大学物理电磁感应
大学物理中的磁场与电磁感应
大学物理中的磁场与电磁感应在大学物理课程中,磁场和电磁感应是重要的概念和研究领域。
磁场是由电荷运动引起的,并且与电流、磁矩和磁性物质有关。
电磁感应则是磁场作用下的电场变化引起的电流的现象。
本文将深入探讨磁场和电磁感应的基本概念、原理和应用。
一、磁场的基本概念磁场是由运动电荷所产生的力的场,它对运动电荷施加力的特性在磁场内用力线表示。
每条力线的方向都表示了磁场中的磁力的方向。
磁力线的形状是环绕着产生磁场的电流元。
通常我们用磁场强度B以及磁通量Φ表示磁场的强度和性质。
根据安培定律和毕奥-萨伐尔定律,磁场和电流之间存在密切的关系。
电流元产生的磁场是环绕电流元成环的,磁场的强度与电流元的长度、电流强度和距离都有关。
磁场在物理实验和应用中起着重要的作用,如在电动机、发电机和磁共振成像等设备中的应用。
二、电磁感应的基本原理电磁感应是指变化的磁场所引起的感应电动势和电流。
它是由法拉第的电磁感应定律所描述的。
电磁感应的基本原理可以总结为两点:一是磁场的变化必然会引起感应电势的产生,二是感应电势的大小和电路中的环路有关。
当磁场的磁通量Φ发生变化时,通过环路的电磁感应电动势ε可以表示为:ε = - dΦ/dt。
根据洛伦兹力的原理,感应电动势将产生电流流过电路。
这种电磁感应的现象使得电能和磁能之间可以相互转化。
三、磁场与电磁感应的应用磁场和电磁感应在许多应用中发挥着重要作用。
以下是几个典型的例子:1. 电动机和发电机:电动机利用电流通过磁场产生力矩,从而使机械能转化为电能。
而发电机则相反,利用机械能转化为电能,通过磁场感应产生电流。
2. 磁共振成像:磁共振成像是一种医学影像技术,利用强大的磁场和高频电磁辐射来观察人体的内部结构。
磁场通过感应电流形成图像,以便医生进行诊断。
3. 电磁感应炉:电磁感应炉是一种高效的加热设备,利用电磁感应产生的涡流在导体中产生热量。
它广泛应用于工业加热和金属熔化等领域。
4. 磁力计:磁力计是一种测量磁场强度和方向的仪器。
【大学物理】电磁感应
【大学物理】电磁感应在大学物理的广阔知识海洋中,电磁感应无疑是一颗璀璨的明珠。
它不仅是理论物理的重要组成部分,更是现代科技发展的基石之一。
从发电机的运转到变压器的工作,从无线通信的实现到电磁兼容的考量,电磁感应的原理无处不在,深刻影响着我们的生活和社会的进步。
要理解电磁感应,首先得明确什么是“感应”。
简单来说,感应就是因外界的影响而产生的反应或变化。
而电磁感应,则是指因磁通量的变化而产生的电动势。
当通过闭合回路的磁通量发生变化时,回路中就会产生电流,这种现象就是电磁感应。
让我们从一个简单的实验开始说起。
拿一根导线,把它连接成一个闭合回路,然后让这个回路的一部分在磁场中运动。
当导线在磁场中做切割磁感线运动时,回路中就会产生电流。
这是因为导线运动导致通过回路的磁通量发生了变化。
那么,磁通量又是什么呢?磁通量可以想象成是磁场通过一个给定面积的“流量”。
它等于磁场强度与面积的乘积再乘以两者夹角的余弦值。
如果磁场强度不变,改变面积或者改变磁场与面积的夹角,磁通量都会发生变化。
电磁感应现象的发现,具有划时代的意义。
在 19 世纪,法拉第通过一系列的实验,总结出了电磁感应的规律。
他的工作为后来的电动机、发电机等的发明奠定了基础。
发电机就是利用电磁感应原理工作的典型例子。
在发电机中,通过转动线圈,使其在磁场中不断地改变磁通量,从而产生感应电动势,向外输出电能。
这使得我们能够将机械能转化为电能,为各种电器设备提供动力。
而变压器则是另一个基于电磁感应的重要设备。
通过在一个铁芯上缠绕两组匝数不同的线圈,当输入的交流电压在初级线圈中产生变化的磁通量时,在次级线圈中就会感应出不同的电压。
这使得我们能够改变电压的大小,实现电能的高效传输和分配。
再来说说电磁感应在无线通信中的应用。
无线电波的发射和接收都离不开电磁感应。
发射端通过电流的变化产生变化的电磁场,从而向周围空间辐射电磁波;接收端则通过天线感应到这些电磁波,并将其转化为电信号。
大学物理电磁感应-PPT课件精选全文完整版
的磁场在其周围空间激发一种电场提供的。这
种电场叫感生电场(涡旋电场)
感生电场 E i
感生电场力 qEi
感生电场为非静 电性场强,故:
e E i dld dm t
Maxwell:磁场变化时,不仅在导体回路中 ,而且在其周围空间任一点激发电场,感生 电场沿任何闭合回路的线积分都满足下述关 系:
E id l d d m t d ds B td S d B t d S
线
形
状
电力线为闭合曲线
E感
dB 0 dt
电 场 的
为保守场作功与路径无关
Edl 0
为e非i 保守E 场感作d功l与路径dd有mt关
性
静电场为有源场
质
EdS
e0
q
感生电场为无源场
E感dS0
➢感生电动势的计算
方法一,由 eLE感dl
需先算E感
方法二, 由 e d
di
(有时需设计一个闭合回路)
2.感生电场的计算
Ei
dl
dm dt
L
当 E具i 有某种对称
性才有可能计算出来
例:空间均匀的磁场被限制在圆柱体内,磁感
强度方向平行柱轴,如长直螺线管内部的场。
磁场随时间变化,且设dB/dt=C >0,求圆柱
内外的感生电场。
则感生电场具有柱对称分布
Bt
此 E i 特点:同心圆环上各点大小相同,方向
磁通量 的变化
感应电流的 磁场方向
感应电流 的方向
电动势 的方向
➢ 楞次定律的另一种表述:
“感应电流的效果总是反抗引起感应电流的原因”
“原因”即磁通变化的原因,“效果”即感应电流的 场
电磁感应大学物理中磁场变化引起的感应电流
电磁感应大学物理中磁场变化引起的感应电流电磁感应是大学物理中的一个重要概念,在磁场变化的情况下引起的感应电流更是其中的一个重要方面。
本文将探讨磁场变化引起的感应电流,并分析其原理和应用。
一、磁场变化引起的感应电流磁场是由磁体所产生的,当磁体的磁场发生变化时,就会引起周围的导体中产生电流,这种现象被称为磁场变化引起的感应电流。
磁场变化引起的感应电流遵循法拉第电磁感应定律,即导体中感应电动势的大小与导体所受磁场变化率成正比。
当导体中存在闭合回路时,感应电动势将引起感应电流的产生。
二、磁场变化引起的感应电流的原理磁场变化引起的感应电流的原理可以通过法拉第电磁感应定律来解释。
根据该定律,当导体中的磁场变化时,磁场被导体截面变化的导线会在导线两端产生感应电动势,从而引起感应电流的产生。
具体来说,当磁场对导体产生垂直变化时,感应电动势的大小由磁场变化的速率和导线的长度决定。
如果导体是闭合回路,感应电流将沿着回路的路径流动,形成感应电流回路。
三、磁场变化引起的感应电流的应用磁场变化引起的感应电流在日常生活和工业生产中有着广泛的应用。
1.电动机:电动机利用磁场变化引起的感应电流产生的磁力来转动。
当电流通过导线产生磁场,与磁场相互作用产生力矩,从而使电动机转动。
2.变压器:变压器利用磁场变化引起的感应电流,将交流电的电压进行升高或降低。
当变压器的一侧通过交流电流产生变化的磁场时,另一侧的线圈就会感应出相应的电动势,从而输出相应的电压。
3.发电机:发电机是利用磁场变化引起的感应电流产生电能的装置。
通过使导体与磁场相互运动或磁场与导体相对运动,可以产生感应电动势,从而生成电能。
4.感应炉:感应炉利用高频交变电磁场对金属导体产生感应电流,从而产生高温。
感应炉在金属加热和熔炼等工业领域有着广泛应用。
四、总结电磁感应中磁场变化引起的感应电流是一个重要的物理现象。
磁场的变化会引起导体中的感应电动势,从而产生感应电流。
该现象在电动机、变压器、发电机和感应炉等领域有着重要的应用。
大学物理 电磁感应定律
第12章 恒定磁场
8
金属杆无论朝哪个方向滑动,回路所在处的磁场 并没有变化,但金属框所围的面积发生了变化, 结果也产生电流。
第12章 恒定磁场
9
三
法拉第电磁感应定律
当穿过闭合回路所围面积的磁通量发生 变化时,回路中会产生感应电动势,且感应 电动势正比于磁通量对时间变化率的负值.
i k
dΦ dt
国际单位制
Φ
i
伏特
韦伯
k 1
第12章 恒定磁场
10
(1)闭合回路由 N 匝密绕线圈组成P86
i
d dt
磁通链数(磁链) N Φ (2)若闭合回路的电阻为 R ,感应电流为
Ii
q
1 dΦ R dt 1 Φ2
1
t
t2
1
Id t
Φ R
感应电流的方向是变化的。
第12章 恒定磁场
19
第 12 章
电磁感应与电磁场
第12章 恒定磁场
§12.1 电磁感应的基本定律
一 电动势
第12章 恒定磁场
3
非静电力: 能不断分离正负电荷使正电 荷逆静电场力方向运动. R 电源:提供非静电力的 装置.
非静电电场强度 E k :
I
+E -
+ ++E k qE k dl
4
为单位正电荷所受的非静电力.
m sin t
i
N
o' en B
m
R
sin t I m sin t
交流电
ω o
第12章 恒定磁场
大学物理中的电磁感应电动势和磁感应强度的计算
大学物理中的电磁感应电动势和磁感应强度的计算电磁感应中的电动势和磁感应强度计算1. 介绍电磁感应在大学物理中,电磁感应是一个重要的概念。
它指的是通过磁场的变化产生电动势的现象。
根据法拉第电磁感应定律,导线中的电动势等于磁通量的变化率乘以导线的匝数。
2. 电动势的计算公式根据法拉第电磁感应定律,一个导体中的电动势(ξ)可以用以下公式计算:ξ = -dΦ/dt其中ξ表示电动势,dΦ表示磁通量的变化,dt表示时间的变化。
负号表示电动势的方向与磁通量变化的方向相反。
3. 磁感应强度的计算公式磁感应强度(B)是一个磁场对空间中各点带电粒子或电流的作用力大小的量度。
根据安培环路定律,一个闭合回路的磁通量等于该回路内的电流与回路面积的乘积。
B = Φ/S其中B表示磁感应强度,Φ表示通过闭合回路的磁通量,S表示闭合回路的面积。
4. 电动势和磁感应强度的实际应用在实际应用中,电动势和磁感应强度的计算非常重要。
它们可以用来解释各种电磁现象,如发电机的原理、感应电动势和变压器的工作原理等。
5. 电动势和磁感应强度的计算例子举个例子来说明电动势和磁感应强度的计算。
假设有一个导线环路,通过它的磁通量随时间变化。
我们可以根据电动势的计算公式来求解这个导线环路中的电动势。
另外,如果我们已知一个闭合回路内的电流和回路面积,我们可以根据磁感应强度的计算公式来求解磁感应强度。
6. 结论电磁感应是大学物理中一个重要的概念,涉及电动势和磁感应强度的计算。
电动势可以通过磁通量的变化来计算,而磁感应强度可以通过磁通量与闭合回路面积的比值来计算。
它们在实际应用中具有广泛的意义,可以用来解释各种电磁现象。
在学习和应用中,遵循正确的计算公式和方法是非常重要的。
大学物理电磁学电磁感应
二、 法拉第电磁感应定律
通过回路面积内的磁通量发生变化时,回路中产生 的感应电动势与磁通量对时间的变化率成正比。
1、数学表述
i
k
dΦm dt
在SI制中比例系数为1
i
dΦm dt
§12-1 电磁感应定律
对
N
匝线圈 i
N
dΦm dt
d (NΦm ) dt
令 Ψ NΦm 全磁通 磁通链数
洛仑兹力不提供能量, 他只起到了一个传递能量的 作用。
至此详谬得以解释
f0
v
v0 V f
§12-2 动生电动势
例1有力一线半运圆动形。金已属知导:线v在, B匀,强R磁. 场中作切割磁
求:动生电动势。
b
解:方法一
作辅助线 a b,形成闭合回路。
i i
0
a (v
b
半圆
B) dl
ab
2RBv
② 求电量
i dq 0 sin t
dt R
q
idt
0 sin tdt
0R
BS sin td (t) 2BS
0R
R
§12-2 动生电动势
求解动生电动势的步骤
1. 选择 dl 方向;
2. 确定 dl 所在处的 B 及 v 3. 确定 v × B 的方向; 4. 确定 dl 与 v × B 的夹角
B A
vC
§12-2 动生电动势
例3 一直导线CD在一无限长直电流磁场中作
切割磁力线运动。求:动生电动势。
解: 方法一
d (v B) dl
v
0I
sin
900 dl
I
cos1800
大学物理学-电磁感应定律
0
利用混合积公式
A C B B C A
0
u B B u
总的洛仑兹力的功率为零,即总的洛仑兹力仍然不做功。
两分力做功: e u B e B u
一个分力所做的正功等于另一个分力做的负功,总洛仑兹力做功为零,
不是洛仑兹力: 先有电荷运动,才有洛仑兹力。
这种力能对静止电荷有作用力,类似于静电场,可认为周围空间中存在一种电场:
变化的磁场在其周围空间激发出一种新的涡旋状电场,不管其周围空间有
无导体,也不管周围空间有否介质还是真空,并称其为感生电场(涡旋电场)。
大学物理学
章目录
节目录
上一页
下一页
11.1 电磁感应定律
11.1 电磁感应定律
➢ 磁场中运动的导体所产生的感应现象
大学物理学
章目录
节目录
上一页
下一页
11.1 电磁感应定律
电磁感应现象--在导体回路中由于磁通量变化而产生感应电流的现象。
怎样产生磁通量的变化?
m
改变回路
大学物理学
S
B dS
改变磁场
节目录
上一页
下一页
11.1 电磁感应定律
例 如图所示长为L的金属棒OA在与磁场垂直的均匀磁场中以匀角速绕O点转动,
大学物理电磁感应知识小结
总之,磁通量
二、电动势
定义电动势ε:
m BdS 发生变化
把单位正电荷从负极板通过电 源内部移到正极板,
产生电磁感应现象
I
F ne
q
非静电场所作的功
A n e Fne d l
R
q
q
定义非静电场强:
E ne
Fne q
E dl (电源内) ne
电动势 方向:电源内部负极指向正极
普遍表达式 Ene dl
VS2r
Wm
1 2
L
I
2
1 2
r
0n2I
2V
12r0nInIV
1 2
BHV
以w通m电流WIV的mN匝12螺B绕H环为例12 B H
两W m 个线圈w m d 情V 况1 2 下B H d V
I1 I 2 H1, H2 HH1H2
B1, B2 BB1B2
W m 1 2 B H d V 1 2 B 1 B 2 H 1 H 2 d V
1 2
r 0 (H 1 2 H 2 2 2 H 1H 2 )d V
互感磁能
例1.两个形状相同的环,磁铁以相同的速率插入
问:哪一个
i 大? 哪一个 I 大?
解: i
相同
I i
R
铜环I 大
当 R 0 I ?
若超导体 R0 I ?
i L IR 0 i L
d L d I dt dt
2 dL
i ?
dri
i
M
di dt
M m I
I
m设 M
I
m BdS
ab 0求I:c直d导r线中的电动势 a 2 r
0Ic
2
ab d r 例03I.电c流ln为ab
大学物理电磁感应
I
l
n N l V lS
L n2V
S
lE
(一般情况可用下式 测量自感)
L
L
dI dt
电磁感应 电磁场
37/48
二 互感电动势 互感
I1 在 I2 电流回
B1
I1
B2
路中所产生的磁通量
Φ21 M 21I1
I2
I2 在 I1 电流回路 中所产生的磁通量 Φ12 M12I2
1 )互感系数
R12 R22 B
电磁感应 电磁场
19/48
(解法二):取扇形面积OCA,其面积为 S 1 L2
2
穿过它的磁通量为
BS 1 BL2
2
由法拉第电磁感应定律,得
i
d dt
d 1 BL2
dt 2
1 BL2
2
由楞次定律得动生电动势的方向为
OA
B
OL
C
A
电磁感应 电磁场
20/48
例 若铜棒绕如图的 O 点转动,那么 A、B 两点
的电势差U AB 为多少?
La
AB
B
AB
dl a
Bldl
1 Bl2 La 1 BL L 2a
2
a
U AB AB
1 BL L 2a
2
2
B
O
A
B
dl
a
L a
电磁感应 电磁场
21/48
例 如图,一长直导线中通有电流 I ,有一长为
8/48
交流发电机原理
面积为 S 的线圈有 N 匝,放在均匀磁场中可绕
如图所示的OO 轴转动。若线圈以角速度ω作匀速转
动,求线圈中的感应电流。 n 解:设 t = 0 时, 与B
【大学物理】电磁感应
v V
叙述: 叙述:导体回路中的感应电动势与穿过该导 体回路的磁通量的变化率的负值成正比。 体回路的磁通量的变化率的负值成正比。 dΦ •负号表示感应电流的磁通总 ε =− 力图阻碍原磁通的变化 dt 是力图阻碍原磁通的变化
发电机的工作原理就是靠洛仑兹力将机械能转换为电能。 发电机的工作原理就是靠洛仑兹力将机械能转换为电能。
例6.如图所示,直角三角形金属框架 放在均 .如图所示,直角三角形金属框架abc放在均 匀磁场中,磁场平行于ab边 的长度为l. 匀磁场中,磁场平行于 边,bc的长度为 .当金 的长度为 属框架绕ab边以匀角速度 转动时, 回路中的 属框架绕 边以匀角速度ω转动时,abc回路中的 v 两点间的电势差U 感应电动势 ε和a、c两点间的电势差 a – Uc为 B 、 两点间的电势差
或者用法拉第 电磁感应定律
例4:如图,金属棒AB在图示平面内绕端 如图,金属棒AB在图示平面内绕端 AB 作匀角速转动, 点A作匀角速转动,当棒转到与直导线垂 直的时刻,求金属棒AB两端的电势差U AB两端的电势差 直的时刻,求金属棒AB两端的电势差UAB
v v v I A L B ε AB = ∫ ( v × B ) ⋅ d l a v ω µ 0I a+L v = ∫a ω ( x − a ) ⋅ dx O X 2πx a+ L µ 0 Iω U AB = −ε AB = L − a ln 2π a
O'
v nv
N
θ
i R
B
大学物理实验电磁感应法测交变磁场资料
大学物理实验电磁感应法测交变磁场资料大学物理实验中,电磁感应法是一种常用的测量交变磁场的方法。
以下是关于这种方法的一些基本资料。
电磁感应法是一种基于法拉第电磁感应定律的测量方法。
这个定律表明,当一个导体回路在变化的磁场中时,会在回路中产生感应电流。
这个感应电流的大小正比于磁场的强度和变化率。
因此,通过测量这个感应电流,就可以得出磁场强度和变化率的信息。
在大学物理实验中,通常使用电磁感应法来测量交变磁场。
具体实验过程如下:1.准备实验器材:一个线圈、一个交流电源、一个电流表、一个电压表、一个电阻箱、一个调压器、一对导线以及磁性材料或螺线管等交变磁场源。
2.将线圈绕在磁性材料或螺线管上,放置在交变磁场中。
3.将交流电源接入电路,使磁场源产生交变磁场。
4.使用电流表和电压表测量线圈中的感应电流和感应电动势。
5.根据法拉第电磁感应定律,可得出以下关系式:E=n(dΦ)/(dt)其中E为感应电动势,n为线圈匝数,Φ为磁通量,t为时间。
6.由于感应电流与感应电动势成正比,因此可以通过测量感应电流来得出磁场强度的变化率。
7.通过电阻箱和调压器调节磁场源的磁场强度,并记录不同磁场强度下的感应电流值。
8.根据实验数据绘制磁场强度变化率与感应电流关系的曲线图。
9.对实验数据进行处理和分析,得出实验结论。
在进行实验时,需要注意以下几点:1.线圈绕组应尽量均匀分布,以减小误差和提高测量精度。
2.测量时应尽量减小误差和干扰,如使用屏蔽线来减少外界磁场对测量的影响。
3.在测量过程中,应保证所有测量点的位置和测量条件的一致性,以便进行比较和分析。
4.实验过程中应注意安全操作,避免触电和烫伤等事故的发生。
通过电磁感应法测交变磁场实验,我们可以得出以下结论:1.交变磁场可以引起线圈中产生感应电流,并且感应电流的大小与磁场强度和变化率成正比。
2.通过测量线圈中的感应电流,可以得出磁场强度和变化率的信息,进一步了解交变磁场的变化规律和性质。
大学物理电磁感应(PPT课件)
i
k
dΦ dt
在国际单位制中:k = 1
法拉第电磁感应定律
式中负号表示感应电动势方向与磁通量变化的关系。
注: 若回路是 N 匝密绕线圈
-N d - d(N) - d
dt
dt
dt
NΦ
磁通链数
二、电磁感应规律 2. 楞次定律 闭合回路中感应电流的磁场总是要反抗引起
L A O B
εi
d
dt
1 BL2 dθ 1 BL2ω
2
dt 2
<
0
动生电动势方向:A O O端电势高
例17.5 在空间均匀的磁场B Bz中,长为L的导
线ab绕z轴以 匀速旋转,导线ab与z轴夹角为
求:导线ab中的电动势。
解:建坐标,在坐标l 处取dl
B
该段导线运动速度垂直纸面向内
dΦ
1 R (Φ1
Φ2 )
q只与磁通量的改变量有关,与磁通量改变快慢无关。
例17.1 设有长方形回路放置在稳恒磁场中,ab边可以 左右滑动,如图磁场方向与回路平面垂直,设导体以
速度 v 向右运动,求回路上感应电动势的大小及方向。
解:取顺时针为回路绕向, ×c × × × b × ×
ε 设ab = l,da = x,则通过回路 × ×L × × ×v ×
b
结 1、动生电动势只存在于运动的导体上,不运动的 论 导体没有动生电动势。
2、电动势的产生并不要求导体必须构成回路, 构成回路仅是形成电流的必要条件。
3、要产生动生电动势,导体必须切割磁感线。
导线AB在单位时间内 扫过的面积为:
ABBA vl
大学物理课件电磁感应
电磁感应的应用
发电机
利用电磁感应原理将机械能转化为电能的设备。
变压器
通过电磁感应变换交流电压或电流大小的设备。
感应炉
利用电磁感应产生的感应电流进行加热或熔化金属。
感应电流和感应电动势的定的关系,感应电动势是产生感应电流的驱动力。
自感和互感
自感是指导体中的电流变化所产生的感应电动势,互感是指两个或者多个线 圈之间电流变化所产生的感应电动势。
电磁感应的实验
楞次定律实验
通过观察磁感线、导体和电流的相 互关系,验证电磁感应的规律。
法拉第电磁感应定律实验
利用变化的磁场和线圈,观察感应 电流的产生。
变压器实验
通过改变线圈的匝数和电流大小, 研究变压器的工作原理。
电磁感应的问题与解答
1 为什么变压器能改变电压?
变压器利用互感作用,通过改变线圈的匝数比例,实现对电压的改变。
2 如何提高感应电流的大小?
增大磁通量变化率、增加导体长度、减小导体电阻等方法都可以提高感应电流的大小。
3 为什么感应电流会引起感应电动势?
根据法拉第电磁感应定律,当导体中的磁通量发生变化时,会引起感应电动势,使感应 电流产生。
大学物理课件电磁感应
本课件将介绍电磁感应的概念、法拉第电磁感应定律、电磁感应的应用、感 应电流和感应电动势的关系、自感和互感、电磁感应的实验,以及电磁感应 的一些常见问题与解答。
电磁感应的概念
电磁感应是指当导体中的磁通量发生变化时,会在导体中产生感应电流或感 应电动势的现象。
法拉第电磁感应定律
法拉第电磁感应定律表明,当导体中的磁通量发生变化时,感应电动势的大 小与磁通量的变化率成正比。
大学物理电磁感应
l
v
或通过求磁通量的变化率求解:Φ Blx
a
dΦ Bl dx vBl
dt
dt
电动势方向可以用楞次定律判断,结论一样。
第一节 电磁感应定律
例例 一根长为 L 的铜棒,在均匀磁场 B 中以角速度 在与磁场方
向垂直的平面内作匀速转动。求棒两端之间的感应电动势。
解 求动生电动势:
L
(v B) dl
L
这种由于导体运动而产生的电动势称为动生电动势。
第一节 电磁感应定律
例例 一矩形导体线框,宽为 l ,与运动导体棒构成闭合回路。如
果导体棒以速度 v 在磁场中作匀速直线运动,求回路内的感应电 动势。
解 这是求动生电动势的问题。
b
b
(v
B)
dl
l
vBdl vBl
a
0
电动势方向 ab,b为正极。
第一节 电磁感应定律
1812年,学徒期满,法拉第打算专门从事科学研究。次年,经 著名化学家戴维推荐,法拉第到皇家研究院实验室当助理研究员。 这年底,作为助手和仆人,他随戴维到欧洲大陆考察漫游,结识 了不少知名科学家,如安培、伏打等,这进一步扩大了他的眼界。 1815年春回到伦敦后,在戴维的支持和指导下作了好多化学方面 的研究工作。1821年开始担任实验室主任,一直到1865年。 1824年,被推选为皇家学会会员。次年法拉第正式成为皇家学院 教授。1851年,曾被一致推选为英国皇家学会会长,但被他坚决 推辞掉了。1867年8月25日,他坐在书房的椅子上安祥地离开了 人世。遵照他的遗言,在他的墓碑上只刻了名字和生死年月。
Ψ NΦ
i
N
dΦ dt
dΨ dt
若回路中的电阻为R,则感应电流:i i 1 dΨ
大学物理 第九章 电磁感应 电磁场理论的基本概念
选择绕行方向如右图所示:
b v
o 0 I x bdr 2r 0 Ib x a dr 0 Ib x a x r 2 ln x 2
x
0 Ivab d m d m dx 方向 动 dt dx dt 2x( x a )
v
19
V a I d a d ω b c b cV
三、法拉第电磁感应定律的使用方法 1、规定任一绕行方向为回路的正方向。由右手螺旋 法则确定回路的正法线方向 en 。 d 正法线方向 2、计算 SB dS 及 dt en 3、由 d 之值确定 i 的方向 dt S d L
i
d dt 0, i 0, i的方向与绕行方向相同 d 0, 0, 的方向与绕行方向相反 i i dt
L
解二: 构成扇形闭合回路
AOCA
B
L
A
1 2 m B dS BS AOCA B L 2
o
C
d m 1 1 2 d BL BL2 dt 2 dt 2
沿OACO
由楞次定律:
A
o
17
例2. 如图所示,一矩形导线框在无限长载流导线I 的场中向右运 动,t时刻如图所示,求其动生电动势。
E涡 dl 0
法拉第电磁感应定律推广为
d E涡 dl L 22 dt
静电荷激发电场 E dl 0 保守力场(无旋场) 电场 d 变化磁场激发电场 E涡 dl dt
d 产生的原因不同。 E涡 dl 涡旋电场 dt 静电场 的区别 电力线不同。 E dl 0 环流不同
大学物理电磁感应知识点归纳总结
大学物理电磁感应知识点归纳总结电磁感应是物理学中的重要概念,涵盖了许多关键的知识点。
本文将对大学物理电磁感应相关的知识进行归纳总结,旨在帮助读者更好地理解和掌握这一内容。
一、法拉第电磁感应定律法拉第电磁感应定律是描述磁场变化时感应电动势产生的定律。
它可以用数学公式表示为:ε = -dφ/dt其中,ε表示感应电动势,dφ/dt表示磁通量的变化率。
该定律说明,当磁通量的变化率发生变化时,会在电路中产生感应电动势。
二、楞次定律楞次定律是指感应电动势的方向总是使得引起它的磁通量的变化量减小。
这一定律可以用以下方式描述:当一个导体中有感应电流产生时,由于感应电流产生的磁场所引起的磁通量的变化方向与原磁场的方向相反。
三、感应电流的方向根据法拉第电磁感应定律和楞次定律,可以推导出感应电流的方向。
当外磁场与电路中的导线垂直相交时,可以用右手定则来确定感应电流的方向:将右手的拇指指向导线运动方向(或磁场方向),四指指向磁场(或导线)垂直入纸方向,伸出的大拇指方向即为感应电流的方向。
四、磁场中的感应电动势当一个导体以速度v进入或离开磁场中时,会在导体两端产生感应电动势。
这一现象被称为磁场中的感应电动势。
根据该现象,可以得出以下结论:1. 当导体相对于磁场以一定速度直线运动时,感应电动势的大小由运动速度和磁感应强度共同决定。
2. 当导体相对于磁场以一定速度旋转时,感应电动势的大小由旋转速度、导体长度和磁感应强度共同决定。
五、电磁感应中的涡旋电场电磁感应的另一个重要概念是涡旋电场。
当磁场发生变化时,会在空间中产生涡旋电场,该电场可以产生感应电动势。
涡旋电场具有以下特点:1. 影响感应电动势的大小和方向。
2. 对于闭合回路,涡旋电场的环路积分为零,即没有感应电动势产生。
六、法拉第电磁感应定律的应用法拉第电磁感应定律具有广泛的应用。
以下是一些常见的应用场景:1. 变压器:利用电磁感应原理,将交流电压进行变换。
2. 电磁感应发电机:将机械能转化为电能的装置。
大学物理第15章
外力克服f m作功(消耗机械能) 通过fm转换为感应电流的能量。
15
例长为L的铜棒,在磁感强度为B 的均匀磁场中以角速 度 在与磁场方向垂直的平面内绕棒的一端o 匀速转动,
解: 取线元 d l ,方向沿o指向A
求棒中的动生电动势。
v l d i (v B) d l vB d l
动生电动势的计算公式:
i v B dl
L
v B dl v
fL
(3)说明
L
v
dl
动生电动势的计算公式是普遍的。 动生电动势不依赖于导体回路的存在而产生。 电动势是非静电力对单位电荷所做的功。 动生电动势与“洛伦兹力不做功”并不矛盾。
金属棒上总电动势为
i Bv d l Bl d l BL
L 0 L 0 1 2
2
方向为A0,即o点电势较高。
16
另解:
1 2 S L 2
L
S
Φ BS
dΦ 1 2 d 1 2 BL i BL 2 dt 2 dt
讨论 法拉第圆盘发电机 ——铜盘在磁场中转动。
d ( B) dl
0
B sin 90 dl cos dl Rd 2 BR 2 cos d B2R
方向:
d θ dl
θ
B
R
ab
23
§15-3 感生电动势和感生电场
(1)感生电动势
考虑随时间变化的磁场,即 B Bt ,代入 B dS
分析指出:两种电动势的非静电力不同。
大学物理电磁感应课件全篇
由上述关系可知,一个自感线圈截成相等的两部分 后,每一部分的自感均小于原线圈自感的二分之一.
在无磁漏的情况下可以证明 M L.1L2 .
在考虑磁漏的情况下 M K L1L2 ,K≤1称为耦合 系数.
§11-5 磁场能量
11.5.1 自感磁能
自感为L的线圈与电源接通,线圈中的电流i将要由 零增大至恒定值I.这一电流变化在线圈中所产生的 自感电动势与电流的方向相反,起着阻碍电流增大 的作用.
f (e)v B
f的方向从b指向a.
图10.4 动生电动势
在洛仑兹力作用下,自由电子有向下的定向漂 移运动.如果导轨是导体,在回路中将产生沿abcd方 向的电流;如果导轨是绝缘体,则洛仑兹力将使自 由电子在a端积累,使a端带负电而b端带正电.在ab 棒上产生自上而下的静电场.静电场对电子的作用力 从a指向b,与电子所受洛仑兹力方向相反.当静电力 与洛仑兹力达到平衡时,ab间的电势差达到稳定值, b端电势比a端电势高.
图10.12 互感现象
在两线圈的形状、相互位置保持不变时,根据毕
奥—萨伐尔定律,由电流I1产生的空间各点磁感应 强度B1均与I1成正比.因而B1穿过另一线圈(2)的磁通 链Ψ21也与电流I1成正比.即
21 M21I1
同理
12 M12I2
式中M21和M12是两个比例系数.实验与理论均证明 M21=M12,故用M表示,称为两线圈的互感系数, 简称互感.
两个有互感耦合的线圈串联后等效于一个自感线圈, 但其等效自感系数不等于原来两线圈的自感系数之 和.见图10.14,其中图10.14(a)的联接方式叫顺接, 其联接后的等效自感L为
L L1 L2 2M
图10.14 自感线圈的串联
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
5.两个相距不太远的平面圆线圈,怎样放置可使其互感系数近似 为零?设其中一线圈的轴线恰过另一线圈的圆心。
(A)两线圈的轴线互相平行。 (B)两线圈的轴线成45° 角。
(C)两线圈的轴线互相垂直。 (D)两线圈的轴线成30° 角。
6.空气中有一无限长金属薄壁圆筒,在表面上沿圆方向均匀地流
着一层随时间变化的面电流,
10.在横截面为圆的长直螺线管中,磁场以的速率变化,管外有一任意回路l,l上有任意
一点p,如图所示,设为感生电场的场强,则以下结论中,正确的是:
A.p点的,
l
BB
p
+ + + + +
11题图
B.p点的, C.p点的, D.p点的,
ADCCC BDDDA
练习(八) 电磁感应
1.半径为a的圆线圈置于磁感强度为的均匀磁场中,线圈平面与磁 场方向垂直,线圈电阻为R。当把线圈转动使其法向与的夹角时,线圈 中已通过的电量与线圈面积及转动的时间的关系是( )
(A)与线圈面积成正比,与时间无关 (B)与线圈面积成正比, 与时间成正比
(C)与线圈面积成反比,与时间成正比 (D)与线圈面积成反 比,与时间无关
图1
图2
3.面积为S和2S的两圆线圈1、2如图放置,通有相同的电流。线圈 1的电流产生的通过线圈2的磁通用表示,线圈2的电流所产生的通过线 圈1的磁通用表示,则和的大小关系为:( )
3题图 4.自感0.25H的线圈中,当电流在(1/16)s内由2A均匀减少到零
时,线圈中自感电动势的大小为:(2005级上考题) (A) (B)2.0 V (C)8.0 V (D)
2.一矩形线框边长为a,宽为b,置于均匀磁场中,线框绕OO′轴 以匀角速度旋转(如图1所示)。设t=0时,线框平面处于纸面内,则任 一时刻感应电动势的大小为( )
(A)2abBω | cosωt | (B)abBω (C)abBω | cosωt | (D)abBω | cosωt | (E)abBω | sinωt |
则
()
(A)圆筒内均匀地分布着变化磁场和变化电场。
(B)任意时刻通过圆筒内假想的任一球面的磁通量和电通量均为
零
(C)沿圆筒外任意闭合环路上磁感应强度的环流不为零。
(D)沿圆筒内任意闭合环路上电场强度的时间的变化规律如图a所示,若以I 的正方向作为的正方向,则图中代表线圈内自感电动势随时间变化规律 的曲线图是( )
8.用线圈的自感系数L来表示载流线圈磁场的能量 公式
(A)只适用于无限长密绕螺线管; (B)只适用单匝线圈; (C)只适用一个匝数很多,且密绕的螺线环; (D)适用于自感系数L一定的任意线圈。
9.在感应电场中电磁感应定律可写成 式中 Ek 为感应电场的电场强度,此式表明:
()
(A)闭合曲线 L 上 Ek 处处相等, (B)感应电场是保守力场, (C)感应电场的电场线不是闭合曲线, (D)在感应电场中不能像对静电场那样引入电势 的概念。