第二章光学谐振腔理论-第8节-高斯光束的传输ppt

合集下载

§2.7+高斯光束及其传输规律

§2.7+高斯光束及其传输规律
§2.7 高斯光束及其传输规律
第二章 开放式光腔与高斯光束/§2.7 高斯光束及其传输规律
r2 r2 −1 z −ik z+ −tan − 2 2R( z) f w ( z)
c 自由空间的基 Ψ x, y, z) = e 模 高 斯 光 束 00 ( w( z)
• 情况1:已知w0, w'0, 确定透镜焦距(F)及透镜的距离 l, l'
( l − F ) F2 l′ = F + 2 l − F) + f 2 (
′ w =
2 0
w0 l −F =± F2 − f02 ′ w0 ′ w0 l′ − F = ± F2 − f02 ′ w0
( F −l )
w2 F2 0
1 1 λ = −i 2 定义q 参数 q z R z 高斯光束的复曲率半径) ( ) ( ) πw ( z) (高斯光束的复曲率半径
若已知高斯光束在某一位置的q参数 若已知高斯光束在某一位置的 参数 → w(z), R(z), θ
1 1 = Re , R( z ) q ( z )
3. 光学系统(元件)
r2 A B r 1 球面波 = θ2 C Dθ1
r2 = Ar + Bθ1 1
r2 ≈ R2θ2
r ≈ Rθ1 1 1
θ2 = Cr + D 1 θ 1
R2 =
θ2
r2
=
AR + B 1 CR + D 1
参数通过光学系统的变换与球面波R的变换相同 高斯光束 q参数通过光学系统的变换与球面波 的变换相同 参数通过光学系统的变换与球面波
两式相减

第二章 高斯光束

第二章  高斯光束

2
1/ 4
2
(
R
l

l
2
)

结论:1.高斯光束的发散角随传播距离的增大而非线性增大
2.在束腰处,发散角为0o在无穷远,发散角最大,其远
场发散角为: 3.通常将 0 Z W02 区域定义为光束准直区 4.W0越大,则远场发散角愈小。因此为了减小光束的远
场发散角,可采用光学变换的方法,使其束腰增大。
图2-1
1.在光束截面上(即与光传播方向垂直的x, y平面上)的光 强是相等的;
2.在传播方向的任一点(即Z方向)光强度相等(不考虑空 气损耗);
3.距离Z相等,则其位相相等,即等相面为垂直于传播方向 的平面。
但由激光产生的原理可知:激光束是由光于在谐振腔内进 行多次反射后所形成的。因此在腔镜边缘必产生衍射损耗,故 在光束截面上,边缘部分的光强必将比中心部分较弱,故激光 束不是均匀平面波。
此点,波阵面半径最小,具有两对称点(相对束腰)互为其波
面球心。
图2-6
(五)小结: 高斯光束在自由空间传播时,R(z)随传播距离Z变化 的规律: 1.在Z=0(即束腰处),R(z)=∝,即波阵面为平面波 2.在Z>0时,R(z)由∝逐渐变小 3.在Z=F时,R(z)有极小值:。 4.在Z>F时,R(z)逐渐变大。 5.Z→∝时,R(z)→∝,变为平面波。
即在Z=±F时,存在R(Z)的极小值,其极小值为:
R(z) min

z

F2 z
z z

F时 F时
R(z) min 2F (2 10) R(z) min 2F
即 R(z) min 2F 2F 2W02 ,共焦参数的由来可由图2-6解释:

《高斯光束》PPT课件

《高斯光束》PPT课件

W02
3.光斑半径:
Lin W(o) z0
W01W z0221/2W0
即:光斑半径等于束腰半径
4.横截面光强分布: 在束腰处(即z=0)基尔霍夫公式变为:
E (x ,y ,0 ) W A 0 0e x W r 0 2 2 p ex i( k p 0 0 ) i0 W A 0 0e x W r 0 2 2 p
W 0 2 2(R l2) 1 /4
( 2 6 )
即,已知激光器腔参数R、l可求得膜参数W0
例,设λ=0.6328×10-3mm,R=500 mm,l=250 mm,
则 W 0 (0 .63 21 2 3 0 )8 2(50 205 202 5 ) 1 /0 40 .2m 24m
* 基模发散角(远场发散角)——半角
( 28)
当ρ(通光孔径)=W(z),1.5W(z),2W(z),2.5W
(z),3W(z),∝时,N(ρ)值如下表:
ρ W ( z )1 .5 W ( z ) 2 W ( z ) 2 .5 W ( z ) ∝ ρ N ( )0 .8 6 4 0 .9 8 8 0 .9 9 7 0 .9 9 9 9 9 1
p()k A0 2
W 2(z)
oexW p2 2(rz2)2r.dr
图-2-5 在 r = ∝时,高斯光束的全部光强P(∝)
P( )kW A 20 (2z)o exW p2 2(rz2)2r.dr

p
k
N(P)P() o
P( ) k
o
e ex xW W p p2 2 2 2((rrzz2 2))2 2 rr..d d rr1expW 22 (2 z)
即,当限制孔径为计算出的高斯光斑半径2.5倍时其通过的能

《光学谐振腔理论》PPT课件

《光学谐振腔理论》PPT课件

规定:光线出射方向在腔轴线的上方时, 为正;反之,为负。
当凹面镜向着腔内时,R取正值;
当凸面镜向着腔内时,R取负值。
精选ppt
18
2.2 开放光学球面谐振腔的稳定性
用一个二阶方阵描述入射光线和出射光线的坐标变换。该 矩阵称为光学系统对光线的变换矩阵T。
r2
2
A
C
B D
r1
1
近轴光线通过焦距为f的薄透镜的变换矩阵
r2 2
r1
1 f
r1 1
r2
2
1
1
f
0
1
r1
1
1
2
r1
r2
P1 P2
精选ppt
22
2.2 开放光学球面谐振腔的稳定性
精选ppt
23
2.2 开放光学球面谐振腔的稳定性
精选ppt
24
2.2 开放光学球面谐振腔的稳定性
2)光线在谐振腔中往返一周变换矩阵
y
sin
p
l
z e im ,n, pt
k k xex k ye y kzez ,k x m / a,k y n / b,kz p / l
m,n,p c / k
c
m / a 2 n / b2 p / l 2
精选ppt
6
2.1
光学谐振腔概论
相邻两个模式波矢之间的间距
精选ppt
8
2.1 光学谐振腔概论
谐振腔内只能存在满足以下条件的光场:经腔内往返一周再回 到原来位置时,与初始出发波同相(即相差是2的整数倍—— 相长干涉
q
q 2cLq
c 2L
2 2L q2L q q
q

高斯光束的传播特性ppt课件

高斯光束的传播特性ppt课件
复习:共焦腔内或腔外的一点的行波场的解析式:
umn x, y, z CmnHm
2 1
2
2 ws
x Hn
2 1
2
2 ws
y
exp
1
2
2
x2 y2 ws2
exp ix,
y, z
1. Hm
2 1
2
2 ws
x Hn
2 1 2
2 ws
y
exp
2 1
2
x2 y2 ws2
行波场横向振幅分布因子
束腰半径
0
1 2
s
L 2
f
等相面曲率半径 R(z) z [1 ( L )2 ] z [1 ( f )2 ] z [1 (02 )2 ]
2z
z
z
任意位置光斑 半径
(z) 0
1
(
z 02
)2
高斯光束的束腰半 径的大小和位置确
镜面光斑半径 远场发散角
s
20
L
2 2 0
定,就可以确定整
2、光斑尺寸
当场振幅为轴上( x2 y2 0 )的值的e-1倍,即强度为轴上的值的e-2倍时,
所对应的横向距离 z 即z 处截面内基模的光斑半径为
(z)
x2 y2 s
2
1 2 s
2
4z2 1 L2
§3.3.1 高斯光束的振幅和强度分布
(z) s 1 2 s
2
2
ωs xs2 ys2 L
k
L 2
1
2z L
1
2z L 2z
2
x2
L
y
2
2
z
k

第二讲光线的传播与高斯光束 PPT

第二讲光线的传播与高斯光束 PPT
第二讲光线的传播与高斯光束
§2.1光线的传播
研究激光在光学媒质中的传输特性
一.光线矩阵 讨论近轴(傍轴)光线
规定: r 朝上为正、下为负
指向上方为正、下方为负
sin tg (mrad ) dr r' (z)
dzrin'
ro'ut rin'
d n dr n ds ds
4、在类透镜介质中得传播
考虑近轴光线 ds dx2 dy2 dz2 dz
dn dz
dr dz
n
d 2r d2z
n
在二次折射率介质(或类透镜介质)中,折射率没有轴向分布,
仅有径向分布
n
d d
2
r
2z
n
n
i
n
x y
j
n x
k
K 2 n0
五、光线在类透镜介质中得传播
1、 薄透镜得聚焦机理
AB
AB AO BO f 2 x2 y2 f
r
f
1
x2 y2 f2
f
C
Oz
f (1
1 2
x2 y2 f2
)
f
f
x2 y2
离轴距离为r得相位提前量为
2f
2 n x2 y2 k x2 y2 k r 2
0
2f
2f
rM rM'
1 0
d 1
rs rs'
rN rN'
1 1
f2
0 1
rM rM'
S MN
S+1 f1
d
f1
f2
因此:
rN rN'
1 1
f2

高斯光束的传播特性课件

高斯光束的传播特性课件

加精准,能够实现更高的光束质量和更稳定的传输。
动态调控
02
通过实时监测和反馈系统,实现对高斯光束的动态调控,以满
足不同应用场景的需求。
多光束控制
03
未来将实现多光束的独立控制和协同操作,提高光束的灵活性
和应用范围。
高斯光束在量子通信中的应用
1 2 3
安全性增强 高斯光束在量子通信中能够提供更强的安全性保 障,通过量子纠缠和量子密钥分发等技术,实现 更加安全的通信传输。
传输距离提升 随着量子通信技术的发展,高斯光束的应用将有 助于提高量子通信的传输距离和稳定性。
网络架构优化 高斯光束在量子通信网络架构中能够提供更灵活 和高效的光路设计,优化网络性能和扩展性。
高斯光束在其他领域的应用
生物医学成像
高斯光束在生物医学领域可用于光学显微镜、光谱仪等设备的成像 技术,提高成像质量和分辨率。
在生物医学成像中的应用
光学成像
高斯光束作为照明光源,能够提高光学成像的分辨率和对比度。
荧光成像
利用高斯光束激发荧光标记物,实现生物组织的荧光成像。
光声成像
结合高斯光束与光声效应,实现生物组织的高分辨率、高对比度 的光声成像。
05
高斯光束的未来展
高斯光束控制技术的发展
高精度控制
01
随着光学技术和计算机技术的发展,未来高斯光束的控制将更
高斯光束的强度分布和相位分 布都可以用高斯函数描述,这 使得高斯光束在许多领域都有 广泛的应用。
02
高斯光束的播特性
传播过程中的光强分布变化
01 02
光强分布变化规律
高斯光束在传播过程中,光强分布呈现中间高、两侧低的形态,类似于 钟形曲线。随着传播距离的增加,光强分布逐渐展宽,但中心峰值保持 不变。

《高斯光束》课件

《高斯光束》课件

02
高斯光束的数学模型
高斯光束的电场分布
描述高斯光束的电场分布通常使用高 斯函数,其形式为$E(r,z)=E_{0} frac{omega_{0}}{w(z)} exp(frac{r^{2}}{w(z)^{2}}) exp(ifrac{kr^{2}}{2R(z)}+ivarphi(z))$, 其中$E_{0}$是光束中心电场强度, $omega_{0}$是束腰半径,$w(z)$ 是光束半径,$R(z)$是光束的波前曲 率半径,$varphi(z)$是相位。
VS
高斯光束的电场分布具有中心强度高 、向外逐渐减小的特点,这种分布有 利于在一定范围内实现较高的能量集 中度。
高斯光束的能量分布
高斯光束的能量分布与电场分布类似,也呈现出中心强 度高、向外逐渐减小的特点。
在实际应用中,高斯光束的能量分布可以通过控制激光 器的参数和光束传输过程中的光学元件进行调整,以满 足不同应用需求。
高斯光束的特性
总结词
高斯光束具有许多独特的性质,包括光束宽度随传播距离增加、中心光强为零、能量集中于光束的腰斑等。
详细描述
高斯光束的一个重要特性是它的光束宽度随着传播距离的增加而增加,这是由于光束在传播过程中不断发生衍射 。此外,高斯光束的中心光强为零,即光束的最小值点位于中心。高斯光束的能量主要集中在腰斑处,即光束宽 度最小的地方,这使得高斯光束在远场具有很好的汇聚性能。
总结词
高斯光束在光学无损检测中能够穿透物质并检测其内部 结构和缺陷。
详细描述
高斯光束具有较好的穿透性和方向性,能够深入物质内 部并检测其结构和缺陷。在无损检测中,高斯光束被用 来检测材料内部的裂纹、气孔、夹杂物等缺陷,为产品 质量控制和安全性评估提供可靠的依据。这种检测方法 具有非破坏性和高灵敏度等优点,广泛应用于航空航天 、核工业等领域的安全监测和质量控制。

第二章 谐振腔理论

第二章 谐振腔理论

L' δ = cτ R 4、设无源腔中光子寿命为τR,则光腔对光的损耗因子为________, − t /τ R I ( t ) = I e 0 光在腔中传输时光强随时间的变化函数为____________
α =δ L 5、损耗系数α与单程损耗因子δ之间的关系为_________ a2 Lλ 6、腔镜的菲涅耳数 N= _________
光腔的损耗(二)
平均单程损耗因子 δ (α= δ/L) 定义(1):单程渡越时光强的平均衰减指数。设初始光强为I0,在 无源腔(无激光介质)内往返一次后,光强衰减为I1,将光强写成 指数衰减形式 1 I0 −δ −δ − 2δ
I 1 = ( I 0e )e
= I0e
⇒ δ =
2
In
I1
定义(2):单程渡越时光强的平均衰减百分数
光学谐振腔内的多纵模振荡
在谐振腔中,满足模的谐振条件的纵模数有无数个(q可取任 意整数)。但实际上只有那些既满足谐振的相位条件又满足自 激振荡的增益阈值条件( g 0 ≥ α )的模式才能起振。 ΔνT:增益曲线中满足增益 阈值条件的频带宽度。 在谐振 DL β
L' η L βL δβ = = = 2D τ Rc τ Rc
结论:腔镜倾斜角越大,腔长越长,腔镜横向尺寸越小,几何 偏折损耗越大。
光腔的损耗(九)
开腔模的形成过程
3)衍射损耗 考察均匀平面波通过圆孔时由衍射产生的能量变化,开孔处对 应的是腔反射镜,则衍射到孔外的光损失掉了(越过腔反射镜 跑到腔外)。 均匀平面波入射到半径为 a 的 L 第一个圆孔上,穿过孔径时将 Lθ 发生衍射,其衍射角(第一极 θ 小值处对光轴的张角)为 I’ 2a I0
λ0 q L' = q ⋅ 2

第二章 高斯光束

第二章 高斯光束

– 在实验上和理论上都证实了工作物质的折射率随温度发生变化:
(x,
y)
0(T 0)
n T
D 4K
(x2
y2)
– 可见工作状态下的Nd:YAG工作物质是一种二次折射率介质。
21
2.1光线的传播
• 3. 光线在均匀和非均匀各向同性介质中的传播

程函(eikonal)方程:
x
2
y
2
x y
0 0
d 2r dz 2
k k
2 0
r
0
23
2.1光线的传播

(1)k2>0
微分方程的解为 r(z) c1cos
k k
2 0
z
c
2
sin
k k
2 0
z
若考虑光线入射初始条件

r0
r
0
'
,则可以求出
c1
r 0; c2
k,因此微分方程的解可以写成:
r
z
r
0
cos
– 1. 薄透镜的聚焦机理
– 一单色平面波,经过薄透镜后,产生一个与离轴距离r2成正比的相位超 前量,补偿了到达焦点几何路径的不同所引起的相位不同滞后量。到达
焦点时间、相位相同,实现聚焦,此时的薄透镜相当于一个平面的相位
变换器。
AB AO BO
f 2 x2 y2 f f 1 x2 y2 f
k k
2 0
z
k k
0 2
r
'
0
sin
k k
2 0
z
r ' z
k k
2 0
r

光学谐振腔和高斯光束

光学谐振腔和高斯光束

i 1, 2
当满足条件:0<g1g2<1时 腔内辐射可以在腔内往返多次而永不逸出腔外
R1
R2
第3节 光学谐振腔的几何光学近似分析
当菲涅耳数较大,衍射损失很小时,可 以用几何近似来研究谐振腔的特性→旁 轴光线近似。它成立的条件是光线的传 播方向与光轴的夹角足够小
几何近似处理方法,图象清晰,过程简 化,并能足够准确的反映光学谐振腔的 主要特性。
AD
CB
1
T
n
1
sin
Asin sin(n-1) Csinn
Bsinn
Dsin
sin(n-1)
cos 1 ( A D)
2
Sylvester定理
rn
n
An Cn
Bn r1
Dn
1
(2)共轴球面腔稳定性条件
要求n→∞,rn不发散,在腔内传播 ∴An、Bn、Cn、Dn有限 ∴应为实数
M2
以镜面的曲率半径的1/2为半径,与镜面中心点相切 画圆,如果两个圆有两个交点,则腔是稳定的,反 之是不稳定的
练习题
1、证明本节中给出的6个光传输矩阵。
2、写出共心腔的传输矩阵,说明它是介稳 腔。
(一)光线的矩阵描述
x x
y
T
y


X x,y
Y 物空间
X’ ,
x’y’
’, ’
Z
Y’
像空间
当轴对称时,(x,θ) 和(y,φ)变换相同
x22
T
x11T =
A
T
C
B
D
x2 Ax1 B1
2 Cx1 D1
ABCD矩阵
当轴对称时,(x,θ) 和(y,φ)变换相同, 只需要一个2×2矩阵M 描述

最新《高等激光原理李瑞宁》2.第二章 开放式光谐振腔与高斯光束讲学课件

最新《高等激光原理李瑞宁》2.第二章 开放式光谐振腔与高斯光束讲学课件

L
x y
m
(
x
)
n ( y )
m n
K
x(x,
x
/ )
m
(x
/)d x
/
K
x(y,
y
/ )
n(
y
/)d y
/
mn(x, y) m (x) n(y)n
mn m n
六、分离变量法—— 一般球面镜
P1/
P1(x,y)
ρ
a2
( x,
y, x / ,
y/
)
P1P 2
P/1P/ 2
——光强衰减到1/e所需要的时间
t
I (t) I0e R
R
L/ dc
1 I (t) e I0
dN个光子的寿命为t, N0个光子的平均寿命为:
I ( t ) Nh
dN
N
0
t
e R dt
R
_
t
1
( dN ) t
N0
t
N N0e R
1
N0
t( N 0 0 R
t
)e R d t
R
2.无源谐振腔的 Q 值
P
/ 1
P1
P/2P2
P/1P/ 2 L (x x/ )2 ( y y/ )2
2L
2L
/
/
L
a b
(x, y) (x)( y) ——上述方程可以分离变量
(x/,y/)
2a
代入上述方程,再分离变量,将二元函数
υ(x,y)的积分方程分解成两个对称的 单元函数υ(x), υ(y)的积分方程
分解成两个分离的积分方程的核
归结成求解两维腔的本征模问题, υm(x)和 υn(y)分别是它的第m,第n个本征态 Γm、γn分别是它的第m,第n个本征值

第二章光学谐振腔理论-第8节-高斯光束的传输

第二章光学谐振腔理论-第8节-高斯光束的传输

z2
实际稳定腔
L
等价共焦腔
L( R2 − L) z1 = ( L − R1 ) + ( L − R2 ) − L( R1 − L) z2 = ( L − R1 ) + ( L − R2 ) f 2 = L( R2 − L)( R1 − L)( R1 + R2 − L) [( L − R1 ) + ( L − R2 )]2
(z B ) = q0 + l1
B-C (透镜变换)
1 1 1 = − q ( zC ) q ( zB ) f
C-D (自由空间传输) q
(z D ) = qC + l2
D(束腰)
2 πω 20 q( z D ) = i λ
变换公式的应用
πω 2 πω l1 ( f − l1 ) − f λ λ +i q ( z D ) = l2 + f 2 2 2 2 πω 0 πω 0 2 2 ( f − l1 ) + ( f − l1 ) + λ λ
q( z2 ) = q0 + z2
q( z 2 ) = q( z1 ) + z 2 − z1 = q( z1 ) + L
高斯光束的特征参数变换规律
2、薄透镜变换 、
可得薄透镜对傍轴光 线的变换矩阵为
0 1 Tf = 1 − f 1
高斯光束的特征参数变化规律
可以产出q参数经过薄透镜变换时,光束宽度项不变, 可以产出 参数经过薄透镜变换时,光束宽度项不变, 参数经过薄透镜变换时 等相位面项发生变化, 只是等相位面项发生变化 所以: 只是等相位面项发生变化,所以:

激光原理 第二章光学谐振腔理论

激光原理 第二章光学谐振腔理论

光学谐振腔一方面具有光学正反馈作用,另一方面 也存在各种损耗。损耗的大小是评价谐振腔质量 的一个重要指标,决定了激光振荡的阈值和激光的 输出能量。本节将分析无源开腔的损耗,并讨论表 征无源腔质量的品质因数Q值及线宽。
一、损耗及其描述 (1)几何偏折损耗: 光线在腔内往返传播时,可能从腔的侧面 偏折出去,我们称这种损耗为几何偏折损 耗。其大小首先取决于腔的类型和几何尺 寸。
概述
3.波动光学分析方法 从波动光学的菲涅耳-基尔霍夫衍射积分理论出发,可以建立 一个描述光学谐振腔模式特性的本征积分方程。 利用该方程原则上可以求得任意光腔的模式,从而得到场的 振幅、相位分布,谐振频率以及衍射损耗等腔模特性。 虽然数学上已严格证明了本征积分方程解的存在性,但只有在 腔镜几何尺寸趋于无穷大的情况下,该积分方程的解析求解 才是可能的。 对于腔镜几何尺寸有限的情况,迄今只对对称共焦腔求出了 解析解。 多数情况下,需要使用近似方法求数值解。虽然衍射积分方 程理论使用了标量场近似,也不涉及电磁波的偏振特性,但与 其他理论相比,仍可认为是一种比较普遍和严格的理论。
第一节 光学谐振腔的基本知识
本节主要讨论光学谐振腔的构成、分类、作用,以及 腔模的概念
光学谐振腔的构成和分类
根据结构、性能和机理等方面的不同,谐振腔有不同 的分类方式。
按能否忽略侧面边界,可将其分为

开腔、 闭腔 气体波导腔
第一节 光学谐振腔的基本知识
开腔而言: 1. 根据腔内傍轴光线几何逸出损耗的高低,又可分为 稳定腔、非稳腔及临界腔; 2. 按照腔镜的形状和结构,可分为球面腔和非球面腔; 3. 就腔内是否插入透镜之类的光学元件,或者是否考 虑腔镜以外的反射表面,可分为简单腔和复合腔; 4. 根据腔中辐射场的特点,可分为驻波腔和行波腔; 5. 从反馈机理的不同,可分为端面反馈腔和分布反馈 腔; 6. 根据构成谐振腔反射镜的个数,可分为两镜腔和多 镜腔等。

新激光ppt课件第二章 光学谐振腔理论

新激光ppt课件第二章 光学谐振腔理论

光线在腔内往返传播n次
式中
rn An C n n
Bn r1 Dn 1
二、共轴球面腔的稳定性条件
1.稳定腔条件
光线在腔内往
A n、B n、 C n、D n
对任意n有限
Φ 为实数
返多次不逸出
且φ ≠kπ
引人g参数则得稳定性条件
平平腔 N>>1
谐振条件: 以Δ Φ 表示均匀平面波在腔内往返
一周时的相位滞后,则
若腔内介质分段均匀 若腔内介质非均匀 谐振条件:
L
L
i
i i
L dL ( z )dz
0


L
2 L q q c q q 2 L
分立

腔的本征模式: 在平平腔中满足 q q c
一定类型的积分方程。 腔的具体结构 振荡模的特征
3.模的基本特征

电磁场分布(特别是在腔的横截面内的场分布); 谐振频率; 在腔内往返一次经受的相对功率损耗; 激光束的发散角
4.纵模和横模
腔内电磁场的空间分布
沿传播方向(腔轴方向)的分布
垂直于传播方向的横截面内的分布 (1)纵模

纵模 横模
(1)(2)两种损耗为选择损耗,因为不同模式的几何 损耗与衍射损耗各不相同。(3)(4)两种损耗称为非 选择损耗,在一般情况下它们对各个模式都一样。
2.平均单程损耗因子
I 0 I1 2I 0 1 I0 ln 2 I1
光在腔内单程渡越时光强的平均衰减百分数 指数单程损耗因子
β
3.总损耗


1.曲率半径R1>0,R2<0的腔能否成为稳定腔,如果能, 请求出其稳定性条件。

高斯光束的传播特性新.ppt

高斯光束的传播特性新.ppt

x2
y2 L
2z0
x2 y2
1


L 2z0
2




R0

z 0 [1
(L 2z0
)2 ]
当 z0 0 时, R(z0 ) 当 z0 时, R(z0 )
当 z0 f
时,R(z ) L 0
腔中点或距腔中点无限 远处,等相面为平面
20为基模光束的发散角
由于高阶模的发散角是随着模的 阶次的增大而增大,所以多模振 荡时,光束的方向性要比单基模 振荡差。
由 0s 20 可知,镜面上的光斑尺寸,基模体积和远
V000

L
2 0
发散角等高斯光束的参数都可以通过
2 2 0
基模腰斑半径(“腰粗”)ω0来表征,故 “腰粗”是高斯光束的一个特征参数.
图3-7 计算腔内外光场分布的示意图
umnx, y, z CmnHm

2
1
2

2 ws
x Hn

2
1
2

2 ws
y
exp

2
1
2

x2 y2 ws2
exp
i x,
y,
z
( x,
y, z)

k

L 2
(1


)

1

2
x2
L
y
2


(m

n

1)(
2
)
arctg 1 arctg L 2z
1
L 2z
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1
L R1
1
L R2
远场发散角
一般稳定球面腔的基模发散角为:
θ0 2
λ 2[
λ2( 2L R1 R2 )2
]1/ 4

π 2L(R1L)(R2 L)(R1 R2 L)
2 λ [ (g1 g2 2g1g2 )2 ]1/ 4 πL g1g2 (1 g1g2 )
高阶横模的远场发散角
f
2
L(R2 L)(R1 L)(R1 R2 [(L R1) (L R2 )]2
L)
等价共焦腔
一般稳定球面腔(R1,R2,L)行波场的基模光斑尺寸为
(z) 0
1 z2[(L R1) (L R2 )]2 L(R1 L)(R2 L)(R1 R2 L)
其中
是基模高斯光束的束腰半径
所以出射面的等相位面分布为:
1 1 1 R(z2 ) R(z1) f
1
1
1
1
qz2 q( z1) R( z2 ) R( z1)
1
11
qz2 q( z1) f
高斯光束的特征参数变化规律
可得薄透镜对傍轴光 线的变换矩阵为
1 0
Tf
1 f
1
q(
z2
)
Aq ( z1 ) Cq( z1 )
R(z)
z
1
f z
2
z
f2 z
➢任意一个共焦腔与无穷多个稳定球面腔等价。 ➢任意一个稳定球面腔唯一地等价于某一个共焦腔。
等价共焦腔
I 等价共焦腔
II
R1
R2
z1
0
z2
c
c'
实f际稳定腔
L
等价共焦腔
z1
(L
L(R2 L) R1) (L
R2 )
z2
(L
L(R1 L) R1) (L R2 )
高斯光束的传输与变换
方形球面镜共焦腔的行波场
Emn
x, y, z
Amn E0
w0 wz
2
H
m
w
z
2
x Hn
w
z
y e e
x2 w2 (
y z
2
)
imn x, y,z
式中
wz
w0
1
z zR
2
mn
x,
y,
z
k
z
x2 y2 2R(z)
m
n
1
z zR
方形球面镜共焦腔的行波场
高斯光束的特征参数变化规律
B2 f A2 f x2 y2 f 2 f
B2 f A2 f x2 y2
2f
透镜入射面
1
x,
y,
z
k
z
x2 y2 2R(z)
透镜出射面
2
x,
y,
z
k
z
x2 y2 2R(z)
x2 y2 2f
高斯光束的特征参数变化规律
B D
变换公式的应用
变换前束腰 变换后束腰
BC
A
D
变换公式的应用
A(束腰)
q0
i
102
A-B(自由空间传输) q zB q0 l1
B-C (透镜变换)
1
11
qzC q( zB ) f
C-D (自由空间传输) q zD qC l2
D(束腰)
q(
z
D
)
i
202
变换公式的应用
z zR
E x, y, z A E w z H e e mn
mn 0
m,n
w0
ik
x2 y2 2
1 R(z)
i
2
z
ikzmn1
z zR
E x, y, z A E w z H e e mn
mn 0
m,n
基模高斯光束的特征参数
1
1
qz R( z) i 2 z
1 R(z)
zR
2 0
f
wz w0
1
z zR
2
Rz
z 1
zR
2
z
光束宽度变换
wz随坐标 z 按双曲线规律变化
w2 z
w0 2

z2 f2
1
远场发散角
x ,y 0
0s = 2 0
q0
z
L= 2 f
基模高斯光束远场发散角
远场发散角
q0
2
0
等相位面变化与等价共焦腔
等价共焦腔
稳定腔与其等价共焦腔具有相同的等相位面
qzD l2
f
l1 f
l1
2 0
2
f
l1 2
2 0
2
i
f
f
2
2 0
2
l1
2
2 0
2
在D点R为无穷大所以:
l2
f
l1 f
l1
2 0
2
f
l1 2
2 0
2
0
变换公式的应用
l2
f
l1 f
l1
2 0
2
f
l1 2
2 0
2
f
l1
f f
2 l1 f
2
2 0
s2
L
L
R2
R22 L
R2 L R1 R2
L
1
4
14
L
g2
1
g1 g1g2
谐振频率
得方形镜稳定腔模的谐振频率为
mnq
c 2L
q
1
m n
1
arc
tg
z2 f
arctg z1 f
mnq
c 2L
q
1
m
n
1arccos
g1g2
c
q
1
m
n
1arccos
2L
0
0
f
LR2 LR1 LR1
L R1 L R2
R2
2
L1/
4
1/ 4
L
g1g2 1 g1 g2 g1 g2 2g1 g2
2
等价共焦腔
镜Ⅰ和镜Ⅱ上的基模光斑尺寸为:
s1
L
L
R1
R12 L
R2 L R1 R2
L
14
14
L
g1
1
g2 g1g2
Re
q
1
z
1
2 z
Im
q
1
z
q0
i
2 0
基模高斯光束的特征参数变换规律
1、自由空间传输
1
1
qz R( z) i 2 z
z 0
1
z zR
2
Rz
z 1
zR
2
z
L
q z1 q z2 z
??
基模高斯光束的特征参数变换规律
1、自由空间传输
qz q0 z qz1 q0 z1 qz2 q0 z2
1
1
qz2 R( z2 ) i 2 z1
1
1
1
1
qz2 q( z1) R( z2 ) R( z1)
高斯光束的特征参数变化规律
A2(x,y) A1
B1 B2
f(f,0)
A1 A2 A2 f B1 B2 B2 f
由透镜引入的位相变化为:
A1 A2 B1 B2 B2 f A2 f
2
qz2 q(z1) z2 z1 q(z1) L
高斯光束的特征参数变换规律
2、薄透镜变换
可得薄透镜对傍轴光 线的变换矩阵为
1 0
ห้องสมุดไป่ตู้
Tf
1 f
1
高斯光束的特征参数变化规律
可以产出q参数经过薄透镜变换时,光束宽度项不变, 只是等相位面项发生变化,所以:
1
1
qz1 R( z1 ) i 2 z1
qm 2m 1q0 , qn 2n 1q0
基模高斯光束的特征参数
w0
x2 w2 (
y z
2
)
ik
x2 y2 2R(z)
ikzmn1
z zR
E x, y, z A E w z H e e mn
mn 0
m,n
w0
x2 w2 (
y z
2
)
ik
x2 y2 2R(z)
ikzmn1
相关文档
最新文档