四边形中的基本图形(一)

合集下载

初中数学知识归纳四边形的性质与运算

初中数学知识归纳四边形的性质与运算

初中数学知识归纳四边形的性质与运算四边形是初中数学中一个重要的图形概念,它具有不同的性质和运算。

本文将对四边形的性质和运算进行归纳总结。

一、四边形的性质四边形是由四条线段相连而成的封闭图形,它具有以下几个基本性质:1. 内角和:四边形的内角和等于360°。

对于任意四边形ABCD,其内角A、B、C、D的和为360°。

2. 对角线性质:四边形的对角线具有一些特殊性质。

例如,平行四边形的对角线相互平分,并且互相垂直。

而矩形的对角线相等。

3. 垂直性质:某些四边形具有垂直性质。

例如,菱形的两条对角线互相垂直。

4. 相等性质:四边形的边和角也具有相等性质。

例如,等边四边形的四条边相等;等角四边形的四个内角相等。

二、四边形的运算四边形的运算主要包括周长和面积的计算。

具体而言,我们可以利用以下公式进行计算:1. 周长的计算:对于任意四边形ABCD,它的周长P等于各边长之和,即P = AB + BC + CD + DA。

2. 面积的计算:四边形的面积S可以根据其不同性质和已知条件利用不同的公式进行计算。

- 矩形的面积可以通过长度和宽度相乘得到,即S = 长 ×宽。

- 平行四边形的面积可以通过底边和高的乘积得到,即S = 底边 ×高。

- 菱形的面积可以通过对角线的乘积再除以2得到,即S = (对角线1 ×对角线2) / 2。

- 任意四边形可以利用海伦公式进行面积的计算,即S = √[p(p - AB)(p - BC)(p - CD)(p - DA)],其中p为四边形的半周长。

三、例题实践现在我们来通过几个例题来实践一下四边形的性质和运算。

例题1:已知一个矩形的长为4 cm,宽为3 cm,求其周长和面积。

解:根据矩形的性质,我们知道该矩形的周长为P = 2 × (4 + 3) = 14 cm,面积为S = 4 × 3 = 12 cm²。

四边形的基本概念

四边形的基本概念

四边形的基本概念四边形是平面几何中的一种特殊图形,它有四条边和四个角。

在数学中,四边形是一个重要的研究对象,具有许多特性和性质。

本文将介绍四边形的基本概念,包括定义、分类以及常见的性质。

一、定义四边形是一个有四条边的平面图形,它由四个顶点和四条边组成。

四边形的边可以是直线段,也可以是曲线段。

四边形的四个内角相加等于360度。

二、分类根据各边的性质和角度的大小,四边形可以分为不同的类型。

1. 矩形:矩形是一种特殊的四边形,它有四个内角都是直角(90度)。

矩形的对边相等且平行。

2. 正方形:正方形也是一种特殊的矩形,它的四个边都相等且平行。

正方形的四个内角都是直角(90度)。

3. 平行四边形:平行四边形是四边形的一种,它的对边是平行的。

平行四边形的相邻内角互补(和为180度)。

4. 梯形:梯形是一种有两条平行边的四边形。

梯形的非平行边叫做腰,平行边叫做底。

梯形的相邻内角互补(和为180度)。

5. 菱形:菱形是四边形的一种,它的四条边都相等。

菱形的相邻内角互补(和为180度)。

6. 长方形:长方形是一种特殊的矩形,它的两个对边相等且平行。

长方形的四个内角都是直角(90度)。

三、性质除了以上分类,四边形还有一些常见的性质。

1. 对角线四边形的对角线是连接两个非相邻顶点的线段。

不同类型的四边形的对角线具有不同的性质。

- 矩形和正方形的对角线相等且互相垂直。

- 梯形的对角线不相等,但根据梯形的性质,两条对角线的交点会平分对角线的线段。

- 平行四边形的对角线不相交。

- 菱形的对角线互相垂直且平分对角线的线段。

2. 周长和面积四边形的周长是边长的总和。

面积则可以根据不同类型的四边形应用不同的公式计算。

- 矩形的周长等于两条长边和两条短边的和,面积等于长边乘以短边。

- 正方形的周长等于四条边的和,面积等于边长的平方。

- 平行四边形的周长等于两对边长的和,面积等于底边乘以高。

- 梯形的周长等于四条边的和,面积等于上底与下底之和的一半乘以高。

四边形内角关系

四边形内角关系

四边形内角关系四边形是几何学中的基本图形之一,其内角关系也是几何学中的重要内容之一。

本文将从四边形的定义、分类、性质以及内角关系等方面进行详细阐述。

一、四边形的定义和分类1. 四边形的定义四边形是一个有四条边和四个顶点的平面图形,每两条相邻的边都在一个顶点处相交。

2. 四边形的分类按照四边形各边长度和角度大小不同,可以将其分为以下几类:(1)矩形:具有两组对称且相等的内角,每组内角之和为180度。

(2)正方形:具有四个对称且相等的内角,每个内角为90度。

(3)平行四边形:具有对称且相等的对边,并且对角线互相平分。

(4)菱形:具有对称且相等的对角线,并且每个内角为90度。

(5)梯形:具有一组平行且不等长的对边。

二、四边形性质1. 四边形各顶点连线成一条封闭曲线,称为周长。

2. 四边形面积可以用底和高计算得出。

其中矩形、正方形和菱形的面积可以用对角线计算得出。

3. 四边形内部有一条对角线,连接两个非相邻顶点。

对角线的长度可以用勾股定理计算得出。

4. 四边形的内角和为360度。

三、四边形内角关系1. 矩形内角关系矩形有两组对称且相等的内角,每组内角之和为180度。

因此,矩形的四个内角都是直角(90度)。

2. 正方形内角关系正方形具有四个对称且相等的内角,每个内角为90度。

因此,正方形的四个内角都是直角(90度)。

3. 平行四边形内角关系平行四边形具有对称且相等的对边,并且对角线互相平分。

因此,平行四边形的相邻两个内角互补(180度),非相邻两个内角互补(180度)。

4. 菱形内角关系菱形具有对称且相等的对角线,并且每个内角为90度。

因此,菱形的非邻接两个内角互补(180度)。

5. 梯形内角关系梯形具有一组平行且不等长的对边。

因此,梯形的相邻两个内角互补(180度),非相邻两个内角之和等于梯形的对角线夹角。

四、总结四边形是几何学中的基本图形之一,其内角关系也是几何学中的重要内容之一。

根据四边形的定义、分类、性质以及内角关系等方面进行详细阐述,可以更好地理解和掌握四边形的相关知识。

利用平行四边形性质解决问题

利用平行四边形性质解决问题

利用平行四边形性质解决问题平行四边形是几何学中的基本图形之一,具有独特的性质和特点。

在实际生活中,我们可以利用平行四边形的性质解决各种问题,如计算面积、求解角度等。

本文将探讨平行四边形的性质以及如何利用这些性质解决问题。

首先,平行四边形的定义是指具有两对相对平行边的四边形。

根据这个定义,我们可以知道平行四边形有如下性质:1. 相对边平行性质:平行四边形的两对相对边是平行的。

这个性质可以用来确定平行四边形的其他边是否平行,或者验证给定的四边形是否是平行四边形。

2. 相对边长度性质:平行四边形的对边长度相等。

利用这个性质,我们可以求解平行四边形的未知边长,或者计算其周长。

3. 对角线性质:平行四边形的对角线相交于它们的交点,并且交点将对角线分成两等分。

这个性质可以用来证明平行四边形的平行边长度相等,或者求解对角线长度等问题。

4. 内角性质:平行四边形的内角和为180度。

根据这个性质,我们可以计算平行四边形的内角度数,或者验证给定的角度是否是平行四边形的内角。

我们可以通过一个具体的例子来说明如何利用平行四边形的性质解决问题。

假设有一块土地,其形状是一个平行四边形,已知其中一对对边长度分别为6米和8米,对角线之间的夹角为60度。

我们需要计算这块土地的面积。

根据上述已知条件,我们可以得出如下结论:1. 对边平行性质:由于对边长度分别为6米和8米,可以得出这两条边是平行的。

2. 对角线性质:对角线之间的夹角为60度,那么平行四边形的另外两条对边夹角也为60度。

3. 内角性质:根据对角线性质和已知夹角60度,可以得出平行四边形的内角为120度。

根据上述结论,我们可以继续解决这个问题。

首先,我们可以根据对边长度和两对对角线夹角计算出平行四边形的两条对角线长度。

根据三角形的三角函数,我们可以得到:sin(60度) = (6米/2) / 对角线1长度cos(60度) = (8米/2) / 对角线2长度将上述公式代入计算,我们可以得到对角线1的长度为6√3米,对角线2的长度为8米。

平行四边形的认识

平行四边形的认识

平行四边形的认识平行四边形是基本几何图形之一,由于其独特的性质和广泛的应用,对于平行四边形的认识具有重要意义。

本文将从定义、性质、判定条件以及相关应用等方面对平行四边形进行详细介绍。

定义平行四边形是指具有两组相对平行的边的四边形。

具体来说,平行四边形的定义如下:定义1:如果一个四边形的对边互相平行,则该四边形被称为平行四边形。

在平行四边形中,相邻的两条边和对角线都具有特殊的关系和性质。

性质平行四边形具有一些独特的性质,这些性质有助于我们更深入地理解和应用平行四边形。

1. 边与角性质•对边性质:平行四边形的对边长度相等。

•相邻边性质:平行四边形的相邻边互余角(对应两个相邻边的内角和为180度)。

•同位角性质:平行四边形的同位角相等(指同位于两组平行边的对应角)。

2. 对角线性质•对角线性质1:平行四边形的对角线互相平分。

•对角线性质2:平行四边形的一条对角线将平行四边形分成两个全等三角形。

3. 面积性质•面积性质:平行四边形的面积等于底边长度乘以高(即平行四边形的底边高)。

•面积计算公式:若平行四边形的底边长为b,高为h,则平行四边形的面积S = b * h。

4. 判定条件平行四边形的存在和判定有一些特殊的条件,其中常用的包括:•条件1:两组对边分别平行。

•条件2:从一组对边的任意一点向两边作垂线,垂线的长度相等。

•条件3:从一组对边的任意一点向两边作垂线,垂线的夹角相等。

•条件4:从一组对边的任意一点作平行于两边的线段,该线段与另一组对边交点的连线平分该线段。

相关应用平行四边形的特殊性质和性质的应用广泛存在于各种数学问题和实际生活中。

以下是一些常见的应用场景:1.建筑工程中:平行四边形的应用在建筑工程中非常常见,例如砖块的摆放、墙壁的装饰等。

2.几何证明中:平行四边形作为几何证明的基础形状,常常被用来证明一些定理和性质。

3.向量运算中:平行四边形的性质和向量之间有密切的联系,在向量运算中经常会用到平行四边形的概念。

四边形知识点总结[1]

四边形知识点总结[1]

四边形一 基本概念:四边形,四边形的内角,四边形的外角,多边形,平行线间的距离,平行四边形,矩形,菱形,正方形,中心对称,中心对称图形,梯形,等腰梯形,直角梯形,三角形中位线,梯形中位线. 二 定理:中心对称的有关定理※1.关于中心对称的两个图形是全等形. ※2.关于中心对称的两个图形,对称点连线都经过对称中心,并且被对称中心平分. ※3.如果两个图形的对应点连线都经过某一点,并且被这一点平分,那么这两个图形关于这一点对称. 三 公式:1.S 菱形 =21ab=ch.(a 、b 为菱形的对角线 ,c 为菱形的边长 ,h 为c 边上的高)2.S 平行四边形 =ah. a 为平行四边形的边,h 为a 上的高) 3.S 梯形 =21(a+b )h=Lh.(a 、b 为梯形的底,h 为梯形的高,L 为梯形的中位线)四 常识:※1.若n 是多边形的边数,则对角线条数公式是:2)3n (n -.2.规则图形折叠一般“出一对全等,一对相似”.3.如图:平行四边形、矩形、菱形、正方形的从属关系.4.常见图形中,仅是轴对称图形的有:角、等腰三角形、等边三角形、正奇边形、等腰梯形 …… ;仅是中心对称图形的有:平行四边形 …… ;是双对称图形的有:线段、矩形、菱形、正方形、正偶边形、圆 …… .注意:线段有两条对称轴.平行四边形矩形菱形正方形四边形知识点归纳平行四边形平行四边形定义:两组对边分别平行的四边形叫做平行四边形。

平行四边形是中心对称图形,对称中心是两条对角线的交点。

平行四边形性质1:平行四边形的两组对边分别相等。

平行四边形性质2:平行四边形的两组对角分别相等。

平行四边形性质3:平行四边形的两条对角线互相平分。

平行四边形判定1:两组对边分别平行的四边形是平行四边形。

平行四边形判定2:两组对边分别相等的四边形是平行四边形。

平行四边形判定3:两组对角分别相等的四边形是平行四边形。

平行四边形判定4:两条对角线互相平分的四边形是平行四边形。

几何专讲-四边形

几何专讲-四边形

四边形一、基本定义1.四边形的内角和与外角和定理: (1)四边形的内角和等于360°; (2)四边形的外角和等于360°.2.多边形的内角和与外角和定理: (1)n 边形的内角和等于(n-2)180°; (2)任意多边形的外角和等于360°.3.平行四边形的性质:因为ABCD 是平行四边形⇒⎪⎪⎪⎩⎪⎪⎪⎨⎧.54321)邻角互补()对角线互相平分;()两组对角分别相等;()两组对边分别相等;()两组对边分别平行;(4.平行四边形的判定: 是平行四边形)对角线互相平分()一组对边平行且相等()两组对角分别相等()两组对边分别相等()两组对边分别平行(ABCD 54321⎪⎪⎪⎭⎪⎪⎪⎬⎫. 5.矩形的性质:因为ABCD 是矩形⇒⎪⎩⎪⎨⎧.3;2;1)对角线相等()四个角都是直角(有通性)具有平行四边形的所( 6. 矩形的判定:⎪⎭⎪⎬⎫+边形)对角线相等的平行四()三个角都是直角(一个直角)平行四边形(321⇒四边形ABCD 是矩形. 7.菱形的性质: 因为ABCD 是菱形⇒⎪⎩⎪⎨⎧.321角)对角线垂直且平分对()四个边都相等;(有通性;)具有平行四边形的所(8.菱形的判定:A BCD 1234ABDABDOCA DB CA DBCOCDBAO⎪⎭⎪⎬⎫+边形)对角线垂直的平行四()四个边都相等(一组邻边等)平行四边形(321⇒四边形四边形ABCD 是菱形. 9.正方形的性质: 因为ABCD 是正方形⇒⎪⎩⎪⎨⎧.321分对角)对角线相等垂直且平(角都是直角;)四个边都相等,四个(有通性;)具有平行四边形的所( CDAB(1) A BCD O(2)(3)10.正方形的判定:⎪⎭⎪⎬⎫++++一组邻边等矩形)(一个直角)菱形(一个直角一组邻边等)平行四边形(321⇒四边形ABCD 是正方形.(4)∵ABCD 是矩形又∵AD=AB∴四边形ABCD 是正方形 11.等腰梯形的性质:因为ABCD 是等腰梯形⇒⎪⎩⎪⎨⎧.321)对角线相等(;)同一底上的底角相等(两底平行,两腰相等;)( 12.等腰梯形的判定:⎪⎭⎪⎬⎫+++对角线相等)梯形(底角相等)梯形(两腰相等)梯形(321⇒四边形ABCD 是等腰梯形 (4)∵ABCD 是梯形且AD ∥BC ∵AC=BD∴ABCD 四边形是等腰梯形14.三角形中位线定理:三角形的中位线平行第三边,并且等于它的一半.15.梯形中位线定理:梯形的中位线平行于两底,并且等于两底和的一半.E FD ABCE DCBAABCDOA B C D O二 定理:中心对称的有关定理1.关于中心对称的两个图形是全等形.2.关于中心对称的两个图形,对称点连线都经过对称中心,并且被对称中心平分.3.如果两个图形的对应点连线都经过某一点,并且被这一点平分,那么这两个图形关于这一点对称. 三 公式: 1.S 菱形 =ch ab =21(a 、b 为菱形的对角线 ,c 为菱形的边长 ,h 为c 边上的高) 2.S 平行四边形 =ah. (a 为平行四边形的边,h 为a 上的高) 3.S 梯形 =Lh h b a =+)(21.(a 、b 为梯形的底,h 为梯形的高,L 为梯形的中位线) 四 常识:1.若n 是多边形的边数,则对角线条数公式是:2)3n (n -. 2.如图:平行四边形、矩形、菱形、正方形的从属关系. 3.梯形中常见的辅助线:一.多边形1.四边形是大家最熟悉的图形之一,我们已经发现了它的许多性质.只要善于观察、乐于探索,我们还会发现更多的结论.(1)四边形一条对角线上任意一点与另外两个顶点的连线,将四边形分成四个三角形(如图①),其中相对的两对三角形的面积之积相等.你能证明这个结论吗?试试看. 已知:在四边形ABCD 中,O 是对角线BD 上任意一点.(如图①) 求证:S △OBC •S △OAD =S △OAB •S △OCD ;(2)在三角形中(如图②),你能否归纳出类似的结论?若能,写出你猜想的结论,并证明:若不能,说平行四边形矩形菱形正方形明理由.考点:多边形;三角形的面积.专题:证明题;探究型.分析:(1)根据三角形的面积公式,则应分别分别过点A、C,做AE⊥DB,交DB的延长线于E,CF⊥BD于F.然后根据三角形的面积公式分别计算要证明的等式的左边和右边即可;(2)根据(1)中的思路,显然可以归纳出:从三角形的一个顶点与对边上任意一点的连线上任取一点,与三角形的另外两个顶点连线,将三角形分成四个小三角形,其中相对的两对三角形的面积之积相等.证明思路类似.解答:证明:(1)分别过点A、C,做AE⊥DB,交DB的延长线于E,CF⊥BD于F,则有:S△AOB=12BO•AE,S△COD=12DO•CF,S△AOD=12DO•AE,S△BOC=12BO•CF,∴S△AOB•S△COD=14BO•DO•AE•CF,S△AOD•S△BOC=14BO•DO•CF•AE,∴S△AOB•S△COD=S△AOD•S△BOC.(4分);(2)能.从三角形的一个顶点与对边上任意一点的连线上任取一点,与三角形的另外两个顶点连线,将三角形分成四个小三角形,其中相对的两对三角形的面积之积相等.或S△AOD•S△BOC=S△AOB•S△DOC,(5分)已知:在△ABC中,D为AC上一点,O为BD上一点,求证:S△AOD•S△BOC=S△AOB•S△DOC.证明:分别过点A、C,作AE⊥BD,交BD的延长线于E,作CF⊥BD于F,则有:S△AOD=12DO•AE,S△BOC=12BO•CF,S△OAB=12OB•AE,S△DOC=12OD•CF,∴S△AOD•S△BOC=14OB•OD•AE•CF,S△OAB•S△DOC=14BO•OD•AE•CF,∴S△AOD•S△BOC=S△OAB•S△DOC.点评:恰当地作出三角形的高,根据三角形的面积公式进行证明.2.如图,在五边形A1A2A3A4A5中,B1是A1对边A3A4的中点,连接A1B1,我们称A1B1是这个五边形的一条中对线.如果五边形的每条中对线都将五边形的面积分成相等的两部分.求证:五边形的每条边都有一条对角线和它平行.考点:多边形.专题:证明题.分析:可以再做五边形的一条中对线,根据它们分割成的两部分的面积相等,都是五边形的面积的一半,导出两个等底的三角形的面积相等,从而得到它们的高相等,则得到五边形的每条边都有一条对角线和它平行.解答:证明:取A1A5中点B3,连接A3B3、A1A3、A1A4、A3A5,∵A3B1=B1A4,∴S△A1A3B1=S△A1B1A4,又∵四边形A1A2A3B1与四边形A1B1A4A5的面积相等,∴S△A1A2A3=S△A1A4A5,同理S△A1A2A3=S△A3A4A5,∴S△A1A4A5=S△A3A4A5,∴△A3A4A5与△A1A4A5边A4A5上的高相等,∴A1A3∥A4A5,同理可证A1A2∥A3A5,A2A3∥A1A4,A3A4∥A2A5,A5A1∥A2A4.点评:此题要能够根据面积相等得到两条直线间的距离相等,从而证明两条直线平行二.平行四边形如图,在直角梯形ABCD中,AB∥CD,∠BCD=Rt∠,AB=AD=10cm,BC=8cm.点P从点A出发,以每秒3cm的速度沿折线ABCD方向运动,点Q从点D出发,以每秒2cm的速度沿线段DC方向向点C运动.已知动点P、Q同时发,当点Q运动到点C 时,P、Q运动停止,设运动时间为t.(1)求CD的长;(2)当四边形PBQD为平行四边形时,求四边形PBQD的周长;(3)在点P、点Q的运动过程中,是否存在某一时刻,使得△BPQ的面积为20cm2?若存在,请求出所有满足条件的t的值;若不存在,请说明理由.考点:平行四边形的性质;一元二次方程的应用;直角梯形.专题:动点型.分析:(1)过点A作AM⊥CD于M,根据勾股定理,可以求出DM=6所以DC=16.(2)当四边形PBQD为平行四边形时,点P在AB上,点Q在DC上,如图示,由题可得:BP=10-3t,DQ=2t,所以可以列出方程10-3t=2t,解得t=2,此时,BP=DQ=4,CQ=12,在△CBQ中,根据勾股定理,求出BQ即可.(3)此题要分三种情况进行讨论:即①当点P在线段AB上,②当点P在线段BC上,③当点P在线段CD上,根据三种情况点的位置,可以确定t的值.解答:解:(1)过点A作AM⊥CD于M,根据勾股定理,AD=10,AM=BC=8,∴DM=102-82=6,∴CD=16;(2)当四边形PBQD为平行四边形时,点P在AB上,点Q在DC上,如图,由题知:BP=10-3t,DQ=2t∴10-3t=2t,解得t=2此时,BP=DQ=4,CQ=12∴BQ=82+12213∴四边形PBQD的周长=2(BP+BQ)=8+8 13;(3)①当点P在线段AB上时,即0≤t≤103时,如图S△BPQ=12BP•BC=12(10-3t)×8=20∴t=53.②当点P在线段BC上时,即103<t≤6时,如图BP=3t-10,CQ=16-2t∴S△BPQ=12BP•CQ=12(3t-10)×(16-2t)=20化简得:3t2-34t+100=0,△=-44<0,所以方程无实数解.③当点P在线段CD上时,若点P在Q的右侧,即6≤t≤345,则有PQ=34-5tS△⊆BPQ=12×8=20,(34-5t)t=295<6,舍去若点P在Q的左侧,即345<t≤8,则有PQ=5t-34,S△BPQ=12(5t-34)×8=20,t=7.8.综合得,满足条件的t存在,其值分别为t1=53,t2=7.8.点评:本题是平行四边形中的动点问题,解决问题时,一定要变动为静,将其转化为常见的几何问题,再进行解答.2. 已知:如图,AD∥BC,AC⊥BD于O,AD+BC=5,AC=3,AE⊥BC于E.则AE=125125.考点:平行四边形的判定与性质;勾股定理.分析:过点A作AF∥DB交CB延长线于F,通过辅助线,将已知条件与未知量联系起来,此时,AE是直角三角形斜边上的高,而已知斜边和一直角边,先由勾股定理求出另一直角边,再由面积法就可以求出斜边上的高AE了.解答:解:过点A作AF∥DB交CB的延长线于点F(1分)∵AD∥BC∴四边形AFBD是平行四边形∴FB=AD∵AD+BC=5∴FC=FB+BC=AD+BC=5(2分)∵AC⊥BD∴FA⊥AC(3分)在△FAC中,∠FAC=90°,AC=3,FC=5∴AF=4(4分)∵AE⊥BC于E∴AF •AC=FC •AE∴AE=125(5分)点评:当直接求解比较困难时,通常要作辅助线,将已知条件与未知量联系起来.三.菱形1.学校植物园沿路护栏纹饰部分设计成若干个全等菱形图案,每增加一个菱形图案,纹饰长度就增加dcm,如图所示.已知每个菱形图案的边长103cm,其一个内角为60度.(1)若d=26,则该纹饰要231个菱形图案,则纹饰的长度L为6010cm;(2)当d=20时,若保持(1)中纹饰长度不变,则需要300个这样的菱形图案.考点:菱形的性质;解直角三角形.专题:规律型.分析:(1)首先根据菱形的性质和锐角三角函数的概念求得菱形的对角线的长,再结合图形发现L=菱形对角线的长+(231-1)d;(2)设需要x个这样的图案,仍然根据L=菱形对角线的长+(x-1)d进行计算.解答:解:(1)菱形图案水平方向对角线长为103×cos30 °×2=30cm按题意,L=30+26×(231-1)=6010cm(2)当d=20cm时,设需x个菱形图案,则有:30+20×(x-1)=6010解得x=300,即需300个这样的菱形图案.点评:此题主要考查根据图形找规律,同时也考查了解直角三角形有关知识.2. 已知:如图所示的一张矩形纸片ABCD(AD>AB),将纸片折叠一次,使点A与C重合,再展开,折痕EF交AD边于E,交BC边于F,分别连接AF和CE.(1)求证:四边形AFCE是菱形;(2)若AE=10cm,△ABF的面积为24cm2,求△ABF的周长;(3)在线段AC上是否存在一点P,使得2AE2=AC•AP?若存在,请说明点P的位置,并予以证明;若不存在,请说明理由.考点:菱形的判定;勾股定理;矩形的性质;相似三角形的判定与性质.专题:开放型;存在型.分析:(1)因为是对折所以AO=CO,利用三角形全等证明EO=FO,四边形便是菱形;(2)因为面积是24,也就是AB、BF的积可以求出,所以求周长只要求出AB、BF的和就可以,而结合勾股定理它们和的平方减去乘积二倍就是AF的平方;(3)因为12AC=AO所以可以从与△AOE相似的角度考虑,即过E作EP⊥AD.解答:(1)证明:连接EF交AC于O,当顶点A与C重合时,折痕EF垂直平分AC,∴OA=OC,∠AOE=∠COF=90°(1分)∵在矩形ABCD中,AD∥BC,∴∠EAO=∠FCO,∴△AOE≌△COF(ASA).∴OE=OF(2分)∴四边形AFCE是菱形.(3分)(2)解:四边形AFCE是菱形,∴AF=AE=10.设AB=x,BF=y,∵∠B=90,∴(x+y)2-2xy=100①又∵S△ABF=24,∴12xy=24,则xy=48.②(5分)由①、②得:(x+y)2=196(6分)∴x+y=14,x+y=-14(不合题意舍去)∴△ABF的周长为x+y+AF=14+10=24.(7分)(3)解:过E作EP⊥AD交AC于P,则P就是所求的点.(9分)证明:由作法,∠AEP=90°,由(1)得:∠AOE=90°,又∠EAO=∠EAP,∴△AOE∽△AEP(AA),∴AEAP=AOAE,则AE2=AO•AP(10分)∵四边形AFCE是菱形,∴AO=12AC,AE2=12AC•AP(11分)∴2AE2=AC•AP(12分)即P的位置是:过E作EP⊥AD交AC于P.点评:本题主要考查(1)菱形的判定方法“对角线互相垂直且平分的四边形”,(2)相似三角形的判定和性质.三.矩形正方形已知矩形ABCD和点P,当点P在图1中的位置时,则有结论:S△PBC=S△PAC+S△PCD理由:过点P作EF垂直BC,分别交AD、BC于E、F两点.∵S△PBC+S△PAD=12BC•PF+12AD•PE=12BC(PF+PE)=12BC•EF=12S矩形ABCD,又∵S△PAC+S△PCD+S△PAD=12S矩形ABCD,∴S△PBC+S△PAD=S△PAC+S△PCD+S△PAD,∴S△PBC=S△PAC+S△PCD.请你参考上述信息,当点P分别在图2,图3中的位置时,S△PBC、S△PAC、S△PCD又有怎样的数量关系?请写出你对上述两种情况的猜想,并选择其中一种情况的猜想给予证明.考点:矩形的性质.专题:探究型.分析:分析图2,先过点P作EF垂直AD,分别交AD、BC于E、F两点,利用三角形的面积公式可知,经过化简,等量代换,可以得到S△PBC=S△PAD+12S矩形ABCD,而S△PAC+S△PCD=S△PAD+12S矩形ABCD,故有S△PBC=S△PAC+S△PCD.解答:解:猜想结果:图2结论S△PBC=S△PAC+S△PCD图3结论S△PBC=S△PAC-S△PCD(2分)证明:如图2,过点P作EF垂直AD,分别交AD、BC于E、F两点,∵S△PBC=12BC•PE+12BC•EF (1分)=12AD•PE+12BC•EF=S△PAD+12S矩形ABCD(2分)∵S△PAC+S△PCD=S△PAD+S△ADC=S△PAD+12S矩形ABCD(2分)∴S△PBC=S△PAC+S△PCD(1分)如果证明图3结论可参考上面评分标准给分.点评:本题利用了三角形的面积公式,以及图形面积的整合等知识.2. )图1是由五个边长都是1的正方形纸片拼接而成的,过点A1的直线分别与BC1、BE交于点M、N,且图1被直线MN分成面积相等的上、下两部分.(1)求1MB+1NB的值;(2)求MB、NB的长;(3)将图1沿虚线折成一个无盖的正方体纸盒(图2)后,求点M、N间的距离.考点:正方形的判定与性质;一元二次方程的应用;相似三角形的判定与性质.专题:代数几何综合题;压轴题;数形结合.分析:(1)本题可通过相似三角形A1B1M和NBM得出的关于NB,A1B1,MB,MB1的比例关系式来求,比例关系式中A1B1,BB1均为正方形的边长,长度都是1,因此可将它们的值代入比例关系式中,将所得的式子经过变形即可得出所求的值;(2)由于直线MN将图(1)的图形分成面积相等的两部分,因此△BMN的面积为52,由此可求出MB•NB的值,根据(1)已经得出的MB+NB=MB•NB可求出MB+NB的值,由此可根据韦达定理列出以MB,NB为根的一元二次方程,经过解方程即可求出MB、NB的值;(3)根据(2)的结果,不难得出B1M=EN,由于折叠后E与B点重合,因此B1M=BN,那么四边形B1MNB 是个矩形,因此MN的长为正方形的边长.解答:解:(1)∵△A1B1M∽△NBM且A1B1=BB1=1,∴NBA1B1=MBMB1,即NB1=MBMB-1整理,得MB+NB=MB•NB,两边同除以MB•NB得1MB+1NB=1;(2)由题意得12MB•NB=52,即MB•NB=5,又由(1)可知MB+NB=MB•NB=5,∴MB、NB分别是方程x2-5x+5=0的两个实数根.解方程,得x1=5+52,x2=5-52;∵MB<NB,∴MB=5-52,NB=5+52;(3)由(2)知B1M=5-52-1=3-52,EN=4-5+52=3-52,∵图(2)中的BN与图(1)中的EN相等,∴BN=B1M;∴四边形BB1MN是矩形,∴MN的长是1.点评:本题主要考查了相似三角形的判定和性质,正方形的性质,一元二次方程的应用等知识点,综合性比较强.四.梯形1. 如图,在梯形ABCD中,AD∥BC,AD=2,BC=4,点M是AD的中点,△MBC是等边三角形.(1)求证:梯形ABCD是等腰梯形;(2)动点P、Q分别在线段BC和MC上运动,且∠MPQ=60°保持不变.设PC=x,MQ=y,求y与x的函数关系式;(3)在(2)中:①当动点P、Q运动到何处时,以点P、M和点A、B、C、D中的两个点为顶点的四边形是平行四边形?并指出符合条件的平行四边形的个数;②当y取最小值时,判断△PQC的形状,并说明理由.考点:等腰梯形的判定;二次函数的应用;勾股定理的逆定理;平行四边形的判定;相似三角形的判定与性质.专题:综合题;压轴题;动点型.分析:(1)需证△AMB≌△DMC,可得AB=DC,可得梯形ABCD是等腰梯形;(2)可证△BPM∽△CQP,PCBM=CQBP,PC=x,MQ=y,BP=4-x,QC=4-y,x4=4-y4-x,即可得出y=14x2-x+4;(3)应考虑四边形ABPM和四边形MBPD均为平行四边形,四边形MPCD和四边形APCM均为平行四边形时的情况;由(2)中的函数关系,可得当y取最小值时,x=PC=2,P是BC的中点,MP⊥BC,而∠MPQ=60°,∠CPQ=30°,∠PQC=90°.解答:(1)证明:∵△MBC是等边三角形,∴MB=MC,∠MBC=∠MCB=60°.(1分)∵M是AD中点,∴AM=MD.∵AD∥BC,∴∠AMB=∠MBC=60°,∠DMC=∠MCB=60°.∴△AMB≌△DMC.(2分)∴AB=DC.∴梯形ABCD是等腰梯形.(3分)(2)解:在等边△MBC中,MB=MC=BC=4,∠MBC=∠MCB=60°,∠MPQ=60°,∴∠BMP+∠BPM=∠BPM+∠QPC=120°.∴∠BMP=∠QPC.(4分)∴△BPM∽△CQP.∴PCBM=CQBP.(5分)∵PC=x,MQ=y,∴BP=4-x,QC=4-y.(6分)∴x4=4-y4-x.∴y=14x2-x+4.(7分)(3)解:①当BP=1时,则有BP ∥..AM,BP∥..MD,则四边形ABPM为平行四边形,∴MQ=y=14×32-3+4=134.(8分)当BP=3时,则有PC∥..AM,PC∥..MD,则四边形MPCD为平行四边形,∴MQ=y=14×12-1+4=134.(9分)∴当BP=1,MQ=134或BP=3,MQ=134时,以P、M和A、B、C、D中的两个点为顶点的四边形是平行四边形.此时平行四边形有2个.(10分)故符合条件的平行四边形的个数有4个.②△PQC为直角三角形.(11分)∵y=14(x-2)2+3,∴当y取最小值时,x=PC=2.(12分)∴P是BC的中点,MP⊥BC,而∠MPQ=60°,∴∠CPQ=30°,∴∠PQC=90°.∴△PQC是直角三角形.(13分)点评:本题考查平行四边形、直角三角形和等腰梯形的判定以及相似三角形的判定和性质的应用.。

四边形基本知识点

四边形基本知识点

第四章四边形性质探索知识点归纳 一.四边形的相关概念和性质(1)在同一平面内,由不在同一直线上的四条线段首尾顺次相接组成的图形叫做四边形.四边形用表示它的各顶点的字母来表示.注意:表示四边形必须按顶点的顺序书写,可按照顺时针或逆时针的顺序.如图读作“四边形ABCD ” .(2)在四边形中,连结不相邻两个顶点的线段叫做四边形的对角线.注意:①四边形共有两条对角线.②连结四边形的对角线也是一种常用的辅助线作法.(3)四边形的不稳定性:三角形的三边如果确定后,它的形状、大小就确定了,这是三角形的稳定性.但是,四边形四边长确定后,它的形状不能确定.这就是四边形具有不稳定性,它在生产、生活方面有很多的应用.(4)四边形的内角和等于 360.(5)四边形的外角和等于 360.注意:1、四边形内角中最多有三个钝角,四个直角,三个锐角;2、四边形外角中最多有三个钝角、四个直角、三个锐角,最少没有钝角,没有直角,没有锐角;3、四边形内角与同一个顶点的一个外角互为邻补角.二.多边形的概念和性质:(1)n 边形的内角和等于 180)2(⋅-n .(2)任意多边形的外角和等于 360.(3)n 边形共有2)3(-n n 条对角线.(4)在平面内,内角都相等且边都相等的多边形叫做正多边形。

(5)正多边形的每个内角等于n n 180).2(-三、平行四边形.1.平行四边形的性质(1)平行四边形的邻角互补,对角相等.(2)平行四边形的对边平行且相等.(3)夹在两条平行线间的平行线段相等.(4)平行四边形的对角线互相平分.(5)中心对称图形,对称中心是对角线的交点。

(6)若一直线过平行四边形两对角线的交点,则这直线被一组对边截下的线段以对角线的交点为中点,且这条直线二等分四边形的面积.2.平行四边形的判定(1)定义:两组对边分别平行的四边形是平行四边形.(2)定理1:两组对角分别相等的四边形是平行四边形.(3)定理2:两组对边分别相等的四边形是平行四边形.(4)定理3:对角线互相平分的四边形是平行四边形.(5)定理4:一组对边平行且相等的四边形是平行四边形.3.两条平行线的距离两条平行线中,一条直线上的任意一点到另一条直线的距离,叫做这两条平行线的距离.平行线间的距离处处相等.注意:(1)距离是指垂线段的长度,是正值.(2)两条平行线的位置确定后,它们的距离是定值,不随垂线段位置改变.(3)平行线间的距离处处相等,因此在作平行四边形的高时,可根据需要灵活选择位置.4.平行四边形的面积S=底边长×高=ah(a是平行四边形任何一边长,h必须是a边与其对(1)、平行四边形边的距离).(2)、同底(等底)同高(等高)的平行四边形面积相等.四.矩形、1.矩形的定义:_________________________________2.矩形的性质:(1)对边平行且相等。

四边形知识点

四边形知识点

四边形全章回顾与思考教学目标1.利用基本图形结构使本章内容系统化.2.对比掌握各种特殊四边形的概念,性质和判定方法.3.总结常用添加辅助线的方法.4.总结本章常用的数学思想方法,提高逻辑思维能力.重点平行四边形与特殊平行四边形的从属关系及它们的概念、性质和判定方法.难点提高数学思维能力.教学过程备注教学设计与师生互动第一步:全章知识线索说明:(1)图4-107(c)中要求各种特殊四边形的概念、性质、判定和它们之间的关系;(2)图4-107(d)中要求平行线等分线段定理的内容,会任意等分一条已知线段;(3)图4-107(e)中要求三角形、梯形中位线的概念、性质、判定;第二步:全章基本方法1.基本方法.(1)利用基本图形结构使知识系统化;(2)证明两条线段相等及和差关系的方法,也可类比总结证明两角相等,角的和差、倍、分问题,直线垂直、平行关系的方法;(3)利用变换思想添加辅助线的方法;(4)探求解题思路时的分析、综合法.2.基本思想及观点:(1)“特殊——一般——特殊”认识事物的方法;(2)集合、方程、分类讨论及化归的思想;(3)用类比、运动的思维方法推广命题.第三步、随堂练习1.已知:如图4-117,Rt△ABC中,ㄥACB的平分线交对边于E,交斜边上的高AD 于G,过G作FGCB交AB于F.求证:AE=BF.2.如图4-118,梯形ABCD中,ADBC,AB=CD,E,F和G分别为OB,CD,OA中点,ㄥAOD=60°.求证:△EFG是等边三角形.3.已知:如图4-119,梯形ABCD中,DCAB,ㄥA+AB=90°,M,N分别为CD,AB点.求证:MN=12(AB-CD).总结名称定义性质判定面积平行四边形两组对边平行的四边形叫平行四边形。

①对边平行②对边相等③对角相等④对角线互相平分⑤邻角互补⑥是中心对称图形①两组对边分别平行的四边形;②两组对边分别相等的四边形;③一组对边平行且相等的四边形;④两组对角分别相等的四边形;⑤对角线互相平分的四边形。

第19章 《四边形》全章教案

第19章 《四边形》全章教案

第十九章四边形19.1.1 平行四边形及其性质(一)一、教学目标:1.理解并掌握平行四边形的概念和平行四边形对边、对角相等的性质.2.会用平行四边形的性质解决简单的平行四边形的计算问题,并会进行有关的论证.3.培养学生发现问题、解决问题的能力及逻辑推理能力.二、重点、难点1.重点:平行四边形的定义,平行四边形对角、对边相等的性质,以及性质的应用.2.难点:运用平行四边形的性质进行有关的论证和计算.三、例题的意图分析例1是教材P84的例1,它是平行四边形性质的实际应用,题目比较简单,其目的就是让学生能运用平行四边形的性质进行有关的计算,讲课时,可以让学生来解答.例2是补充的一道几何证明题,即让学生学会运用平行四边形的性质进行有关的论证,又让学生从较简单的几何论证开始,提高学生的推理论证能力和逻辑思维能力,学会演绎几何论证的方法.此题应让学生自己进行推理论证.四、课堂引入1.我们一起来观察下图中的竹篱笆格子和汽车的防护链,想一想它们是什么几何图形的形象?平行四边形是我们常见的图形,你还能举出平行四边形在生活中应用的例子吗?你能总结出平行四边形的定义吗?(1)定义:两组对边分别平行的四边形是平行四边形.(2)表示:平行四边形用符号“”来表示.如图,在四边形ABCD中,AB∥DC,AD∥BC,那么四边形ABCD是平行四边形.平行四边形ABCD记作“ ABCD”,读作“平行四边形ABCD”.①∵AB//DC ,AD//BC,∴四边形ABCD是平行四边形(判定);②∵四边形ABCD是平行四边形∴AB//DC,AD//BC(性质).注意:平行四边形中对边是指无公共点的边,对角是指不相邻的角,邻边是指有公共端点的边,邻角是指有一条公共边的两个角.而三角形对边是指一个角的对边,对角是指一条边的对角.(教学时要结合图形,让学生认识清楚)2.【探究】平行四边形是一种特殊的四边形,它除具有四边形的性质和两组对边分别平行外,还有什么特殊的性质呢?我们一起来探究一下.让学生根据平行四边形的定义画一个一个平行四边形,观察这个四边形,它除具有四边形的性质和两组对边分别平行外以,它的边和角之间有什么关系?度量一下,是不是和你猜想的一致?(1)由定义知道,平行四边形的对边平行.根据平行线的性质可知,在平行四边形中,相邻的角互为补角.(相邻的角指四边形中有一条公共边的两个角.注意和第一章的邻角相区别.教学时结合图形使学生分辨清楚.)(2)猜想平行四边形的对边相等、对角相等.下面证明这个结论的正确性.已知:如图ABCD,求证:AB=CD,CB=AD,∠B=∠D,∠BAD=∠BCD.分析:作ABCD的对角线AC,它将平行四边形分成△ABC和△CDA,证明这两个三角形全等即可得到结论.(作对角线是解决四边形问题常用的辅助线,通过作对角线,可以把未知问题转化为已知的关于三角形的问题.)证明:连接AC,∵AB∥CD,AD∥BC,∴∠1=∠3,∠2=∠4.又AC=CA,∴△ABC≌△CDA(ASA).∴AB=CD,CB=AD,∠B=∠D.又∠1+∠4=∠2+∠3,∴∠BAD=∠BCD.由此得到:平行四边形性质1 平行四边形的对边相等.平行四边形性质2 平行四边形的对角相等.五、例习题分析例1(教材P84例1)例2(补充)如图,在平行四边形ABCD中,AE=CF,求证:AF=CE.分析:要证AF=CE,需证△ADF≌△CBE,由于四边形ABCD是平行四边形,因此有∠D=∠B ,AD=BC,AB=CD,又AE=CF,根据等式性质,可得BE=DF.由“边角边”可得出所需要的结论.证明略六、随堂练习1.填空:(1)在ABCD中,∠A=50,则∠B= 度,∠C= 度,∠D= 度.(2)如果ABCD中,∠A—∠B=240,则∠A= 度,∠B= 度,∠C= 度,∠D= 度.(3)如果ABCD的周长为28cm,且AB:BC=2∶5,那么AB= cm,BC= cm,CD= cm,CD= cm.2.如图4.3-9,在ABCD中,AC为对角线,BE⊥AC,DF⊥AC,E、F为垂足,求证:BE=DF.七、课后练习1.(选择)在下列图形的性质中,平行四边形不一定具有的是().(A)对角相等(B)对角互补(C)邻角互补(D)内角和是3602.在ABCD中,如果EF∥AD,GH∥CD,EF与GH相交与点O,那么图中的平行四边形一共有().(A)4个(B)5个(C)8个(D)9个3.如图,AD∥BC,AE∥CD,BD平分∠ABC,求证AB=CE.19.1.1 平行四边形的性质(二)一、教学目标:1.理解平行四边形中心对称的特征,掌握平行四边形对角线互相平分的性质.2.能综合运用平行四边形的性质解决平行四边形的有关计算问题,和简单的证明题.3.培养学生的推理论证能力和逻辑思维能力.二、重点、难点1.重点:平行四边形对角线互相平分的性质,以及性质的应用.2.难点:综合运用平行四边形的性质进行有关的论证和计算.三、例题的意图分析本节课安排了两个例题,例1是一道补充题,它是性质3的直接运用,然后对例1进行了引申,可以根据学生的实际情况选讲,并归纳结论:过平行四边形对角线的交点作直线交对边或对边的延长线,所得的对应线段相等.例1与后面的三个图形是一组重要的基本图形,熟悉它的性质对解答复杂问题是很有帮助的.例2是教材P85的例2,这是复习巩固小学学过的平行四边形面积计算.这个例题比小学计算平行四边形面积的题加深了一步,需要应用勾股定理,先求得平行四边形一边上的高,然后才能应用公式计算.在以后的解题中,还会遇到需要应用勾股定理来求高或底的问题,在教学中要注意使学生掌握其方法.四、课堂引入1.复习提问:(1)什么样的四边形是平行四边形?四边形与平行四边形的关系是:(2)平行四边形的性质:①具有一般四边形的性质(内角和是︒360).②角:平行四边形的对角相等,邻角互补.边:平行四边形的对边相等.2.【探究】:请学生在纸上画两个全等的ABCD和EFGH,并连接对角线AC、BD和EG、HF,设它们分别交于点O.把这两个平行四边形落在一起,在点O处钉一个图钉,将ABCD绕点O旋转180,观察它还︒和EFGH重合吗?你能从子中看出前面所得到的平行四边形的边、角关系吗?进一步,你还能发现平行四边形的什么性质吗?结论:(1)平行四边形是中心对称图形,两条对角线的交点是对称中心;(2)平行四边形的对角线互相平分.五、例习题分析例1(补充)已知:如图4-21,ABCD的对角线AC、BD相交于点O,EF过点O与AB、CD分别相交于点E、F.求证:OE=OF,AE=CF,BE=DF.证明:在ABCD中,AB∥CD,∴∠1=∠2.∠3=∠4.又OA=OC(平行四边形的对角线互相平分),∴△AOE≌△COF(ASA).∴OE=OF,AE=CF(全等三角形对应边相等).∵ABCD,∴ AB=CD(平行四边形对边相等).∴AB—AE=CD—CF.即BE=FD.※【引申】若例1中的条件都不变,将EF转动到图b的位置,那么例1的结论是否成立?若将EF 向两方延长与平行四边形的两对边的延长线分别相交(图c和图d),例1的结论是否成立,说明你的理由.解略例2(教材P85的例2)已知四边形ABCD是平行四边形,AB=10cm,AD=8cm,AC⊥BC,求BC、CD、AC、OA的长以及ABCD的面积.分析:由平行四边形的对边相等,可得BC、CD的长,在Rt△ABC中,由勾股定理可得AC的长.再由平行四边形的对角线互相平分可求得OA的长,根据平行四边形的面积计算公式:平行四边形的面积=底×高(高为此底上的高),可求得ABCD的面积.(平行四边形的面积小学学过,再次强调“底”是对应着高说的,平行四边形中,任一边都可以作为“底”,“底”确定后,高也就随之确定了.)3.平行四边形的面积计算解略(参看教材P85).六、随堂练习1.在平行四边形中,周长等于48,①已知一边长12,求各边的长②已知AB=2BC,求各边的长③已知对角线AC、BD交于点O,△AOD与△AOB的周长的差是10,求各边的长2.如图,ABCD中,AE⊥BD,∠EAD=60°,AE=2cm,AC+BD=14cm,则△OBC的周长是____ ___cm.3.ABCD一内角的平分线与边相交并把这条边分成cm7的两条线段,则ABCD的周长是__5,cm___cm.七、课后练习1.判断对错(1)在ABCD中,AC交BD于O,则AO=OB=OC=OD.()(2)平行四边形两条对角线的交点到一组对边的距离相等.()(3)平行四边形的两组对边分别平行且相等.()(4)平行四边形是轴对称图形.()2.在ABCD中,AC=6、BD=4,则AB的范围是__ ______.3.在平行四边形ABCD中,已知AB、BC、CD三条边的长度分别为(x+3),(x-4)和16,则这个四边形的周长是.4.公园有一片绿地,它的形状是平行四边形,绿地上要修几条笔直的小路,如图,AB=15cm,AD=12cm,AC⊥BC,求小路BC,CD,OC的长,并算出绿地的面积.19.1.2 平行四边形的判定(一)一、教学目标:1.在探索平行四边形的判别条件中,理解并掌握用边、对角线来判定平行四边形的方法.2.会综合运用平行四边形的判定方法和性质来解决问题.3.培养用类比、逆向联想及运动的思维方法来研究问题.二、重点、难点3.重点:平行四边形的判定方法及应用.4.难点:平行四边形的判定定理与性质定理的灵活应用.三、例题的意图分析本节课安排了3个例题,例1是教材P87的例3,它是平行四边形的性质与判定的综合运用,此题最好先让学生说出证明的思路,然后老师总结并指出其最佳方法.例2与例3都是补充的题目,其目的就是让学生能灵活和综合地运用平行四边形的判定方法和性质来解决问题.例3是一道拼图题,教学时,可以让学生动起来,边拼图边说明道理,即可以提高学生的动手能力和学生的思维能力,又可以提高学生的学习兴趣.如让学生再用四个不等边三角形拼一个如图的大三角形,让学生指出图中所有的平行四边形,并说明理由.四、课堂引入1.欣赏图片、提出问题.展示图片,提出问题,在刚才演示的图片中,有哪些是平行四边形?你是怎样判断的?2.【探究】:小明的父亲手中有一些木条,他想通过适当的测量、割剪,钉制一个平行四边形框架,你能帮他想出一些办法来吗?让学生利用手中的学具——硬纸板条通过观察、测量、猜想、验证、探索构成平行四边形的条件,思考并探讨:(1)你能适当选择手中的硬纸板条搭建一个平行四边形吗?(2)你怎样验证你搭建的四边形一定是平行四边形?(3)你能说出你的做法及其道理吗?(4)能否将你的探索结论作为平行四边形的一种判别方法?你能用文字语言表述出来吗?(5)你还能找出其他方法吗?从探究中得到:平行四边形判定方法1 两组对边分别相等的四边形是平行四边形。

初中几何基本图形归纳(基本图形+常考图形)

初中几何基本图形归纳(基本图形+常考图形)

初中几何基本图形归纳(基本图形+常考图形)初中几何常见基本图形1.基本图形及结论A、B、C、D分别为四边形的顶点,AC=BD,AD=BC,∠AOC=∠BOD,∠AOD=∠BOC。

2.直角三角形在直角三角形ABC中,∠C=90°,OA为斜边的中线,OD⊥XXX。

3.等腰三角形在等腰三角形ABC中,AB=AC,AD为角A的平分线,BD=CD。

4.三角形的面积公式在三角形ABC中,AB2=BD×BC,AC2=CD×BC。

5.三角形内角和公式在三角形ABC中,∠A+∠B+∠C=180°。

6.平行四边形在平行四边形ABCD中,∠A+∠B=∠C+∠D,AC平分∠BAD。

7.直角三角形的斜边中线在直角三角形ABC中,BD为斜边AC的中线,∠B=∠D。

8.直角三角形的高线在直角三角形ABC中,PA⊥AB,PB⊥AC,PC⊥BC,且PA=PB+PC,∠P=∠A/2.9.直角三角形的内心在直角三角形ABC中,∠P=∠A/2,PD为角A的平分线,AD=BD=AC=DC。

10.直角三角形的外心在直角三角形ABC中,∠P=90°-∠A/2,以AB的中点O为圆心,AB为半径作圆,交AC于点P,则P为三角形ABC的外心。

11.等腰三角形的中线在等腰三角形ABC中,AB=CB,BD为角B的平分线,且BC∥AD。

12.等边三角形在等边三角形ABC中,AB=AC=BC。

13.等角三角形在等角三角形ABC中,∠A=∠B=∠C。

14.三角形的相似在三角形ABC和DEF中,如果∠A=∠D,∠B=∠E,∠C=∠F,则称三角形ABC与DEF相似。

15.圆的基本性质在圆O中,AB为直径,则∠C=90°,且AC=BC=OD。

16.圆的切线在圆O中,以点A为圆心,AB为半径作圆,则CD为圆O的切线。

17.圆的割线在圆O中,以点A为圆心,AC为半径作圆,则BD为圆O的割线。

18.圆的弦在圆O中,AB为圆O的弦,R为圆O的半径,则弦长公式为AB2=BD×BC,且弦AB平分∠AOB。

四边形外接圆定理

四边形外接圆定理

四边形外接圆定理四边形外接圆定理四边形是几何中最基本的图形之一,它们包括矩形、正方形、菱形、梯形等。

在这些四边形中,有一个很重要的定理,称为四边形外接圆定理。

本文将详细介绍这个定理的定义、证明和应用。

一、定义四边形外接圆定理也叫作柿子定理,它是指:如果一个四边形的四个顶点都在同一个圆上,那么这个四边形就是一个凸四边形,并且它的对角线互相垂直。

其中,“凸”表示四边形内部没有凸出去的部分,“对角线”表示连接不相邻顶点的线段。

这个定理的意义在于,如果我们知道了一个四边形的外接圆半径和其中两条对角线之一的长度,就可以求出另一条对角线的长度和其他相关信息。

二、证明要证明这个定理,我们需要从几何基本原理出发,并运用数学推导方法。

以下是证明过程:1. 假设有一个四边形ABCD,在同一个圆上。

2. 连接AC和BD两条对角线,并假设它们相交于E点。

3. 由于ABCD在同一个圆上,所以角A和角C、角B和角D是相对的圆周角,它们的度数相等。

即∠A= ∠C,∠B = ∠D。

4. 由于AC和BD在E点相交,所以有∠AEB + ∠CEB = 180°和∠DEB + ∠BEB = 180°。

5. 因为角A和角C、角B和角D相等,所以有∠AEB = ∠CEB,∠DEB = ∠BEB。

因此可以得到2∠AEB + 2∠DEB = 360°。

6. 化简上式可得∠AEB + ∠DEB = 180°。

这意味着AC和BD互相垂直。

7. 另外,如果四边形ABCD不是凸四边形,则至少有一条对角线不在四边形内部。

但由于ABCD在同一个圆上,所以任何两个顶点之间的弧都在圆内部。

因此所有对角线都在四边形内部,即ABCD是凸四边形。

8. 综上所述,如果一个四边形的四个顶点都在同一个圆上,则这个四边形是一个凸四边形,并且它的对角线互相垂直。

证毕。

三、应用四边形外接圆定理可以应用于各种几何问题中。

以下是一些常见的应用场景:1. 求四边形的对角线长度:如果我们知道一个四边形的外接圆半径和其中两条对角线之一的长度,就可以用勾股定理求出另一条对角线的长度。

初中数学基本几何图形大全

初中数学基本几何图形大全

初中数学基本图形大全基本图形分析归类:类型一:圆中基本图形D⊥AB;弧BD;⑤弧AC=弧BCAB非直径。

、C、D四点共圆·2R(钝角△也适用)=(不能直接用,可构造R2)8、(弧AC=弧EC ) ⇒AM=CM=FM ;AC=EC;AE CD 21=; ABAD AE AM AC ⋅=⋅=2;BF OM 21=9∽CDE, △ABD ∽△AEC ∽BED,·AC=AD ·AE,AE ·DE=BE ·CEBAD ∠cos 2 关注∠BAC 为特殊角时图形的 10 AC 、AB 的对称点在⊙O 上,11DC 切⊙O 于C 点 知二推一12 ,BO ⊥DE , ∠DEF=90°-21∠A 13 14CE 切⊙O 于点E,知二推一15⇒C △PDE=PA+PB ∠DOE=)180(21P ∠-16 ①EA 切⊙O 于点A AE ∥CF ③AP=EP 知二推一17、 △ABD 、△ACE 为等边△⇒ BE=CD,BE 、CD 相交所成锐角为60° 18、正方形ABDE 、正方形ACFG ⇒EC=BG ,BG ⊥CE注:条件可为等腰Rt △19、①AD 平分∠CAB, ②DE ∥AC,③AE=DE 知二推一20、 △ABC 为等腰Rt △,AE 平分∠CAB ,BD ⊥AD⇒AE=2BD21、⇒C △ADE=AB+ACA B C DEA B C D E F G A B CD E A B C D E A B C D E M22、 △ACD 、△BCE 为等边△,A 、C 、B 三点共线⇒ △ACE ≌△DCB , △ACM ≌△DCN , △MCE ≌△NCB AE=BD,AM=DN,EM=BN,CM=CN,AE 、BD 相交所成锐角为60° AO=DO+CO,BO=EO+CO,OM+ON=OC,OC 平分∠AOB 注:△BCE 旋转时,结论有变化。

精讲试题11 四边形中的基本图形(一)

 精讲试题11   四边形中的基本图形(一)

四边形中的基本图形练习题一.夯实基础:1.在平行四边形ABCD 中,E 为BC 上的任意点,且10AEDS=,求平行四边形的面积是多少?2.在平行四边形ABCD 中,E 为BC 上的任意点,且15AEBCEDSS+=,求平行四边形的面积是多少?3.在平行四边形中,阴影部分的面积和是12,求平行四边形的面积是多少?DB4.如图,四个大小相等的长方形拼成一个空心部分为小正方形的大正方形,已知大正方形的面积为33平方厘米,小正方形的面积为9平方厘米,求图中一个长方形的面积是多少?5.如图,ABFE和CDEF都是长方形,AB的长是4厘米,BC的长是3厘米.那么图中阴影部分的面积是多少?6.如图,小、中、大三个正方形从左到右依次紧挨着摆放,边长分别是3、7、9。

图中两个阴影平行四边形的面积分别是多少?7.图中的平行四边形的面积是218m ,则平行四边形的周长是________m .8.如图是一块长方形草坪,中间有两条道路,路宽是2米,求有草部分的面积.二.拓展提高:9.如图,矩形DEFG 的宽4DE =厘米,长4DG DE =, 则正方形ABCD 的边长是多少厘米?10.下图是一块正方形草地,中间有一条宽2米的道路,求草地的面积.11.如图是一块正方形草坪,中间有三条道路,路宽是2米,求有草部分的面积.12.如图,在平行四边形ABCD中,三角形BCE的面积是42平方厘米,BC的长度为14厘米,AE的长度为9厘米,那么平行四边形ABCD的面积是多少平方厘米?三角形ECD的面积又是多少平方厘米?13.如图,正方形ABCD 的边长是12厘米,E 点在CD 上,BO ⊥AE 于O ,OB 长9厘米, 则AE 长 厘米.14.如图,正方形被分成9个小长方形,其中5个小长方形的面积如图所示,求其它4个小长方形的面积.15.如图,校园中间有个正方形花坛,花坛的四周铺了1米宽的水泥路。

如果水泥路的总面积是24平方米,那么花坛的面积是多少平方米?第10题DE BO CA三.超常挑战:16.如图,正方形ABCD 的边长是4厘米,矩形DEFG 的长5DG =厘米,求它的宽?DE =17.如图,ABCD 是一个长方形,E 点在CD 延长线上.已知5AB =,12BC =,且三角形AFE 的面积等于20,那么三角形CFE 的面积等于多少?18.如图,边长为10的正方形中有一等宽的十字,其面积(阴影部分)为36,则十字中央的小正方形面积为 .GCB FE DA CFD EBA 第2题四.杯赛演练:19.(迎春杯)右图中平行四边形的面积是1080m 2,则平行四边形的周长为 m 。

四边形的基本概念

四边形的基本概念

四边形的基本概念四边形是我们数学中常见的一种几何形状。

它由四条线段和四个角组成,具有一些特殊的性质和定义。

本文将介绍四边形的基本概念、性质和分类。

一、四边形的定义四边形是由四条线段和四个角所组成的几何图形。

这四条线段相互连接形成一个封闭的图形,同时四个角也是封闭的。

四边形的名称通常根据其各边的特点来命名,比如矩形、正方形、平行四边形等。

二、四边形的性质1. 四边形的内角和为360°:四边形的四个内角之和等于360°。

我们可以通过将四边形划分为两个三角形来证明这个定理。

对于任意一个四边形ABCD,连接AC,我们可以得到两个三角形ABC和ACD,而三角形的内角和为180°,因此四边形ABCD的内角和为360°。

2. 对角线的性质:四边形的对角线是相连的非相邻顶点之间的线段。

对于任意一个四边形ABCD,其对角线可以连接顶点A与C,以及顶点B与D。

对角线之间有以下性质:- 对角线的交点:四边形的对角线有且只有一个交点,称为四边形的对角线交点或对角线的交点。

- 对角线的长度:四边形的对角线长度可以通过使用勾股定理计算得出。

- 对角线的中点连线:四边形的对角线的中点连线平分对角线。

即连接对角线中点的线段等于对角线长度的一半。

3. 四边形的边与角的关系:在四边形中,边和角之间有一些特殊的关系:- 相对边:在四边形中,如果两边没有公共顶点且也不相交,则这两条边是相对边。

相对边的长度不一定相等,但是相对边之间的夹角相等。

- 相对角:在四边形中,如果两个角没有公共边且也不相交,则这两个角是相对角。

相对角的大小不一定相等,但是它们的对边平行。

三、四边形的分类根据四边形的边和角的特点,我们可以将四边形分为以下几类:1. 矩形:具有四个直角的四边形,相邻的两条边长度相等。

2. 正方形:具有四个直角和四条边长度相等的四边形。

3. 平行四边形:具有对边平行的四边形。

4. 菱形:具有相邻两边相等的四边形。

四边形的性质总结

四边形的性质总结

四边形的性质总结四边形是由四条线段围成的一个平面图形,它具有许多特性和性质。

在本文中,将对四边形的性质进行总结和说明,以帮助读者更好地理解和应用四边形的概念。

一、四边形的定义和特点四边形是由四条线段连接而成的图形。

它有以下几个特点:1. 四边形的内角和等于360度;2. 四边形的相对边是平行的,即两个对边分别平行于彼此;3. 四边形的对边长度相等,即相对的两条边的长度相等;4. 四边形的对角线互相平分,即对角线的交点将四边形分为两个对称图形。

二、四边形的分类根据四边形的特征和性质,我们可以将它们分为不同的类型,如下所示:1. 矩形:矩形是一种具有特殊性质的四边形,它的对边相等且平行,内角均为直角。

矩形的性质包括:- 两组对边分别相等且平行;- 所有内角均为90度;- 对角线相互平分。

2. 正方形:正方形是一种特殊的矩形,它的四边相等且平行,内角均为直角。

正方形的性质包括:- 四边相等且平行;- 所有内角均为90度;- 对角线相互平分;- 对角线相等且垂直。

3. 平行四边形:平行四边形是一种具有平行边的四边形,它的特点是:- 对边分别平行且相等;- 对角线相互平分。

4. 梯形:梯形是一种至少有一对平行边的四边形,其特性包括:- 至少有一对平行边;- 非平行边的内角之和等于180度;- 梯形的对角线不一定相等。

5. 菱形:菱形是一种具有对边相等、对角线相等的四边形,它的性质包括: - 所有边相等;- 对角线相互平分;- 相邻角相等。

三、四边形的性质应用四边形的性质在几何学和实际生活中都有广泛的应用。

以下是一些常见的应用场景:1. 建筑设计:在建筑设计中,四边形的性质常常用于绘制墙壁、窗户和门的平面图。

通过理解四边形的性质,设计师可以确保建筑结构的平衡和稳定。

2. 地理测量:在地理测量中,四边形的性质可以用于确定地块的面积和边界。

通过测量四边形的边长和对角线的长度,可以计算出地块的面积,并划定地块的边界。

各种四边形的定义

各种四边形的定义

各种四边形的定义四边形是平面几何中的一种基本图形,它由四条线段组成,每两条相邻的线段都共同形成一个角。

四边形的种类有很多,下面将分别介绍它们的定义和性质。

一、矩形矩形是一种特殊的四边形,它的四个角都是直角,也就是说,它的四条边两两相邻且相等。

矩形的性质有:1. 对角线相等:矩形的两条对角线相等。

2. 对边平行:矩形的对边互相平行。

3. 对边相等:矩形的对边相等。

4. 中心对称:矩形的中心对称。

5. 面积公式:矩形的面积等于长乘以宽。

二、正方形正方形也是一种特殊的矩形,它的四个角都是直角,且四条边相等。

正方形的性质有:1. 对角线相等:正方形的两条对角线相等。

2. 对边平行:正方形的对边互相平行。

3. 对边相等:正方形的对边相等。

4. 中心对称:正方形的中心对称。

5. 面积公式:正方形的面积等于边长的平方。

三、平行四边形平行四边形是一种四边形,它的对边互相平行。

平行四边形的性质有:1. 对边平行:平行四边形的对边互相平行。

2. 对边相等:平行四边形的对边相等。

3. 同底异侧角相等:平行四边形的同底异侧角相等。

4. 中心对称:平行四边形的中心对称。

5. 面积公式:平行四边形的面积等于底乘以高。

四、梯形梯形是一种四边形,它的两条边平行,另外两条边不平行。

梯形的性质有:1. 两边平行:梯形的两条边平行。

2. 底角相等:梯形的底角相等。

3. 对角线相等:梯形的对角线相等。

4. 中心对称:梯形的中心对称。

5. 面积公式:梯形的面积等于上底加下底乘以高的一半。

五、菱形菱形是一种特殊的梯形,它的四条边相等,且对角线相等。

菱形的性质有:1. 对角线相等:菱形的两条对角线相等。

2. 对边平行:菱形的对边互相平行。

3. 对边相等:菱形的对边相等。

4. 中心对称:菱形的中心对称。

5. 面积公式:菱形的面积等于对角线之积的一半。

四边形是平面几何中的一种基本图形,它的种类有很多,每种四边形都有自己独特的性质和特点。

在学习和应用中,我们需要根据实际情况选择合适的四边形,并灵活运用它们的性质和公式,以解决各种几何问题。

《认识四边形》

《认识四边形》
建筑设计
平行四边形在建筑设计中常被 用于窗框、玻璃幕墙、桥梁等 结构的设计中,以实现采光和
通风的效果。
数学教育
平行四边形是数学教育中的基本 内容之一,常被用于培养学生的 几何思维和推理能力。
实际生活
平行四边形在日常生活中随处可见 ,如门、窗户、桌面等都是平行四 边形的应用。
06
菱形
菱形的定义
总结词
坐标法的优缺点
坐标法可以通过建立坐标系来计算四边形的面积,适用于规则四边形,但对于不规则四边 形需要先进行坐标变换,计算过程相对复杂。
感谢您的观看
THANKS
梯形是由两个平行 的长边和两个不平 行的短边组成的。
梯形通常被定义为 “一组对边平行而 另一组对边不平行 的四边形”。
梯形的特性
梯形的内角和为360度,其中两个相对的底 角相等。
梯形是一种特殊的四边形,因为它具有平行 四边形的某些特性(如对边平行)和三角形
的某些特性(如两边平行)。
梯形的两对相对边分别称为“上底”和“下 底”,不平行的一组对边称为“腰”。
《认识四边形》
2023-11-05
目录
• 引言 • 四边形的定义和特性 • 矩形 • 梯形 • 平行四边形 • 菱形 • 正方形 • 四边形的周长和面积计算方法比较
01
引言
课程背景
四边形是日常生活中常见的几何形状,如门、窗户、桌面等 。
在数学中,四边形是学习几何学的基础形状之一,对于后续 学习多边形、三角形等其他几何知识至关重要。
段的周长来得出四边形的周长,对于不规则四边形适用性较强,但计
算过程相对复杂。
面积计算方法比较
公式法的优缺点
公式法计算四边形面积简单、方便,但需要记忆公式,对于不规则四边形可能存在误差。

四边形

四边形

已知长方形周长求宽: 宽=周长÷2-长
宽=(周长-2×长)÷2
已知长方形周长求长: 长=周1、有一长方形花坛,周长是48米,长是宽的2倍, 求这花坛的长、宽各是多少米?
2、填表:
长 宽 周长
8分米 2分米
3m
5厘米 4厘米
10m
?毫米
边长
周长
10m
8m
?cm
16dm
(8)四条边都相等的图形一定是正方形。 (

(9)长方形、正方形、平行四边形对边都相等。 ( ) (10)用两块同样大小的长方形一定能拼成一个正 方形。 ( )
(1)四边形有( )条直的边,有( )个角。 (2)平行四边形有( )条边,( )个角。对边 ( ),对角( )。
例1:数一数,图中有几个平行四边形。
长方形的周长公式:
长方形周长=长×2+宽×2
=(长+宽)×2
1、给一个长45m,宽30m的果园砌墙,一共要砌 多少米? 2、操场长90米,宽70米,绕操场跑4圈,一共跑 多少米? 3、如图,篱笆有多长?
7m 墙
12m
4、王大伯用篱笆围一个鸡场,一面靠墙,宽2m, 长是宽的2倍,求篱笆总长。
边长a
边长a 边长a 边长a
正方形的周长=边长×4
1、一个正方形菜地,边长65m,沿四边走一圈要 走多少米? 2、一根铁丝正好围成一个边长是12cm的正方形, 铁丝长多少厘米? 3、一根绳长48dm,围成一个最大的正方形,边 长是多少?
已知正方形周长求边长: 边长=正方形周长÷4
4、用100米绳子可以围成一个长30米,宽几米的 长方形?
判断: (1)平行四边形邻边相等。 ( (3)平行四边形具有稳定性。 ( ) )
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

本讲主线
四边形中的基本图形(一)
1.基本四边形的面积
2.四边形中的等腰直角三角形
⑵ 平行四边形:S=a×b
1.面积公式
⑴ 长方形:S=a×b,正方形:S=a×a
b a
a a
⑶梯形:S=(a+b)×h÷2b
b
h h
a
a
⑶三角形:S=a×b÷2
b b
a a
2.关于等腰直角三角形
1.直角三角形.
板块一:基本的四边形面积
【例1】(★★)
如图,用两块长方形纸片和一块小正方形纸片拼成了一个大正方形纸
片,其中小正方形纸片面积是49平方厘米,其中一个长方形纸片的面
积为28平方厘米,那么最后拼成的大正方形纸片面积是多少平方厘米?
.°,°
3.两条腰长相等.
4.高线=斜边的一半.
【例2】(★★★)
如图,长方形ABCD的周长是16厘米,在它的每一条边上各画一个以
该边为边长的正方形,已知这四个正方形的面积和是68平方厘米,求
长方形ABCD的面积?
【例3】(★★★)
如图所示,7个完全相同的长方形拼成了图中的空白部分,图中空白部
分的面积是平方厘米.
24cm
板块二:等腰直角三角形
【例4】(★★★)
如图,在直角梯形ABCD中,三角形ABE和三角形CDE都是等腰直角
三角形,且BC=20厘米,那么直角梯形ABCD的面积是多少?
B A
【例5】(★★★★)
如图,已知一个四边形的两条边的长度和三个角的度数,这个四边形
的面积是平方厘米.(单位:厘米)2
E 6
45°
C D
【超常大挑战】(★★★★)
如图,正方形ABCD被两条平行的直线EF,GH截成了面积相等的三个部分,其中上、下两个部分都是等腰直角三角形.已知两条截线的长度都是6厘米,那么整个正方形的面积是平方厘米. A
E F
B D
G H
C
知识大总结
1.基本四边形的面积公式
2.求面积:公式法,割补法
3.特殊图形的性质及应用: 等腰直角三角形4. 四边形=△+△
=△-△
【今日讲题】例2,例3,例5 【讲题心得】
【家长评价】。

相关文档
最新文档