液位和流量串级控制系统

合集下载

串级调节系统

串级调节系统

实验串级调节系统一、实验目的1、熟悉串级调节系统的组成,结构。

2、通过选定的控制对象,来组成相应的串级调节系统。

3、学习串级调节系统的投运方法和主副调节器的参数整定。

二、实验原理串级调节系统是复杂调节的一种形式,是在简单调节系统的基础上发展起来的。

在对象的滞后较大,干扰比较剧烈、频繁的工作环境下,采用简单调节系统往往调节质量较差,满足不了工艺要求,从而采用串级控制系统。

由于串级控制系统是改善控制质量的有效方法之一,因而它在过程控制中得到了广泛应用。

1、串级控制系统的结构图1 串级控制系统结构如图3-1所示,串级控制系统是指不止采用一个调节器,而是将两个或几个调节器相串联,并将一个调节器的输出作为下一个调节器设定值的控制系统。

2、串级控制系统的名词术语:(1)、主被控参数:在串级控制系统中起主导作用的那个被控参数。

(2)、副被控参数:在串级控制系统中为了稳定主被控参数而引入的中间辅助变量。

(3)、主被控过程:由主参数表征其特性的生产过程,主回路所包含的过程,是整个过程的一部分,其输入为副被控参数,输出为主控参数。

(4)、副被控过程:是指副被控参数为输出的过程,是整个过程的一部分,其输出控制主控参数。

(5)、主调节器:按主参数的测量值与给定值的偏差进行工作的调节器,其输出作为副调节器的给定值。

(6)、副调节器:按副参数的测量值与主调节器输出值的偏差进行工作的调节器,其输出直接控制执行机构。

(7)、副回路:由副调节器、副被控过程、副测量变送器等组成的闭合回路。

(8)、主回路:由主调节器、副回路、主被控过程及主测量变送器等组成的闭合回路。

(9)、一次扰动:作用在主被控过程上的,而不包括在副回路范围内的扰动。

(10)、二次扰动:作用在副被控过程上,即包括在副回路范围内的扰动。

3、串级调节系统相对与单回路简单调节系统的优点:串级控制系统是改善和提高控制品质的一种极为有效的控制方案。

它与单回路反馈控制系统比较,由于在系统的结构上多了一个副回路,所以具有以下一些特点:(1)、改善了过程的动态特性串级控制系统比单回路控制系统在结构上多了一个副回路,减小了该回路中环节的时间常数,增加了它的带宽,从而使系统的响应加快,控制更为及时。

液位串级控制系统

液位串级控制系统

控制系统分析课程设计课题:液位串级控制系统设计系别:电气与电子工程系专业:自动化姓名:学号:指导教师:任琦梅河南城建学院成绩评定·一、指导教师评语(根据学生设计报告质量、答辩情况及其平时表现综合评定)。

课程设计成绩评定1系统结构设计1.1控制方案串级控制系统是一种常见的复杂控制系统,它是根据系统结构命名的。

一、基本原理:它是由两个或者两个以上的控制器串联而成的,一个控制器的输出是另一个控制器的的给定值。

二、结构:整个系统包括两个控制回路,即主回路和副回路。

主回路有主控制器、副回路、主对象和主变送器构成;而副回路由副控制器、控制阀、副对象和副变送器构成。

三、特点:与简单控制系统相比,串级控制系统由于在结构上增加了一个副回路,所以有以下特点(1)、对于进入副回路的扰动具有较快、较强的克服能力。

(2)、改善主控制器的广义对象的特性。

(3)、对符合和操作条件的变化有一定的自适应能力。

(4)、副回路可以按照主回路的需要更精确地控制操纵变量的质量流和能量流。

四、应用场合:(1)、用于克服变化剧烈的和幅值大的干扰。

(2)、用于时滞较大的对象。

(3)、用于容量之后较大的对象。

(4)、用于克服对象的非线性。

本控制系统中,被控参量有两个,上水箱的液位和下水箱的液位,这两个参量具有相关关系。

上水箱的液位可以影响下水箱的液位,根据上下水箱的液位相关关系,故系统采用的串级控制。

其中,内环控制上水箱的液位,外环控制下水箱的液位,系统远行使下水箱的液位跟随给定值,系统框图如下图3.1所示图3.1液位-液位串级控制系统框图1.2控制规律本设计采用的是工业控制中最常用的PID控制规律,内环与外环的控制算法采用PID算法,PID算法实现简单,控制效果好,系统稳定性好,外环PID的输出作为内环的输入,内环跟随外环的输出。

在工程实际中,应用最为广泛的调节器控制规律为比例、积分、微分控制,简称PID控制,又称PID调节。

它结构简单,参数易于调整,在长期的应用中积累了丰富的经验。

4 实验四 液位串级调节系统

4 实验四  液位串级调节系统

“-” (2)二次干扰下,若D1→△h2↓ →测量值PV2↓ → e2↓ →副调节器“ -”输出→ ↑ 调节阀“+”开度↑
△h2↑(平稳) 进入水槽流量↑
8-2
4、工作过程
恒流器Ⅰ
8mA
3mA
恒流器Ⅱ
80% 30%
给定SV1
e1
- PV1
干扰 D1(s)
副变量 h1 1水槽 副被控对象
D2
主变量 h2 2水槽 主被控对象
置U2” 按钮,调U2 = 4mA(40%)] ,加入一个阶跃干扰,记录下该调节过
程,这一次曲线记入上表第3次做表格。
干扰
给定值SP
+ -
内给SP1 主调节器 DTL-321

副调节器 MV DTL-321
水槽Ⅱ
h2
水槽Ⅲ
被控参数h3
PV1
PV2
0~10mA
测量变送器 DBC-211 测量变送器 DBC-211
主调节器(PI) δ=35% TI =185s 15s TD=0 TD=0 KC =1.5 TI =
主被控参数分析结论:由上述数据可 知衰减比n=2.5:1<4:1 ,即主被控 参数h3也没有达到4:1衰减,即主副 调节器PID整定得不合适。调整PID 参数后,重新做第二次整定,直到 n≥4﹕1为止。 8-9
TI =∞ TD=0
定得比较合适。满足了PID参数整定 要求,达到了实验要求。
8-10
8.
副调节器PID参数保持上一步的不变,则用上述方法整定主调节器PID参数整
定。这一次曲线记入上表第2次做表格
9.
重新确定干扰通道上的水龙头开关位置,使干扰落在副环之外,主环之内。等

双容水箱液位串级控制系统设计答辩稿

双容水箱液位串级控制系统设计答辩稿
控制阀
主控制
副控制
上水箱
下水箱
单回路仿真框图
单回路无校正仿真曲线
单回路控制仿真框图
单回路控制最终仿真曲线 参数:K1=9.8,Ti=0.4,TD=35
串级控制系统仿真框图
串级有校正仿真曲线 参数P1=77,I=5,D=55,P2=15

动态性能指标对比
td
单 回路 串 级 0s 2s 1s 0s 0.5 % 0 1s
tr
tp
ts
0s
σ
1
ess
0
2.5s 2s
含噪声单回路PID控制的系统仿真框 图
含有噪声单回路仿真曲线 参数P1=77,I=5,D=55
含噪声串级控制框图
含噪声串级控制最终仿真曲线 参数P1=77,I=5,D=55,P2=15
含噪声的动态性能指标对比
td 单回 0.4s 路 tr 1.5s tp 1s ts 8s σ 20 ess 0.1
串s
0.8% 0
• 感谢各位老师的观看
• 学生:卢嘉鑫 • 指导教师:赵静
双容水箱液位串级控制系统设 计
• 1、建立系统数学模型 • 2、设计双容水箱液位单回路反馈控制系统 和串级控制系统 • 3、先对未加校正的单回路系统进行仿真, 然后加入控制,进行仿真以及参数整定, 然后进行串级系统仿真及参数整定,并与 之前单回路系统进行动态性能指标比较。 • 4、含有噪声的串级控制仿真,并与之前含 有噪声的单回路反馈控制系统进行比较。
• • • • • • •
控制变量:进水流量QI; 主被控参数:下水箱液位 副被控参数:上水箱液位; 主控制器:PID; 副控制器:P 执行器:控制阀; 上水箱尺寸为:A1=0.0025m2,h=10cm,R1=2 m3/s;下水箱尺寸为:A2=0.02m2,h=10cm, R2=1m3/s,上水箱的流入量为QI=0.0083m3/s, 流出量为Q1=0.02m3/s,下水箱流出量 Q2=0.01m3/。

双容水箱液位串级控制系统_毕业设计

双容水箱液位串级控制系统_毕业设计

双容水箱液位串级控制系统_毕业设计1. 设计题目双容水箱液位串级控制系统设计2. 设计任务图1所示双容水箱液位系统,由水泵1、2分别通过支路1、2向上水箱注水,在支路一中设置调节阀,为保持下水箱液位恒定,支路二则通过变频器对下水箱液位施加干扰。

试设计串级控制系统以维持下水箱液位的恒定。

1图1 双容水箱液位控制系统示意图3. 设计要求1) 已知上下水箱的传递函数分别为:111()2()()51p H s G s U s s ∆==∆+,22221()()1()()()201p H s H s G s Q s H s s ∆∆===∆∆+。

要求画出双容水箱液位系统方框图,并分别对系统在有、无干扰作用下的动态过程进行仿真(假设干扰为在系统单位阶跃给定下投运10s 后施加的均值为0、方差为0.01的白噪声);2) 针对双容水箱液位系统设计单回路控制,要求画出控制系统方框图,并分别对控制系统在有、无干扰作用下的动态过程进行仿真,其中PID 参数的整定要求写出整定的依据(选择何种整定方法,P 、I 、D 各参数整定的依据如何),对仿真结果进行评述;3) 针对该受扰的液位系统设计串级控制方案,要求画出控制系统方框图及实施方案图,对控制系统的动态过程进行仿真,并对仿真结果进行评述。

4.设计任务分析系统建模基本方法有机理法建模和测试法建模两种,机理法建模主要用于生产过程的机理已经被人们充分掌握,并且可以比较确切的加以数学描述的情况;测试法建模是根据工业过程的实际情况对其输入输出进行某些数学处理得到,测试法建模一般较机理法建模简单,特别是在一些高阶的工业生产对象。

对于本设计而言,由于双容水箱的数学模型已知,故采用机理建模法。

在该液位控制系统中,建模参数如下:控制量:水流量Q ;被控量:下水箱液位;控制对象特性: 111()2()()51p H s G s U s s ∆==∆+(上水箱传递函数); 22221()()1()()()201p H s H s G s Q s H s s ∆∆===∆∆+(下水箱传递函数)。

上水箱液位与进水口流量串级控制实验实验报告

上水箱液位与进水口流量串级控制实验实验报告

《控制工程实验》实验报告实验题目:上水箱液位与进水口流量串级控制实验课程名称:《控制工程实验》姓名:学号:专业:年级:院、所:日期: 2019.04.18实验三上水箱液位与进水口流量串级控制实验一、实验目的1.通过实验了解水箱液位串级控制系统组成原理。

2.掌握水箱液位串级控制系统调节器参数的整定与投运方法。

3.了解阶跃扰动分别作用于副对象和主对象时对系统主控制量的影响。

4.掌握液位串级控制系统的实现过程。

二、实验设备1. 实验装置对象及控制柜 1套2. 装有Step7、WinCC等软件的计算机 1台3. CP5621专用网卡及MPI通讯线各1个三、实验原理本实验为水箱液位的串级控制系统,它是由主控、副控两个回路组成。

主控回路中的调节器称主调节器,控制对象为下水箱,下水箱的液位为系统的主控制量。

副控回路中的调节器称副调节器,控制对象为中水箱,又称副对象,中水箱的液位为系统的副控制量。

主调节器的输出作为副调节器的给定,因而副控回路是一个随动控制系统。

副调节器的的输出直接驱动电动调节阀,从而达到控制下水箱液位的目的。

为了实现系统在阶跃给定和阶跃扰动作用下的无静差控制,系统的主调节器应为PI或PID控制。

由于副控回路的输出要求能快速、准确地复现主调节器输出信号的变化规律,对副参数的动态性能和余差无特殊的要求,因而副调节器可采用P调节器。

本实验系统结构图和方框图如图1所示。

四、实验内容与步骤本实验选择选择上水箱和中水箱串联作为被控对象。

实验之前先将储水箱中贮足水量,然后将阀门F1-1、F1-7全开,将中水箱出水阀门F1-10开度开到70%左右、下水箱出水阀门F1-11开度50%左右(要求阀F1-10稍大于阀F1-11),其余阀门均关闭。

图1 双容水箱液位串级控制系统(a)结构图 (b)方框图1.用 MPI 通讯电缆线将 S7-300PLC 连接到计算机 CP5621 专用网卡,并按照控制柜接线图连接实验系统。

锅炉液位串级控制系统

锅炉液位串级控制系统

4.启动水泵,等高水位水箱溢流后, (恒压状态)开始做实验。调整 P.I.D 参数使系统达 到最佳效果,记录 P、I、D 数值;将主调节器仪表设定为自整定状态,观察系统的调节过程, 记录 P、I、D 参数。 5.待系统稳定后,加 5%的扰动,重复步骤 4,观察主动、从动量变化情况
五、实验报告要求 观察系统的调节过程,按照 5s 的时间间隔,记录 20 组数据,描绘出液位随时间变化的曲 线。
2)副(流量)调节器参数设置: 序号 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 符号 SL0 SL1 SL2 SL3 DE BT F1 F2 F3 IN2 PIDL PIDH OUTL OUH SVL SVH FU0 FU1 FPB FUL FUH 设定值 14 0 1 2 1 5 1 1 0 2 0 100 0 300 0 300 3 0 0 0 300 作用 输入分度号,14=(1~5)V 显示无小数点 第一报警为下限报警 第二报警为上限报警 设备号(通讯用) 通讯波特率=9600 PID 反作用方式 PID 为电压、电流输出 SV 显示控制目标值 双路输入外给定控制 PID 输出下限幅值(%) PID 输出上限幅值(%) 设定变送输出的下限量程 设定变送输出的上限量程 输入信号的测量下限量程 输入信号的测量上限量程 SV 输入分度号(1~5V) SV 显示无小数点 SV 显示输入零点迁移 SV 测量量程的下限 SV 测量量程的上限
实验题目 实验室 实验类别 一、实验目的 实验时间
锅炉液位串级控制系统 同组人数
1.掌握以流量为副参数以锅炉液位为主参数串级控制系统构成参数整定方法; 2.进一步熟练智能调节仪表的基本操作与参数设定方法; 3.研究串级控制系统对扰动的调节作用及克服二次扰动能力。 二、实验设备 1.过程控制对象:1 套 2.控制系统操作台:1 套 3.PID 自整定数字调节仪:2 块 框图如图 3.1 所示,系统由一个定值控制的主参数回路和一个跟随主参数变化 的随动控制回路组成。

实验一液位流量过程控制系统

实验一液位流量过程控制系统

实验一ﻩ液位流量过程控制系统一、实验目的1.掌握控制对象动态特性测试的方法.2.熟悉1~2阶单回路控制系统和串级控制系统的组成,调节器参数整定.3. 了解干扰信号加于不同位置对调节质量的影响.4。

掌握P、I、D参数对系统性能的影响。

二、实验内容1。

动态特性测试液位对象的动态特性测试流量对象的动态特性测试2.单回路控制系统液位单回路控制及参数整定流量单回路控制及参数整定3。

串级控制系统串级控制的组成串级控制时调节器的参数整定及系统投运4。

比值控制系统相乘控制方案的实施比值控制时比值系数的设置三、实验用图所有原理框图、接线图均在实验步骤内四、实验预备知识1.了解差压变送器的工作原理和结构。

2. 了解电气调节阀和流量传感器工作原理和信号的传递与控制.3. 掌握PID数字控制仪的接线与操作方法。

五、实验预习1。

了解实验装置,熟悉液位与流量过程控制系统面板图(见附图一).2.根据每个实验的要求和对应实验装置的面板图,完成“实验原理与步骤”中各种实验的原理框图和接线图,以此为依据进行实验。

3。

写出每个实验的操作步骤及调节器的设置。

六、实验装置1.装置介绍a.装置的组成该装置由控制对象和控制台两部分组成.控制对象包括两阶液位对象、水槽、水泵、流体输送管道、空气过滤减压阀、电气转换器以及有关的液位压力检测变送和气动调节阀.在控制屏上安装了数字调节仪表、泵的开停按钮及整个工艺模拟流程图等。

模拟流程图上的有输入输出线插座孔.因此在组成不同控制回路时,只要在这些插孔上进行不同的连接,就能方便组成不同的控制回路.b。

模拟屏模拟屏上的流程图如图4所示。

图中,Ο为插座孔.C1、C2、C3为三个调节器(C1带有通信接线、C2带有外设定功能),C1为主调节器,C2为副调节器,C3为外加干扰;框中的PV、SP、OUT分别表示调节器的测量、外给定、输出;FT1、FT2分别表示内、外容器的流量检测变送值经F/I转换后的标准电流输出信号;V1、V2表示调节阀的输入信号插座孔,接收来自调节器的标准电流输出信号并经电气转换器转换成标准气信号后送到气动调节阀。

水箱液位串级控制系统讲解

水箱液位串级控制系统讲解

长沙学院CHANGSHA UNIVERSITY专业训练与创新实习报告过程控制系统实习系部:电子信息与电气工程系专业年级班级:11 电气 3 班学生姓名:学号:指导教师:成绩评定:(指导教师填写)2014年11 月实验目录实验一单闭环流量定值控制系统实验二单容液位定值控制系统实验三水箱液位串级控制系统实验一单闭环流量定值控制系统一、实验目的1.了解单闭环流量控制系统的结构组成与原理。

2.掌握单闭环流量控制系统调节器参数的整定方法。

3.研究调节器相关参数的变化对系统静、动态性能的影响。

4.研究P、PI、PD和PID四种控制分别对流量系统的控制作用。

5.掌握同一控制系统采用不同控制方案的实现过程。

二、实验设备实验对象及控制屏、各类电路挂件、计算机一台、万用表一个、导线若干;三、实验原理图4-1 单闭环流量定值控制系统(a)结构图(b)方框图本实验系统结构图和方框图如图4-1所示。

被控量为电动调节阀支路(也可采用变频器支路)的流量,实验要求电动阀支路流量稳定至给定值。

将涡轮流量计FT1检测到的流量信号作为反馈信号,并与给定量比较,其差值通过调节器控制电动调节阀的开度,以达到控制管道流量的目的。

为了实现系统在阶跃给定和阶跃扰动作用下的无静差控制,系统的调节器应为PI控制,并且在实验中PI 参数设置要比较大。

四、实验内容图4-2 智能仪表控制单闭环流量定值控制实验接线图本实验选择电动阀支路流量作为被控对象。

实验之前先将储水箱中贮足水量,然后将阀门F1-1、F1-2、F1-8、F1-11全开,其余阀门均关闭。

将“FT1电动阀支路流量”钮子开关拨到“ON”的位置。

具体实验内容与步骤可根据本实验的目的与原理参照前面的单闭环定值控制中相应方案进行,下面只给出实验的接线图。

五、实验数据曲线图4-3 单闭环流量定值控制曲线图六、实验总结单闭环流量定值控制的数据曲线中,流量设定值SV=10.0r/min,比例系数P=60,积分时间I=20,先是等幅振荡,外加一个干扰信号,数据曲线经过智能调节仪的调节后,渐渐接近稳定。

过程控制实训

过程控制实训

过程控制实训报告班级:_____________ 电子A1532班 _________姓名:_________________ 万懿锋_____________学号:37 ___________________指导教师:_______________ 曾伟______________扌报告成绩:_______________________________平时成绩:__________________________________操作成绩:__________________________________教师评语:_________________________________________________电子工程学院二零一八年十一月目录实训一三容水箱液位定值控制系统 (1)实训二下水箱液位与进水流量串级控制系统 (3)实训三盘管出水口温度滞后控制系统 (5)实训四盘管出水口水温与热水流量的串级控制系统. (7)实训五盘管出口与锅炉内胆的水温串级控制系统. (9)实训六单闭环流量定值控制系统 (11)实训报告院(系):电子工程学院 课程名称:过程控制实训日期:2018.11.19班级 A1532 组 号学号37 电子信息实验楼405专业 自动化姓名万懿锋实训 名称实训一三容水箱液位控制1 •了解三容水箱液位定值控制系统的结构和组成。

2 •掌握三阶系统调节器参数的整定与投运方法。

3 •研究调节器相关参数的变化对系统静、动态性能的影响。

4 .分析P 、PI 、PD PID 四种控制方式对本实训系统的作用。

5 •综合分析五种控制方案的实训效果。

本实训系统结构图和方框图如图1-1所示。

本实训以上、中、下三只水箱串联作被控对象,下水箱的液位高度为系统的被控制量。

由第二章双容特性测试实训可 推知,三容实训 仪器 材料1. 实训对象及控制屏、 SA-11挂件一个、SA-13挂件一个、SA-14挂件一个、计 算机一台(DCS 需两台计算机)、万用表一个:2. SA-12挂件一个、3. SA-21挂件一个、4. SA-31挂件一个、 换器两个,网线四根:5. SA-41 挂件一个、6. SA-42挂件一个、RS485/232转换器一个、通讯线一根;SA-22挂件一个、SA-23挂件一个;SA-32挂件一个、SA-33挂件一个、主控单元一个、数据交 CP5611专用网卡及网线;实训 目的 要求实 训 原 理1-1三容液位定值控制系统(a )结构图(b )方框图上水坊电目闯韦阀 Fl- I■"- _______ _____一 ------------ --------------图 * FIT"'下样"嘛I对象是一个三阶系统,可用三个惯性环节来描述。

下水道液位与进水流量串级控制系统

下水道液位与进水流量串级控制系统

下水道液位与进水流量串级控制系统简介下水道液位与进水流量串级控制系统是一种用于管理下水道液位和监测进水流量的系统。

该系统旨在确保下水道的液位保持在合理范围内,并且进水流量能够得到有效控制,以避免下水道的过载和堵塞等问题的发生。

系统组成下水道液位与进水流量串级控制系统主要由以下组成部分组成:液位传感器系统通过安装在下水道中的液位传感器来监测下水道内的液位。

液位传感器可以实时测量液位高度,并将数据传输给控制器进行处理。

进水流量计进水流量计用于测量进水管道中的流量。

通过实时监测进水流量,系统可以根据实际情况对进水量进行控制和调整,以保持下水道的平衡运行。

控制器控制器是系统的核心部分,用于处理液位传感器和进水流量计的数据,并根据预设的控制算法进行判断和控制。

控制器可以根据液位和进水流量的变化情况,自动调整进水口的开关程度,以实现液位和进水流量的串级控制。

进水口控制装置进水口控制装置是通过控制进水口的开关程度来调整进水流量的装置。

根据控制器的指令,进水口控制装置能够自动调整进水口的开关程度,以达到控制进水流量的目的。

工作原理下水道液位与进水流量串级控制系统的工作原理如下:1. 液位传感器实时测量下水道的液位高度,并将数据传输给控制器。

2. 进水流量计实时测量进水管道中的流量,并将数据传输给控制器。

3. 控制器根据液位和进水流量的数据,进行判断和控制。

4. 如果下水道的液位过高,控制器将发送指令给进水口控制装置,减少进水口的开关程度,降低进水流量。

5. 如果下水道的液位过低,控制器将发送指令给进水口控制装置,增加进水口的开关程度,增加进水流量。

6. 控制器不断根据液位和进水流量的变化情况进行判断和控制,以保持下水道的液位和进水流量在合理范围内。

应用场景下水道液位与进水流量串级控制系统可以广泛应用于城市的下水道管理中。

它可以帮助防止下水道的液位过高导致的洪水、漫水等问题,并避免下水道的过载和堵塞。

同时,该系统还可以提高下水道的运行效率,减少资源的浪费。

(完整word版)上水箱液位与进水流量串级控制系统

(完整word版)上水箱液位与进水流量串级控制系统

题目11 上水箱液位与进水流量串级控制系统一、课程设计主要任务及要求1、了解液位-流量串级控制系统的结构组成与原理。

2、掌握液位—流量串级控制系统调节器参数的整定与投运方法。

3、进行串级控制系统PID参数整定。

4、了解阶跃扰动分别作用于副对象和主对象时对系统主控制量的影响.二、实验设备1. THJ-FCS型高级过程控制系统实验装置。

2。

计算机及相关软件。

三、实验原理本实验系统的主控量为上水箱的液位高度H,副控量为气动调节阀支路流量Q,它是一个辅助的控制变量。

系统由主、副两个回路所组成。

主回路是一个定值控制系统,要求系统的主控制量H等于给定值,因而系统的主调节器应为PI或PID控制。

副回路是一个随动系统,要求副回路的输出能正确、快速地复现主调节器输出的变化规律,以达到对主控制量H的控制目的,因而副调节器可采用P控制。

但选择流量作副控参数时,为了保持系统稳定,比例度必须选得较大,这样比例控制作用偏弱,为此需引入积分作用,即采用PI控制规律。

引入积分作用的目的不是消除静差,而是增强控制作用。

显然,由于副对象管道的时间常数小于主对象上水箱的时间常数,因而当主扰动(二次扰动)作用于副回路时,通过副回路快速的调节作用消除了扰动的影响。

本实验系统结构图和方框图如图5-15所示。

图5-15上水箱液位与进水流量串级控制系统(a)结构图(b)方框图四、实验控制系统流程图本实验控制系统流程图如图5—16所示.图5-16 实验控制系统流程图本实验主要涉及三路信号,其中两路是现场测量信号上水箱液位和管道流量,另外一路是控制阀门定位器的控制信号。

本实验中的上水箱液位信号是标准的模拟信号,与SIEMENS的模拟量输入模块SM331相连,SM331和分布式I/O模块ET200M直接相连,ET200M挂接到PROFIBUS-DP总线上,PROFIBUS-DP总线上挂接有控制器CPU315—2 DP(CPU315-2 DP为PROFIBUS-DP总线上的DP主站),这样就完成了现场测量信号向控制器CPU315-2 DP的传送。

过程控制仿真系统实验指导书

过程控制仿真系统实验指导书

目录前言 (3)第一章对象特性测试实验 (4)第一节测试对象特性的方法 (4)实验一上水箱特性测试实验 (14)实验二下水箱特性测试实验 (15)实验三二阶液位特性测试实验 (16)实验四温度加热器特性测试实验 (17)实验五调节阀特性测试实验 (18)第二章单闭环控制系统实验 (19)实验一压力单闭环控制系统实验 (22)实验二温度单闭环控制系统实验 (23)实验三液位单闭环控制系统实验 (24)实验四流量单闭环控制系统实验 (25)实验五二阶液位控制系统实验 (26)第三章串级控制系统实验 (27)串级控制系统的设计与整定 (27)实验一上水箱液位和流量串级控制系统实验 (30)实验二上、下水箱液位串级控制系统实验 (32)第四章前馈控制系统实验 (34)前馈控制系统的原理 (34)实验一前馈反馈控制系统实验 (35)前言过程控制模拟仿真系统是通过计算机仿真技术,将各种过程物理对象转换成数学模型,开发出对象的一阶和二阶过程的动态特性数学模型,计算机动态模拟,达到和真实的控制系统相一致的仿真目的,在教学实验应用方面具有很好的效果。

在仿真系统界面中,设置有各种过程控制器件,包括变频器、水泵、电动调节阀、压力变送器、温度变送器、液位变送器、流量变送器、加热器等。

管道设置为两条回路,主回路用红色管道表示,副回路用白色管道表示,管道为动态流水显示。

在系统运行状态下,只要打开流水管道,就会观察到动态流水过程,比较形象直观。

同时,在各个器件上方的动态文本里显示的是当前的实际值,水箱上标有液位刻度,可以直观的观察液位高度。

系统最右上方一栏显示的是各器件变送的电流值,变送输出电流为标准电流4~20mA,右下方的为输入控制电流,是用来控制调节阀,加热器,变频器,输入电流为标准4~20mA。

该仿真系统将计算机内部变送电流数值通过牛顿模块输出为实际的电流值,而实际控制模拟输入电流又可通过牛顿模块转换为数字信号输入到计算机内。

串级控制系统ppt课件

串级控制系统ppt课件
副参数塔底流量波动使系统状况发生变化时,它会迅速反映出这种情况,副调节器便 立即进行调节.对于幅度小的干扰,经过副回路的及时调节,一般影响不到液面的变化. 当干扰很大时在副回路快速调节下干扰幅值大大减少,尽管还将影响到主参数----塔底 液面,当主调节器投入调节过程后,很快可以克服干扰. 2.干扰作用于副回路 假如塔底流量正常,进料流量发生变化,至使塔底液面偏离给定值,此时主调节器立即 工作,输出相应变化,通过改变副调节器的给定值与塔底流量的偏差发出相应的输出信 号,改变调节阀的开度从而使塔底液面尽快回到给定值上.
单回路系统的积分饱和现象举例
单回路PID控制系统(无抗积分饱和措施) (参见模型…/CascadePID/SinglePidwithInteSatur.mdl)
单回路系统的防积分饱和
ysp(t) e(s)

KC +


d(t)
v
广义
+ +
对象
y(t)
1 TI s +1
讨论:正常情况为标准的PI控制算法;而当出现超限 时,自动切除积分作用。
串级回
路的等 R1
效系统
+ -
D2
0.2 5s +1
s +1
D1
u Kc
0.8
+ +
y2
1
+ +
s +1
20s + 1
y1
原单
R1
回路

D2
D1
u
1
+ +
y2
1
+ +
Kc
5s +1
20s + 1
y1
系统

副回路对主对象开环特性 的影响举例

过程控制之液位流量串级控制系统

过程控制之液位流量串级控制系统

过程控制之液位流量串级控制系统1.1控制系统在实际应用中的重要意义单回路控制系统是过程控制中结构最简单的一种形式,它只用一个调节器,调节器也只有一个输入信号,从系统方框图看,只有一个闭环。

在大多数情况下,这种简单系统已经能够满足工艺生产的要求。

但在复杂的控制系统中,则需在单回路的基础上,采取其它措施,组成复杂控制系统,而串级控制系统就是其中一种改善和提高控制品质的极为有效的控制系统。

液位和流量是工业生产过程中最常用的两个参数,对液位和流量进行控制的装置在工业生产中应用的十分普遍。

液位的时间常数T一般很大,因此有很大的容积迟延,如果用单回路控制系统来控制,可能无法达到较好的控制质量。

而串级控制系统则可以起到十分明显的提高控制质量的效果,因此往往采用串级控制系统对液位进行控制。

1.2 系统结构设计过程控制系统由四大部分组成,分别为控制器、调节器、被控对象、测量变送。

本次为流量回路控制,即为闭环控制系统,结构组成如下图1.1所示。

图1.1 液位单回路控制系统框图当系统启动后,水泵开始抽水,通过管道分别将水送到上水箱和下水箱,由HB返回信号,是否还需要放水到下水箱。

其过程控制系统图如图1.2所示。

图1.2 控制系统框图1.3控制系统的总体方框图及工作过程图1.3控制系统框图单容水箱如图1.2所示,Qi 为入口流量,由调节阀开度μ加以控制,出口流量则由电磁阀控制产生干扰。

被调量为水箱中的水位H,它反映水的流入与流出量之间的平衡关系。

现在分析水位在电磁阀开度扰动下的动态特性。

显然,在任何时刻水位的变化均满足下述物料平衡方程:(1.1)()1i o dH Q Q dt F=-其中 (1.2)i Q k μμ= (1.3)o Q =F 为水箱的横截面积;是决定于阀门特性的系数,可以假定它是常数;是与电磁阀k μk 开度有关的系数,在固定不变的开度下,k 可视为常数。

液位对象的传递函数:()()i H s Q s =2.1 控制规律的比较与选择2.1.1 常见控制规律的类型及优缺点比较PID 控制的各种常见的控制规律如下:一、比例调节(P 调节)在P 调节中,调节器的输出信号与偏差信号成比例,即()u t ()e t (2.1)()()C u t K e t =式中Kc 称为比例增益(视情况可设置为正或负), 为调节器的输出,是对调节器起始值()u t 的增量,的大小可以通过调整调节器的工作点加以改变。

过程控制系统串级控制系统实验

过程控制系统串级控制系统实验

实验一串级控制系统组成实验一、概念在串级控制系统中,采用了主、副两只控制器,其中主控制器的输出作为副控制器的给定,而由副控制器的输出去控制控制阀。

本次实验采用仪表实验装置,其内容就是让学生自行连成液位与液位及液位与流量两个串级控制系统。

二、目的要求、1.熟悉实验装置(参见实验指导书)。

2.利用所提供的液位实验装置连成一个以二阶液位L2为主变量,一阶液位L1为副变量,F2为控制变量的液位与液位串级控制系统。

3.利用液位实验装置连成一个以二阶液位L2为主变量,以一阶液位F l为副变量和控制变量的液位与流量串级控制系统。

三、注意事项1.本次实践只连线路,不允许接通电源。

四、思考问题1.串级控制系统中主、副控制器的内、外给定开关应如何放置?2.试分析液位与液位串级控制系统在干扰作用下的工作过程。

3.已知控制阀为气闭式,并安装在水槽的入口处,试分析液位与液位串级控制系统中主、副控制器的正、反作用应如何选?实验二串级控制系统的投运和整定一、概述串级控制系统具有主、副两只控制器,因此投运和整定要比单回路系统复杂一些。

但只要按照先副后主的步骤循序进行,并掌握住投运和整定的要领,串级控制系统的投运和整定方法也是不难掌握的。

串级控制系统的整定方法很多,本次采用的是一步整定法。

即先根据副变量的类型,按经验数据将副控制器参数一次性放好,不再改变,然后再按单回路系统的4:1衰减曲线法直接整定主控制器的参数。

本次实验要求学生利用所提供的液位实验装置连成一个以二阶液位L2为主变量,一阶液位L l为副变量,F2为控制变量的液位与液位串级控制系统,并对该系统进行投运和整定实践。

二、实验目的1.串级控制系统的投运2.串级控制系统控制器参数的整定三、实验要求1.掌握串级控制系统的投运方法。

2.掌握一步整定法整定串级控制系统控制器参数的方法。

3.要求学生根据实验的目的要求自行拟定实验步骤。

4.实验完成后一星期内每人提交一份实验报告,内容要求同前。

液位串级控制系统

液位串级控制系统

DCS实训报告姓名:学号:院系:电子信息与电气工程学院一.实训目的(1)熟悉集散控制系统(DCS)的组成(2)掌握MACS组态软件的使用方法。

(3)培养灵活组态的能力。

(4)掌握系统组态与装置调试的技能。

二.实训内容以双容水箱为对象,设计液位串级控制系统,并利用MACS组态软件完成组态包括:1 数据库组态2 设备组态3控制器算法组态4 画面组态5 系统调试三、实训设备和器材(1)THSA-1型生产过程自动化技术综合实训装置。

(2)和利时DCS控制系统。

四.实训工程分析双容水箱液位定值控制系统需要二个输入测量信号,一个输出控制信号。

因此需要一个模拟量输入模块FM148A和一个模拟量输出模块FM151。

采集上水箱液位信号(LT1),下水箱液位信号(LT2)和控制电动控制阀的开度的控制信号(P1)。

通过分析可得:AI:LT1 1~5V(信号范围)0~20cm(量程)LT2 1~5V(信号范围)0~20cm(量程)AO:P1 4~20mA(信号范围)0~100%(量程)硬件的选取:(1)I/O:FM148A(一块)FM151A(一块)(2)主控模块:FM801(一块)(3)操作员站(一台)(4)工程师站(一台)控制原理框图:四.实训步骤1. 工程建立及数据库组态1)打开:开始 程序 macs 组态软件 数据库总控 点击新建工程,输入工程名如下图:2)选择新建工程,选择编辑>域号组态,选择组号为1,将刚创建的工程从“未分组的域”移到右边“该组所包含的域”里,点“确认”按钮。

出现当前域号:0。

3) 在数据库总控中添加变量。

选择编辑→编辑数据库,弹出窗口,输入用户名和口令bjhc/3dlcz。

进入数据库组态编辑窗口。

4) 选择系统→数据操作,出现下面对话框,点击“确定”按钮。

5) “AI模拟量输入”选项出现下图。

6) 选择所需项名,并更改相应数据及说明,如下图:7) 点击更新数据库。

8) “AO模拟量输出”同上,如下图:9) 点击更新数据库。

双容水箱液位串级控制系统课程设计完整版

双容水箱液位串级控制系统课程设计完整版

双容水箱液位串级控制系统课程设计HEN system office room 【HEN16H-HENS2AHENS8Q8-HENH1688】双容水箱液位串级控制系统课程设计1. 设计题目双容水箱液位串级控制系统设计2. 设计任务图1所示双容水箱液位系统,由水泵1、2分别通过支路1、2向上水箱注水,在支路一中设置调节阀,为保持下水箱液位恒定,支路二则通过变频器对下水箱液位施加干扰。

试设计串级控制系统以维持下水箱液位的恒定。

图1 双容水箱液位控制系统示意图3. 设计要求1) 已知上下水箱的传递函数分别为:111()2()()51p H s G s U s s ∆==∆+,22221()()1()()()201p H s H s G s Q s H s s ∆∆===∆∆+。

要求画出双容水箱液位系统方框图,并分别对系统在有、无干扰作用下的动态过程进行仿真(假设干扰为在系统单位阶跃给定下投运10s 后施加的均值为0、方差为的白噪声);2) 针对双容水箱液位系统设计单回路控制,要求画出控制系统方框图,并分别对控制系统在有、无干扰作用下的动态过程进行仿真,其中PID 参数的整定要求写出整定的依据(选择何种整定方法,P 、I 、D 各参数整定的依据如何),对仿真结果进行评述;3) 针对该受扰的液位系统设计串级控制方案,要求画出控制系统方框图及实施方案图,对控制系统的动态过程进行仿真,并对仿真结果进行评述。

4.设计任务分析系统建模基本方法有机理法建模和测试法建模两种,机理法建模主要用于生产过程的机理已经被人们充分掌握,并且可以比较确切的加以数学描述的情况;测试法建模是根据工业过程的实际情况对其输入输出进行某些数学处理得到,测试法建模一般较机理法建模简单,特别是在一些高阶的工业生产对象。

对于本设计而言,由于双容水箱的数学模型已知,故采用机理建模法。

在该液位控制系统中,建模参数如下:控制量:水流量Q ;被控量:下水箱液位;控制对象特性:111()2()()51p H s G s U s s ∆==∆+(上水箱传递函数);22221()()1()()()201p H s H s G s Q s H s s ∆∆===∆∆+(下水箱传递函数)。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

课程设计说明书(2012 /2013 学年第一学期)
课程名称:工业监控系统工程设计
题目:液位和流量串级控制系统
专业班级:
学生姓名:
学号:
指导教师:
设计周数:2周
设计成绩:
2013年1月4日
目录
1 课程设计目的 (3)
2 课程设计设备 (3)
3 课程设计原理 (3)
4 课程设计内容和步骤 (3)
4.1设备的连接和检查 (4)
4.2实验接线 (4)
4.3启动实验装置 (5)
4.4实验步骤 (6)
5 实验设计收获、体会和建议 (9)
6 参考文献 (10)
液位和流量串级控制系统
一、课程设计目的
1)、掌握串级控制系统的基本概念和组成。

2)、掌握串级控制系统的投运与参数整定方法。

3)、研究阶跃扰动分别作用在副对象和主对象时对系统主被控量的影响。

二、课程设计设备
ICP-7017远程数据采集输入模块、ICP-7024远程数据采集模拟量输出模块、计算机、串口线1根。

三、课程设计原理
因为流量变化瞬速,做为副调节器调节对象,中水箱液位做为主调节器调节对象。

控制框图如图所示:
四、课程设计内容和步骤
串级控制系统是改善控制质量的有效方法之一,在过程控制中得到广泛地应用,串级控制系统是指不止采用一个控制器,而是将两个或几个控制器相串级,是将一个控制器的输入作为下一个控制器设定值的控制系统。

实验以串级控制系统来控制下水箱液位,以第二支路流量为副对象,右边水泵直接向下水箱注水,流量变动的时间常数小、时延小,控制通道短,从而可加快提高响应速度,缩短过渡过程时间,符合副回路选择的超前,快速、反应灵敏等要求。

下水箱为主对象,流量的改变需要经过一定时间才能反应到液位,时间常数比较大,时延大。

如图所示,设计好下水箱和流量串级控制系统。

将主调节器的输出送到副调
节器的给定,而副调节器的输出控制执行器。

由上分析副调节器选纯比例控制,正作用,自动。

主调节器选用比例控制或比例积分控制,反作用,自动。

反复调试,使第二支路的流量快速稳定在给定值上,这时给定值应与副反馈值相同。

待流量稳定后,通过变频器快速改变流量,加入扰动。

若参数比较理想,且扰动较小,经过副回路的及时控制校正,不影响下水箱的液位。

如果扰动比较大或参数并不理想,则经过副回路的校正,还将影响主回路的温度,此时再由主回路进一步调节,从而完全克服上述扰动,使液位调回到给定值上。

当使用第一动力支路把扰动加在下水箱时,扰动使液位发生变化,主回路产生校正作用,克服扰动对液位的影响。

由于副回路的存在加快了校正作用,使扰动对主回路的液位影响较小。

各个回路独立调整结束,使得主调节器输出与副调节器给定值相差不是太远。

副回路对FT102进行控制,这个反应比较快,副回路的控制目的是很快把流量控制回给定值。

可以通过另一个动力支路加入部分液位干扰。

主回路对下水箱液位进行控制。

可以在下水箱中加入主回路干扰,要平衡这个干扰,则需要经过流量调整,通过FT102来平衡这个变化。

串级控制设计如下:
1、设备的连接和检查
1)、关闭阀26将储水箱灌满水(至最高高度)。

2)、打开以丹麦泵、电动调节阀、涡轮流量计组成的动力支路至中水箱的阀1、阀4、阀7、阀23,关闭动力支路上通往其他对象的切换阀门:阀2、阀5、阀9、阀11、阀13、阀15。

3)、打开中水箱的出水阀22至适当开度。

4)、检查电源开关是否关闭。

2、实验接线
接线方法如图10-2所示:
图10-2、实验接线
1)、将I/O信号接口板上的中水箱液位的钮子开关打到OFF位置。

2)、电源控制板上的三相电源、单相空气开关、单相泵电源开关打在关的位置。

3)、电动调节阀的~220V电源开关打在关的位置。

4)、将中水箱液位+(正极)接到任意一块智能调节仪的1端(即RSV的正极),中水箱液位-(负极)接到智能调节仪的2端(即RSV的负极)。

智能仪表的地址设为1。

软件定义调节仪地址为1的调节器为主调节器,调节仪地址为2的调节器为副调节器。

5)、将主调节仪的4~20mA输出接至转换电阻(250Ω)上转换成1~5V电压信号,再将此转换信号接至另一调节仪(副调节器)的1端和2端作为外部给定,涡轮流量计的测量信号转换为0.2~1V的信号后接入副调节器的3、2两端。

调节器输出的4~20mA 接电动调节阀的4~20mA控制信号两端。

3、启动实验装置
1)、将实验装置电源插头接到380V的三相交流电源。

2)、打开电源三相带漏电保护空气开关,电压表指示380V。

3)、打开总电源钥匙开关,按下电源控制屏上的启动按钮,即可开启电源。

4、实验步骤
1)、开启单相空气开关,根据仪表使用说明书和液位传感器使用说明调整好仪表各项参数和液位传感器的零位、增益。

2)、启动计算机MCGS组态软件,进入实验系统相应的实验如图10-3所示:
10-3、实验软件界面
3)、设定主控参数和副控参数。

主调节器的参数与单回路闭环控制设定方法一样,副调节器的参数主要的区别在于参数Sn设为32,CF设为8。

4)、待系统稳定后,在中水箱给一个阶跃信号,观察软件的实时曲线的变化,并记录此曲线。

5)、系统稳定后,在副回路上加干扰信号,观察主回路和副回路上的实时曲线的变化。

记录并保存曲线。

进入窗口程序l2.PV=0;
l1.PV=100;
sw1.PV=0;
sw2.PV=0;
sw4.PV=0;
窗口运行时周期执行
if sw2.PV | sw1.PV then l1.PV=l1.PV-2;
l2.PV=l2.PV+2;
endif
if sw2.PV && sw1.PV then l1.PV=l1.PV-5;
l2.PV=l2.PV+5;
endif
if l1.PV<=20 then
l1.PV=20;
endif
if l2.PV>=100 then
l2.PV=100;
endif
if l1.PV>=100 then
l1.PV=100;
endif
if l2.PV<=0 then
l2.PV=0;
endif
if sw4.PV==1 then
l1.PV=l1.PV+5;
l2.PV=l2.PV-5;
endif

五、实验设计收获、体会和建议
从理论到实践,在整整两星期的日子里,学到很多很多东西,同时不仅可以巩固了以前所学过的知识,而且学到了很多在书本上所没有学到过的知识。

通过这次课程设计使我懂得了理论与实际相结合是很重要的,只有理论知识是远远不够的,只有把所学的理论知识与实践相结合起来,从理论中得出结论,才能真正为社会服务,从而提高自己的实际动手能力和独立思考的能力。

在设计的过程中遇到问题,可以说得是困难重重,这毕竟第一次做的,难免会遇到过各种各样的问题,同时在设计的过程中发现了自己的不足之处,对以前所学过的知识理解得不够深刻,掌握得不够牢。

我意识到我们所学的东西将来都是要付诸实践的,所以一切要从实际情况出发,理论联系实际,这样才能真正发挥我们所具备的能力。

组态软件界面灵活,操作简单,容易设计。

它的可灵活设计的界面增加了我们的兴趣,大家都很喜欢自己画出的图形,而且他的编程相对简单,几条简单的语句就可实现效果,我们的编程中多用IF条件语句,它可实现多种功能。

但是在很多细微的地方需要多多考虑,比如初始进入程序条件,以及每个图形文件的条件等。

在此过程中,我们遇到了一些问题,但最终在大家的共同协作,
思考之下解决了疑难问题。

再做plc程序时不断的进行调试,可是效果不佳,没有很好的实现要求的过程,可能在设计过程中细节的地方没有注意到,这就要求我要更加严格要求自己将知识真正的学到手。

与此同时,在设计中也得到了任课老师的大力帮助,使得实验得以成功,这也是离不开同学的团结和老师的帮助的。

在设计中也暴露了很多不足,今后要更加努力学习。

六、参考文献
[1]陈建明.电气控制与PLC应用》,电子工业出版社 2007
[2]邓则名.《电器与可编程控制器应用技术》,机械工业出版社
[3]郁汉琪.《电气控制与可编程序控制器》, 东南大学出版社,2003.
[4]汪晓平.《PLC可编程控制器系统开发实例导航》,人民邮电出版社,2004. [5]陈杰黄鸿.《传感器与检测技术》.北京.高教出版社.2002.8
[6]邵裕森戴先中.《过程控制工程》.北京.机械工业出版社.2000.5。

相关文档
最新文档