完美版—FIR数字滤波器的设计
实验四FIR数字滤波器的设计
实验四FIR数字滤波器的设计
FIR(有限冲击响应)数字滤波器是一种常见的数字信号处理器件,
可以用于滤波、降噪等应用。
下面是一种FIR数字滤波器的设计流程:
1.确定滤波器的需求:首先确定需要滤除的频率范围和滤波的类型,
例如低通、高通、带通、带阻等等。
2.设计滤波器的频率响应:根据滤波器的需求,设计其理想的频率响应。
可以使用窗函数、最小二乘法等方法获得一个理想的滤波器响应。
3.确定滤波器的阶数:根据设计的频率响应,确定滤波器的阶数。
阶
数越高,滤波器的响应越陡峭,但计算复杂度也会增加。
4.确定滤波器的系数:根据滤波器的阶数和频率响应,计算滤波器的
系数。
可以使用频域窗函数或时域设计方法。
5.实现滤波器:根据计算得到的滤波器系数,实现滤波器的计算算法。
可以使用直接形式、级联形式、传输函数形式等。
6.评估滤波器的性能:使用所设计的FIR滤波器对输入信号进行滤波,评估其滤波效果。
可以使用频率响应曲线、幅频响应、群延时等指标进行
评估。
7.调整滤波器设计:根据实际的滤波效果,如果不满足需求,可以调
整滤波器的频率响应和阶数,重新计算滤波器系数,重新实现滤波器。
以上是FIR数字滤波器的基本设计流程,设计过程中需要考虑滤波器
的性能、计算复杂度、实际应用需求等因素。
实验五 FIR数字滤波器的设计
实验六 FIR 数字滤波器的设计一、实验目的1.熟悉FIR 滤波器的设计基本方法2.掌握用窗函数设计FIR 数字滤波器的原理与方法。
二、实验内容1.FIR 数字滤波器的设计方法FIR 滤波器的设计问题在于寻求一系统函数)(z H ,使其频率响应)(ωj e H 逼近滤波器要求的理想频率响应)(ωj d e H ,其对应的单位脉冲响应为)(n h d 。
(1)用窗函数设计FIR 滤波器的基本原理设计思想:从时域从发,设计)(n h 逼近理想)(n h d 。
设理想滤波器)(ωj d e H 的单位脉冲响应为)(n h d 。
以低通线性相位FIR 数字滤波器为例。
⎰∑--∞-∞===ππωωωωωπd e e H n h e n he H jn j d d jn n d j d )(21)()()( (6-1) )(n h d 一般是无限长的,且是非因果的,不能直接作为FIR 滤波器的单位脉冲响应。
要想得到一个因果的有限长的滤波器h(n),最直接的方法是截断)()()(n w n h n h d =,即截取为有限长因果序列,并用合适的窗函数进行加权作为FIR 滤波器的单位脉冲响应。
按照线性相位滤波器的要求,h(n)必须是偶对称的。
对称中心必须等于滤波器的延时常数,即⎩⎨⎧-==2/)1()()()(N a n w n h n h d (6-2) 用矩形窗设计的FIR 低通滤波器,所设计滤波器的幅度函数在通带和阻带都呈现出振荡现象,且最大波纹大约为幅度的9%,这个现象称为吉布斯(Gibbs )效应。
为了消除吉布斯效应,一般采用其他类型的窗函数。
(2) 典型的窗函数① 矩形窗(Rectangle Window))()(n R n w N = (6-3)② 三角形窗(Bartlett Window)⎪⎩⎪⎨⎧-≤<----≤≤-=121,122210,12)(N n N N n N n N n n w (6-4) ③ 汉宁(Hanning)窗,又称升余弦窗)()]12cos(1[21)(n R N n n w N --=π (6-5) ④ 汉明(Hamming)窗,又称改进的升余弦窗)()]12cos(46.054.0[)(n R N n n w N --=π (6-6) ⑤ 布莱克曼(Blankman)窗,又称二阶升余弦窗)()]14cos(08.0)12cos(5.042.0[)(n R N n N n n w N -+--=ππ (6-7) ⑥ 凯泽(Kaiser)窗 10,)())]1/(21[1()(020-≤≤---=N n I N n I n w ββ (6-8) 其中:β是一个可选参数,用来选择主瓣宽度和旁瓣衰减之间的交换关系,一般说来,β越大,过渡带越宽,阻带越小衰减也越大。
实验五FIR数字滤波器的设计
实验五FIR数字滤波器的设计
FIR数字滤波器的设计可以分为以下几个步骤:
1.确定滤波器的类型和规格:根据实际需求确定滤波器的类型(如低通、高通、带通等)以及滤波器的截止频率、通带衰减以及阻带衰减等规格。
2.选择滤波器的窗函数:根据滤波器的规格,选择合适的窗函数(如矩形窗、汉宁窗、布莱克曼窗等)。
窗函数的选择会影响滤波器的频率响应以及滤波器的过渡带宽度等特性。
3.确定滤波器的阶数:根据滤波器的规格和窗函数的选择,确定滤波器的阶数。
通常来说,滤波器的阶数越高,滤波器的性能越好,但相应的计算和处理也会更加复杂。
4.设计滤波器的频率响应:通过在频率域中设计滤波器的频率响应来满足滤波器的规格要求。
可以使用频率采样法、窗函数法或优化算法等方法。
5. 将频率响应转换为差分方程:通过逆Fourier变换或其他变换方法,将频率响应转换为滤波器的差分方程表示。
6.量化滤波器的系数:将差分方程中的连续系数离散化为滤波器的实际系数。
7.实现滤波器:使用计算机编程、数字信号处理芯片或FPGA等方式实现滤波器的功能。
8.测试滤波器性能:通过输入一组测试信号并观察输出信号,来验证滤波器的性能是否符合设计要求。
需要注意的是,FIR数字滤波器的设计涉及到频率域和时域的转换,以及滤波器系数的选择和调整等过程,需要一定的信号处理和数学背景知识。
FIR数字滤波器的设计 (自动保存的)
实验五FIR数字滤波器的设计04012625 许益嵩一. 实验目的1. 掌握用窗函数法、频率采样法设计FIR滤波器的原理,熟悉MA TLAB编程;2. 知道线性相位FIR滤波器的幅频特性和相频特性;3. 了解不同窗函数对滤波器性能的影响。
二. 实验内容1. N=45,计算并画出矩形窗、三角窗、Hanning窗、Hamming窗和Blackman窗归一化频谱,比较它们的特点;wp=pi/2;ws=pi/4;wc=(wp+ws)/2/pi;hn0=fir1(44,wc,boxcar(45));hn1=fir1(44,wc,bartlett(45));hn2=fir1(44,wc, hanning (45));[hw0,wc]= freqz(hn0,1);[hw1,wc]=freqz(hn1,1);[hw2,wc]=freqz(hn2,1);subplot(321)stem (hn0)gridxlabel('n');ylabel(' hn0');title(' N=45时boxcar设计的hn波形 ');subplot(322)plot(wc/pi,20*log10(abs(hw0)))xlabel('w/pi');ylabel(' 幅度/db ');grid on;title('N=45时boxcar设计低通 ')axis([0,1,-100,0])subplot(323)stem (hn1);gridxlabel('n');ylabel(' hn1');title(' N=45时bartlett设计的hn波形 ');subplot(324)plot(wc/pi,20*log10(abs(hw1)))xlabel('w/pi');ylabel(' 幅度/db ');title('N=45时bartlett设计低通 ')axis([0,1,-100,0])subplot(325)stem (hn2);gridxlabel('n');ylabel(' hn2 ');title(' N=45时hanning设计的hn波形 '); subplot(326)plot(wc/pi,20*log10(abs(hw2)))xlabel('w/pi');ylabel(' 幅度/db ');grid on;title('N=45时hanning设计低通 ')axis([0,1,-100,0])wp=pi/2;ws=pi/4;wc=(wp+ws)/2/pi;hn3=fir1(44,wc,hamming(45));hn4=fir1(44,wc,blackman(45));[hw3,wc]=freqz(hn3,1);[hw4,wc]=freqz(hn4,1);subplot(221)stem (hn3);gridxlabel('n');ylabel(' hn3 ');title(' N=45时hamming设计的hn波形 '); subplot(222)plot(wc/pi,20*log10(abs(hw3)))xlabel('w/pi');ylabel(' 幅度/db ');grid on;title('N=45时hamming设计低通 ')axis([0,1,-100,0])subplot(223)stem (hn4);gridxlabel('n');ylabel(' hn4 ');title(' N=45时blackman设计的hn波形 '); subplot(224)plot(wc/pi,20*log10(abs(hw4)))xlabel('w/pi');ylabel(' 幅度/db ');title('N=45时blackman设计低通 ')axis([0,1,-100,0])矩形窗函数具有最窄的主瓣宽度,但有最大的旁瓣峰值;汉明窗函数的主瓣稍宽,而旁瓣较小;布莱克曼窗函数则更甚之。
7第七章-FIR数字滤波器的设计
30
the infinite sequence hd(n) -∞≤n≤∞
1 0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1 0
-30
-20
-10
0
10
20
30
the truncating sequence hd(n) -M ≤ n ≤ M
M=(N-1)/2
1 0.9ห้องสมุดไป่ตู้0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1 0
4.FIR滤波器具有线性相位的条件
FIR滤波器具有准确的线性 相位的条件是:
FIR滤波器的单位冲激响应 (n)为因果、有限长、 h 实数、且满足以下任一 条件:
偶对称:h(n) h( N 1 n) 奇对称:h(n) h( N 1 n) N 1 其对称中心在n 处。 2
0
5
10
15
20
25
10
Magnitude (dB)
0 -10 -20 -30 -40 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 Normalized Frequency ( rad/sample) 0.9 1
带通希尔伯特滤波器
0
Phase (degrees)
-500 -1000 -1500 -2000
(2)在通带和阻带内出现波动,并在截止频 率 c 2 的两边出现最大尖峰值; N
(3)主瓣附近窗的频率响应为:
N N sin( ) sin( ) 2 2 N Sa ( N ) RN ( ) 2 sin( ) 2 2
随着N的加大,振荡变密,主瓣变窄;主瓣 与旁瓣的幅度亦有所加大,但主瓣与旁瓣的 相对比例不变(吉布斯现象)。
FIR数字滤波器设计实验_完整版
FIR数字滤波器设计实验_完整版本实验旨在设计一种FIR数字滤波器,以滤除信号中的特定频率成分。
下面是完整的实验步骤:材料:-MATLAB或其他支持数字信号处理的软件-计算机-采集到的信号数据实验步骤:1.收集或生成需要滤波的信号数据。
可以使用外部传感器采集数据,或者在MATLAB中生成一个示波器信号。
2. 在MATLAB中打开一个新的脚本文件,并导入信号数据。
如果你是使用外部传感器采集数据,请将数据以.mat文件的形式保存,并将其导入到MATLAB中。
3.对信号进行预处理。
根据需要,你可以对信号进行滤波、降噪或其他预处理操作。
这可以确保信号数据在输入FIR滤波器之前处于最佳状态。
4.确定滤波器的设计规范。
根据信号的特性和要滤除的频率成分,确定FIR滤波器的设计规范,包括滤波器的阶数、截止频率等。
你可以使用MATLAB中的函数来帮助你计算滤波器参数。
5. 设计FIR滤波器。
使用MATLAB中的fir1函数或其他与你所使用的软件相对应的函数来设计满足你的规范条件的FIR滤波器。
你可以选择不同的窗函数(如矩形窗、汉宁窗等)来平衡滤波器的频域和时域性能。
6. 对信号进行滤波。
将设计好的FIR滤波器应用到信号上,以滤除特定的频率成分。
你可以使用MATLAB中的conv函数或其他相应函数来实现滤波操作。
7.分析滤波效果。
将滤波后的信号与原始信号进行比较,评估滤波效果。
你可以绘制时域图、频域图或其他特征图来分析滤波效果。
8.优化滤波器设计。
如果滤波效果不理想,你可以调整滤波器设计参数,重新设计滤波器,并重新对信号进行滤波。
这个过程可能需要多次迭代,直到达到最佳的滤波效果。
9.总结实验结果。
根据实验数据和分析结果,总结FIR滤波器设计的优点和缺点,以及可能的改进方向。
通过完成以上实验步骤,你将能够设计并应用FIR数字滤波器来滤除信号中的特定频率成分。
这对于许多信号处理应用都是非常重要的,如音频处理、图像处理和通信系统等。
实验六FIR数字滤波器的设计
实验六FIR数字滤波器的设计实验六FIR数字滤波器的设计⼀、实验⽬的(1)掌握⽤窗函数法设计FIR数字滤波器的原理和⽅法。
(2)掌握⽤等波纹最佳逼近法设计FIR数字滤波器的原理和⽅法。
(3)掌握⽤海明窗设计FIR数字滤波器的原理和⽅法。
(4)学会调⽤MATLAB函数设计与实现FIR滤波器。
⼆、实验内容及步骤(1)掌握⽤窗函数法和等波纹最佳逼近法设计FIR数字滤波器的原理;(2)调⽤信号产⽣函数xtg产⽣具有加性噪声的信号xt,并⾃动显⽰xt及其频谱;图1 具有加性噪声的信号x(t)及其频谱(3)请设计低通滤波器,从⾼频噪声中提取xt中的单频调幅信号,要求信号幅频失真⼩于0.1dB,将噪声频谱衰减60dB。
先观察xt的频谱,确定滤波器指标参数。
(4)根据滤波器指标选择合适的窗函数,计算窗函数的长度N,调⽤MATLAB函数fir1设计⼀个FIR低通滤波器。
并编写程序,调⽤MATLAB快速卷积函数fftfilt实现对xt的滤波。
绘图显⽰滤波器的频响特性曲线、滤波器输出信号的幅频特性图和时域波形图。
(5)重复(3),滤波器指标不变,但改⽤等波纹最佳逼近法,调⽤MATLAB函数remezord和remez设计FIR数字滤波器。
并⽐较两种设计⽅法设计的滤波器阶数。
(6)⽤海明窗设计⼀个阶数为48,通带范围为0.35pi≤w≤0.65pi 的带通线性相位滤波器。
提⽰:1.采样频率Fs=1000Hz,采样周期T=1/Fs;2.可选择滤波器指标参数:通带截⽌频率fp=120Hz,阻带截⾄频率fs=150Hz,换算成数字频率,通带截⽌频率p 20.24pfωπ=T=π,通带最⼤衰为0.1dB,阻带截⾄频率s 20.3sfωπ=T=π,阻带最⼩衰为60dB。
3.实验程序框图:图2 实验程序框图附件:(1)信号产⽣函数xtg程序清单:function xt=xtg(N)%实验五信号x(t)产⽣,并显⽰信号的幅频特性曲线%xt=xtg(N) 产⽣⼀个长度为N,有加性⾼频噪声的单频调幅信号xt,采样频率Fs=1000Hz%载波频率fc=Fs/10=100Hz,调制正弦波频率f0=fc/10=10Hz. N=2000;Fs=1000;T=1/Fs;Tp=N*T;t=0:T:(N-1)*T;fc=Fs/10;f0=fc/10; %载波频率fc=Fs/10,单频调制信号频率为f0=Fc/10;mt=cos(2*pi*f0*t); %产⽣单频正弦波调制信号mt,频率为f0ct=cos(2*pi*fc*t); %产⽣载波正弦波信号ct,频率为fcxt=mt.*ct; %相乘产⽣单频调制信号xtnt=2*rand(1,N)-1; %产⽣随机噪声nt%=======设计⾼通滤波器hn,⽤于滤除噪声nt中的低频成分,⽣成⾼通噪声=======fp=150; fs=200;Rp=0.1;As=70; % 滤波器指标fb=[fp,fs];m=[0,1]; % 计算remezord函数所需参数f,m,devdev=[10^(-As/20),(10^(Rp/20)-1)/(10^(Rp/20)+1)];[n,fo,mo,W]=remezord(fb,m,dev,Fs); % 确定remez函数所需参数hn=remez(n,fo,mo,W); % 调⽤remez函数进⾏设计,⽤于滤除噪声nt中的低频成分yt=filter(hn,1,10*nt); %滤除随机噪声中低频成分,⽣成⾼通噪声yt%============================================ ====================xt=xt+yt; %噪声加信号fst=fft(xt,N);k=0:N-1;f=k/Tp;subplot(3,1,1);plot(t,xt);grid;xlabel('t/s');ylabel('x(t)');axis([0,Tp/5,min(xt),max(xt)]);title('(a) 信号加噪声波形') subplot(3,1,2);plot(f,abs(fst)/max(abs(fst)));grid;title('(b) 信号加噪声的频谱')axis([0,Fs/2,0,1.2]);xlabel('f/Hz');ylabel('幅度')(2)⽤窗函数法设计FIR滤波器% FIR数字滤波器设计及软件实现clear all;close all;%==调⽤xtg产⽣信号xt, xt长度N=1000,并显⽰xt及其频谱,=========N=1000;xt=xtg(N);fp=120; fs=150;Rp=0.2;As=60;Fs=1000; T=1/Fs; % 输⼊给定指标% (1) ⽤窗函数法设计滤波器wc=(fp+fs)/Fs; %理想低通滤波器截⽌频率(关于pi归⼀化)B=2*pi*(fs-fp)/Fs; %过渡带宽度指标Nb=ceil(11*pi/B); %blackman窗的长度Nhn=fir1(Nb-1,wc,blackman(Nb));Hw=abs(fft(hn,1024)); % 求设计的滤波器频率特性ywt=fftfilt(hn,xt,N); %调⽤函数fftfilt对xt滤波figure(2);subplot(3,1,1);myplot(hn,xt); %调⽤绘图函数myplot绘制损耗函数曲线y1t='y_w(t)';subplot(3,1,2);tplot(ywt,T,y1t);(3) % ⽤等波纹最佳逼近法设计滤波器fb=[fp,fs];m=[1,0]; % 确定remezord函数所需参数f,m,devdev=[(10^(Rp/20)-1)/(10^(Rp/20)+1),10^(-As/20)]; [Ne,fo,mo,W]=remezord(fb,m,dev,Fs); % 确定remez函数所需参数hn=remez(Ne,fo,mo,W); % 调⽤remez函数进⾏设计Hw=abs(fft(hn,1024)); % 求设计的滤波器频率特性yet=fftfilt(hn,xt,N); % 调⽤函数fftfilt对xt滤波figure(3);subplot(3,1,1);myplot(hn,xt); %调⽤绘图函数myplot绘制损耗函数曲线y2t='y_e(t)';subplot(3,1,2);tplot(yet,T,y2t)(4) 上⾯代码调⽤的⼦函数:(4-1) myplot:计算时域离散系统损耗函数并绘制曲线图。
实验七FIR数字滤波器设计
实验七 FIR 数字滤波器设计一、实验目的1.掌握利用窗函数设计FIR 滤波器;2.掌握线性相位滤波器的特点及其应用。
二、背景知识1.线性相位FIR 滤波器特性:如果FIR 滤波器单位冲激响应h(n)为实数,0≤n ≤N-1,且满足以下条件,则这种FIR 滤波器具有严格线性相位。
具体分四种形式:1)N 为奇数,h(n)偶对称则频率响应:212/)1(0)cos()()(---=⎥⎥⎦⎤⎢⎢⎣⎡=∑N jw N n jw e wn n a e H 其中,231)21(2)()21()0(-≤≤--⋅=-=N n n N h n a N h a振幅响应为: ∑-==2/)1(0)cos()()(N n wn n a w Hr ,它不同于幅值特性|H(e jw )| 2)N 为偶数,h(n)偶对称 则频率响应:212/1)}21(cos{)()(--=⎥⎥⎦⎤⎢⎢⎣⎡-=∑N jw N n jw e n w n b e H 其中,21)2(2)(N n n N h n b ≤≤-⋅= 振幅响应为: ∑=-=2/1)}21(cos{)()(N n n w n b w Hr ,3)N 为奇数,h(n)奇对称则频率响应:]212[2/)1(1)sin()()(w N j N n jw e wn n c e H ----=⎥⎥⎦⎤⎢⎢⎣⎡=∑π 其中,211)21(2)(-≤≤--⋅=N n n N h n c 振幅响应为: ⎥⎥⎦⎤⎢⎢⎣⎡=∑-=2/)1(1)sin()()(N n wn n c w Hr )1()(n N h n h --±=4)N 为偶数,h(n)奇对称则频率响应:212/1)}21(sin{)()(--=⎥⎥⎦⎤⎢⎢⎣⎡-=∑N jw N n jw en w n d e H 其中,21)2(2)(Nn n Nh n d ≤≤-⋅=振幅响应为: ∑=-=2/1)}21(sin{)()(N n n w n d w Hr ,2.各种窗函数:略三、实验内容ing Program10_1, complete EXAMPLE10.13 of Page 424ing Program10_2, complete EXAMPLE10.15 of Page 4253. Using Program10_4, complete EXAMPLE10.24 of Page 4374. Using Program10_5, complete EXAMPLE10.25 of Page 438四、实验程序及结果五、参考程序:1.% Program 10_1% Estimation of FIR Filter Order Using remezord%fedge = input('Type in the bandedges = ');mval = input('Desired magnitude values in each band = '); dev = input('Allowable deviation in each band = ');FT = input('Type in the sampling frequency = ');[N, fpts, mag, wt] = remezord(fedge, mval, dev, FT); fprintf('Filter order is %d \n',N);2.% Program 10_2% Design of Equiripple Linear-Phase FIR Filters%format longfedge = input('Band edges in Hz = ');mval = input('Desired magnitude values in each band = '); dev = input('Desired ripple in each band =');FT = input('Sampling frequency in Hz = ');[N,fpts,mag,wt] = remezord(fedge,mval,dev,FT);b = remez(N,fpts,mag,wt);disp('FIR Filter Coefficients'); disp(b)[h,w] = freqz(b,1,256);plot(w/pi,20*log10(abs(h)));grid;xlabel('\omega/\pi'); ylabel('Gain, dB');3.% Program 10_4% Kaiser Window Generation%fpts = input('Type in the bandedges = ');mag = input('Type in the desired magnitude values = '); dev = input('Type in the ripples in each band = ');[N,Wn,beta,ftype] = kaiserord(fpts,mag,dev)w = kaiser(N+1,beta); w = w/sum(w);[h,omega] = freqz(w,1,256);plot(omega/pi,20*log10(abs(h)));grid;xlabel('\omega/\pi'); ylabel('Gain, dB');4.% Program 10_5% Lowpass Filter Design Using the Kaiser Window%fpts = input('Type in the bandedges = ');mag = input('Type in the desired magnitude values = '); dev = input('Type in the ripples in each band = ');[N,Wn,beta,ftype] = kaiserord(fpts,mag,dev)kw = kaiser(N+1,beta);b = fir1(N,Wn, kw);[h,omega] = freqz(b,1,512);plot(omega/pi,20*log10(abs(h)));grid;xlabel('\omega/\pi'); ylabel('Gain, dB');。
实验四FIR数字滤波器的设计
实验四FIR数字滤波器的设计
FIR数字滤波器也称作有限脉冲响应数字滤波器,是一种常见的数字滤波器设计方法。
在设计FIR数字滤波器时,需要确定滤波器的阶数、滤波器的类型(低通、高通、带通、带阻)以及滤波器的参数(截止频率、通带波纹、阻带衰减、过渡带宽等)。
下面是FIR数字滤波器的设计步骤:
1.确定滤波器的阶数。
阶数决定了滤波器的复杂度,一般情况下,阶数越高,滤波器的性能越好,但计算量也越大。
阶数的选择需要根据实际应用来进行权衡。
2.确定滤波器的类型。
根据实际需求,选择低通、高通、带通或带阻滤波器。
低通滤波器用于去除高频噪声,高通滤波器用于去除低频噪声,带通滤波器用于保留一定范围内的频率信号,带阻滤波器用于去除一定范围内的频率信号。
3.确定滤波器的参数。
根据实际需求,确定滤波器的截止频率、通带波纹、阻带衰减和过渡带宽等参数。
这些参数决定了滤波器的性能。
4.设计滤波器的频率响应。
使用窗函数、最小二乘法等方法,根据滤波器的参数来设计滤波器的频率响应。
5.将频率响应转换为滤波器的系数。
根据设计的频率响应,使用逆快速傅里叶变换(IFFT)等方法将频率响应转换为滤波器的系数。
6.实现滤波器。
将滤波器的系数应用到数字信号中,实现滤波操作。
7.优化滤波器性能。
根据需要,可以对滤波器进行进一步优化,如调整滤波器的阶数、参数等,以达到较好的滤波效果。
以上是FIR数字滤波器的设计步骤,根据实际需求进行相应的调整,可以得到理想的滤波器。
FIR滤波器的设计与性能评估
FIR滤波器的设计与性能评估一、引言滤波器在信号处理中起到了至关重要的作用。
滤波器可以根据信号的频率特性对信号进行处理,使我们可以去除噪声、增强感兴趣的频段等操作。
本文将介绍FIR(Finite Impulse Response)滤波器的设计原理和性能评估方法。
二、FIR滤波器的设计方法FIR滤波器是一种经典的数字滤波器,它利用有限的输入响应对输入信号进行滤波处理。
FIR滤波器具有线性相位和稳定性等优点,因此在许多应用中得到广泛应用。
1. 理想低通滤波器设计首先,我们需要确定FIR滤波器的设计参数,其中最基本的是滤波器的类型。
假设我们需要设计一个低通滤波器,即只保留低于一定频率的信号分量。
可以采用理想低通滤波器的方法进行设计。
2. 频率响应的离散化接下来,我们需要将理想低通滤波器的频率响应离散化,得到滤波器的系数。
常用的方法有频率采样法和窗函数法。
频率采样法通过在频域上均匀采样理想滤波器的频率响应得到系数,而窗函数法则需要选择一个窗函数来对离散化后的频率响应进行加窗。
3. 系数计算与滤波器实现根据离散化后的频率响应,可以通过逆变换得到滤波器的系数。
然后,我们可以将这些系数用于实现FIR滤波器。
常见的实现方式包括直接形式(Direct Form)、级联形式(Cascade Form)和线性相位形式(Linear Phase Form)等。
三、FIR滤波器的性能评估方法设计完成后,我们需要对FIR滤波器进行性能评估,以确保其能够满足我们的需求。
1. 幅频响应和相频响应在性能评估中,我们通常关注滤波器的幅频响应和相频响应。
幅频响应可以反映滤波器对不同频率分量的衰减或增益情况,而相频响应则描述了信号在滤波器中的相位变化。
2. 截止频率和过渡带宽对于低通滤波器而言,截止频率和过渡带宽是评估性能的重要指标。
截止频率是指滤波器开始起作用的频率,而过渡带宽则是指截止频率和衰减区域之间的频率范围。
3. 线性相位特性FIR滤波器具有线性相位的特点,这意味着不同频率分量的信号在滤波器中的延迟是相同的。
FIR数字滤波器的设计
FIR 数字滤波器的设计一、实验内容:设计一个FIR 滤波器。
其中窗函数选用凯赛窗,滤波器的长度可变(NF=2M )。
分别设计低通、高通、带通、带阻4种滤波器。
二、FIR 数字滤波器:1、FIR 数字滤波器的特点:是选择有限还是无限长的滤波器主要取决于每种类型滤波器的优点在设计问题中的重要性。
对于FIR 滤波器不存在完整的设计方程。
虽然可以直接用窗函数法,但是为了满足预定的技术指标有可能需要作一些迭代。
用完整的公式来设计IIR 滤波器只限于低通、高通、带通、带阻少数几种滤波器。
而且,这些逼近方法通常没有考虑滤波器的相位响应。
所以,虽然我们可以用相当简单的计算方法来得到幅度响应很好的椭圆低通滤波器,但是群延迟响应将会非常差,特别是在频带边缘处。
而FIR 滤波器可以有精确的线性位移。
而且,窗函数法和大多数算法设计法都有可能逼近比较任意的频率响应特性,但所遇到的困难要比在低通滤波器设计中遇到的稍大一些。
另外,FIR 滤波器的设计问题要比IIR 的有更多的可控之处。
2、窗函数的基本思想与特点:它是设计FIR 滤波器的最简单的方法、它的频率响应()[]j j nd dn H e h n eωω∞-=-∞=∑式中,[]d h n 是对应的冲激响应序列,它可以借助()j d H e ω表示为[]()12jj nd dh n H e e d πωωπωπ-=⎰。
这种系统具有非因果的和无限长的冲激响应。
得到这种系统的因果FIR 滤波器的最直接的方法是使用“窗口”截短该理想冲激响应。
通过在截短时保留冲激响应的中间部分,可以得到线性相位的FIR 滤波器。
3、凯赛窗简介: 它定义为其他,00,)(])]/)[(1([{][02/120Mn I n I n ≤≤--=βααβω 式中)(,∙=02/I M α表示第一类零阶修正贝赛尔函数。
凯赛窗有两个参数:β参数是0.40.1102(8.7),500.5842(21)0.07886(21),50210,21ααβαααα->⎧⎪=-+-≥≥⎨⎪<⎩其中,20log αδ=-是以分贝形式表示的阻带衰减。
FIR数字滤波器的设计
FIR数字滤波器的设计
FIR(有限冲激响应)数字滤波器的设计主要包括以下几个步骤:
1.确定滤波器的要求:根据应用需求确定滤波器的类型(如低通、高通、带通、带阻等)和滤波器的频率特性要求(如截止频率、通带波动、阻带衰减等)。
2.确定滤波器的长度:根据频率特性要求和滤波器类型,确定滤波器的长度(即冲激响应的系数个数)。
长度通常根据滤波器的截止频率和阻带宽度来决定。
3.设计滤波器的冲激响应:使用一种滤波器设计方法(如窗函数法、频率抽样法、最小二乘法等),根据滤波器的长度和频率特性要求,设计出滤波器的冲激响应。
4.计算滤波器的频率响应:将设计得到的滤波器的冲激响应进行傅里叶变换,得到滤波器的频率响应。
可以使用FFT算法来进行计算。
5.优化滤波器的性能:根据频率响应的实际情况,对滤波器的冲激响应进行优化,可以通过调整滤波器的系数或使用优化算法来实现。
6.实现滤波器:将设计得到的滤波器的冲激响应转化为差分方程或直接形式,并使用数字信号处理器(DSP)或其他硬件进行实现。
7.验证滤波器的性能:使用测试信号输入滤波器,检查输出信号是否满足设计要求,并对滤波器的性能进行验证和调整。
以上是FIR数字滤波器的一般设计步骤,具体的设计方法和步骤可能因应用需求和设计工具的不同而有所差异。
在实际设计中,还需要考虑滤波器的实时性、计算复杂度和存储资源等方面的限制。
第7章FIR数字滤波器的设计
| H (e jω) |
只能实现带通滤波器
-π
0
π
2π ω
(d) BSF
情况4:h(n) = -h(N-n-1),N为偶数
M
H g () 2h(n) sin[(n )] n0 | H (e jω) |
-π
0
π
2π ω
(a) LPF
| H (e jω) |
N 1
2
,
M
N 1 2
N 1 N 1
h(n) hd (n)w(n)
N 1 2
hd (n) , 0 ,
0n 其 它n
N
1
h(n)
c
0 ,
sin[c (n
N 1)] 2,
0
n
c
(n
N 1) 2
其 它n
N
1
图7.2.1 窗函数设计法的时域波形(矩形窗,N=30)
加窗处理对理想矩形频率响应产生的影响
h(n)
hd
(n)wN
(n)
H (e j )
(7.2.6)
(
)
(N 1) 2
对实际FIR滤波器频率响应的幅度函数起影 响的是窗函数频率响应的幅度函数 WRg ()
可以实现各种滤波器
-π
0
π
2π ω
(c) BPF
| H (e jω) |
-π
0
π
2π ω
(d) BSF
情况2:h(n) = h(N-n-1),N为偶数
N 1
2
,
M
N 1 2
N 1
H (e j ) h(n)e jn H g ()e j () H g ()e j n0
FIR数字滤波器的设计
四、实验内容
2、fir2函数:设计具有任意频率特性的FIR滤波器 b=fir2(n,f,m): 设计一个n阶滤波器,幅频响应向量由
输入参数f,a决定。 f频率向量,取值范围为(0.0,1.0),1对应0.5fs. f的元
素以升序排列。 2 、b=fir2(n, f,m,window): window: 指定所使用的窗函数的类型,其长度为n+1,默
四、实验内容
subplot(2,2,3); plot(rad,20*log(abs(mag3))); grid on; subplot(2,2,4); plot(rad,20*log(abs(mag4))); grid on;
四、实验内容
1、fir1函数:设计具有标准频率特性的FIR滤波器 (1)b=fir1(n,wn): 返回所设计的阶的低通FIR滤波器,
2、根据性能要求,合理选择单位脉冲响应h(n)的奇偶对称性,从而确定 理想频率响应 H d (的e jw幅) 频择适当的窗函数w(n),根据 h(n) hd (n) 求w所N (需n)设计
的FIR滤波器单位脉冲响应
5、求 H d (e分jw )析其幅频特性,若不满足要求,可适当改变窗函数形式 或长度N,重复上述设计过程,以得到满意的结果。
三、实验原理
分别用以上函数生成n=50的窗函数,并观察其频率特性 (使用归一化的幅值和频率)
三、实验原理
n=51; window=boxcar(n); [h,w]=freqz(window,1); subplot(2,1,1) stem(window); subplot(2,1,2) plot(w/pi,20*log(abs(h)/abs(h(1))));
三、实验原理
n=51; window=triang(n); [h,w]=freqz(window,1); subplot(2,1,1) stem(window); subplot(2,1,2) plot(w/pi,20*log(abs(h)/abs(h(1))));
FIR数字滤波器的设计
实验报告专业班级电科0803姓名班双江学号 200848360304 实验名称 FIR数字滤波器的设计一、实验目的:设计FIR数字滤波器二、实验内容:设计一个带通FIR数字滤波器,设计指标:通带衰减1dB,阻带衰减40dB,通带截止频率:500HZ,700HZ;阻带截止频率:400HZ,800HZ;抽样频率:2000HZ。
1、使用hamming窗函数:MATLAB程序:% Program P7_5_1% Design of a Bandpass FIR Digital Filterclc;clear all;Rp = 1; % bandpass attenuation in dBRs = 40; % bandstop attenuation in dBOmegaP1_1=500; % bandpass edge frequencyOmegaP1_2=700; % bandpass edge frequencyOmegaS1_1=400; % bandstop edge frequencyOmegaS1_2=800; % bandstop edge frequencyFt=2000; % samling frequencyFp=[OmegaP1_1 OmegaP1_2];Fs=[OmegaS1_1 OmegaS1_2];Deta_p=1-10^(-Rp/20);Deta_s=10^(-Rs/20);% Estimate the Filter OrderN = kaiord(Fp, Fs, Deta_p, Deta_s, Ft);% Design the FilterWn=2/Ft*[OmegaP1_1 OmegaP1_2];% Normalize the frequency,Ft/2 correspond to Pi(Normalize 1 correspond Pi)b=fir1(N,Wn,'bandpass',hamming(N+1));% Compute the gain response[g, w] = Gain(b,1);% Plot the gain responseplot(w/pi,g);gridaxis([0 1 -60 5]);xlabel('\omega /\pi'); ylabel('Gain in dB');title('Gain Response of a FIR Bandpass Filter');运行结果时衰减为5.0624;ω/π=0.8时衰减为25.7568。
FIR数字滤波器设计实验_完整版
FIR数字滤波器设计实验_完整版FIR数字滤波器设计实验是一种以FIR(Finite Impulse Response)数字滤波器为主题的实验。
在这个实验中,我们将学习如何设计和实现一个FIR数字滤波器,以滤除特定频率范围内的噪声、增强信号或实现其他特定的信号处理功能。
以下是一个可能的FIR数字滤波器设计实验的完整版实验步骤和要求:实验目的:1.学习FIR数字滤波器的基本原理和设计方法。
2. 熟悉Matlab等数字信号处理软件的使用。
3.实践设计和实现一个FIR数字滤波器,以实现特定的信号处理功能。
实验步骤:1.确定实验所需的信号处理功能。
例如,设计一个低通滤波器以滤除高频噪声,或设计一个带通滤波器以增强特定频率范围内的信号。
2.确定数字滤波器的规格。
包括截止频率、滤波器阶数、滤波器类型(低通、高通、带通、带阻)等。
3. 使用Matlab等数字信号处理软件进行设计和仿真。
根据信号处理功能和滤波器规格,选择合适的设计方法(如窗函数法、频率采样法等),并设计出数字滤波器的系数。
4.对设计的数字滤波器进行性能评估。
通过模拟信号输入和滤波输出、频率响应曲线等方式,评估滤波器在实现信号处理功能方面的性能。
5.利用硬件平台(如DSP处理器、FPGA等)实现设计的FIR数字滤波器。
根据设计的滤波器系数,编程实现滤波器算法,并进行实时信号处理和输出。
同时,可以利用外部信号源输入不同类型的信号,进行滤波效果验证和性能测试。
6.对滤波器设计和实现进行综合分析。
根据实际效果和性能测试结果,分析滤波器设计中的优缺点,并提出改进方案。
实验要求:1.理解FIR数字滤波器的基本原理和设计方法。
2. 掌握Matlab等数字信号处理软件的使用。
3.能够根据信号处理要求和滤波器规格,选择合适的设计方法并设计出满足要求的滤波器。
4.能够通过模拟和实验验证滤波器的性能。
5.具备对滤波器设计和实现进行综合分析和改进的能力。
通过完成上述实验,学生可以深入理解FIR数字滤波器的原理和设计方法,掌握数字信号处理软件的使用,提升数字信号处理的实践能力,并了解数字滤波器在实际应用中的重要性和价值。
fir数字滤波器的设计与实现
fir数字滤波器的设计与实现一、引言数字滤波器是数字信号处理中的重要组成部分,它可以用于去除信号中的噪声,平滑信号等。
其中,fir数字滤波器是一种常见的数字滤波器。
本文将介绍fir数字滤波器的设计与实现。
二、fir数字滤波器概述fir数字滤波器是一种线性相位、有限脉冲响应(FIR)的数字滤波器。
它通过一系列加权系数对输入信号进行卷积运算,从而实现对信号的过滤。
fir数字滤波器具有以下特点:1. 稳定性好:由于其有限脉冲响应特性,使得其稳定性优于IIR(无限脉冲响应)数字滤波器。
2. 线性相位:fir数字滤波器在频域上具有线性相位特性,因此可以保持输入信号中各频率分量之间的相对时延不变。
3. 设计灵活:fir数字滤波器可以通过改变加权系数来实现不同的频率响应和截止频率。
三、fir数字滤波器设计步骤1. 确定需求:首先需要确定所需的频率响应和截止频率等参数。
2. 选择窗函数:根据需求选择合适的窗函数,常用的有矩形窗、汉明窗、布莱克曼窗等。
3. 计算滤波器系数:利用所选窗函数计算出fir数字滤波器的加权系数。
常见的计算方法有频率采样法、最小二乘法等。
4. 实现滤波器:将计算得到的加权系数应用于fir数字滤波器中,实现对信号的过滤。
四、fir数字滤波器实现方法1. 直接形式:直接将计算得到的加权系数应用于fir数字滤波器中,实现对信号的过滤。
该方法简单易懂,但是需要大量运算,不适合处理较长的信号序列。
2. 快速卷积形式:利用快速傅里叶变换(FFT)来加速卷积运算。
该方法可以大大减少计算量,适合处理较长的信号序列。
五、fir数字滤波器应用案例1. 语音处理:fir数字滤波器可以用于去除语音信号中的噪声和杂音,提高语音质量。
2. 图像处理:fir数字滤波器可以用于图像去噪和平滑处理,提高图像质量。
3. 生物医学信号处理:fir数字滤波器可以用于生物医学信号的滤波和特征提取,如心电信号、脑电信号等。
六、总结fir数字滤波器是一种常见的数字滤波器,具有稳定性好、线性相位和设计灵活等优点。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1引言数字信号处理(Digital Signal Processing,简称DSP)是一门涉及许多学科而又广泛应用于许多领域的新兴学科。
20世纪60年代以来,随着计算机和信息技术的飞速发展,数字信号处理技术应运而生并得到迅速的发展。
数字信号处理是一种通过使用数学技巧执行转换或提取信息,来处理现实信号的方法,这些信号由数字序列表示。
在过去的二十多年时间里,数字信号处理已经在通信等领域得到极为广泛的应用。
德州仪器、Freescale等半导体厂商在这一领域拥有很强的实力。
数字信号处理的算法需要利用计算机或专用处理设备如数字信号处理器(DSP)和专用集成电路(ASIC)等。
数字信号处理技术及设备具有灵活、精确、抗干扰强、设备尺寸小、造价低、速度快等突出优点,这些都是模拟信号处理技术与设备所无法比拟的。
数字信号处理的目的是对真实世界的连续模拟信号进行测量或滤波。
因此在进行数字信号处理之前需要将信号从模拟域转换到数字域,这通常通过模数转换器实现。
而数字信号处理的输出经常也要变换到模拟域,这是通过数模转换器实现的。
数字信号处理的核心算法是离散傅立叶变换(DFT),是DFT使信号在数字域和频域都实现了离散化,从而可以用通用计算机处理离散信号。
而使数字信号处理从理论走向实用的是快速傅立叶变换(FFT),FFT的出现大大减少了DFT的运算量,使实时的数字信号处理成为可能、极大促进了该学科的发展。
DSP(digital signal processor)是一种独特的微处理器,是以数字信号来处理大量信息的器件。
其工作原理是接收模拟信号,转换为0或1的数字信号。
再对数字信号进行修改、删除、强化,并在其他系统芯片中把数字数据解译回模拟数据或实际环境格式。
它不仅具有可编程性,而且其实时运行速度可达每秒数以千万条复杂指令程序,远远超过通用微处理器,是数字化电子世界中日益重要的电脑芯片。
它的强大数据处理能力和高运行速度,是最值得称道的两大特色。
1.1DSP微处理器芯片的主要特点:(1)在一个指令周期内可完成一次乘法和一次加法;(2)程序和数据空间分开,可以同时访问指令和数据;(3)片内具有快速RAM,通常可通过独立的数据总线在两块中同时访问;(4)具有低开销或无开销循环及跳转的硬件支持;(5)快速的中断处理和硬件I/O支持;(6)具有在单周期内操作的多个硬件地址产生器;(7)可以并行执行多个操作;(8)支持流水线操作,使取指、译码和执行等操作可以重叠执行。
1.2DSP优点:(1)对元件值的容限不敏感,受温度、环境等外部参与影响小;(2)容易实现集成;(3)可以分时复用,共享处理器;(4)方便调整处理器的系数实现自适应滤波;(5)可用于频率非常低的信号;(6)可实现模拟处理不能实现的功能:线性相位、多抽样率处理、级联、易于存储等。
1.3DSP技术的应用语音处理:语音编码、语音合成、语音识别、语音增强、语音邮件、语音储存等。
图像/图形:二维和三维图形处理、图像压缩与传输、图像识别、动画、机器人视觉、多媒体、电子地图、图像增强等。
军事;保密通信、雷达处理、声呐处理、导航、全球定位、跳频电台、搜索和反搜索等。
仪器仪表:频谱分析、函数发生、数据采集、地震处理等。
自动控制:控制、深空作业、自动驾驶、机器人控制、磁盘控制等。
医疗:助听、超声设备、诊断工具、病人监护、心电图等。
家用电器:数字音响、数字电视、可视电话、音乐合成、音调控制、玩具与游戏等。
1.4实现方法1.在通用的计算机(如PC机)上用软件(如Fortran、C语言)实现;--速度较慢,一般可用于DSP算法的模拟2.在通用计算机系统中加上专用的加速处理机实现;--专用性强,不便于系统的独立运行3.用通用的单片机(如MCS-51、96系列等)实现。
这种方法可用于一些不太复杂的数字信号处理,如数字控制等;--只适用于实现简单的DSP算法4.用通用的可编程DSP芯片实现。
与单片机相比,DSP芯片具有更加适合于数字信号处理的软件和硬件资源,可用于复杂的数字信号处理算法;--应用较多5.用专用的DSP芯片实现。
在一些特殊的场合,要求的信号处理速度极高,用通用DSP芯片很难实现,例如专用于FFT、数字滤波、卷积、相关等算法的DSP芯片,这种芯片将相应的信号处理算法在芯片内部用硬件实现,无需进行编程。
--专用性强1.5数字信号处理特点精度高:在模拟系统的电路中,元器件精度要达到10-3以上已经不容易了,而数字系统17位字长可以达到10-5的精度,这是很平常的。
例如,基于离散傅里叶变换的数字式频谱分析仪,其幅值精度和频率分辨率均远远高于模拟频谱分析仪。
灵活性强:数字信号处理采用了专用或通用的数字系统,其性能取决于运算程序和乘法器的各系数,这些均存储在数字系统中,只要改变运算程序或系数,即可改变系统的特性参数,比改变模拟系统方便得多。
可以实现模拟系统很难达到的指标或特性:例如:有限长单位脉冲响应数字滤波器可以实现严格的线性相位;在数字信号处理中可以将信号存储起来,用延迟的方法实现非因果系统,从而提高了系统的性能指标;数据压缩方法可以大大地减少信息传输中的信道容量。
可以实现多维信号处理:利用庞大的存储单元,可以存储二维的图像信号或多维的阵列信号,实现二维或多维的滤波及谱分析等。
2软件介绍2.1MATLAB软件2.1.1MATLAB软件介绍MATLAB是“矩阵实验室”(MATrix LABoratoy)的缩写,是目前应用最为广泛的一种集科学运算、程序设计、高质量的可视化与界面设计,以及便于与其他程序和语言借口的软件。
目前,MATLAB已经成为自动控制、数字信号处理、动态系统仿真等诸多学科极有效的工具。
MATLAB是美国Math Works公司推出的一种面向工程和科学计算的交互式计算软件。
它以矩阵运算为基础,把计算、可视化、程序设计融合在一个简单易用的交互式工作环境中,是一款数据分析和处理功能都非常强大的工程实用软件。
Matlab是一个交互式的系统,它的基本运算单元是不需指定维数的矩阵,按照IEEE的数值计算标准(能正确处理无穷数Inf(Infinity)、无定NaN(not-a-number)及其运算)进行计算。
系统提供了大量的矩阵及其它运算函数,可以方便地进行一些很复杂的计算,而且运算效率极高。
Matlab命令和数学中的符号、公式非常接近,可读性强,容易掌握,还可利用它所提供的编程语言进行编程完成特定的工作。
除基本部分外,Matlab还根据各专门领域中的特殊需要提供了许多可选的工具箱,如应用于自动控制领域的Control System工具箱和神经网络中Neural Network工具箱等。
2.1.2MATLAB主要特点1.语言简洁紧凑,使用方便灵活,库函数极其丰富。
MATLAB程序书写形式自由,利用起丰富的库函数避开繁杂的子程序编程任务,压缩了一切不必要的编程工作。
由于库函数都由本领域的专家编写,用户不必担心函数的可靠性。
可以说,用MATLAB进行科技开发是站在专家的肩膀上。
2.运算符丰富。
由于MATLAB是用C语言编写的,MATLAB提供了和C语言几乎一样多的运算符,灵活使用MATLAB的运算符将使程序变得极为简短。
3.MATLAB既具有结构化的控制语句(如for循环,while循环,break语句和if语句),又有面向对象编程的特性。
4.程序限制不严格,程序设计自由度大。
例如,在MATLAB里,用户无需对矩阵预定义就可使用。
5.程序的可移植性很好,基本上不做修改就可以在各种型号的计算机和操作系统上运行。
6.MATLAB的图形功能强大。
在FORTRAN和C语言里,绘图都很不容易,但在MATLAB里,数据的可视化非常简单。
MATLAB还具有较强的编辑图形界面的能力。
7.MATLAB的缺点是,它和其他高级程序相比,程序的执行速度较慢。
由于MATLAB的程序不用编译等预处理,也不生成可执行文件,程序为解释执行,所以速度较慢。
8.功能强大的工具箱是MATLAB的另一特色。
MATLAB包含两个部分:核心部分和各种可选的工具箱。
核心部分中有数百个核心内部函数。
其工具箱又分为两类:功能性工具箱和学科性工具箱。
功能性工具箱主要用来扩充其符号计算功能,图示建模仿真功能,文字处理功能以及与硬件实时交互功能。
功能性工具箱用于多种学科。
而学科性工具箱是专业性比较强的,control,toolbox,signl proceessing toolbox,commumnication toolbox等。
这些工具箱都是由该领域内学术水平很高的专家编写的,所以用户无需编写自己学科范围内的基础程序,而直接进行高、精、尖的研究。
9.源程序的开放性。
开放性也许是MATLAB最受人们欢迎的特点。
除内部函数以外,所有MATLAB的核心文件和工具箱文件都是可读可改的源文件,用户可通过对源文件的修改以及加入自己的文件构成新的工具箱。
2.1.3MATLAB常用函数简介1.wavread函数:[y,fs,bits]=wavread('Blip')用于读取语音,采样值放在向量y中,fs表示采样频率(Hz),bits表示采样位数。
sound(x,fs,bits);用于对声音的回放。
向量y则就代表了一个信号(也即一个复杂的“函数表达式”)也就是说可以像处理一个信号表达式一样处理这个声音信号。
2.FFT函数:FFT用于序列快速傅立叶变换。
其调用格式为:y=fft(x)。
其中,x 是序列,y是序列的FFT,x可以为一向量或矩阵:若x为一向量,y是x的FFT,且和x相同长度。
若x为一矩阵,则y是对矩阵的每一列向量进行FFT。
3.Fir1函数:fir1函数是基于窗函数的FIR滤波器设计——标准频率响应形状。
其调用格式为b=fir1(N,we,’ftype’,window)。
ftype和window可以默认。
b=fir1(N,wc)可得到截止频率为wc且满足线性相位条件的N阶FIR低通滤波器,window默认选用hamming窗。
其单位脉冲响应h(n)为:h(n)=b(n+1),n=0,1,2,…,N。
当wc=[wc1,wc2]时,得到的是通带为wc1<w<wc2的带通滤波器。
b=fir1(N,wc,’ftype’),可设计高通和带阻滤波器。
当ftype=high时,设计高通FIR滤波器;当ftype=stop时,设计带阻FIR滤波器。
4.sound(x,fs,bits):该函数用于播放生硬,向量y就代表了一个信号(也即一个复杂的“函数表达式”),也就是说可以像处理一个信号表达式一样处理这个声音信号。
2.1.4MATLAB软件的优点1.此高级语言可用于技术计算2.此开发环境可对代码、文件和数据进行管理3.交互式工具可以按迭代的方式探查、设计及求解问题4.数学函数可用于线性代数、统计、傅立叶分析、筛选、优化以及数值积分等5.二维和三维图形函数可用于可视化数据6.各种工具可用于构建自定义的图形用户界面2.2CCS简介DSP开发工具CCS具有较完善的软件和硬件开发工具,如:软件仿真器Simulator、在线仿真器Emulator、C编译器和集成开发环境CCS等,给开发应用带来很大方便。