟走112注意:不过在许多时钟问题中,往往我们会碰到多种“怪钟”,或者是“坏了旳钟”,它们旳时针和分针每分钟走旳度数会与常规旳时钟不一样,这就需要我们要学会对不一样旳问题进行独立旳分析。
要把时钟问题当做行程问题来看,分针快,时针慢,因此分针与时针旳问题,就是他们之间旳追及问题。
此外,在解时钟旳快慢问题中,要学会十字交叉法。
分。
例如:时钟问题需要记住原则旳钟,时针与分针从一次重叠到下一次重叠,所需时间为56511模块一、时针与分针旳追及与相遇问题【例 1】王叔叔有一只手表,他发现手表比家里旳闹钟每小时快30 秒.而闹钟却比原则时间每小时慢30 秒,那么王叔叔旳手表一昼夜比原则时间差多少秒?【巩固】小强家有一种闹钟,每时比原则时间快3分。
有一天晚上10点整,小强对准了闹钟,他想第二天上午6∶00起床,他应当将闹钟旳铃定在几点几分?【巩固】小翔家有一种闹钟,每时比原则时间慢3分。
有一天晚上9点整,小翔对准了闹钟,他想第二天上午6∶30起床,于是他就将闹钟旳铃定在了6∶30。
这个闹钟响铃旳时间是原则时间旳几点几分?【巩固】当时钟表达1点45分时,时针和分针所成旳钝角是多少度?【例 2】有一座时钟目前显示10时整.那么,通过多少分钟,分针与时针第一次重叠;再通过多少分钟,分针与时针第二次重叠?【巩固】钟表旳时针与分针在4点多少分第一次重叠?【巩固】目前是3点,什么时候时针与分针第一次重叠?【例 3】钟表旳时针与分针在8点多少分第一次垂直?【例 4】2点钟后来,什么时刻分针与时针第一次成直角?【例 5】8时到9时之间时针和分针在“8”旳两边,并且两针所形成旳射线到“8”旳距离相等.问这时是8时多少分?【例 6】目前是10点,再过多长时间,时针与分针将第一次在一条直线上?【巩固】在9点与10点之间旳什么时刻,分针与时针在一条直线上?【例 7】晚上8点刚过,不一会小华开始做作业,一看钟,时针与分针恰好成一条直线。
小学奥数时钟夹角问题知识点+例题+练习(分类全面)
例2、根据时间画出时针拓展、根据时间画上分针时钟在任意时刻两针夹角公式:设时钟所处的时刻是m时x分( m是从0到11的整数,0 x 60)。
先分析时针所经过的角度情况:时针每小时经过30 ,m小时共经过30m ;时针每分钟经过0.5,x分钟共经过0.5x。
故知从0时0分到m时x分这一段时间内,时针共经过(30m0.5x) 。
再分析分针所经过的角度情况:分针每分钟经过6,x分钟共经过6x。
故知从0分到x分这一段时间内,分针共经过6x。
我们由行程问题有关知识可知,当时钟所处的时刻是m时x分两针的夹角,相当于时针从0时0分到m时x分这一段时间所经过的角度与分针从0分到x分这一段时间所经过的角度之差,由于我们不能确定时针和分针谁经过的角度谁多谁少 (即不能确定两针的前后位置) ,所以夹角用大的减小的。
时钟在任意时刻两针夹角公式为:( 30°m+0.5°x)-6°x 或6°x-(30°m+0.5°x) 即:30°m-5.5°x 或5.5 °x-30 °m 另外,我们在实际生活中对于两针的夹角是取小于或等于平角的角,若所得结果大于180°,则用360°减去所得角例3、求下列时刻的时针与分针所形成的角的度数。
(1)9点整(2) 2 点整(3)5点30分(4)10点20分(5)7点36分90 60 15 170 12拓展、(1)8点45分针和时针构成多少度角?11点20呢?2点12呢?7.5 140 6(2)时钟从3时到3时20分,分针转过的角度是多少度?时针呢?120103)9时20分,时针与分针的夹角是多少度?1604)8 时15 分,时针与分针的夹角是多少度?157.5例4、现在是 3 点,什么时候时针与分针第一次重合?11 分之180拓展、在 6 点和7 点之间,两针什么时刻重合?11 分之360拓展、现在是2点15分,再过几分钟,时针和分针第一次重合?11分之675(61又11分之 4例5、在10 点与11点之间,钟面上时针和分针在什么时刻垂直?11分之60或11分之420拓展、 2 点钟以后,什么时刻分针与时针第一次成直角?11分之300拓展、在7点与8点之间(包含7点与8点)的什么时刻,两针之间的夹角为120°?11 分之180 ,7 点16.37 分和8 点整例6、在9 点与10 点之间的什么时刻,分针与时针在一条直线上?11 分之180 11 分之540拓展、在10 点与11 点之间,两针在什么时刻成一条直线?11分之24011分之600拓展、从钟表的12 点整开始,时针与分针的第一次垂直与再一次重叠中间相隔的时间是11 分之540拓展、从12 时到13 时,钟的时针与分针可成直角的机会有多少次?分别是什么时刻?2次11 分之18011 分之540例7、小明在7 点与8 点之间解了一道题,开始时分针与时针正好成一条直线,解完题时两针正好重合,小明解题的起始时间?小明解题共用了多少时间?7 点整是210 度,一条直线是180 度,所以分针追击30 度,起始时间是11 分之60 分解题共用11 分之360拓展、一只钟的时针与分针均指在4与 6 之间,且钟面上的“ 5”字恰好在时针与分针的正中央,问这时是什么时刻?1. 时针在4.5 中间,设分针走x 分,0.5x=180-6x,x=13 分之3604 时27 又13 分之92. 分针5.6 中间,设分针走x 分,150-6x=0.5x,x=13 分之3005 时23 分又13 分之 1例8、某人下午 6 点多外出时,看手表上两指针的夹角为110°,下午7 点前回家时发现两指针夹角仍为110°,问:他外出多长时间?分针从落后110,到领先110,共追击220 度220÷5.5=40 分钟拓展、现在是10点和11点之间的某一时刻,在这之后 6 分,分针的位置与在这之前3分时4、在 4 点钟至5 点钟之间,分针和时针在什么时候在同一条直线上?5、在一点到二点之间,分针什么时候与时针构成直角?6、钟面上从 3 时到4 时之间何时时针与分针夹成80°角?7、清晨 5 点时,时钟的时针和分针的夹角是多少度?8、求7时8分两针夹角。
奥数时钟问题
时钟问题
例1、下面的图是9点整,经过一段时间看到图上的时针走了半格,分针应走到什么位置?这时指的是几点几分?
例2、看看表算一算。
例3、王老师上午7:30到校上班,11:30下班,下午1:00上班,5:00下班,王老师上午在校是多少时间?下午在校是多少时间?一共在校小时?
例4、找出钟面上时刻的规律,填空。
举一反三
1、下图是3点整,经过一段时间看到图上的时针走了半格,分针应走到什么位置?这时指的是几点几分?
2、下图是1点整,经过一段时间看到图上的分针走了半圈(从12走到6),时针走过了多少?这时指的是几点几分?
3、下面是反射在镜子中的钟面时针和分针的位置,原来钟面的时刻是几点几分?
4、在括号里写出从上一个钟面到下一个钟面所经过的时间。
5、在下面括号里写出从上一个钟面到下一个钟面所经过的时间。
6、小明每天练毛笔字,今天他是6点40分开始的,7点结束的,他练写毛笔字用了多长时间?
7、做一个零件,从上午7点40分开始做,上午9点20分完成,做这个零件用了多少时间?
8、同学们看电影《一个也不能少》,看完这部电影需要1小时50分,如果9点10分开映,放映结束时应该是什么时间?
9、按规律填出下面空白钟面所应表示的时间。
10、按规律填出空白钟面所应表示的时间。
奥数专讲时钟问题
奥数专讲——时钟问题(一)例一:6点整,分针与时针正好在一条直线上,至少再经过多少分钟两针正好重合?拓展练习:1.从9点开始算起,什么时候时针和分针第一次重合?2.现在是四点整,再过多少分钟时针正好与分针重合?3.3点几分时,分针与时针正好成一条直线?4、一昼夜,时针和分针完全重合过多少次?5、小红星期日上午在9点与10点之间开始做作业,当时钟面上时针与分针恰好成一直线。
作业做完时,发现时针与分针刚好重合。
小红做作业共用了多少分?6、在7点45分、9点38分,时针和分针所构成的锐角分别是多少度?例2:9点过多少分时,钟面上的“9”字恰好在分针和时针的正中间?拓展练习:1、现在是2月13日7时,当分针旋转2003圈后,时针所指示的是几时?2、某人有一只手表,每小时比标准时间快4分钟,在早上8点钟将这只表对准,那么这只手表指向中午12点时,标准时间是几点几分?3、小明从小爱做科学仪器,有一次他做了一只闹钟,这只闹钟一昼夜20小时,每小时50分。
有一天,他睡觉时正好0点整,他希望第二天早上标准时间6点起床,他应该把这只闹钟定时在什么时刻,才能被按时叫醒?4.小明发现自己的手表比家里的闹钟每小时快30秒,而闹钟却又比标准时间每小时慢30秒。
那么小明的手表一昼夜与标准时间差多少秒?5、小胖的手表晚上9点钟对准,可第二天早晨8点到校时,他以为准时到校,却迟到了10分钟。
那么小胖的手表每小时慢几分钟?6、一只老式挂钟的时针与分针每隔66分钟重合一次。
如果早晨8点将此钟调准,第二天早晨此钟指示8点时,实际的标准时间是几时几分?7、钟面上3点过几分时,时针和分针与“3”的距离相等,并且在3的两旁?例3:一辆汽车的速度是每小时60千米,现有一块每小时慢3分钟的表,若用该表计时,测得这辆汽车的速度是多少?(得数保留一位小数)拓展练习:1、一辆汽车的速度是每小时行40千米,现有一块每3小时慢4分钟的表,若用该表来测这辆汽车的速度,那么测得的汽车速度是每小时多少千米?(得数保留两位小数)2、一辆火车的速度为每小时70千米,现有一块4小时快3分钟的手表,若用该表计时,测得这列火车的速度是多少?(得数保留两位小数)巩固练习:1、在0时到12时之间,钟面上的时针与分针成60度角共有多少次?2、一天24小时中分针与时针垂直共有多少次?3、现在是11点整,再过多少分钟,时针和分针第一次垂直?4、科学家进行一项实验,需要每隔4小时做一次记录。
小学奥数——钟表问题
钟表问题1.某钟面的指针指在2点整,再过多少分钟,时针和分针第一次重合?过多少分钟时针和分针首次成直角?2.钟面上3点过几分时,时针和分针与“3”的距离相等,并且在“3”的两旁?3.小明晚上7点与8点之间开始做作业,当时钟面上时针与分针恰好成一直线,当她完成作业时,发现时针与分针刚好重合,小明花了几分钟做作业?4.小红发现自己的手表比家里的闹钟每小时快3分,而闹钟却又比标准时间每小时慢3分,早上8时,将手表和闹钟都对准了标准时间,到第二天凌晨4时,手表上的时针指示的是什么时刻?5.小明去看一场内部资料影片,他在影片刚放映是看了一下手表,影片结束时他又看了下手表,他发现时针和分针刚好交换了一下位置,已知这场影片时间不足1小时,问:这部影片片长多少分钟?6.在4点到5点之间,时针与分针何时成直角?7.现在是下午5时整,6时以前时针与分针正好重合的时刻是几时几分?8.2点整以后,时针与分针第二次重合时几时几分?9.5点到6点之间,分针与时针在什么时候成直角?10.小明有一块手表,每分钟比标准时间快2秒钟,小明早上8点整将手表对准,问当小明这块手表第一次指示12点时,标准时间此时应是几时几分?11.现在是上午9点整,再过多少分钟,分针、时针在一条直线上,而且指向相反?12.钟面上6时与7时之间,时针和分针重合是几点几分?13.钟面上6时45分,时针在分针后面多少度?14.小明每天6点回家吃饭,一天她妈妈从6点开始等,一直等到时针与分针第二次成直角时,小明才回家,问小明几点钟回家的?15.爷爷的老式时钟的时针与分针,每隔66分钟辆两针重合一次,这只时钟每昼夜慢多少分钟?16.当时钟指示的时刻是14时整时,开始计算分针旋转的周数,分针旋转了1919周,时针指示的时刻是几时?17.小明5时起床,一看钟,6字恰好在时针和分针的正中间,这时是5时几分?18.张奶奶家的闹钟每小时快2分钟,昨晚9时,她把闹钟与北京时间对准了,同时把闹钟拨到今天早晨6时闹铃,张奶奶听到闹铃响是比北京时间今天早晨6点提前了多少小时?19.小明家的挂钟比标准时间每小时慢2分钟,小明早上7点上学把时钟对准,回家时挂钟正好指着12点,问:此时标准时间是多少?20.从3点钟开始,分针与时针第二次形成30度角的时间是三点几分?21.小明家的钟比走时准确的钟每小时快12分钟,如果小明家的钟走了2小时,那么准确的钟走了多少小时?22.一辆汽车的速度为每小时50千米,现有一块每5小时慢2分钟的表,若用该表计时,测量这辆汽车的速度是多少?(保留1位小数)。
全国通用数学六年级上册 奥数专题-钟表问题(课件)
解:钟面上看有两次成30°角,从初始时刻
所需的追赶格数为(35-5)格或(35+5)格
(5 7 - 5)(1- 1 ) 30 11 32 8(分)
12
12 11
(5 7 5)(1- 1 ) 40 11 43 7(分)
12
12 11
答:两针7时32
181或
43 7 11
成30°角。
练习1:在4点到5点之间,两针几时几分成30°角? 练习2:在8点到9点之间,两针几时几分成60°角?
解: 3×5+30=45(格)
追及时间= 45 (1 1 ) 49 1(分)
12
11
练习:现在是5点,再过多长时间,时针和分针成反向?
例3:现在是8点,再过多长时间,时针与分针第一次在 同一条直线上?
分析:由于分针与时针第一次在同一条直线的位置是分针落后时针
30格的位置。所以分针在初始时刻需追赶的格数=
1)
12
问题研究:
一、分针与时针重合 二、分针与时针在一条直线上 三、分针与时针有夹角 四、时间快慢问题
一、分针与时针重合问题
例1:分针与时针4点几分重合?
分析:分针与时针重合的问题可以看成时针从4,分针从12开
始的追及问题。
解: 在初始时刻需追赶的格数: 5×4=20(格)
追及时间= 20 (1 1 ) 21 9(分) 12 11
初始时刻相差的格数 -分针超过的格数
解: 8×5-30=10(格)
追及时间= 10 (1 1 ) 1010(分) 12 11
练习:现在是9点,再过多长时间,时针和分针第一次在
同一条直线上?
三、分针与时针有夹角
例4:时针与分针在1点几分成直角?
六年级《时钟问题》奥数教案
(六年级)备课教员:第一讲时钟问题一、教学目标:知识目标1.回顾并掌握圆上角和度的知识。
2.回顾并掌握行程问题中的相遇和追及问题。
3.掌握钟表上时针、分针的转速,并能将相关问题转化为行程问题解题。
能力目标1.培养学生数学思维和推理能力。
2.培养学生自主探索和合作交流的能力。
情感目标1.体会数学源于生活,培养对数学的学习兴趣。
2.激励学生学习数学,帮助学生认识自我,建立自信心。
二、教学重点:1. 掌握钟表上每大格与每小格所对应的角度,会计算时针和分针之间的夹角,以及加深对时针和分针的转速的理解。
三、教学难点:1. 掌握将相关问题转化为行程问题解题的方法。
四、教学准备:PPT五、教学过程:第一课时(50分钟)一、导入(5分)【设计意图:通过简单的游戏回顾钟表上的读数,并思考钟表上每大格和每小格所对应的时间和圆心角,加深理解时针和分针的转速。
】师:同学们,过新年的时候,老师和大家都有一个相同点,你们知道是什么吗?生:拿红包、放鞭炮……师:同学们说得都很对,但只有一个相同点是对老师和同学们都适用的,那就是每个人都长大了一岁,这是时间老人给大家带来的礼物。
今天我们就要来认识一下时间,一起来比一比,看看哪个同学和时间最熟。
(出示PPT“谁读得更快”,分成2组,选出小组代表,由小组代表发言比赛)师:好,我们来看看哪组同学能够更快地说出PPT上钟表的时间是多少?生:(抢答)师:两组同学的代表反应都很快,表现非常棒。
由此可见,同学们对钟表已经很熟悉了。
但老师还是想考考大家。
(出示PPT“认识时钟”,开火车形式回答问题)师:时钟有几大格?生:12大格。
师:每个大格有几个小格?生:5个。
师:所以,一共有几个小格?生:60个。
师:时针走一大格是多少时间?生:1个小时。
师:一小格呢?生:12分钟?师:那么我们把时钟看作一个圆的话,时钟上一大格是几度?生:360÷12=30(度)。
师:一小格呢?生:30÷5=6(度)。
小学奥数时钟问题
1、小学奥数时钟问题有一个时钟每小时快20秒,它在3月1日中午12时准确,下一次准确的时间是什么时间?解:假设24小时制。
设X小时后再准时。
24h=86400sX*20s=86400sX=4320h4320h/24h=180天所以8月28号中午12时会再次准确。
如果是12小时制,那就是要90天,就是在5月30号准确。
6点钟在过多久,时针与分针将第一次在一条直线上?(不包括重合)解:一个小时又60/11分钟方程为:(360/60)x=30+(30/60)x,其中x为走了一个小时到7点后,又走的时间因为6点的时候是满足要求的在一条直线上,之后分针比时针跑的快,所以可以确定,再次满足条件(不是重合的在一条直线上)一定是7点之后, 从7点看起,此时分针指向正上方,时针在正下的偏30度,所以,从现在(7点)起设他们再走x分钟就可以在一条直线上,在这段时间分针走了(360/60)x度,时针走了(30/60)x度.那么,由于上面所说的偏30度的问题,(请自己画出7点的图以帮助理解)就有:分针走的=时针走的+30度, 因此列方程如下:(360/60)x=30+(30/60)x,解之得x=60/11,由于我们是在7点之后设的时间,所以总时间为一个小时又60/11分钟老王有一只手表,他发现手表比家里的闹钟每小时快30秒,而闹钟却比标准时间每小时慢30秒,那么老王的手表一昼夜比标准时间差几秒?解:设手表实际每小时走x秒由题意“手表比闹钟每小时快30秒”,即:闹钟走1小时(3600秒),手表走3630秒;“闹钟比标准时间每小时慢30秒”即:标准时间1小时,闹钟走3570秒。
则有标准时间1小时内3630/3600=x/3570x=3599.75每小时手表与标准时间差3600-x=0.25则王叔叔的手表一昼夜比标准时间差24*0.25=6秒或者:手表比闹钟每小时快30秒,表示闹钟走了3600秒时(每小时的秒数),手表走了3630秒.同样,闹钟比标准每小时慢30秒,表示标准时间走了3600秒时,闹钟走了3570秒. 因此标准时间走了一昼夜24小时(86400秒)时,手表走了24*3570/3600*3630=86394秒也就是说,手表一昼夜比标准时间慢了6秒.2、平均数问题一次考试,甲、乙、丙三人平均分是91分,乙、丙、丁三人平均分是89分,甲、乙二人平均分是95分。
有关时间问题的奥数题
有关时间问题的奥数题1.钟敏家有一个闹钟,每时比标准时间快2分。
星期天上午9点整,钟敏对准了闹钟,然后定上铃,想让闹钟在11点半闹铃,提醒她帮助妈妈做饭。
钟敏应当将闹钟的铃定在几点几分上?2.小翔家有一个闹钟,每时比标准时间慢2分。
有一天晚上9点整,小翔对准了闹钟,他想第二天早晨6∶40起床,于是他就将闹钟的铃定在了6∶40。
这个闹钟响铃的时间是标准时间的几点几分?3.有一个时钟每时快20秒,它在3月1日中午12时准确,下一次准确的时间是什么时间?4.小明家有两个旧挂钟,一个每天快20分,另一个每天慢30分。
现在将这两个旧挂钟同时调到标准时间,它们至少要经过多少天才能再次同时显示标准时间?5.一辆汽车的速度是70千米/时,现有一块每2时慢1分的表,如果用这块表计时,那么测得这辆汽车的时速是多少?(保留一位小数)6.某科学家设计了只怪钟,这只怪钟每昼夜10时,每时100分(如右图所示)。
当这只钟显示5点时,实际上是中午12点;当这只钟显示6点75分时,实际上是什么时间?7.手表比闹钟每时快60秒,闹钟比标准时间每时慢60秒。
8点整将手表对准,12点整手表显示的时间是几点几分几秒?8.某人有一块手表和一个闹钟,手表比闹钟每时慢30秒,而闹钟比标准时间每时快30秒。
问:这块手表一昼夜比标准时间差多少秒?9.有一旧闹钟,每时快4分,如果在上午9点将闹钟拨准,那么当闹钟显示12点整时,实际是什么时间(精确到秒)?10.高山气象站上白天和夜间的气温相差很大,挂钟受气温的影响走的不对准,那么挂钟最早在什么时间恰好快3分?11.一个快钟每时比标准时间快1分,一个慢钟每时比标准时间慢3分。
将两个钟同时调到标准时间,结果在24时内,快钟显示9点整时,慢钟恰好显示8点整。
此时的标准时间是多少?12.爷爷的老式时钟的时针与分针每隔66分重合一次。
如果早晨8点将钟对准,到第二天早晨时钟再次指示8点时,实际是几点几分?13.小明上午8点要到学校上课,可是家里的闹钟早晨6点10分就停了,他上足发条但忘了对表就急急忙忙上学去了,到学校一看还提前了10分。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
• 六、作业设计 • 1、时针与分针第一次重合以后到第二次 重合,中间要隔多少时间?
• 2、8时与9时之间,时针与分针第一次成 直角是什么时间? • 3、求时钟上时针与分针,在5点与6点之 间成反方向的时刻?
七、板书设计
导入:……… ………………
公式: 速度差:…… ……………… 路程差: …… …………
• (2)顺时针方向看,分针在时针前面15 格。从7点开始,分针要比时针多走35+ 15=50(格),需
• 五、归纳总结 • 无论分针有没有追上,还是超过了时针,
分针与时针的速度差不变(1-1/12)=11/12 (格/分),只需确定分针与时针的其始位置算 出路程差,就可以代入公式: • 路程差÷速度差=追及时间 • 最后用原来的时刻加上追及时间,即为所求时 刻。
• 四、迁移延伸
• 在7点与8点之间,时针与分针在什么时刻相互 直?
• 分析与解:7点时分针指向12,时针指向7(见右 图),分针在时针后 面5×7=35(格)。时针与分针 垂直,即时针与分针相差15格,在7点与8点之间,有 下图所示的两种情况:
•
• (1)顺时针方向看,分针在时针后面15格。从7点开 始,分针要比时针多走35-15=20(格),需
时钟问题应用题
• 二、知识呈现 • 1、导入 • 通过与学生对于生活中有关时钟问题 的互动问答,引出对时钟问题特点的探 讨,进而将时钟问题与行程问题中的追 及问题联系起来。 • 2、时钟问题 • ① 速度差=分针速度-时针速度 • 即 V=1-1/12=11/12 (格/时)
• ② 路程差 •
•
例1:…………
例2 …………
总结 板:………… ………………来自…………….练1:………….
练2:………… …………….
作 业:………… …………
• • 有距离 重合(追上)
有距离
有距离 重合
重合(追上)
有距离(超过)
有距离(距离缩短,没追上) 有距离
• 3、例题讲解
• 例1、现在是2点,什么时候时针与分针第一次 重合? • 分析:如右图所示,2点分针指向12,时针 指向2,分针在时针后面5 x 2=10格,
•
• • • •
• 例2、在6点到7点之间,时针与分针第一次成直角 在几时几刻? • 解:分针与时针成直角时,分针在时
• 针后面15格,6点钟时,分针在时针后 • 面:5×6=30(格) • 因为两针成直角时,分针在时针后面15格,所以分针追上 时针的格数是:30-15=15(格)
练习1、现在是下午4时整,5时以前时针与 分针正好重合的时刻是几时几分?
练习2、2点与3点之间,时钟的两针第一次 成直角的时刻是几时几分?