[系统,采用,电力线,其他论文文档]ATC 系统中采用电力线载波通信技术的研究
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
ATC 系统中采用电力线载波通信技术的研究
摘要介绍了正交频分复用(OFDM) 的基本原理, 并结合城市轨道交通 A TC 系统的特点,提出了利用基于OFDM 的电力线载波通信技术在接触网上实现信息传输的思路。
关键词列车自动控制,电力线载波通信系统,正交频分复用
在城市轨道交通列车自动控制(A TC) 系统中, 通常利用轨道电路传输信息。由于钢轨不是理想的信息传输通道,信息容量、传输速率受到了限制。本文提出了利用正交频分复用(OFDM) 的电力线载波通信技术在接触网上实现信息传输的思路。
1 OFDM 的基本原理
OFDM 是一种多载波调制技术(MCM) ,可以在强干扰环境下高速传输数据。传统的数字通信系统将符号序列调制在一个载波上进行串行传输, 每个符号的频谱占用信道的全部可用带宽。OFDM 则并行传输数据,采用频率上等间隔的N 个子载波构成,它们分别调制一路独立的数据信息,调制之后N 个子载波的信号相加同时发送。因此每个符号的频谱只占用信道全部带宽的一部分。在OFDM 中,通过选择载波间隔,使这些子载波在整个符号周期上保持频谱的正交特性,各子载波上的信号在频谱上互相重叠;接收端利用载波之间的正交特性,可以无失真地将接收到的信号还原成发送信息,从而提高系统的频谱利用率。
图1 正交频分复用OFDM 的基本原理
因此,OFDM 系统的调制和解调过程等效于离散付氏逆变换(IDF T) 和离散付氏变换(DF T) 处理,实际上系统通常采用DSP 技术和FFT 快速算法来实现。
由于OFDM 系统的符号周期延长了N 倍,增强了其消除码间串扰的能力。在数字基带调制部分,可以根据子信道特性采用不同的调制方式(如BPSK,QPSK ,QAM , TCM 等) 。如果某个频段信号衰减严重,发送端还可以关闭该频段的子载波, 实现信道自适应均衡。通过采用信道编码技术, OFDM 还可以进行前向纠错(FCC) 。2 在A TC 系统中采用OFDM 技术
城市轨道交通对列车速度控制提出很高的要求,要达到安全性、可靠性、适用性和经济
性的目标,还要考虑到迅速、准确和价格合理等因素。这需要列车、沿线、车站、控制中心的人员和设备之间的组织协调。采用OFDM 调制技术实现电力线载波高速数据传输,为城市轨道交通信号系统(见图2) 提出了一种新思路。与其它电力通信方式不同的是,它利用给列车供电的接触网(直流1 500 V/ 750 V) 进行通信。
牵引供电回路由牵引变电所、馈电线、接触网、电力机车、钢轨与大地、回流线等构成。牵引变电所两侧的接触网电压相位不同相,分相绝缘。相邻牵引变电所间的接触网电压一般为同相的,其间除用分相绝缘器隔离外,还设置了分区亭。通过分区亭断路器(或负荷开关) 的操作,实行双边(或单边) 供电。接触网一般在线路中心上方,利用接触网上传输的信息可以检测列车占用线路状况。
图2 采用电力线载波设备的城市轨道交通信号系统框图
利用接触网进行电力线载波通信的研究已经在国外取得了一定成果。图3 是德国西门子公司面向城市轨道交通的电力线载波通信系统框图。
从图3 可以看出,A TP 车载单元与A TP 轨旁单元通过现场总线和电力线进行通信。每隔一定距离就有一个分区电力线单元SPU 通过耦合单元COU 完成现场总线和电力线信号的转换。车载A TP 单元通过电力线上的信号。
面向城市轨道交通的电力线载波通信系统具有如下特点:
(1) 信息传输利用了现有的架空接触网线,不再采用轨道或轨间电缆形式;
(2) 信息传输在列车运行期间保持连续,传输速率大大高于采用数字轨道电路所达到的传输速率;
(3) 耦合单元是构成该系统的关键,通过定义现场总线、电力线和车载A TP 总线的信号接口和相互通信的协议,有利于实现系统的兼容;
(4) 降低建设成本。
图3 城市轨道交通的电力线载波通信系统框图
参考文献
1 焦邵华,刘万顺,郑卫文等. 配电网载波通信的损耗分析 . 电力系统自动化,2000 ,24 (8) :37~403 吴汶麒. 国外铁路信号新技术. 北京: 中国铁道出版社,2000. 121~169