代入消元法解方程组

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

备课人:班第小组姓名:

宜州市祥贝中学七年级数学科导学案

课题: 8.2.1 用代入法解二元一次方程组课型:新授课

一、学习目标

1.会用代入法解二元一次方程组。

2.灵活运用代入法的技巧.

二、自学导航

阅读课文P91—P93,完成下列问题:

1.篮球联赛中,每场比赛都要分出胜负,每队胜一场得2分.负一场得1分,某队为了争取较好的名次,想在全部10场比赛中得到16分,那么这个队胜负场数分别是多少?

如果只设一个末知数:胜x场,负(10-x)场,列方程为:,解得x= 。

在上节课中,我们可以设出两个未知数,列出二元一次方程组,设胜的场数是x,负的场数是y,

x+y=10 ①

2x+y=16 ②

那么怎样求解二元一次方程组呢?

2.思考:上面的二元一次方程组和一元一次方程有什么关系?

可以发现,二元一次方程组中第1个方程x+y=10写成y=,将第2个方程2x+y=10的y换为10-x,这个方程就化为一元一次方程。

二元一次方程组中有两个未知数,如果消去其中一个未知数,将二元一次方程组转化为我们熟悉的,我们就可以先解出一个未知数,然后再设法求另一未知数.这种将未知数的个数由多化少、逐一解决的想法,叫做思想。

3.归纳:上面的解法,是把二元一次方程组中一个方程的用含

的式子表示出来,再代入,实现消元,进而求得这个二元一次方程组的解.这种方法叫做,简称。

例1 用代入法解方程组x-y=3 ①

3x-8y=14 ②

分析:方程①中x的系数是1,用含y的式子表示x,比较简单。

解:

三、合作探究

1.将方程5x-6y=12变形:若用含y 的式子表示x ,则x=______,当y=-2时,x=_______;若用含x 的式子表示y ,则y=______,当x=0时,y=________ 。

2.用代人法解方程组⎩

⎨⎧=+-=7y 3x 23x y ①②,把____代人____,可以消去未知数______,方程变为:

3.若方程y=1-x 的解也是方程3x+2y=5的解,则x=____,y=____。

4.若⎩

⎨⎧-=-=+⎩⎨⎧-==1by ax 7by ax 2y 1x 是方程组的解,则a=______,b=_______。 5.已知方程组⎩⎨⎧=-=-1y 7x 45y x 3的解也是方程组⎩

⎨⎧==-5by -x 34y 2ax 的解,则a=_______,b=________ ,3a+2b=___________。

6.已知x=1和x=2都满足关于x 的方程x 2+px+q=0,则p=_____,q=________ 。

7.用代入法解下列方程组:

⑴⎩⎨⎧=+=5x y 3x ⑵⎩⎨⎧==+y 3x 2y 32x ⑶⎩

⎨⎧=-=+8y 2x 57y x 3

四、巩固提升

1.方程组{1

y 2x 11y -x 2+==的解是( ) A.⎩⎨⎧==0y 0x B.⎩⎨⎧==37y x C.⎩⎨⎧==73y x D.⎩

⎨⎧-===37y x 2.根据市场调查,某种消毒液的大瓶装(500g )和小瓶装(250g )两种产品的销售数量(按瓶计算)比为2:5.某厂每天生产这种消毒液22.5t ,这些消毒液应该分装大、小瓶两种产品各多少瓶?

相关文档
最新文档