2005年考研数学试题详解及评分参考
2005考研数一真题及解析
![2005考研数一真题及解析](https://img.taocdn.com/s3/m/6c07e7ca52d380eb63946d43.png)
2005考研数一真题及解析2005年全国硕士研究生入学统一考试数学(一)试卷一、填空题(本题共6小题,每小题4分,满分24分.把答案填在题中横线上)(1)曲线122+=x x y 的斜渐近线方程为 _____________.(2)微分方程x x y y x ln 2=+'满足91)1(-=y 的解为____________.(3)设函数181261),,(222z y x z y x u +++=,单位向量}1,1,1{31=n ,则)3,2,1(nu∂∂=.________.(4)设Ω是由锥面22y x z +=与半球面222y x R z --=围成的空间区域,∑是Ω的整个边界的外侧,则⎰⎰∑=++zdxdy ydzdx xdydz ____________.(5)设123,,ααα均为3维列向量,记矩阵123(,,)=A ααα,123123123(,24,39)=++++++B ααααααααα,如果1=A ,那么=B .(6)从数1,2,3,4中任取一个数,记为X , 再从X ,,2,1 中任取一个数,记为Y , 则}2{=Y P =____________.二、选择题(本题共8小题,每小题4分,满分32分.每小题给出的四个选项中,只有一项符合题目要求,把所选项前的字母填在题后的括号内)(7)设函数n n n x x f 31lim )(+=∞→,则()f x 在),(+∞-∞内(A)处处可导 (B)恰有一个不可导点(C)恰有两个不可导点 (D)至少有三个不可导点(8)设()F x 是连续函数()f x 的一个原函数,""N M ⇔表示"M 的充分必要条件是",N 则必有(A)()F x 是偶函数()f x ⇔是奇函数 (B)()F x 是奇函数()f x ⇔是偶函数(C)()F x 是周期函数()f x ⇔是周期函数 (D)()F x 是单调函数()f x ⇔是单调函数(9)设函数⎰+-+-++=yx y x dt t y x y x y x u )()()(),(ψϕϕ, 其中函数ϕ具有二阶导数,ψ 具有一阶导数,则必有(A)2222y ux u ∂∂-=∂∂(B)2222yu x u ∂∂=∂∂(C)222yu y x u ∂∂=∂∂∂(D)222x uy x u ∂∂=∂∂∂ (10)设有三元方程ln e 1xz xy z y -+=,根据隐函数存在定理,存在点(0,1,1)的一个邻域,在此邻域内该方程(A)只能确定一个具有连续偏导数的隐函数(,)z z x y = (B)可确定两个具有连续偏导数的隐函数(,)x x y z =和(,)z z x y = (C)可确定两个具有连续偏导数的隐函数(,)y y x z =和(,)z z x y = (D)可确定两个具有连续偏导数的隐函数(,)x x y z =和(,)y y x z =(C))1(~)1(--n t SXn (D)2122(1)~(1,1)nii n X F n X=--∑三 、解答题(本题共9小题,满分94分.解答应写出文字说明、证明过程或演算步骤) (15)(本题满分11分)设}0,0,2),{(22≥≥≤+=y x y x y x D ,]1[22y x ++表示不超过221y x ++的最大整数. 计算二重积分⎰⎰++Ddxdy y x xy .]1[22(16)(本题满分12分) 求幂级数∑∞=--+-121))12(11()1(n n n x n n 的收敛区间与和函数()f x .(17)(本题满分11分)如图,曲线C 的方程为()y f x =,点(3,2)是它的一个拐点,直线1l 与2l 分别是曲线C 在点(0,0)与(3,2)处的切线,其交点为(2,4).设函数()f x 具有三阶连续导数,计算定积分⎰'''+32.)()(dx x f x x(18)(本题满分12分)已知函数()f x 在[0,1]上连续,在(0,1)内可导,且(0)0,(1)1f f ==. 证明:(1)存在),1,0(∈ξ 使得ξξ-=1)(f .(2)存在两个不同的点)1,0(,∈ζη,使得.1)()(=''ζηf f(19)(本题满分12分)设函数)(y ϕ具有连续导数,在围绕原点的任意分段光滑简单闭曲线L 上,曲线积分24()22Ly dx xydyx y φ++⎰的值恒为同一常数.(1)证明:对右半平面0x >内的任意分段光滑简单闭曲线,C 有24()202Cy dx xydyx yφ+=+⎰.(2)求函数)(y ϕ的表达式.(20)(本题满分9分)已知二次型21232221321)1(22)1()1(),,(x x a x x a x a x x x f +++-+-=的秩为2.(1)求a 的值;(2)求正交变换x y =Q ,把),,(321x x x f 化成标准形. (3)求方程),,(321x x x f =0的解.(21)(本题满分9分)已知3阶矩阵A 的第一行是c b a c b a ,,),,,(不全为零,矩阵12324636k ⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦B (k 为常数),且=AB O ,求线性方程组0x =A 的通解.(22)(本题满分9分)设二维随机变量(,)X Y 的概率密度为(,)f x y =1001,02x y x <<<<其它求:(1)(,)X Y 的边缘概率密度)(),(y f x f Y X . (2)Y X Z -=2的概率密度).(z f Z(23)(本题满分9分)设)2(,,,21>n X X X n 为来自总体(0,1)N 的简单随机样本,X 为样本均值,记.,,2,1,n i X X Y i i =-=求:(1)i Y 的方差n i DY i ,,2,1, =. (2)1Y 与n Y 的协方差1Cov(,).n Y Y2005年考研数学一真题解析一、填空题(本题共6小题,每小题4分,满分24分. 把答案填在题中横线上) (1)曲线122+=x x y 的斜渐近线方程为 .4121-=x y 【分析】 本题属基本题型,直接用斜渐近线方程公式进行计算即可.【详解】 因为a=212lim )(lim 22=+=∞→∞→x x x x x f x x ,[]41)12(2lim )(lim -=+-=-=∞→∞→x x ax x f b x x , 于是所求斜渐近线方程为.4121-=x y (2)微分方程x x y y x ln 2=+'满足91)1(-=y 的解为.91ln 31x x x y -=.【分析】直接套用一阶线性微分方程)()(x Q y x P y =+'的通解公式:⎰+⎰⎰=-])([)()(C dx e x Q e y dxx P dxx P ,再由初始条件确定任意常数即可.【详解】 原方程等价为x y xy ln 2=+',于是通解为 ⎰⎰+⋅=+⎰⋅⎰=-]ln [1]ln [2222C xdx x xC dx ex ey dxx dxx=2191ln 31xC x x x +-, 由91)1(-=y 得C=0,故所求解为.91ln 31x x x y -= (3)设函数181261),,(222z y x z y x u +++=,单位向量}1,1,1{31=n ,则)3,2,1(nu∂∂=33.【分析】 函数u(x,y,z)沿单位向量γβαcos ,cos ,{cos =n}的方向导数为:γβαcos cos cos zu y u x u n u ∂∂+∂∂+∂∂=∂∂因此,本题直接用上述公式即可.【详解】 因为 3x x u =∂∂,6y y u =∂∂,9zz u =∂∂,于是所求方向导数为)3,2,1(nu∂∂=.33313131313131=⋅+⋅+⋅(4)设Ω是由锥面22y x z +=与半球面222y x R z --=围成的空间区域,∑是Ω的整个边界的外侧,则⎰⎰∑=++zdxdy ydzdx xdydz 3)221(2R -π.【分析】本题∑是封闭曲面且取外侧,自然想到用高斯公式转化为三重积分,再用球面(或柱面)坐标进行计算即可.【详解】 ⎰⎰∑=++zdxdy ydzdx xdydz ⎰⎰⎰Ωdxdydz 3=.)221(2sin 3320402R d d d R⎰⎰⎰-=πππθϕϕρρ(5)设321,,ααα均为3维列向量,记矩阵),,(321ααα=A ,)93,42,(321321321ααααααααα++++++=B ,如果1=A ,那么=B 2 .【分析】 将B 写成用A 右乘另一矩阵的形式,再用方阵相乘的行列式性质进行计算即可.【详解】 由题设,有)93,42,(321321321ααααααααα++++++=B=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡941321111),,(321ααα,于是有 .221941321111=⨯=⋅=A B(6)从数1,2,3,4中任取一个数,记为X, 再从X ,,2,1 中任取一个数,记为Y, 则}2{=Y P = 4813 . 【分析】 本题涉及到两次随机试验,想到用全概率公式, 且第一次试验的各种两两互不相容的结果即为完备事件组或样本空间的划分.【详解】}2{=Y P =}12{}1{===X Y P X P +}22{}2{===X Y P X P+}32{}3{===X Y P X P +}42{}4{===X Y P X P=.4813)4131210(41=+++⨯ 二、选择题(本题共8小题,每小题4分,满分32分. 每小题给出的四个选项中,只有一项符合题目要求,把所选项前的字母填在题后的括号内)(7)设函数nnn xx f 31lim)(+=∞→,则f(x)在),(+∞-∞内(A)处处可导.(B) 恰有一个不可导点.(C) 恰有两个不可导点. (D) 至少有三个不可导点. [ C ]【分析】 先求出f(x)的表达式,再讨论其可导情形.【详解】 当1<x 时,11lim)(3=+=∞→nnn xx f ;当1=x 时,111lim)(=+=∞→nn x f ;当1>x 时,.)11(lim )(3133x xxx f nnn =+=∞→即.1,11,1,,1,)(33>≤≤--<⎪⎩⎪⎨⎧-=x x x x x x f 可见f(x)仅在x=1±时不可导,故应选(C).(8)设F(x)是连续函数f(x)的一个原函数,""N M ⇔表示“M 的充分必要条件是N ”,则必有(A) F(x)是偶函数⇔f(x)是奇函数. (B ) F(x)是奇函数⇔f(x)是偶函数. (C) F(x)是周期函数⇔f(x)是周期函数.(D) F(x)是单调函数⇔f(x)是单调函数. [ A ]【分析】 本题可直接推证,但最简便的方法还是通过反例用排除法找到答案.【详解】 方法一:任一原函数可表示为⎰+=x C dt t f x F 0)()(,且).()(x f x F ='当F(x)为偶函数时,有)()(x F x F =-,于是)()1()(x F x F '=-⋅-',即 )()(x f x f =--,也即)()(x f x f -=-,可见f(x)为奇函数;反过来,若f(x)为奇函数,则⎰x dt t f 0)(为偶函数,从而⎰+=xC dt t f x F 0)()(为偶函数,可见(A)为正确选项.方法二:令f(x)=1, 则取F(x)=x+1, 排除(B)、(C); 令f(x)=x, 则取F(x)=221x , 排除(D); 故应选(A).(9)设函数⎰+-+-++=yx yx dt t y x y x y x u )()()(),(ψϕϕ, 其中函数ϕ具有二阶导数,ψ 具有一阶导数,则必有(A) 2222yux u ∂∂-=∂∂. (B )2222yux u ∂∂=∂∂.(C)222y uy x u ∂∂=∂∂∂. (D)222x uy x u ∂∂=∂∂∂.[ B ]【分析】 先分别求出22x u∂∂、22y u ∂∂、yx u ∂∂∂2,再比较答案即可.【详解】 因为)()()()(y x y x y x y x xu--++-'++'=∂∂ψψϕϕ,)()()()(y x y x y x y x yu-+++-'-+'=∂∂ψψϕϕ,于是 )()()()(22y x y x y x y x xu-'-+'+-''++''=∂∂ψψϕϕ, )()()()(2y x y x y x y x yx u-'++'+-''-+''=∂∂∂ψψϕϕ,)()()()(22y x y x y x y x yu-'-+'+-''++''=∂∂ψψϕϕ,可见有2222y ux u ∂∂=∂∂,应选(B).(10)设有三元方程1ln =+-xzey z xy ,根据隐函数存在定理,存在点(0,1,1)的一个邻域,在此邻域内该方程(A) 只能确定一个具有连续偏导数的隐函数z=z(x,y).(B) 可确定两个具有连续偏导数的隐函数x=x(y,z)和z=z(x,y).(C) 可确定两个具有连续偏导数的隐函数y=y(x,z)和z=z(x,y).(D) 可确定两个具有连续偏导数的隐函数x=x(y,z)和y=y(x,z).[ D ]【分析】 本题考查隐函数存在定理,只需令F(x,y,z)=1ln -+-xzey z xy , 分别求出三个偏导数yx z F F F ,,,再考虑在点(0,1,1)处哪个偏导数不为0,则可确定相应的隐函数.【详解】 令F(x,y,z)=1ln -+-xzey z xy , 则z e y F xzx+=', yz x F y-=',x e y F xzz+-='ln , 且 2)1,1,0(='xF ,1)1,1,0(-='yF ,0)1,1,0(='zF . 由此可确定相应的隐函数x=x(y,z)和y=y(x,z). 故应选(D).(11)设21,λλ是矩阵A 的两个不同的特征值,对应的特征向量分别为21,αα,则1α,)(21αα+A 线性无关的充分必要条件是(A) 01≠λ. (B) 02≠λ. (C) 01=λ.(D) 02=λ. [ B ]【分析】 讨论一组抽象向量的线性无关性,可用定义或转化为求其秩即可.【详解】 方法一:令 0)(21211=++αααA k k ,则 022211211=++αλαλαk k k , 0)(2221121=++αλαλk k k.由于21,αα线性无关,于是有⎩⎨⎧==+.0,022121λλk k k当02≠λ时,显然有0,021==k k,此时1α,)(21αα+A 线性无关;反过来,若1α,)(21αα+A 线性无关,则必然有02≠λ(,否则,1α与)(21αα+A =11αλ线性相关),故应选(B).方法二:由于⎥⎦⎤⎢⎣⎡=+=+21212211121101],[],[)](,[λλαααλαλααααA ,可见1α,)(21αα+A 线性无关的充要条件是.001221≠=λλλ故应选(B).(12)设A 为n (2≥n )阶可逆矩阵,交换A 的第1行与第2行得矩阵B, **,B A 分别为A,B 的伴随矩阵,则(A) 交换*A 的第1列与第2列得*B . (B)交换*A 的第1行与第2行得*B .(C) 交换*A 的第1列与第2列得*B -. (D)交换*A 的第1行与第2行得*B -.[ C ]【分析】 本题考查初等变换的概念与初等矩阵的性质,只需利用初等变换与初等矩阵的关系以及伴随矩阵的性质进行分析即可.【详解】 由题设,存在初等矩阵12E (交换n阶单位矩阵的第1行与第2行所得),使得BA E =12,于是 12*11212*12***12*)(E A E E A E A A E B-=⋅===-,即*12*B EA -=,可见应选(C).(13)设二维随机变量(X,Y) 的概率分布为 X Y 0 1 0 0.4 a 1 b 0.1 已知随机事件}0{=X 与}1{=+Y X 相互独立,则(A) a=0.2, b=0.3 (B) a=0.4, b=0.1(C) a=0.3, b=0.2 (D) a=0.1, b=0.4 [ B ] 【分析】 首先所有概率求和为1,可得a+b=0.5, 其次,利用事件的独立性又可得一等式,由此可确定a,b 的取值.【详解】 由题设,知 a+b=0.5 又事件}0{=X 与}1{=+Y X 相互独立,于是有 }1{}0{}1,0{=+===+=Y X P X P Y X X P ,即 a=))(4.0(b a a ++, 由此可解得 a=0.4, b=0.1, 故应选(B).(14)设)2(,,,21≥n X XX n 为来自总体N(0,1)的简单随机样本,X 为样本均值,2S 为样本方差,则(A) )1,0(~N X n (B) ).(~22n nS χ(C))1(~)1(--n t SXn (D)).1,1(~)1(2221--∑=n F XX n ni i[ D ]【分析】 利用正态总体抽样分布的性质和2χ分布、t 分布及F 分布的定义进行讨论即可. 【详解】 由正态总体抽样分布的性质知,)1,0(~10N X n nX =-,可排除(A);又)1(~0-=-n t SXn nS X ,可排除(C); 而)1(~)1(1)1(2222--=-n S n S n χ,不能断定(B)是正确选项.因为∑=-ni i n X X 222221)1(~),1(~χχ,且∑=-n i i n X X 222221)1(~)1(~χχ与相互独立,于是).1,1(~)1(1122212221--=-∑∑==n F XX n n XX ni ini i故应选(D).三 、解答题(本题共9小题,满分94分.解答应写出文字说明、证明过程或演算步骤.) (15)(本题满分11分) 设}0,0,2),{(22≥≥≤+=y x y x y x D ,]1[22y x++表示不超过221y x ++的最大整数. 计算二重积分⎰⎰++Ddxdy y xxy .]1[22【分析】 首先应设法去掉取整函数符号,为此将积分区域分为两部分即可.【详解】 令 }0,0,10),{(221≥≥<+≤=y x y x y x D , }0,0,21),{(222≥≥≤+≤=y x y x y x D .则 ⎰⎰++Ddxdyy xxy ]1[22=⎰⎰⎰⎰+122D D xydxdy xydxdydrr d dr r d ⎰⎰⎰⎰+=202131320cos sin 2cos sin ππθθθθθθ=.874381=+ (16)(本题满分12分) 求幂级数∑∞=--+-121))12(11()1(n nn x n n 的收敛区间与和函数f(x).【分析】 先求收敛半径,进而可确定收敛区间. 而和函数可利用逐项求导得到.【详解】 因为11)12()12()12)(1(1)12)(1(lim =+--⨯+++++∞→n n n n n nn n n ,所以当21x<时,原级数绝对收敛,当21x>时,原级数发散,因此原级数的收敛半径为1,收敛区间为(-1,1) 记 121(1)(),(1,1)2(21)n nn S x x x n n -∞=-=∈--∑,则1211(1)(),(1,1)21n n n S x x x n -∞-=-'=∈--∑,122211()(1),(1,1)1n n n S x x x x ∞--=''=-=∈-+∑.由于 (0)0,(0)0,S S '==所以201()()arctan ,1xxS x S t dt dt x t '''===+⎰⎰2001()()arctan arctan ln(1).2x x S x S t dt tdt x x x '===-+⎰⎰又 21221(1),(1,1),1n nn x xx x∞-=-=∈-+∑从而22()2()1x f x S x x =++2222arctan ln(1),(1,1).1x x x x x x =-++∈-+(17)(本题满分11分)如图,曲线C 的方程为y=f(x),点(3,2)是它的一个拐点,直线1l 与2l 分别是曲线C 在点(0,0)与(3,2)处的切线,其交点为(2,4). 设函数f(x)具有三阶连续导数,计算定积分⎰'''+302.)()(dx x f x x【分析】 题设图形相当于已知f(x)在x=0的函数值与导数值,在x=3处的函数值及一阶、二阶导数值.【详解】 由题设图形知,f(0)=0, 2)0(='f ; f(3)=2, .0)3(,2)3(=''-='f f由分部积分,知⎰⎰⎰+''-''+=''+='''+3303022302)12)(()()()()()()(dxx x f x f x x x f d x x dx x f x x=dxx f x f x x f d x ⎰⎰'+'+-='+-33030)(2)()12()()12(=.20)]0()3([216=-+f f (18)(本题满分12分)已知函数f(x)在[0,1]上连续,在(0,1)内可导,且f(0)=0,f(1)=1. 证明: (I )存在),1,0(∈ξ 使得ξξ-=1)(f ;(II )存在两个不同的点)1,0(,∈ζη,使得.1)()(=''ζηf f【分析】 第一部分显然用闭区间上连续函数的介值定理;第二部分为双介值问题,可考虑用拉格朗日中值定理,但应注意利用第一部分已得结论.【详解】 (I ) 令x x f x F +-=1)()(,则F(x)在[0,1]上连续,且F(0)=-1<0, F(1)=1>0,于是由介值定理知,存在),1,0(∈ξ 使得0)(=ξF ,即ξξ-=1)(f . (II ) 在],0[ξ和]1,[ξ上对f(x)分别应用拉格朗日中值定理,知存在两个不同的点)1,(),,0(ξζξη∈∈,使得0)0()()(--='ξξηf f f ,ξξζ--='1)()1()(f f f于是 .1111)(1)()()(=-⋅-=--⋅=''ξξξξξξξξζηf f f f(19)(本题满分12分)设函数)(y ϕ具有连续导数,在围绕原点的任意分段光滑简单闭曲线L 上,曲线积分⎰++Ly x xydydx y 4222)(ϕ的值恒为同一常数.(I )证明:对右半平面x>0内的任意分段光滑简单闭曲线C ,有022)(42=++⎰Cyxxydydx y ϕ; (II )求函数)(y ϕ的表达式.【分析】 证明(I )的关键是如何将封闭曲线C 与围绕原点的任意分段光滑简单闭曲线相联系,这可利用曲线积分的可加性将C 进行分解讨论;而(II )中求)(y ϕ的表达式,显然应用积分与路径无关即可.【详解】 (I )1ll 2Co Xl 3如图,将C 分解为:21l lC +=,另作一条曲线3l围绕原点且与C 相接,则=++⎰Cyxxydydx y 4222)(ϕ-++⎰+314222)(l l y x xydydx y ϕ022)(3242=++⎰+l l y x xydydx y ϕ.(II ) 设2424()2,22y xyP Q xyx y ϕ==++,,P Q 在单连通区域0x >内具有一阶连续偏导数,由(Ⅰ)知,曲线积分24()22Ly dx xydyx y ϕ++⎰在该区域内与路径无关,故当0x >时,总有Q P x y∂∂=∂∂. 24252422422(2)4242,(2)(2)Q y x y x xy x y y x x y x y ∂+--+==∂++①Y243243242242()(2)4()2()()4().(2)(2)P y x y y y x y y y y y y x y x y ϕϕϕϕϕ'''∂+-+-==∂++ ②比较①、②两式的右端,得435()2,()4()2.y y y y y y y ϕϕϕ'=-⎧⎨'-=⎩ 由③得2()y yc ϕ=-+,将()y ϕ代入④得535242,y cy y -=所以0c =,从而2().y y ϕ=-(20)(本题满分9分) 已知二次型21232221321)1(22)1()1(),,(x x a x x a xa x x x f +++-+-=的秩为2.(I ) 求a 的值;(II ) 求正交变换Qy x =,把),,(321x x x f 化成标准形;(III ) 求方程),,(321x x x f =0的解.【分析】 (I )根据二次型的秩为2,可知对应矩阵的行列式为0,从而可求a 的值;(II )是常规问题,先求出特征值、特征向量,再正交化、单位化即可找到所需正交变换; (III )利用第二步的结果,通过标准形求解即可.【详解】 (I ) 二次型对应矩阵为⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-++-=200011011a a a a A ,③ ④由二次型的秩为2,知 02011011=-++-=a aa a A ,得a=0.(II ) 这里⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=200011011A , 可求出其特征值为,2321===λλλ.解 0)2(=-x A E ,得特征向量为:⎪⎪⎪⎭⎫⎝⎛=⎪⎪⎪⎭⎫ ⎝⎛=100,01121αα,解 0)0(=-x A E ,得特征向量为:.0113⎪⎪⎪⎭⎫ ⎝⎛-=α由于21,αα已经正交,直接将21,αα,3α单位化,得:⎪⎪⎪⎭⎫⎝⎛-=⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎭⎫ ⎝⎛=01121,100,01121321ηηη令[]321ααα=Q ,即为所求的正交变换矩阵,由x=Qy ,可化原二次型为标准形:),,(321x x x f =.222221y y +(III ) 由),,(321x x x f ==+222122y y0,得ky y y===321,0,0(k 为任意常数).从而所求解为:x=Qy=[]⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-==⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡0003321c c k k ηηηη,其中c 为任意常数.(21)(本题满分9分)已知3阶矩阵A 的第一行是c b a c b a ,,),,,(不全为零,矩阵⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=k B 63642321(k 为常数),且AB=O, 求线性方程组Ax=0的通解.【分析】 AB=O, 相当于告之B 的每一列均为Ax=0的解,关键问题是Ax=0的基础解系所含解向量的个数为多少,而这又转化为确定系数矩阵A 的秩.【详解】 由AB=O 知,B 的每一列均为Ax=0的解,且.3)()(≤+B r A r(1)若k 9≠, 则r(B)=2, 于是r(A)1≤, 显然r(A)1≥, 故r(A)=1. 可见此时Ax=0的基础解系所含解向量的个数为3-r(A)=2, 矩阵B 的第一、第三列线性无关,可作为其基础解系,故Ax=0 的通解为:2121,,63321k k k k k x ⎪⎪⎪⎭⎫⎝⎛+⎪⎪⎪⎭⎫ ⎝⎛=为任意常数.(2) 若k=9,则r(B)=1, 从而.2)(1≤≤A r 1) 若r(A)=2, 则Ax=0的通解为:11,321k k x ⎪⎪⎪⎭⎫⎝⎛=为任意常数.2) 若r(A)=1,则Ax=0 的同解方程组为:321=++cx bx ax ,不妨设≠a ,则其通解为2121,,1001k k a c k a b k x ⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-+⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-=为任意常数.(22)(本题满分9分)设二维随机变量(X,Y)的概率密度为.,20,10,0,1),(其他x y x y x f <<<<⎩⎨⎧= 求:(I ) (X,Y)的边缘概率密度)(),(y f x f Y X;(II )Y X Z -=2的概率密度).(z fZ【分析】 求边缘概率密度直接用公式即可;而求二维随机变量函数的概率密度,一般用分布函数法,即先用定义求出分布函数,再求导得到相应的概率密度.【详解】 (I ) 关于X 的边缘概率密度)(x f X =⎰+∞∞-dyy x f ),(=.,10,0,20其他<<⎪⎩⎪⎨⎧⎰x dy x=.,10,0,2其他<<⎩⎨⎧x x 关于Y 的边缘概率密度)(y f Y =⎰+∞∞-dxy x f ),(=.,20,0,12其他<<⎪⎩⎪⎨⎧⎰y dx y=.,20,0,21其他<<⎪⎩⎪⎨⎧-y y(II ) 令}2{}{)(z Y X P z Z P z F Z≤-=≤=,1) 当0<z 时,0}2{)(=≤-=z Y X P z F Z;2) 当20<≤z 时,}2{)(z Y X P z F Z≤-= =241z z -; 3) 当2≥z 时,.1}2{)(=≤-=z Y X P z F Z即分布函数为:.2,20,0,1,41,0)(2≥<≤<⎪⎩⎪⎨⎧-=z z z z z z F Z故所求的概率密度为:.,20,0,211)(其他<<⎪⎩⎪⎨⎧-=z z z f Z(23)(本题满分9分) 设)2(,,,21>n X XX n 为来自总体N(0,1)的简单随机样本,X 为样本均值,记.,,2,1,n i X X Yi i=-=求:(I ) iY 的方差n i DY i,,2,1, =; (II )1Y 与nY 的协方差).,(1nY Y Cov【分析】 先将iY 表示为相互独立的随机变量求和,再用方差的性质进行计算即可;求1Y 与nY 的协方差),(1nY Y Cov ,本质上还是数学期望的计算,同样应注意利用数学期望的运算性质.【详解】 由题设,知)2(,,,21>n X XX n 相互独立,且),,2,1(1,0n i DX EX i i ===,.0=X E(I )∑≠--=-=nij j i i i X n X n D X X D DY ]1)11[()(=∑≠+-nij ji DX nDX n 221)11(=.1)1(1)1(222n n n n n n -=-⋅+-(II ) )])([(),(111n nnEY YEY Y E Y Y Cov --==)])([()(11X X X XE Y Y E n n--==)(211X X X X X XX E n n+-- =211)(2)(X E X X E XX E n+-=22121)(][20X E X D X X X E n nj j +++-∑==.112nn n -=+-。
2005考研数一真题及解析
![2005考研数一真题及解析](https://img.taocdn.com/s3/m/0162176aec3a87c24128c45a.png)
2005年全国硕士研究生入学统一考试数学(一)试卷一、填空题(本题共6小题,每小题4分,满分24分。
把答案填在题中横线上)(1)曲线122+=x x y 的斜渐近线方程为 _____________.(2)微分方程x x y y x ln 2=+'满足91)1(-=y 的解为____________。
(3)设函数181261),,(222z y x z y x u +++=,单位向量}1,1,1{31=n ,则)3,2,1(nu∂∂=.________。
(4)设Ω是由锥面22y x z +=与半球面222y x R z --=围成的空间区域,∑是Ω的整个边界的外侧,则⎰⎰∑=++zdxdy ydzdx xdydz ____________.(5)设123,,ααα均为3维列向量,记矩阵123(,,)=A ααα,123123123(,24,39)=++++++B ααααααααα,如果1=A ,那么=B 。
(6)从数1,2,3,4中任取一个数,记为X , 再从X ,,2,1 中任取一个数,记为Y , 则}2{=Y P =____________。
二、选择题(本题共8小题,每小题4分,满分32分.每小题给出的四个选项中,只有一项符合题目要求,把所选项前的字母填在题后的括号内)(7)设函数n n n x x f 31lim )(+=∞→,则()f x 在),(+∞-∞内(A)处处可导 (B)恰有一个不可导点(C)恰有两个不可导点 (D)至少有三个不可导点(8)设()F x 是连续函数()f x 的一个原函数,""N M ⇔表示"M 的充分必要条件是",N 则必有(A )()F x 是偶函数()f x ⇔是奇函数 (B)()F x 是奇函数()f x ⇔是偶函数(C)()F x 是周期函数()f x ⇔是周期函数 (D )()F x 是单调函数()f x ⇔是单调函数(9)设函数⎰+-+-++=yx y x dt t y x y x y x u )()()(),(ψϕϕ, 其中函数ϕ具有二阶导数,ψ 具有一阶导数,则必有(A)2222y ux u ∂∂-=∂∂(B)2222yu x u ∂∂=∂∂(C)222yu y x u ∂∂=∂∂∂(D)222xuy x u ∂∂=∂∂∂(10)设有三元方程ln e 1xz xy z y -+=,根据隐函数存在定理,存在点(0,1,1)的一个邻域,在此邻域内该方程(A )只能确定一个具有连续偏导数的隐函数(,)z z x y = (B )可确定两个具有连续偏导数的隐函数(,)x x y z =和(,)z z x y = (C )可确定两个具有连续偏导数的隐函数(,)y y x z =和(,)z z x y = (D)可确定两个具有连续偏导数的隐函数(,)x x y z =和(,)y y x z =(11)设21,λλ是矩阵A 的两个不同的特征值,对应的特征向量分别为12,αα,则1α,12()+A αα线性无关的充分必要条件是(A )01≠λ (B )02≠λ (C)01=λ (D )02=λ(12)设A 为(2)n n ≥阶可逆矩阵,交换A 的第1行与第2行得矩阵**.,B A B 分别为,A B 的伴随矩阵,则(A)交换*A 的第1列与第2列得*B (B )交换*A 的第1行与第2行得*B(C)交换*A 的第1列与第2列得*-B (D )交换*A 的第1行与第2行得*-B(13)设二维随机变量(,)X Y 的概率分布为已知随机事件}0{=X 与}1{=+Y X 相互独立,则(A )0.2,0.3a b == (B)0.4,0.1a b == (C)0.3,0.2a b == (D )0.1,0.4a b == (14)设)2(,,,21≥n X X X n 为来自总体(0,1)N 的简单随机样本,X 为样本均值,2S 为样本方差,则(A ))1,0(~N X n (B )22~()nS n χ(C ))1(~)1(--n t SXn (D )2122(1)~(1,1)nii n X F n X=--∑三 、解答题(本题共9小题,满分94分.解答应写出文字说明、证明过程或演算步骤) (15)(本题满分11分)设}0,0,2),{(22≥≥≤+=y x y x y x D ,]1[22y x ++表示不超过221y x ++的最大整数. 计算二重积分⎰⎰++Ddxdy y x xy .]1[22(16)(本题满分12分) 求幂级数∑∞=--+-121))12(11()1(n n n x n n 的收敛区间与和函数()f x .(17)(本题满分11分)如图,曲线C 的方程为()y f x =,点(3,2)是它的一个拐点,直线1l 与2l 分别是曲线C 在点(0,0)与(3,2)处的切线,其交点为(2,4).设函数()f x 具有三阶连续导数,计算定积分⎰'''+32.)()(dx x f x x(18)(本题满分12分)已知函数()f x 在[0,1]上连续,在(0,1)内可导,且(0)0,(1)1f f ==。
2005考研数一真题答案及详细解析
![2005考研数一真题答案及详细解析](https://img.taocdn.com/s3/m/5c833c35783e0912a2162afe.png)
当F(x) 为偶函数时,有 F(— x)=F(x),
于是 F'(- X) • (—1) = F'(x),
即— f(— X) = j(x), 也即八— x) = — f(x),
可见 f(x) 为奇函数;
I: f +-c 勹 反过来,若 f(x) 为奇函数,则 f (t)dt 为偶函数,从而 F(x) = Ct)dt
1
x2
X
2 'xE(—1,1)'
I。厂 r 从而
(17)解
X2 f(x)=2S(x)+
l+x
=2xarctanx
—
lnCl
+x
2
x2 )+
1 +x
2
'
+x)广(x)dx=(x 2 +x)广(x) 3 - (2x+1)广(x)心
�-f'.<zx + 1)广!:)dx"
xE(-1,1).
『+ 。 = — (2x+1)f'(x)
g(�)=f(�)+� — 1=0,
c II)根据拉格朗日中值定理 , 存在r;E (0,�),1;E C�,1),使得
f'( 1/ )
= J(n
-f(O)
�
l—
=
�
e
'
�' J'烤)=
J(l) 1
— /CO -�
=1
-Cl -�) 1—�
= 1
�
—
从而
e f' J'(沪
1-� 烤)= �
•
� 1—
2005—数二真题、标准答案与解析
![2005—数二真题、标准答案与解析](https://img.taocdn.com/s3/m/d75d5ee33968011ca2009138.png)
2005 年考研数学二真题一、填空题(本题共 6 小题,每小题 4 分,满分24 分 . 把答案填在题中横线上)( 1)设y(1sin x) x,则 dy |x=______ .3( 2)曲线 y (1x) 2的斜渐近线方程为 ______ .x( 3)1xdx______ .0 (2x 2 )1x2( 4)微分方程 xy12 y x ln x 满足 y(1)9的解为 ______ .( 5)当x0 时,( x) kx2与(x) 1 x arcsin x cosx 是等价无穷小,则k= ______ .(6)设1,2,3均为3维列向量,记矩阵A(1,2,3),B (123,1 22 43,1 32 93),如果 A1,那么 B.二、选择题(本题共 8 小题,每小题 4 分,满分 32 分 . 每小题给出的四个选项中,只有一项符合题目要求,把所选项前的字母填在题后的括号内)( 7)设函数f (x)lim n 1x3n,则 f(x) 在(,) 内n(A)处处可导 .(B)恰有一个不可导点 .(C)恰有两个不可导点.(D)至少有三个不可导点.[]( 8)设F(x)是连续函数f(x)的一个原函数," M N " 表示“M的充分必要条件是N”,则必有(A)F(x) 是偶函数f(x) 是奇函数 .( B)F(x) 是奇函数f(x) 是偶函数 .(C)F(x) 是周期函数f(x) 是周期函数 .(D)F(x) 是单调函数f(x) 是单调函数 .[]( 9)设函数y=y(x)由参数方程x t 22t,确定,则曲线 y=y(x) 在 x=3 处的法线与 x 轴交点的横坐标是y ln(1 t)(A)1ln 23.(B)1ln 2 3 . 88(C)8ln 23.(D)8ln 2 3 .[]( 10)设区域D {(,)x2y24,x0,y0}, f(x) 为 D上的正值连续函数,a,b 为常数,则x ya f ( x)b f ( y)f ( x)dD f ( y)(A)ab .ab.(C)( a b).a b.[] (B)2(D)2( 11)设函数 u( x, y)( x y)(xx y (t )dt , 其中函数y) 具有二阶导数, 具有一阶导数,x y则必有2u2u2u2u(A)x2y 2 .(B )x2y 2 .2u2u2u2 u(C)x yy 2 .(D)x yx 2 .[]( 12)设函数 f ( x)x1,则e x 1 1(A)x=0,x=1 都是 f(x) 的第一类间断点 .( B ) x=0,x=1 都是 f(x) 的第二类间断点 .(C) x=0 是 f(x) 的第一类间断点,x=1 是 f(x) 的第二类间断点 .(D)x=0 是 f(x) 的第二类间断点, x=1 是 f(x) 的第一类间断点 .[ ]( 13)设1 ,2 是矩阵 A 的两个不同的特征值,对应的特征向量分别为1 ,2 ,则 1,A( 12) 线性无关的充分必要条件是(A)10 .(B)20. (C) 10 .(D)20 .[ ]( 14)设 A 为 n ( n 2 )阶可逆矩阵,交换 A 的第 1 行与第 2 行得矩阵 B, A *,B * 分别为 A,B 的伴随矩阵,则(A) 交换 A * 的第 1 列与第 2列得 B *.(B) 交换 A * 的第 1 行与第 2行得 B *.(C)交换 A * 的第 1 列与第2列得 B * .(D) 交换 A *的第 1 行与第2 行得B * .[] 三 、解答题(本题共 9 小题,满分94 分 .解答应写出文字说明、证明过程或演算步骤.)( 15)(本题满分 11 分)x (x t) f (t )dt0 ,求极限 lim设函数 f(x) 连续,且 f (0)x.x 0xf (x t)dt( 16)(本题满分 11 分)如图, C 1 和 C 2 分别是 y1(1 e x ) 和 ye x 的图象, 过点 (0,1)的曲线 C 3 是一单调增函数的图象 . 过2C 2 上任一点 M(x,y) 分别作垂直于 x 轴和 y 轴的直线 l x 和 l y . 记 C 1 ,C 2 与 l x 所围图形的面积为 S 1 ( x) ;C 2 ,C 3 与 l y 所围图形的面积为 S 2 ( y). 如果总有 S 1 ( x) S 2 ( y) ,求曲线 C 3 的方程 x( y).( 17)(本题满分 11 分)l 与 l 分别是曲线(2,4). 设函数 f(x) 具有三阶连续导数,计算定积分3 2x) f ( x)dx.的切线,其交点为 ( x( 18)(本题满分 12 分)用变量代换x cost(0 t) 化 简 微 分 方 程 (1 x 2 ) yxyy 0 , 并 求 其 满 足y1, yx2的特解 .x 0( 19)(本题满分 12 分)已知函数 f(x) 在 [0, 1]上连续,在 (0,1) 内可导,且 f(0)=0,f(1)=1. 证明:( I )存在(0,1), 使得 f ( )1 ;( II )存在两个不同的点,(0,1) ,使得 f () f ( )1.( 20)(本题满分 10 分)已知函数z=f(x,y)的 全 微 分 dz 2xdx 2 ydy, 并 且 f(1,1,)=2. 求 f(x,y) 在椭圆域D{( x, y) x 2y 2 1} 上的最大值和最小值 .4( 21)(本题满分 9 分)计算二重积分x 2y 2d ,其中 D {( x, y) 0 x 1,0y 1} .1D( 22)(本题满分 9 分)确 定 常 数a, 使 向 量 组1 (1,1, a)T, 2 (1, a,1) T ,3(a,1,1)T 可 由 向 量 组1 (1,1,a)T,2( 2,a,4)T ,3( 2, a, a)T 线性表示, 但向量组 1 ,2 ,3 不能由向量组1 ,2 ,3线性表示 .( 23)(本题满分 9 分)1 2 3已知 3 阶矩阵 A 的第一行是(a,b, c), a,b, c 不全为零, 矩阵 B 2 4 6 ( k 为常数),且 AB=O, 求 3 6 k线性方程组 Ax=0 的通解 .2005 年考研数学二真题解析一、填空题(本题共 6 小题,每小题 4 分,满分24 分 . 把答案填在题中横线上)( 1)设y(1sin x) x,则 dy=dx.x【分析】本题属基本题型,幂指函数的求导(或微分)问题可化为指数函数求导或取对数后转化为隐函数求导 .【详解】方法一:y(1sin x) x=e x ln(1sin x) ,于是y e x ln(1sin x) [ln( 1sin x)x cos x] ,1sin x从而dy= y ()dx dx.x方法二:两边取对数, ln y x ln(1 sin x) ,对x求导,得1 y ln(1sin x)x cos x,y1sin x于是 y(1 sin x) x[ln( 1sin x) x cos x] ,故1sin xdyx= y ( ) dx dx.3( 2)曲线y (1x) 2y3 x的斜渐近线方程为x.2【分析】本题属基本题型,直接用斜渐近线方程公式进行计算即可.3【详解】因为 a= lim f (x)(1x)2xlim1,x x x x33b lim f ( x) ax(1 x) 2x 23,lim x2x x 于是所求斜渐近线方程为y x3.21xdx.( 3)x 2 ) 1x20 (24【分析】作三角代换求积分即可 .【详解】令 x sin t ,则1xdx2sin t costdt0 ( 2x2 ) 1x 20 (2sin2 t ) cost=2 d cost arctan(cos ) 2 1cos2 t. 4( 4) 微分方程 xy2 yx ln x 满足 y(1)1 的解为 y 1x ln x1x. .939【分析 】直接套用一阶线性微分方程y P( x) y Q ( x) 的通解公式:ye P ( x) dxP ( x)dxdx C] ,[ Q( x)e再由初始条件确定任意常数即可 .【详解 】 原方程等价为y2 y ln x ,x2dx2dx12于是通解为xxy e[ln x edx C ] x2[ xln xdxC]= 1x ln x1 x C 1 ,39 x 2由 y(1)1 得 C=0 ,故所求解为 y 1x ln x 1x.93 9( 5)当 x0 时, ( x) kx 2 与(x)1 x arcsin xcosx 是等价无穷小,则 k=3 .4【分析 】 题设相当于已知 lim( x) 1,由此确定 k 即可 .( x)x 0【详解】由题设, lim( x) lim 1 x arcsin xcosx( x)kx 2x 0x 0x arcsin x 1 cos x = limxkx 2 ( 1 x arcsinxcos x )= 1 lim x arcsin x 1 cos x3 1,得 k3 .2kx 0x 24k4(6)设1, 2 , 3 均为 3 维列向量,记矩阵A ( 1, 2, 3),B( 123,12243,13293 ) ,如果 A 1,那么 B2 .【分析 】 将 B 写成用 A 右乘另一矩阵的形式,再用方阵相乘的行列式性质进行计算即可 .【详解 】 由题设,有B ( 123 ,12 2 43,1 32 93)111=(1,2,3)123,149111于是有 B A 12 3 12 2.149二、选择题(本题共 8 小题,每小题 4 分,满分 32 分 . 每小题给出的四个选项中,只有一项符合题目要求,把所选项前的字母填在题后的括号内)( 7)设函数f (x)lim n 1x3 n,则 f(x) 在(,) 内n(A)处处可导 .(B)恰有一个不可导点 .(C)恰有两个不可导点 .(D)至少有三个不可导点.[C]【分析】先求出 f(x) 的表达式,再讨论其可导情形 .当 x 1 时,n3n【详解】f( )lim1x1;x n当 x 1 时, f ( x)lim n 111;n3113当 x 1 时, f ( x)lim x1) n(3n x .n xx3 ,x1,即 f ( x)1,1x1,可见 f(x) 仅在 x= 1 时不可导,故应选(C).x 3 ,x 1.( 8)设F(x)是连续函数f(x)的一个原函数," M N " 表示“M的充分必要条件是N ”,则必有(B)F(x) 是偶函数f(x) 是奇函数 .( B) F(x) 是奇函数f(x) 是偶函数 .(C)F(x) 是周期函数f(x) 是周期函数 .(D)F(x) 是单调函数f(x) 是单调函数 .[A]【分析】本题可直接推证,但最简便的方法还是通过反例用排除法找到答案.F ( x)x C ,且F ( x) f ( x).【详解】方法一:任一原函数可表示为 f (t) dt当 F(x) 为偶函数时,有F (x) F ( x),于是F(x)(1) F ( x) ,即 f (x) f ( x) ,也即f ( x) f ( x) ,可见f(x)为奇函数;反过来,若f(x)xf (t) dt 为偶函数,从而为奇函数,则xf (t )dt C 为偶函数,可见(A)为正确选项.F (x)方法二:令 f(x)=1,则取 F(x)=x+1,排除 (B)、 (C);令 f(x)=x,则取 F(x)= 1 x2, 排除 (D); 故应选 (A).2( 9)设函数y=y(x)由参数方程x t 22t ,确定,则曲线y=y(x) 在 x=3 处的法线与x 轴交点的横坐标是(A)1ln 23.(B)1ln 23 .88(C) 8ln 2 3.(D) 8ln 2 3 .[ A ]【分析】 先由 x=3 确定 t 的取值, 进而求出在此点的导数及相应的法线方程,从而可得所需的横坐标 .【详解 】 当 x=3 时,有 t 22t3 ,得 t 1, t 3 (舍去,此时 y 无意义),于是dy 1 1,可见过点 x=3( 此时 y=ln2) 的法线方程为:1 tdxt12t 2t 18y ln 2 8( x 3) ,令 y=0, 得其与 x 轴交点的横坐标为:1ln 2 3, 故应 (A).8( 10)设区域 D{( x, y) x 2y 2 4, x0, y0} , f(x) 为 D 上的正值连续函数, a,b 为常数,则a f ( x)b f ( y)f ( x) f ( y) dD(A)ab . (B)ab (C)( a b) .ab[ D ]2 .(D).2【分析 】 由于未知 f(x) 的具体形式,直接化为用极坐标计算显然是困难的 . 本题可考虑用轮换对称性 .【详解 】 由轮换对称性,有a f ( x)b f ( y)d a f ( y) b f ( x)f (x)f ( y)f ( y)d DDf (x)1a f ( x)b f ( y)a f ( y)b f ( x)=[f (x)f ( y)f ( y) f (x) ]d2 D=a2b da b 1 22ab . 应选 (D).D2 42( 11)设函数 u( x, y)( xy)( x y)x y (t) dt ,x y其中函数具有二阶导数,具有一阶导数,则必有2u2u2u2u(A)x2y 2 .(B )x2y 2 .2u2u2u 2 u(C)x yy 2 .(D)x yx 2 .[ B ]【分析】先分别求出2u 、 2u 、2u,再比较答案即可 .x 2y 2x yu(x y)(x y)(x y)( x y) ,【详解】因为xu(x y)(x y)(x y)( x y) ,y于是2 u(x y)(x y)(x y)(x y) ,x22u( x y)( x y)( x y)( x y) ,x y2 u( x y)(x y)(x y)(x y) ,y 2可见有2u 2 u,应选 (B).x2y 2( 12)设函数 f ( x)1, 则xe x 11(B)x=0,x=1 都是 f(x) 的第一类间断点 .( B )x=0,x=1 都是 f(x) 的第二类间断点.(C)x=0 是 f(x) 的第一类间断点,x=1 是 f(x) 的第二类间断点.(E) x=0 是 f(x) 的第二类间断点,x=1 是 f(x) 的第一类间断点.[ D]【分析】显然x=0,x=1为间断点,其分类主要考虑左右极限.【详解】由于函数f(x) 在 x=0,x=1 点处无定义,因此是间断点.且lim f (x),所以x=0为第二类间断点;x 0l i mf ( x) x 10, limf()1,所以x=1为第一类间断点,故应选(D).x 1x( 13)设 1 ,2是矩阵A的两个不同的特征值,对应的特征向量分别为1, 2 ,则 1 ,A(1 2 )线性无关的充分必要条件是(A)10.(B)20. (C)10 .(D)2 0 .[ B ]【分析】讨论一组抽象向量的线性无关性,可用定义或转化为求其秩即可.【详解】方法一:令k11k2 A( 1 2 )0 ,则k1 1k2 1 1k2 2 20 , ( k1k2 1)1k2 2 20 .由于1 , 2 线性无关,于是有k1k2 10,k0.当20时,显然有 k10, k2 0 ,此时1,A(12 )线性无关;反过来,若1,A( 12)线性无关,则必然有2 0(,否则,1与A( 12)=11线性相关 ),故应选 (B).由于 [1,A(12)] [1,11 22][1,21方法二:]012,1可见1,A( 12 ) 线性无关的充要条件是010. 故应选(B).22( 14)设A为n(n 2 )阶可逆矩阵,交换 A 的第 1 行与第 2 行得矩阵B,A*, B*分别为A,B的伴随矩阵,则(B)交换 A*的第1列与第2列得 B*.(B) 交换A*的第 1行与第 2行得B*.(C)交换 A*的第1列与第2列得B*.(D) 交换A*的第 1行与第 2行得B*.[C]【分析】本题考查初等变换的概念与初等矩阵的性质,只需利用初等变换与初等矩阵的关系以及伴随矩阵的性质进行分析即可 .【详解】由题设,存在初等矩阵E12(交换n阶单位矩阵的第1行与第 2 行所得),使得E12A B,于是B*(E12 A)*A* E*12A*E12E121A* E12,即A* E12B*,可见应选(C).三、解答题(本题共9 小题,满分94 分 .解答应写出文字说明、证明过程或演算步骤.)( 15)(本题满分11 分)x(x t) f (t )dt设函数 f(x) 连续,且f (0)0,求极限lim xf (x .x0x0t)dt【分析】此类未定式极限,典型方法是用罗必塔法则,但分子分母求导前应先变形.xf ( x t )dt x t u 0du)x【详解】由于 f (u)( f (u)du ,于是0x0xt) f (t)dt x f (t) dt x( x x tf (t )dt lim 0x lim0x0x 0 x f ( x t )dt x 0x0f (u)duxf (t)dt xf ( x)xf (x)x f (t )dt= lim0x= lim x0x0 f (u)du xf ( x)x0 f (u)du xf ( x) 00xf (t)dtxf (0) 1= limx=.xf (u)duf (0)f (0) 2f (x)x( 16)(本题满分 11 分)如图, C 1 和 C 2 分别是 y1(1 e x ) 和 ye x 的图象, 过点 (0,1)的曲线 C 3 是一单调增函数的图象 . 过2C 2 上任一点M(x,y) 分别作垂直于 x轴和 y 轴的直线 l x 和 l y . 记 C 1 ,C 2 与 l x 所围图形的面积为 S 1 ( x) ;C 2 ,C 3 与 l y 所围图形的面积为 S 2 ( y). 如果总有 S 1 ( x)S 2 ( y) ,求曲线 C 3 的方程 x( y).【分析 】 利用定积分的几何意义可确定面积 S 1 (x), S 2 ( y) ,再根据 S 1 (x) S 2 ( y) 建立积分等式,然后求导引出微分方程,最终可得所需函数关系.【详解 】 如图,有x1(1 e t)] dt 1 (e xS 1 (x)[e tx 1) ,0 22S 2 ( y)y(t))dt ,(ln t1由题设,得1 (e x x 1) y(ln t (t)) dt , 121 ( y而 y e x ,于是 ln y 1) y (ln t (t ))dt12两边对 y 求导得1(1 1 ) ln y ( y) ,2 y故所求的函数关系为:x( y) ln yy 1.2 y( 17)(本题满分 11 分)如图,曲线 C 的方程为 y=f(x) ,点 (3,2)是它的一个拐点,直线l 1 与 l 2 分别是曲线 C 在点 (0,0)与 (3,2)处3 2x) f ( x)dx.的切线,其交点为 (2,4). 设函数 f(x) 具有三阶连续导数,计算定积分( x【分析】 题设图形相当于已知 f(x) 在 x=0 的函数值与导数值, 在 x=3 处的函数值及一阶、 二阶导数值 .【详解 】 由题设图形知, f(0)=0, f (0)2 ; f(3)=2, f (3)2, f (3) 0.由分部积分,知3 x) f(x)dx3x)df ( x) ( x2x) f 3 3( x)( 2x 1)dx (x2( x2(x)f31)df ( x)(2 x 1) f 3 3( x)dx= ( 2x( x)2 f= 162[ f (3) f (0)]20.( 18)(本题满分12 分)用变量代换 x cost(0t)化简微分方程 (1 x2 ) y xy y0,并求其满足y1, yx 02的特解.x 0【分析】先将 y , y转化为 dy , d 2 y,再用二阶常系数线性微分方程的方法求解即可.dt dt 2【详解】dy dt1dyydt dx sin t,dtydy dt cost dy1 d 2 y1dt dx[2t dt sin t dt2 ] () ,sin sin t代入原方程,得d 2yy0 . dt2解此微分方程,得y C1 c o ts C2 si nt C1 x C2 1 x 2,将初始条件 yx 01, yx2代入,有 C12,C21.故满足条件的特解为y2x 1 x 2 .( 19)(本题满分12 分)已知函数 f(x) 在 [0, 1]上连续,在 (0,1) 内可导,且 f(0)=0,f(1)=1.证明:( I)存在(0,1),使得 f ()1;( II )存在两个不同的点,(0,1) ,使得 f ( ) f() 1.【分析】第一部分显然用闭区间上连续函数的介值定理;第二部分为双介值问题,可考虑用拉格朗日中值定理,但应注意利用第一部分已得结论.【详解】( I)令F (x) f ( x) 1 x ,则F(x)在[0,1]上连续,且F(0)=-1<0, F(1)=1>0, 于是由介值定理知,存在(0,1), 使得 F ( ) 0,即 f ( ) 1.(II)在[ 0,]和 [,1] 上对使得 f ( ) f () f (0) ,f0f(x) 分别应用拉格朗日中值定理,知存在两个不同的点(0, ),( ,1) ,f (1) f ( )( )1于是f ( ) f () f () 1 f ( ) 1 1.11( 20)(本题满分10 分)已知函数z=f(x,y)的全微分 dz2xdx 2 ydy ,并且f(1,1,)=2.求f(x,y) 在椭圆域D {( x, y) x2y 21} 上的最大值和最小值.4【分析】根据全微分和初始条件可先确定f(x,y) 的表达式 . 而 f(x,y) 在椭圆域上的最大值和最小值, 可能在区域的内部达到,也可能在区域的边界上达到,且在边界上的最值又转化为求条件极值..【详解】由题设,知f2x ,f2 y ,x y于是 f (x, y)x 2 C ( y) ,且 C ( y) 2 y ,从而C( y)y 2 C ,再由 f(1,1)=2 ,得 C=2, 故 f (x, y) x2y2 2.令f0,f0 得可能极值点为x=0,y=0.且A 2 f 2 ,B 2 f(0,0)0 ,x y x2(0,0)x y2fCy2(0,0)2 ,B 2AC40 ,所以点(0,0)不是极值点,从而也非最值点 .再考虑其在边界曲线x2y 2 1 上的情形:令拉格朗日函数为4F (x, y, ) f ( x, y)( x2y 21) ,4F x f2x2(1) x0, x解F y f y 2 y1y0,y2y 22F x210,4得可能极值点x0, y2, 4 ;x0, y2, 4 ;x 1, y0,1;x1, y0, 1. 代入 f(x,y) 得f (0,2)2, f (1,0) 3 ,可见z=f(x,y)在区域 D{( x, y) x 2y 21}内的最大值为3,最4小值为 -2.( 21)(本题满分 9 分)计算二重积分x2y2d,其中D{( x, y) 0 x1,0y 1}.1D【分析】被积函数含有绝对值,应当作分区域函数看待,利用积分的可加性分区域积分即可.【详解】记D1{( ,)x2y21,( ,)}x y x y D ,D 2{( x, y) x 2y 2 于是x2y 2 1d =( x2yDD 12d1 21)rdr= (r1, (x, y)D} ,2 1)dxdy( x 2 y 2 1)dxdyD 2( x 2y 2 1) dxdy(x 2y 2 1)dxdyDD 11dx 1y21)dy2 d1 1) rdr =1 . = +0 ( x 2 (r284 3( 22)(本题满分 9 分)确定常数a, 使向量组1(1,1, a)T ,2(1, a,1) T , 3(a,1,1)T可由向量组1 (1,1,a)T, 2 ( 2,a,4)T,3( 2, a, a)T线性表示, 但向量组1 ,2 ,3 不能由向量组1, 2, 3线性表示 .【分析 】向量组1 ,2 ,3 可由向量组1 ,2 ,3 线性表示,相当与方程组:ix 11x 22x 3 3 ,i 1,2,3.均有解,问题转化为r (1,2 ,3 ) = r (1 ,2 ,3i ), i 1,2,3 是否均成立?这通过初等变换化解体形讨论即可 . 而向量组1 ,2 ,3 不能由向量组1 ,2 ,3 线性表示,相当于至少有一个向量 j ( j1,2,3) 不能由1 ,2 ,3 表示,即至少有一方程组jx1 1x2 2x 3 3 , j 1,2,3,无解 .【详解】 对矩阵 A(1 ,2 ,31 ,2 ,3 ) 作初等行变换,有12 2 1 1 a A(1,2,31, 2, 3)= 1a a 1 a 1a4 a a1 1122 11a 0 a 2 a 2 0 a 10 4 2a3a0 1 a 1 a122 1 1 a0 a 2 a2 0 a1,a43(1 a) 1 a12 2 1 1 2当 a=-2 时,A00 0 0 3 0 ,显然2 不能由1 ,2 ,3 线性表示,因此 a2 ;633当 a=4 时,1 2 2 1 1 4A06 6 0 3 0 ,然 2, 3均不能由1 ,2 ,3 线性表示,因此 a4 .93而当 a2 且 a4 时,秩 r (1, 2, 3 )3 ,此时向量组1, 2 , 3 可由向量组 1, 2, 3线性表示 .11 a 1 22又B (1,2,31, 2, 3)1 a 1 1 a aa1 1 a4a1 1 a1 220 a 1 1 a 0a 2 a 20 1 a 1 a 2 0 4 2a3a1 1 a 12 20 a 1 1 a 0a 2a 2 ,2 a a 20 6 3a 4a2由题设向量组1 ,2 ,3 不能由向量组 1 , 2 , 3 线性表示,必有 a 1 0 或 2 a a 2 0 ,即 a=1 或a 2 .综上所述,满足题设条件的 a 只能是: a=1.( 23)(本题满分 9 分)1 2 3已知 3 阶矩阵 A 的第一行是(a,b, c), a,b, c 不全为零, 矩阵 B 2 4 6 ( k 为常数),且 AB=O, 求 3 6 k线性方程组 Ax=0 的通解 .【分析 】 AB=O, 相当于告之 B 的每一列均为 Ax=0 的解,关键问题是 Ax=0 的基础解系所含解向量的个数为多少,而这又转化为确定系数矩阵A 的秩.【详解 】 由 AB=O 知, B 的每一列均为 Ax=0 的解,且 r ( A)r ( B) 3.( 1)若 k9 , 则 r(B)=2, 于是 r(A) 1, 显然 r(A) 1, 故 r(A)=1.可见此时 Ax=0 的基础解系所含解向量的个数为3-r(A)=2, 矩阵 B 的第一、第三列线性无关,可作为其基础解系,故Ax=0 的通解为:13x k 1 2k 2 6 , k 1 , k 2 为任意常数 .3k(2) 若 k=9 ,则 r(B)=1, 从而 1 r ( A) 2.11)若 r(A)=2,则Ax=0的通解为:x k1 2 ,k1为任意常数.32)若r(A)=1, 则Ax=0的同解方程组为:ax1bx2cx30 ,不妨设a0 ,则其通解为b ca ax k11k 20, k1 , k2为任意常数.01。
【考研数学】2005年数学一真题、标准答案及解析
![【考研数学】2005年数学一真题、标准答案及解析](https://img.taocdn.com/s3/m/b5424c0fee06eff9aef807b9.png)
=
(5)设 均为3维列向量,记矩阵
, ,
如果 ,那么 2.
【分析】将B写成用A右乘另一矩阵的形式,再用方阵相乘的行列式性质进行计算即可.
【详解】由题设,有
= ,
于是有
(6)从数1,2,3,4中任取一个数,记为X,再从 中任取一个数,记为Y,则
= .
【分析】本题涉及到两次随机试验,想到用全概率公式,且第一次试验的各种两两互不相容的结果即为完备事件组或样本空间的划分.
(B)可确定两个具有连续偏导数的隐函数x=x(y,z)和z=z(x,y).
(C)可确定两个具有连续偏导数的隐函数y=y(x,z)和z=z(x,y).
(D)可确定两个具有连续偏导数的隐函数x=x(y,z)和y=y(x,z). [ ]
(11)设 是矩阵A的两个不同的特征值,对应的特征向量分别为 ,则 , 线性无关的充分必要条件是
(A) . (B) . (C) . (D) . [ ]
(12)设A为n( )阶可逆矩阵,交换A的第1行与第2行得矩阵B, 分别为A,B的伴随矩阵,则
(A)交换 的第1列与第2列得 . (B)交换 的第1行与第2行得 .
(C)交换 的第1列与第2列得 . (D)交换 的第1行与第2行得 .
[ ]
(13)设二维随机变量(X,Y)的概率分布为
(3)设函数 ,单位向量 ,则 = .
【分析】函数u(x,y,z)沿单位向量 }的方向导数为:
因此,本题直接用上述公式即可.
【详解】因为 , , ,于是所求方向导数为
=
(4)设 是由锥面 与半球面 围成的空间区域, 是 的整个边界的外侧,则 .
【分析】本题 是封闭曲面且取外侧,自然想到用高斯公式转化为三重积分,再用球面(或柱面)坐标进行计算即可.
2005年考研数学二试题及答案
![2005年考研数学二试题及答案](https://img.taocdn.com/s3/m/0766b2ff710abb68a98271fe910ef12d2af9a939.png)
2005年数学二试题分析、详解和评注一、填空题(本题共6小题,每小题4分,满分24分. 把答案填在题中横线上)(1)设xx y )sin 1(+=,则π=x dy= .(2) 曲线xx y 23)1(+=的斜渐近线方程为.(3)=--⎰1221)2(xxxdx(4) 微分方程x x y y x ln 2=+'满足91)1(-=y 的解为(5)当0→x 时,2)(kx x =α与x x x x cos arcsin 1)(-+=β是等价无穷小,则k= .(6)设321,,ααα均为3维列向量,记矩阵),,(321ααα=A ,)93,42,(321321321ααααααααα++++++=B , 如果1=A ,那么=B .二、选择题(本题共8小题,每小题4分,满分32分. 每小题给出的四个选项中,只有一项符合题目要求,把所选项前的字母填在题后的括号内)(7)设函数n nn xx f 31lim )(+=∞→,则f(x)在),(+∞-∞内(A) 处处可导. (B) 恰有一个不可导点.(C) 恰有两个不可导点. (D) 至少有三个不可导点. [ ] (8)设F(x)是连续函数f(x)的一个原函数,""N M ⇔表示“M 的充分必要条件是N ”,则必有(A) F(x)是偶函数⇔f(x)是奇函数. (B ) F(x)是奇函数⇔f(x)是偶函数.(C) F(x)是周期函数⇔f(x)是周期函数.(D) F(x)是单调函数⇔f(x)是单调函数. [ ](9)设函数y=y(x)由参数方程⎩⎨⎧+=+=)1ln(,22t y t t x 确定,则曲线y=y(x)在x=3处的法线与x轴交点的横坐标是(A) 32ln 81+. (B) 32ln 81+-. (C) 32ln 8+-. (D) 32ln 8+. [ ](10)设区域}0,0,4),{(22≥≥≤+=y x y x y x D ,f(x)为D 上的正值连续函数,a,b为常数,则=++⎰⎰σd y f x f y f b x f a D)()()()((A) πab . (B)π2ab . (C) π)(b a +. (D) π2b a + . [ ] (11)设函数⎰+-+-++=yx yx dt t y x y x y x u )()()(),(ψϕϕ, 其中函数ϕ具有二阶导数,ψ 具有一阶导数,则必有(A) 2222yux u ∂∂-=∂∂. (B ) 2222y u x u ∂∂=∂∂. (C) 222yuy x u ∂∂=∂∂∂. (D)222x u y x u ∂∂=∂∂∂. [ ](12)设函数,11)(1-=-x xex f 则 (A) x=0,x=1都是f(x)的第一类间断点. (B ) x=0,x=1都是f(x)的第二类间断点.(C) x=0是f(x)的第一类间断点,x=1是f(x)的第二类间断点. x=0是f(x)的第二类间断点,x=1是f(x)的第一类间断点. [ ](13)设21,λλ是矩阵A 的两个不同的特征值,对应的特征向量分别为21,αα,则1α,)(21αα+A 线性无关的充分必要条件是(A) 01≠λ. (B) 02≠λ. (C) 01=λ. (D) 02=λ. [ ] (14)设A 为n (2≥n )阶可逆矩阵,交换A 的第1行与第2行得矩阵B, **,B A 分别为A,B 的伴随矩阵,则(A) 交换*A 的第1列与第2列得*B . (B) 交换*A 的第1行与第2行得*B .(C) 交换*A 的第1列与第2列得*B -. (D) 交换*A 的第1行与第2行得*B -. [ ] 三 、解答题(本题共9小题,满分94分.解答应写出文字说明、证明过程或演算步骤.)(15)(本题满分11分)设函数f(x)连续,且0)0(≠f ,求极限.)()()(lim⎰⎰--→x xx dtt x f x dtt f t x(16)(本题满分11分) 如图,1C 和2C 分别是)1(21x e y +=和x e y =的图象,过点(0,1)的曲线3C 是一单调增函数的图象. 过2C 上任一点M(x,y)分别作垂直于x 轴和y 轴的直线x l 和y l . 记21,C C 与x l 所围图形的面积为)(1x S ;32,C C 与y l 所围图形的面积为).(2y S 如果总有)()(21y S x S =,求曲线3C 的方程).(y x ϕ=(17)(本题满分11分)如图,曲线C 的方程为y=f(x),点(3,2)是它的一个拐点,直线1l 与2l 分别是曲线C 在点(0,0)与(3,2)处的切线,其交点为(2,4). 设函数f(x)具有三阶连续导数,计算定积分⎰'''+32.)()(dx x f x x(18)(本题满分12分)用变量代换)0(cos π<<=t t x 化简微分方程0)1(2=+'-''-y y x y x ,并求其满足2,10='===x x y y的特解.(19)(本题满分12分)已知函数f(x)在[0,1]上连续,在(0,1)内可导,且f(0)=0,f(1)=1. 证明: (I )存在),1,0(∈ξ 使得ξξ-=1)(f ;(II )存在两个不同的点)1,0(,∈ζη,使得.1)()(=''ζηf f (20)(本题满分10分)已知函数z=f(x,y) 的全微分ydy xdx dz 22-=,并且f(1,1,)=2. 求f(x,y)在椭圆域}14),{(22≤+=y x y x D 上的最大值和最小值.(21)(本题满分9分) 计算二重积分σd y x D⎰⎰-+122,其中}10,10),{(≤≤≤≤=y x y x D .(22)(本题满分9分)确定常数a,使向量组,),1,1(1Ta =α,)1,,1(2T a =αT a )1,1,(3=α可由向量组,),1,1(1T a =β,)4,,2(2T a -=βT a a ),,2(3-=β线性表示,但向量组321,,βββ不能由向量组321,,ααα线性表示.(23)(本题满分9分)已知3阶矩阵A 的第一行是c b a c b a ,,),,,(不全为零,矩阵⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=k B 63642321(k 为常数),且AB=O, 求线性方程组Ax=0的通解.以下题型均在05年考研文登数学辅导班中讲过1..【分析】 本题属基本题型,幂指函数的求导(或微分)问题可化为指数函数求导或取对数后转化为隐函数求导.【详解】 方法一: xx y )sin 1(+==)sin 1ln(x x e +,于是]sin 1cos )sin 1[ln()sin 1ln(xxx x e y x x +⋅++⋅='+,从而 π=x dy=.)(dx dx y ππ-='方法二: 两边取对数,)sin 1ln(ln x x y +=,对x 求导,得xx x x y y sin 1cos )sin 1ln(1+++=', 于是 ]sin 1cos )sin 1[ln()sin 1(xxx x x y x+⋅++⋅+=',故π=x dy=.)(dx dx y ππ-='【评注】 幂指函数的求导问题,既不能单纯作为指数函数对待,也不能单纯作为幂函数,而直接运用相应的求导公式.2..【分析】 本题属基本题型,直接用斜渐近线方程公式进行计算即可.【详解】 因为a=,1)1(lim )(lim23=+=+∞→+∞→xx x x x f x x[]23)1(lim)(lim 2323=-+=-=+∞→+∞→xxx ax x f b x x , 于是所求斜渐近线方程为.23+=x y 【评注】 如何求垂直渐近线、水平渐近线和斜渐近线,是基本要求,应熟练掌握。
2005年考研数学一真题(含解析)
![2005年考研数学一真题(含解析)](https://img.taocdn.com/s3/m/2b03d4e6172ded630b1cb6d7.png)
2005年考研数学一真题一、填空题(本题共6小题,每小题4分,满分24分. 把答案填在题中横线上)(1)曲线122+=x x y 的斜渐近线方程为 _____________.(2)微分方程x x y y x ln 2=+'满足91)1(-=y 的解为. ____________. (3)设函数181261),,(222z y x z y x u +++=,单位向量}1,1,1{31=n ,则)3,2,1(n u ∂∂=.________.(4)设Ω是由锥面22y x z +=与半球面222y x R z --=围成的空间区域,∑是Ω的整个边界的外侧,则⎰⎰∑=++zdxdy ydzdx xdydz ____________.(5)设321,,ααα均为3维列向量,记矩阵),,(321ααα=A ,)93,42,(321321321ααααααααα++++++=B , 如果1=A ,那么=B ..(6)从数1,2,3,4中任取一个数,记为X, 再从X ,,2,1 中任取一个数,记为Y, 则}2{=Y P =____________.二、选择题(本题共8小题,每小题4分,满分32分. 每小题给出的四个选项中,只有一项符合题目要求,把所选项前的字母填在题后的括号内)(7)设函数n nn xx f 31lim )(+=∞→,则f(x)在),(+∞-∞内(A) 处处可导. (B) 恰有一个不可导点.(C) 恰有两个不可导点. (D) 至少有三个不可导点. [ ](8)设F(x)是连续函数f(x)的一个原函数,""N M ⇔表示“M 的充分必要条件是N ”,则必有 (A) F(x)是偶函数⇔f(x)是奇函数. (B ) F(x)是奇函数⇔f(x)是偶函数.(C) F(x)是周期函数⇔f(x)是周期函数.(D) F(x)是单调函数⇔f(x)是单调函数. [ ](9)设函数⎰+-+-++=yx yx dt t y x y x y x u )()()(),(ψϕϕ, 其中函数ϕ具有二阶导数,ψ 具有一阶导数,则必有(A) 2222yux u ∂∂-=∂∂. (B ) 2222y u x u ∂∂=∂∂.(C) 222yuy x u ∂∂=∂∂∂. (D)222x u y x u ∂∂=∂∂∂. [ ](10)设有三元方程1ln =+-xz e y z xy ,根据隐函数存在定理,存在点(0,1,1)的一个邻域,在此邻域内该方程(A) 只能确定一个具有连续偏导数的隐函数z=z(x,y).(B) 可确定两个具有连续偏导数的隐函数x=x(y,z)和z=z(x,y). (C) 可确定两个具有连续偏导数的隐函数y=y(x,z)和z=z(x,y).(D)可确定两个具有连续偏导数的隐函数x=x(y,z)和y=y(x,z). [ ](11)设21,λλ是矩阵A 的两个不同的特征值,对应的特征向量分别为21,αα,则1α,)(21αα+A 线性无关的充分必要条件是(A)01≠λ. (B) 02≠λ. (C) 01=λ. (D) 02=λ. [ ](12)设A 为n (2≥n )阶可逆矩阵,交换A 的第1行与第2行得矩阵B, **,B A 分别为A,B 的伴随矩阵,则(A) 交换*A 的第1列与第2列得*B . (B) 交换*A 的第1行与第2行得*B . (C) 交换*A 的第1列与第2列得*B -. (D) 交换*A 的第1行与第2行得*B -.[ ](13)设二维随机变量(X,Y) 的概率分布为 X Y 0 1 0 0.4 a 1 b 0.1已知随机事件}0{=X 与}1{=+Y X 相互独立,则(A) a=0.2, b=0.3 (B) a=0.4, b=0.1(C) a=0.3, b=0.2 (D) a=0.1, b=0.4 [ ](14)设)2(,,,21≥n X X X n 为来自总体N(0,1)的简单随机样本,X 为样本均值,2S 为样本方差,则(A) )1,0(~N X n (B) ).(~22n nS χ(C) )1(~)1(--n t SXn (D) ).1,1(~)1(2221--∑=n F X X n n i i [ ] 三 、解答题(本题共9小题,满分94分.解答应写出文字说明、证明过程或演算步骤.) (15)(本题满分11分) 设}0,0,2),{(22≥≥≤+=y x y x y x D ,]1[22y x ++表示不超过221y x ++的最大整数. 计算二重积分⎰⎰++Ddxdy y x xy .]1[22 (16)(本题满分12分)求幂级数∑∞=--+-121))12(11()1(n n n x n n 的收敛区间与和函数f(x).(17)(本题满分11分)如图,曲线C 的方程为y=f(x),点(3,2)是它的一个拐点,直线1l 与2l 分别是曲线C 在点(0,0)与(3,2)处的切线,其交点为(2,4). 设函数f(x)具有三阶连续导数,计算定积分⎰'''+32.)()(dx x f x x(18)(本题满分12分)已知函数f(x)在[0,1]上连续,在(0,1)内可导,且f(0)=0,f(1)=1. 证明:(I )存在),1,0(∈ξ 使得ξξ-=1)(f ;(II )存在两个不同的点)1,0(,∈ζη,使得.1)()(=''ζηf f (19)(本题满分12分)设函数)(y ϕ具有连续导数,在围绕原点的任意分段光滑简单闭曲线L 上,曲线积分⎰++Ly x xydydx y 4222)(ϕ的值恒为同一常数.(I )证明:对右半平面x>0内的任意分段光滑简单闭曲线C ,有022)(42=++⎰Cyx xydydx y ϕ;(II )求函数)(y ϕ的表达式. (20)(本题满分9分)已知二次型21232221321)1(22)1()1(),,(x x a x x a x a x x x f +++-+-=的秩为2.(I ) 求a 的值;(II ) 求正交变换Qy x =,把),,(321x x x f 化成标准形; (III ) 求方程),,(321x x x f =0的解. (21)(本题满分9分)已知3阶矩阵A 的第一行是c b a c b a ,,),,,(不全为零,矩阵⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=k B 63642321(k 为常数),且AB=O, 求线性方程组Ax=0的通解..(22)(本题满分9分)设二维随机变量(X,Y)的概率密度为.,20,10,0,1),(其他x y x y x f <<<<⎩⎨⎧=求:(I ) (X,Y)的边缘概率密度)(),(y f x f Y X ;(II )Y X Z -=2的概率密度).(z f Z (23)(本题满分9分)设)2(,,,21>n X X X n 为来自总体N(0,1)的简单随机样本,X 为样本均值,记.,,2,1,n i X X Y i i =-=求:(I ) i Y 的方差n i DY i ,,2,1, =; (II )1Y 与n Y 的协方差).,(1n Y Y Cov2005年考研数学一真题解析一、填空题(本题共6小题,每小题4分,满分24分. 把答案填在题中横线上)(1)曲线122+=x x y 的斜渐近线方程为 .4121-=x y【分析】 本题属基本题型,直接用斜渐近线方程公式进行计算即可.【详解】 因为a=212lim )(lim22=+=∞→∞→x x x x x f x x , []41)12(2lim)(lim -=+-=-=∞→∞→x x ax x f b x x ,于是所求斜渐近线方程为.4121-=x y (2)微分方程x x y y x ln 2=+'满足91)1(-=y 的解为.91ln 31x x x y -=. 【分析】直接套用一阶线性微分方程)()(x Q y x P y =+'的通解公式:⎰+⎰⎰=-])([)()(C dx e x Q e y dxx P dx x P ,再由初始条件确定任意常数即可. 【详解】 原方程等价为x y xy ln 2=+', 于是通解为 ⎰⎰+⋅=+⎰⋅⎰=-]ln [1]ln [2222C xdx x xC dx ex ey dxx dxx =2191ln 31x C x x x +-, 由91)1(-=y 得C=0,故所求解为.91ln 31x x x y -=(3)设函数181261),,(222z y x z y x u +++=,单位向量}1,1,1{31=n ,则)3,2,1(n u ∂∂=33. 【分析】 函数u(x,y,z)沿单位向量γβαcos ,cos ,{cos =n}的方向导数为:γβαcos cos cos zu y u x u n u ∂∂+∂∂+∂∂=∂∂ 因此,本题直接用上述公式即可.【详解】 因为3x x u =∂∂,6y y u =∂∂,9zz u =∂∂,于是所求方向导数为)3,2,1(nu ∂∂=.33313131313131=⋅+⋅+⋅ (4)设Ω是由锥面22y x z +=与半球面222y x R z --=围成的空间区域,∑是Ω的整个边界的外侧,则⎰⎰∑=++zdxdy ydzdx xdydz 3)221(2R -π. 【分析】本题∑是封闭曲面且取外侧,自然想到用高斯公式转化为三重积分,再用球面(或柱面)坐标进行计算即可.【详解】⎰⎰∑=++zdxdy ydzdx xdydz ⎰⎰⎰Ωdxdydz 3=.)221(2sin 3320402R d d d R⎰⎰⎰-=πππθϕϕρρ (5)设321,,ααα均为3维列向量,记矩阵),,(321ααα=A ,)93,42,(321321321ααααααααα++++++=B , 如果1=A ,那么=B 2 .【分析】 将B 写成用A 右乘另一矩阵的形式,再用方阵相乘的行列式性质进行计算即可. 【详解】 由题设,有)93,42,(321321321ααααααααα++++++=B=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡941321111),,(321ααα, 于是有 .221941321111=⨯=⋅=A B(6)从数1,2,3,4中任取一个数,记为X, 再从X ,,2,1 中任取一个数,记为Y, 则}2{=Y P =4813 . 【分析】 本题涉及到两次随机试验,想到用全概率公式, 且第一次试验的各种两两互不相容的结果即为完备事件组或样本空间的划分.【详解】 }2{=Y P =}12{}1{===X Y P X P +}22{}2{===X Y P X P +}32{}3{===X Y P X P +}42{}4{===X Y P X P=.4813)4131210(41=+++⨯ 二、选择题(本题共8小题,每小题4分,满分32分. 每小题给出的四个选项中,只有一项符合题目要求,把所选项前的字母填在题后的括号内)(7)设函数n nn xx f 31lim )(+=∞→,则f(x)在),(+∞-∞内(A) 处处可导. (B) 恰有一个不可导点.(C) 恰有两个不可导点. (D) 至少有三个不可导点. [ C ] 【分析】 先求出f(x)的表达式,再讨论其可导情形. 【详解】 当1<x 时,11lim )(3=+=∞→n nn xx f ;当1=x 时,111lim )(=+=∞→n n x f ;当1>x 时,.)11(lim )(3133x xx x f nnn =+=∞→即.1,11,1,,1,)(33>≤≤--<⎪⎩⎪⎨⎧-=x x x x x x f 可见f(x)仅在x=1±时不可导,故应选(C).(8)设F(x)是连续函数f(x)的一个原函数,""N M ⇔表示“M 的充分必要条件是N ”,则必有(B) F(x)是偶函数⇔f(x)是奇函数. (B ) F(x)是奇函数⇔f(x)是偶函数.(C) F(x)是周期函数⇔f(x)是周期函数.(D) F(x)是单调函数⇔f(x)是单调函数. [ A ] 【分析】 本题可直接推证,但最简便的方法还是通过反例用排除法找到答案.【详解】 方法一:任一原函数可表示为⎰+=xC dt t f x F 0)()(,且).()(x f x F ='当F(x)为偶函数时,有)()(x F x F =-,于是)()1()(x F x F '=-⋅-',即 )()(x f x f =--,也即)()(x f x f -=-,可见f(x)为奇函数;反过来,若f(x)为奇函数,则⎰xdt t f 0)(为偶函数,从而⎰+=xC dt t f x F 0)()(为偶函数,可见(A)为正确选项.方法二:令f(x)=1, 则取F(x)=x+1, 排除(B)、(C); 令f(x)=x, 则取F(x)=221x , 排除(D); 故应选(A). (9)设函数⎰+-+-++=yx yx dt t y x y x y x u )()()(),(ψϕϕ, 其中函数ϕ具有二阶导数,ψ 具有一阶导数,则必有(A) 2222yux u ∂∂-=∂∂. (B ) 2222y u x u ∂∂=∂∂.(C) 222yuy x u ∂∂=∂∂∂. (D)222x u y x u ∂∂=∂∂∂. [ B ]【分析】 先分别求出22x u ∂∂、22yu ∂∂、y x u∂∂∂2,再比较答案即可.【详解】 因为)()()()(y x y x y x y x xu--++-'++'=∂∂ψψϕϕ,)()()()(y x y x y x y x yu-+++-'-+'=∂∂ψψϕϕ, 于是 )()()()(22y x y x y x y x xu-'-+'+-''++''=∂∂ψψϕϕ, )()()()(2y x y x y x y x yx u-'++'+-''-+''=∂∂∂ψψϕϕ,)()()()(22y x y x y x y x y u-'-+'+-''++''=∂∂ψψϕϕ, 可见有2222yu x u ∂∂=∂∂,应选(B). (10)设有三元方程1ln =+-xz e y z xy ,根据隐函数存在定理,存在点(0,1,1)的一个邻域,在此邻域内该方程 (E) 只能确定一个具有连续偏导数的隐函数z=z(x,y).(F) 可确定两个具有连续偏导数的隐函数x=x(y,z)和z=z(x,y). (G) 可确定两个具有连续偏导数的隐函数y=y(x,z)和z=z(x,y).(H)可确定两个具有连续偏导数的隐函数x=x(y,z)和y=y(x,z). [ D ]【分析】 本题考查隐函数存在定理,只需令F(x,y,z)=1ln -+-xze y z xy , 分别求出三个偏导数y x z F F F ,,,再考虑在点(0,1,1)处哪个偏导数不为0,则可确定相应的隐函数.【详解】 令F(x,y,z)=1ln -+-xzey z xy , 则z e y F xz x +=', yz x F y -=',x e y F xzz +-='ln , 且 2)1,1,0(='x F ,1)1,1,0(-='y F ,0)1,1,0(='z F . 由此可确定相应的隐函数x=x(y,z)和y=y(x,z). 故应选(D).(11)设21,λλ是矩阵A 的两个不同的特征值,对应的特征向量分别为21,αα,则1α,)(21αα+A 线性无关的充分必要条件是(A)01≠λ. (B) 02≠λ. (C) 01=λ. (D) 02=λ. [ B ]【分析】 讨论一组抽象向量的线性无关性,可用定义或转化为求其秩即可. 【详解】 方法一:令 0)(21211=++αααA k k ,则022211211=++αλαλαk k k , 0)(2221121=++αλαλk k k . 由于21,αα线性无关,于是有 ⎩⎨⎧==+.0,022121λλk k k当02≠λ时,显然有0,021==k k ,此时1α,)(21αα+A 线性无关;反过来,若1α,)(21αα+A 线性无关,则必然有02≠λ(,否则,1α与)(21αα+A =11αλ线性相关),故应选(B).方法二: 由于 ⎥⎦⎤⎢⎣⎡=+=+21212211121101],[],[)](,[λλαααλαλααααA , 可见1α,)(21αα+A 线性无关的充要条件是.001221≠=λλλ故应选(B).(12)设A 为n (2≥n )阶可逆矩阵,交换A 的第1行与第2行得矩阵B, **,B A 分别为A,B 的伴随矩阵,则(B) 交换*A 的第1列与第2列得*B . (B) 交换*A 的第1行与第2行得*B .(C) 交换*A 的第1列与第2列得*B -. (D) 交换*A 的第1行与第2行得*B -. [C ]【分析】 本题考查初等变换的概念与初等矩阵的性质,只需利用初等变换与初等矩阵的关系以及伴随矩阵的性质进行分析即可.【详解】 由题设,存在初等矩阵12E (交换n 阶单位矩阵的第1行与第2行所得),使得 B A E =12,于是 12*11212*12***12*)(E A E E A E A A E B -=⋅===-,即*12*B E A -=,可见应选(C).(13)设二维随机变量(X,Y) 的概率分布为 X Y 0 1 0 0.4 a 1 b 0.1已知随机事件}0{=X 与}1{=+Y X 相互独立,则(B) a=0.2, b=0.3 (B) a=0.4, b=0.1(C) a=0.3, b=0.2 (D) a=0.1, b=0.4 [ B ]【分析】 首先所有概率求和为1,可得a+b=0.5, 其次,利用事件的独立性又可得一等式,由此可确定a,b 的取值.【详解】 由题设,知 a+b=0.5又事件}0{=X 与}1{=+Y X 相互独立,于是有}1{}0{}1,0{=+===+=Y X P X P Y X X P , 即 a=))(4.0(b a a ++, 由此可解得 a=0.4, b=0.1, 故应选(B).(14)设)2(,,,21≥n X X X n 为来自总体N(0,1)的简单随机样本,X 为样本均值,2S 为样本方差,则(B) )1,0(~N X n (B) ).(~22n nS χ(C) )1(~)1(--n t SXn (D) ).1,1(~)1(2221--∑=n F X X n n i i [ D ] 【分析】 利用正态总体抽样分布的性质和2χ分布、t 分布及F 分布的定义进行讨论即可. 【详解】 由正态总体抽样分布的性质知,)1,0(~10N X n nX =-,可排除(A); 又)1(~0-=-n t S X n nS X ,可排除(C); 而)1(~)1(1)1(2222--=-n S n S n χ,不能断定(B)是正确选项.因为 ∑=-ni in X X222221)1(~),1(~χχ,且∑=-ni i n X X 222221)1(~)1(~χχ与相互独立,于是).1,1(~)1(1122212221--=-∑∑==n F XX n n XX ni ini i故应选(D).三 、解答题(本题共9小题,满分94分.解答应写出文字说明、证明过程或演算步骤.) (15)(本题满分11分) 设}0,0,2),{(22≥≥≤+=y x y x y x D ,]1[22y x ++表示不超过221y x ++的最大整数. 计算二重积分⎰⎰++Ddxdy y x xy .]1[22 【分析】 首先应设法去掉取整函数符号,为此将积分区域分为两部分即可.【详解】 令 }0,0,10),{(221≥≥<+≤=y x y x y x D ,}0,0,21),{(222≥≥≤+≤=y x y x y x D .则⎰⎰++Ddxdy y xxy ]1[22=⎰⎰⎰⎰+122D D xydxdy xydxdydr r d dr r d ⎰⎰⎰⎰+=202131320cos sin 2cos sin ππθθθθθθ=.874381=+ (16)(本题满分12分) 求幂级数∑∞=--+-121))12(11()1(n n n x n n 的收敛区间与和函数f(x).【分析】 先求收敛半径,进而可确定收敛区间. 而和函数可利用逐项求导得到.【详解】 因为11)12()12()12)(1(1)12)(1(lim=+--⨯+++++∞→n n n n n n n n n ,所以当21x <时,原级数绝对收敛,当21x >时,原级数发散,因此原级数的收敛半径为1,收敛区间为(-1,1)记 121(1)(),(1,1)2(21)n nn S x x x n n-∞=-=∈--∑, 则 1211(1)(),(1,1)21n n n S x x x n -∞-=-'=∈--∑,122211()(1),(1,1)1n n n S x x x x ∞--=''=-=∈-+∑. 由于 (0)0,(0)S S '== 所以 201()()arctan ,1xxS x S t dt dt x t '''===+⎰⎰2001()()arctan arctan ln(1).2x x S x S t dt tdt x x x '===-+⎰⎰又21221(1),(1,1),1n nn x x x x ∞-=-=∈-+∑从而 22()2()1x f x S x x=++2222arctan ln(1),(1,1).1x x x x x x=-++∈-+ (17)(本题满分11分)如图,曲线C 的方程为y=f(x),点(3,2)是它的一个拐点,直线1l 与2l 分别是曲线C 在点(0,0)与(3,2)处的切线,其交点为(2,4). 设函数f(x)具有三阶连续导数,计算定积分⎰'''+32.)()(dx x f x x【分析】 题设图形相当于已知f(x)在x=0的函数值与导数值,在x=3处的函数值及一阶、二阶导数值. 【详解】 由题设图形知,f(0)=0, 2)0(='f ; f(3)=2, .0)3(,2)3(=''-='f f 由分部积分,知⎰⎰⎰+''-''+=''+='''+330302232)12)(()()()()()()(dx x x f x f x x x f d x x dx x f x x=dx x f x f x x f d x ⎰⎰'+'+-='+-3330)(2)()12()()12(=.20)]0()3([216=-+f f(18)(本题满分12分)已知函数f(x)在[0,1]上连续,在(0,1)内可导,且f(0)=0,f(1)=1. 证明: (I )存在),1,0(∈ξ 使得ξξ-=1)(f ;(II )存在两个不同的点)1,0(,∈ζη,使得.1)()(=''ζηf f【分析】 第一部分显然用闭区间上连续函数的介值定理;第二部分为双介值问题,可考虑用拉格朗日中值定理,但应注意利用第一部分已得结论.【详解】 (I ) 令x x f x F +-=1)()(,则F(x)在[0,1]上连续,且F(0)=-1<0, F(1)=1>0,于是由介值定理知,存在),1,0(∈ξ 使得0)(=ξF ,即ξξ-=1)(f .(II ) 在],0[ξ和]1,[ξ上对f(x)分别应用拉格朗日中值定理,知存在两个不同的点)1,(),,0(ξζξη∈∈,使得0)0()()(--='ξξηf f f ,ξξζ--='1)()1()(f f f于是 .1111)(1)()()(=-⋅-=--⋅=''ξξξξξξξξζηf f f f (19)(本题满分12分)设函数)(y ϕ具有连续导数,在围绕原点的任意分段光滑简单闭曲线L 上,曲线积分⎰++Ly x xydydx y 4222)(ϕ的值恒为同一常数.(I )证明:对右半平面x>0内的任意分段光滑简单闭曲线C ,有022)(42=++⎰Cyx xydydx y ϕ;(II )求函数)(y ϕ的表达式.【分析】 证明(I )的关键是如何将封闭曲线C 与围绕原点的任意分段光滑简单闭曲线相联系,这可利用曲线积分的可加性将C 进行分解讨论;而(II )中求)(y ϕ的表达式,显然应用积分与路径无关即可.【详解】 (I )如图,将C 分解为:21l l C +=,另作一条曲线l=++⎰Cy x x y d ydx y 4222)(ϕ-++⎰+314222)(l l y x x y d ydx y ϕ022)(3242=++⎰+l l y x x y d ydx y ϕ.(II ) 设2424()2,22y xyP Q x yx yϕ==++,,P Q 在单连通区域0x >内具有一阶连续偏导数,由(Ⅰ)知,曲线积分24()22Ly dx xydyx y ϕ++⎰在该区域内与路径无关,故当0x >时,总有Q Px y∂∂=∂∂. 24252422422(2)4242,(2)(2)Q y x y x xy x y y x x y x y ∂+--+==∂++ ① 243243242242()(2)4()2()()4().(2)(2)P y x y y y x y y y y y y x y x y ϕϕϕϕϕ'''∂+-+-==∂++ ② 比较①、②两式的右端,得435()2,()4()2. y y y y y y y ϕϕϕ'=-⎧⎨'-=⎩ 由③得2()y y c ϕ=-+,将()y ϕ代入④得 535242,y cy y -= 所以0c =,从而2().y y ϕ=-(20)(本题满分9分)已知二次型21232221321)1(22)1()1(),,(x x a x x a x a x x x f +++-+-=的秩为2.(I ) 求a 的值;(II ) 求正交变换Qy x =,把),,(321x x x f 化成标准形; (III ) 求方程),,(321x x x f =0的解.【分析】 (I )根据二次型的秩为2,可知对应矩阵的行列式为0,从而可求a 的值;(II )是常规问题,先求出特征值、特征向量,再正交化、单位化即可找到所需正交变换; (III )利用第二步的结果,通过标准形求解即可.③ ④【详解】 (I ) 二次型对应矩阵为⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-++-=200011011a a a a A , 由二次型的秩为2,知 020011011=-++-=aa a a A ,得a=0.(II ) 这里⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=200011011A , 可求出其特征值为0,2321===λλλ. 解 0)2(=-x A E ,得特征向量为:⎪⎪⎪⎭⎫⎝⎛=⎪⎪⎪⎭⎫ ⎝⎛=100,01121αα,解 0)0(=-x A E ,得特征向量为:.0113⎪⎪⎪⎭⎫ ⎝⎛-=α由于21,αα已经正交,直接将21,αα,3α单位化,得:⎪⎪⎪⎭⎫ ⎝⎛-=⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎭⎫ ⎝⎛=01121,100,01121321ηηη令[]321ααα=Q ,即为所求的正交变换矩阵,由x=Qy ,可化原二次型为标准形:),,(321x x x f =.222221y y +(III ) 由),,(321x x x f ==+222122y y 0,得k y y y ===321,0,0(k 为任意常数).从而所求解为:x=Qy=[]⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-==⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡0003321c c k k ηηηη,其中c 为任意常数. (21)(本题满分9分)已知3阶矩阵A 的第一行是c b a c b a ,,),,,(不全为零,矩阵⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=k B 63642321(k 为常数),且AB=O, 求线性方程组Ax=0的通解.【分析】 AB=O, 相当于告之B 的每一列均为Ax=0的解,关键问题是Ax=0的基础解系所含解向量的个数为多少,而这又转化为确定系数矩阵A 的秩.【详解】 由AB=O 知,B 的每一列均为Ax=0的解,且.3)()(≤+B r A r(1)若k 9≠, 则r(B)=2, 于是r(A)1≤, 显然r(A)1≥, 故r(A)=1. 可见此时Ax=0的基础解系所含解向量的个数为3-r(A)=2, 矩阵B 的第一、第三列线性无关,可作为其基础解系,故Ax=0 的通解为:2121,,63321k k k k k x ⎪⎪⎪⎭⎫ ⎝⎛+⎪⎪⎪⎭⎫ ⎝⎛=为任意常数.(2) 若k=9,则r(B)=1, 从而.2)(1≤≤A r1) 若r(A)=2, 则Ax=0的通解为:11,321k k x ⎪⎪⎪⎭⎫⎝⎛=为任意常数.2) 若r(A)=1,则Ax=0 的同解方程组为:0321=++cx bx ax ,不妨设0≠a ,则其通解为2121,,1001k k a c k a b k x ⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-+⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-=为任意常数.(22)(本题满分9分)设二维随机变量(X,Y)的概率密度为 .,20,10,0,1),(其他x y x y x f <<<<⎩⎨⎧=求:(I ) (X,Y)的边缘概率密度)(),(y f x f Y X ; (II )Y X Z -=2的概率密度).(z f Z【分析】 求边缘概率密度直接用公式即可;而求二维随机变量函数的概率密度,一般用分布函数法,即先用定义求出分布函数,再求导得到相应的概率密度.【详解】 (I ) 关于X 的边缘概率密度)(x f X =⎰+∞∞-dy y x f ),(=.,10,0,20其他<<⎪⎩⎪⎨⎧⎰x dy x=.,10,0,2其他<<⎩⎨⎧x x关于Y 的边缘概率密度)(y f Y =⎰+∞∞-dx y x f ),(=.,20,0,12其他<<⎪⎩⎪⎨⎧⎰y dx y=.,20,0,21其他<<⎪⎩⎪⎨⎧-y y (II ) 令}2{}{)(z Y X P z Z P z F Z ≤-=≤=, 1) 当0<z 时,0}2{)(=≤-=z Y X P z F Z ;2) 当20<≤z 时,}2{)(z Y X P z F Z ≤-= =241z z -; 3) 当2≥z 时,.1}2{)(=≤-=z Y X P z F Z即分布函数为: .2,20,0,1,41,0)(2≥<≤<⎪⎩⎪⎨⎧-=z z z z z z F Z故所求的概率密度为:.,20,0,211)(其他<<⎪⎩⎪⎨⎧-=z z z f Z (23)(本题满分9分)设)2(,,,21>n X X X n 为来自总体N(0,1)的简单随机样本,为样本均值,记.,,2,1,n i X X Y i i =-=求:(I ) i Y 的方差n i DY i ,,2,1, =; (II )1Y 与n Y 的协方差).,(1n Y Y Cov【分析】 先将i Y 表示为相互独立的随机变量求和,再用方差的性质进行计算即可;求1Y 与n Y 的协方差),(1n Y Y Cov ,本质上还是数学期望的计算,同样应注意利用数学期望的运算性质.【详解】 由题设,知)2(,,,21>n X X X n 相互独立,且),,2,1(1,0n i DX EX i i ===,.0=X E(I )∑≠--=-=ni j j i i i X n X n D X X D DY ]1)11[()(=∑≠+-nij ji DXnDX n 221)11(=.1)1(1)1(222n n n nn n -=-⋅+- (II ) )])([(),(111n n n EY Y EY Y E Y Y Cov --= =)])([()(11X X X X E Y Y E n n --= =)(211X X X X X X X E n n +-- =211)(2)(X E X X E X X E n +-=22121)(][20X E X D X X X E n nj j +++-∑==.112nn n -=+-。
2005年考研数学二试题及答案
![2005年考研数学二试题及答案](https://img.taocdn.com/s3/m/c2f69479d4d8d15abf234ee8.png)
2005年数学二试题分析、详解和评注一、填空题(本题共6小题,每小题4分,满分24分. 把答案填在题中横线上)(1)设xx y )sin 1(+=,则π=x dy= 。
(2) 曲线xx y 23)1(+=的斜渐近线方程为.(3)=--⎰1221)2(xxxdx(4) 微分方程x x y y x ln 2=+'满足91)1(-=y 的解为(5)当0→x 时,2)(kx x =α与x x x x cos arcsin 1)(-+=β是等价无穷小,则k= .(6)设321,,ααα均为3维列向量,记矩阵),,(321ααα=A ,)93,42,(321321321ααααααααα++++++=B , 如果1=A ,那么=B .二、选择题(本题共8小题,每小题4分,满分32分。
每小题给出的四个选项中,只有一项符合题目要求,把所选项前的字母填在题后的括号内)(7)设函数n nn xx f 31lim )(+=∞→,则f(x)在),(+∞-∞内(A ) 处处可导. (B) 恰有一个不可导点。
(C) 恰有两个不可导点. (D ) 至少有三个不可导点。
[ ] (8)设F(x)是连续函数f (x )的一个原函数,""N M ⇔表示“M 的充分必要条件是N",则必有(A) F (x)是偶函数⇔f(x)是奇函数。
(B) F(x)是奇函数⇔f (x)是偶函数.(C) F (x)是周期函数⇔f (x )是周期函数. (D) F (x )是单调函数⇔f(x )是单调函数。
[ ](9)设函数y=y(x )由参数方程⎩⎨⎧+=+=)1ln(,22t y t t x 确定,则曲线y=y(x)在x=3处的法线与x轴交点的横坐标是(A ) 32ln 81+. (B ) 32ln 81+-. (C) 32ln 8+-。
(D) 32ln 8+. [ ](10)设区域}0,0,4),{(22≥≥≤+=y x y x y x D ,f(x)为D 上的正值连续函数,a ,b为常数,则=++⎰⎰σd y f x f y f b x f a D)()()()((A ) πab . (B)π2ab 。
考研数学一真题解析 2005
![考研数学一真题解析 2005](https://img.taocdn.com/s3/m/9b09d86369eae009581bec2f.png)
,即
方法二:排除法
以2阶方阵为例,设
,则
由此可见,交换的第1列与第2列得,排除ABD,选C
(13)设二维随机变量 的概率分布为
X
Y
0
1
0
0.4
1
已知随机事件
与
0.1 相互独立,则
(A)
(B)
(C)
(D)
【考点分析】:二维离散型随机变量的概率分布,事件独立性定义
【求解方法】:由二维随机变量概率和为1和事件
是偶函
数
(C) 是周期函数
是周期函数 (D) 是单调函数
是单
调函数
【考点分析】:函数的奇偶性、周期性、单调性与其原函数奇偶 性、周期性、单调性的关系 【求解过程】:
方法一:排除法 令,显然是偶函数,但不是奇函数,排除B 令,显然是周期函数,但不是周期函数,排除C 令,显然是单调函数,但不是单调函数,排除D
其中为常数,所以有,即证。 (2)由(1),有,又
所以在右半平面上有
(5.19)
(5.20)
(5.21)
解得。 (20) 已知二次型的秩为. (1)求的值 (2)求正交变换,把化成标准型 (3)求方程的解 【考点】二次型与矩阵 【思路】先列出对应该二次型的矩阵,根据秩为2的条件即可求得第
一问,第二问只需将系数矩阵对角化,第三问可以在第二问的基础上先 求出标准型的解再用变换得到 的解
【考点】曲线积分
【思路】对第一问,为了应用题目给的条件,考虑过上的任意两点 作过原点的分段光滑曲线曲线,且将分成两个部分,即可用所给的条件 证明。第二问只需应用第一问的条件,令解关于的微分方程即可。
【题解】(1)如上一部分所述,作如图所示的分段光滑曲线,则 有
2005年考研数学一真题(含解析)
![2005年考研数学一真题(含解析)](https://img.taocdn.com/s3/m/7da521bff121dd36a32d8287.png)
2005年考研数学一真题一、填空题(本题共6小题,每小题4分,满分24分. 把答案填在题中横线上)(1)曲线122+=x x y 的斜渐近线方程为 _____________.(2)微分方程x x y y x ln 2=+'满足91)1(-=y 的解为. ____________. (3)设函数181261),,(222z y x z y x u +++=,单位向量}1,1,1{31=n ,则)3,2,1(n u ∂∂=.________.(4)设Ω是由锥面22y x z +=与半球面222y x R z --=围成的空间区域,∑是Ω的整个边界的外侧,则⎰⎰∑=++zdxdy ydzdx xdydz ____________.(5)设321,,ααα均为3维列向量,记矩阵),,(321ααα=A ,)93,42,(321321321ααααααααα++++++=B , 如果1=A ,那么=B ..(6)从数1,2,3,4中任取一个数,记为X, 再从X ,,2,1 中任取一个数,记为Y, 则}2{=Y P =____________.二、选择题(本题共8小题,每小题4分,满分32分. 每小题给出的四个选项中,只有一项符合题目要求,把所选项前的字母填在题后的括号内)(7)设函数n nn xx f 31lim )(+=∞→,则f(x)在),(+∞-∞内(A) 处处可导. (B) 恰有一个不可导点.(C) 恰有两个不可导点. (D) 至少有三个不可导点. [ ](8)设F(x)是连续函数f(x)的一个原函数,""N M ⇔表示“M 的充分必要条件是N ”,则必有 (A) F(x)是偶函数⇔f(x)是奇函数. (B ) F(x)是奇函数⇔f(x)是偶函数.(C) F(x)是周期函数⇔f(x)是周期函数.(D) F(x)是单调函数⇔f(x)是单调函数. [ ](9)设函数⎰+-+-++=yx yx dt t y x y x y x u )()()(),(ψϕϕ, 其中函数ϕ具有二阶导数,ψ 具有一阶导数,则必有(A) 2222yux u ∂∂-=∂∂. (B ) 2222y u x u ∂∂=∂∂.(C) 222yuy x u ∂∂=∂∂∂. (D)222x u y x u ∂∂=∂∂∂. [ ](10)设有三元方程1ln =+-xz e y z xy ,根据隐函数存在定理,存在点(0,1,1)的一个邻域,在此邻域内该方程(A) 只能确定一个具有连续偏导数的隐函数z=z(x,y).(B) 可确定两个具有连续偏导数的隐函数x=x(y,z)和z=z(x,y). (C) 可确定两个具有连续偏导数的隐函数y=y(x,z)和z=z(x,y).(D)可确定两个具有连续偏导数的隐函数x=x(y,z)和y=y(x,z). [ ](11)设21,λλ是矩阵A 的两个不同的特征值,对应的特征向量分别为21,αα,则1α,)(21αα+A 线性无关的充分必要条件是(A)01≠λ. (B) 02≠λ. (C) 01=λ. (D) 02=λ. [ ](12)设A 为n (2≥n )阶可逆矩阵,交换A 的第1行与第2行得矩阵B, **,B A 分别为A,B 的伴随矩阵,则(A) 交换*A 的第1列与第2列得*B . (B) 交换*A 的第1行与第2行得*B . (C) 交换*A 的第1列与第2列得*B -. (D) 交换*A 的第1行与第2行得*B -.[ ](13)设二维随机变量(X,Y) 的概率分布为 X Y 0 1 0 0.4 a 1 b 0.1已知随机事件}0{=X 与}1{=+Y X 相互独立,则(A) a=0.2, b=0.3 (B) a=0.4, b=0.1(C) a=0.3, b=0.2 (D) a=0.1, b=0.4 [ ](14)设)2(,,,21≥n X X X n 为来自总体N(0,1)的简单随机样本,X 为样本均值,2S 为样本方差,则(A) )1,0(~N X n (B) ).(~22n nS χ(C) )1(~)1(--n t SXn (D) ).1,1(~)1(2221--∑=n F X X n n i i [ ] 三 、解答题(本题共9小题,满分94分.解答应写出文字说明、证明过程或演算步骤.) (15)(本题满分11分) 设}0,0,2),{(22≥≥≤+=y x y x y x D ,]1[22y x ++表示不超过221y x ++的最大整数. 计算二重积分⎰⎰++Ddxdy y x xy .]1[22 (16)(本题满分12分)求幂级数∑∞=--+-121))12(11()1(n n n x n n 的收敛区间与和函数f(x).(17)(本题满分11分)如图,曲线C 的方程为y=f(x),点(3,2)是它的一个拐点,直线1l 与2l 分别是曲线C 在点(0,0)与(3,2)处的切线,其交点为(2,4). 设函数f(x)具有三阶连续导数,计算定积分⎰'''+32.)()(dx x f x x(18)(本题满分12分)已知函数f(x)在[0,1]上连续,在(0,1)内可导,且f(0)=0,f(1)=1. 证明:(I )存在),1,0(∈ξ 使得ξξ-=1)(f ;(II )存在两个不同的点)1,0(,∈ζη,使得.1)()(=''ζηf f (19)(本题满分12分)设函数)(y ϕ具有连续导数,在围绕原点的任意分段光滑简单闭曲线L 上,曲线积分⎰++Ly x xydydx y 4222)(ϕ的值恒为同一常数.(I )证明:对右半平面x>0内的任意分段光滑简单闭曲线C ,有022)(42=++⎰Cyx xydydx y ϕ;(II )求函数)(y ϕ的表达式. (20)(本题满分9分)已知二次型21232221321)1(22)1()1(),,(x x a x x a x a x x x f +++-+-=的秩为2.(I ) 求a 的值;(II ) 求正交变换Qy x =,把),,(321x x x f 化成标准形; (III ) 求方程),,(321x x x f =0的解. (21)(本题满分9分)已知3阶矩阵A 的第一行是c b a c b a ,,),,,(不全为零,矩阵⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=k B 63642321(k 为常数),且AB=O, 求线性方程组Ax=0的通解..(22)(本题满分9分)设二维随机变量(X,Y)的概率密度为.,20,10,0,1),(其他x y x y x f <<<<⎩⎨⎧=求:(I ) (X,Y)的边缘概率密度)(),(y f x f Y X ;(II )Y X Z -=2的概率密度).(z f Z (23)(本题满分9分)设)2(,,,21>n X X X n 为来自总体N(0,1)的简单随机样本,X 为样本均值,记.,,2,1,n i X X Y i i =-=求:(I ) i Y 的方差n i DY i ,,2,1, =; (II )1Y 与n Y 的协方差).,(1n Y Y Cov2005年考研数学一真题解析一、填空题(本题共6小题,每小题4分,满分24分. 把答案填在题中横线上)(1)曲线122+=x x y 的斜渐近线方程为 .4121-=x y【分析】 本题属基本题型,直接用斜渐近线方程公式进行计算即可.【详解】 因为a=212lim )(lim22=+=∞→∞→x x x x x f x x , []41)12(2lim)(lim -=+-=-=∞→∞→x x ax x f b x x ,于是所求斜渐近线方程为.4121-=x y (2)微分方程x x y y x ln 2=+'满足91)1(-=y 的解为.91ln 31x x x y -=. 【分析】直接套用一阶线性微分方程)()(x Q y x P y =+'的通解公式:⎰+⎰⎰=-])([)()(C dx e x Q e y dxx P dx x P ,再由初始条件确定任意常数即可. 【详解】 原方程等价为x y xy ln 2=+', 于是通解为 ⎰⎰+⋅=+⎰⋅⎰=-]ln [1]ln [2222C xdx x xC dx ex ey dxx dxx =2191ln 31x C x x x +-, 由91)1(-=y 得C=0,故所求解为.91ln 31x x x y -=(3)设函数181261),,(222z y x z y x u +++=,单位向量}1,1,1{31=n ,则)3,2,1(n u ∂∂=33. 【分析】 函数u(x,y,z)沿单位向量γβαcos ,cos ,{cos =n}的方向导数为:γβαcos cos cos zu y u x u n u ∂∂+∂∂+∂∂=∂∂ 因此,本题直接用上述公式即可.【详解】 因为3x x u =∂∂,6y y u =∂∂,9zz u =∂∂,于是所求方向导数为)3,2,1(nu ∂∂=.33313131313131=⋅+⋅+⋅ (4)设Ω是由锥面22y x z +=与半球面222y x R z --=围成的空间区域,∑是Ω的整个边界的外侧,则⎰⎰∑=++zdxdy ydzdx xdydz 3)221(2R -π. 【分析】本题∑是封闭曲面且取外侧,自然想到用高斯公式转化为三重积分,再用球面(或柱面)坐标进行计算即可.【详解】⎰⎰∑=++zdxdy ydzdx xdydz ⎰⎰⎰Ωdxdydz 3=.)221(2sin 3320402R d d d R⎰⎰⎰-=πππθϕϕρρ (5)设321,,ααα均为3维列向量,记矩阵),,(321ααα=A ,)93,42,(321321321ααααααααα++++++=B , 如果1=A ,那么=B 2 .【分析】 将B 写成用A 右乘另一矩阵的形式,再用方阵相乘的行列式性质进行计算即可. 【详解】 由题设,有)93,42,(321321321ααααααααα++++++=B=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡941321111),,(321ααα, 于是有 .221941321111=⨯=⋅=A B(6)从数1,2,3,4中任取一个数,记为X, 再从X ,,2,1 中任取一个数,记为Y, 则}2{=Y P =4813 . 【分析】 本题涉及到两次随机试验,想到用全概率公式, 且第一次试验的各种两两互不相容的结果即为完备事件组或样本空间的划分.【详解】 }2{=Y P =}12{}1{===X Y P X P +}22{}2{===X Y P X P +}32{}3{===X Y P X P +}42{}4{===X Y P X P=.4813)4131210(41=+++⨯ 二、选择题(本题共8小题,每小题4分,满分32分. 每小题给出的四个选项中,只有一项符合题目要求,把所选项前的字母填在题后的括号内)(7)设函数n nn xx f 31lim )(+=∞→,则f(x)在),(+∞-∞内(A) 处处可导. (B) 恰有一个不可导点.(C) 恰有两个不可导点. (D) 至少有三个不可导点. [ C ] 【分析】 先求出f(x)的表达式,再讨论其可导情形. 【详解】 当1<x 时,11lim )(3=+=∞→n nn xx f ;当1=x 时,111lim )(=+=∞→n n x f ;当1>x 时,.)11(lim )(3133x xx x f nnn =+=∞→即.1,11,1,,1,)(33>≤≤--<⎪⎩⎪⎨⎧-=x x x x x x f 可见f(x)仅在x=1±时不可导,故应选(C).(8)设F(x)是连续函数f(x)的一个原函数,""N M ⇔表示“M 的充分必要条件是N ”,则必有(B) F(x)是偶函数⇔f(x)是奇函数. (B ) F(x)是奇函数⇔f(x)是偶函数.(C) F(x)是周期函数⇔f(x)是周期函数.(D) F(x)是单调函数⇔f(x)是单调函数. [ A ] 【分析】 本题可直接推证,但最简便的方法还是通过反例用排除法找到答案.【详解】 方法一:任一原函数可表示为⎰+=xC dt t f x F 0)()(,且).()(x f x F ='当F(x)为偶函数时,有)()(x F x F =-,于是)()1()(x F x F '=-⋅-',即 )()(x f x f =--,也即)()(x f x f -=-,可见f(x)为奇函数;反过来,若f(x)为奇函数,则⎰xdt t f 0)(为偶函数,从而⎰+=xC dt t f x F 0)()(为偶函数,可见(A)为正确选项.方法二:令f(x)=1, 则取F(x)=x+1, 排除(B)、(C); 令f(x)=x, 则取F(x)=221x , 排除(D); 故应选(A). (9)设函数⎰+-+-++=yx yx dt t y x y x y x u )()()(),(ψϕϕ, 其中函数ϕ具有二阶导数,ψ 具有一阶导数,则必有(A) 2222yux u ∂∂-=∂∂. (B ) 2222y u x u ∂∂=∂∂.(C) 222yuy x u ∂∂=∂∂∂. (D)222x u y x u ∂∂=∂∂∂. [ B ]【分析】 先分别求出22x u ∂∂、22yu ∂∂、y x u∂∂∂2,再比较答案即可.【详解】 因为)()()()(y x y x y x y x xu--++-'++'=∂∂ψψϕϕ,)()()()(y x y x y x y x yu-+++-'-+'=∂∂ψψϕϕ, 于是 )()()()(22y x y x y x y x xu-'-+'+-''++''=∂∂ψψϕϕ, )()()()(2y x y x y x y x yx u-'++'+-''-+''=∂∂∂ψψϕϕ,)()()()(22y x y x y x y x y u-'-+'+-''++''=∂∂ψψϕϕ, 可见有2222yu x u ∂∂=∂∂,应选(B). (10)设有三元方程1ln =+-xz e y z xy ,根据隐函数存在定理,存在点(0,1,1)的一个邻域,在此邻域内该方程 (E) 只能确定一个具有连续偏导数的隐函数z=z(x,y).(F) 可确定两个具有连续偏导数的隐函数x=x(y,z)和z=z(x,y). (G) 可确定两个具有连续偏导数的隐函数y=y(x,z)和z=z(x,y).(H)可确定两个具有连续偏导数的隐函数x=x(y,z)和y=y(x,z). [ D ]【分析】 本题考查隐函数存在定理,只需令F(x,y,z)=1ln -+-xze y z xy , 分别求出三个偏导数y x z F F F ,,,再考虑在点(0,1,1)处哪个偏导数不为0,则可确定相应的隐函数.【详解】 令F(x,y,z)=1ln -+-xzey z xy , 则z e y F xz x +=', yz x F y -=',x e y F xzz +-='ln , 且 2)1,1,0(='x F ,1)1,1,0(-='y F ,0)1,1,0(='z F . 由此可确定相应的隐函数x=x(y,z)和y=y(x,z). 故应选(D).(11)设21,λλ是矩阵A 的两个不同的特征值,对应的特征向量分别为21,αα,则1α,)(21αα+A 线性无关的充分必要条件是(A)01≠λ. (B) 02≠λ. (C) 01=λ. (D) 02=λ. [ B ]【分析】 讨论一组抽象向量的线性无关性,可用定义或转化为求其秩即可. 【详解】 方法一:令 0)(21211=++αααA k k ,则022211211=++αλαλαk k k , 0)(2221121=++αλαλk k k . 由于21,αα线性无关,于是有 ⎩⎨⎧==+.0,022121λλk k k当02≠λ时,显然有0,021==k k ,此时1α,)(21αα+A 线性无关;反过来,若1α,)(21αα+A 线性无关,则必然有02≠λ(,否则,1α与)(21αα+A =11αλ线性相关),故应选(B).方法二: 由于 ⎥⎦⎤⎢⎣⎡=+=+21212211121101],[],[)](,[λλαααλαλααααA , 可见1α,)(21αα+A 线性无关的充要条件是.001221≠=λλλ故应选(B).(12)设A 为n (2≥n )阶可逆矩阵,交换A 的第1行与第2行得矩阵B, **,B A 分别为A,B 的伴随矩阵,则(B) 交换*A 的第1列与第2列得*B . (B) 交换*A 的第1行与第2行得*B .(C) 交换*A 的第1列与第2列得*B -. (D) 交换*A 的第1行与第2行得*B -. [C ]【分析】 本题考查初等变换的概念与初等矩阵的性质,只需利用初等变换与初等矩阵的关系以及伴随矩阵的性质进行分析即可.【详解】 由题设,存在初等矩阵12E (交换n 阶单位矩阵的第1行与第2行所得),使得 B A E =12,于是 12*11212*12***12*)(E A E E A E A A E B -=⋅===-,即*12*B E A -=,可见应选(C).(13)设二维随机变量(X,Y) 的概率分布为 X Y 0 1 0 0.4 a 1 b 0.1已知随机事件}0{=X 与}1{=+Y X 相互独立,则(B) a=0.2, b=0.3 (B) a=0.4, b=0.1(C) a=0.3, b=0.2 (D) a=0.1, b=0.4 [ B ]【分析】 首先所有概率求和为1,可得a+b=0.5, 其次,利用事件的独立性又可得一等式,由此可确定a,b 的取值.【详解】 由题设,知 a+b=0.5又事件}0{=X 与}1{=+Y X 相互独立,于是有}1{}0{}1,0{=+===+=Y X P X P Y X X P , 即 a=))(4.0(b a a ++, 由此可解得 a=0.4, b=0.1, 故应选(B).(14)设)2(,,,21≥n X X X n 为来自总体N(0,1)的简单随机样本,X 为样本均值,2S 为样本方差,则(B) )1,0(~N X n (B) ).(~22n nS χ(C) )1(~)1(--n t SXn (D) ).1,1(~)1(2221--∑=n F X X n n i i [ D ] 【分析】 利用正态总体抽样分布的性质和2χ分布、t 分布及F 分布的定义进行讨论即可. 【详解】 由正态总体抽样分布的性质知,)1,0(~10N X n nX =-,可排除(A); 又)1(~0-=-n t S X n nS X ,可排除(C); 而)1(~)1(1)1(2222--=-n S n S n χ,不能断定(B)是正确选项.因为 ∑=-ni in X X222221)1(~),1(~χχ,且∑=-ni i n X X 222221)1(~)1(~χχ与相互独立,于是).1,1(~)1(1122212221--=-∑∑==n F XX n n XX ni ini i故应选(D).三 、解答题(本题共9小题,满分94分.解答应写出文字说明、证明过程或演算步骤.) (15)(本题满分11分) 设}0,0,2),{(22≥≥≤+=y x y x y x D ,]1[22y x ++表示不超过221y x ++的最大整数. 计算二重积分⎰⎰++Ddxdy y x xy .]1[22 【分析】 首先应设法去掉取整函数符号,为此将积分区域分为两部分即可.【详解】 令 }0,0,10),{(221≥≥<+≤=y x y x y x D ,}0,0,21),{(222≥≥≤+≤=y x y x y x D .则⎰⎰++Ddxdy y xxy ]1[22=⎰⎰⎰⎰+122D D xydxdy xydxdydr r d dr r d ⎰⎰⎰⎰+=202131320cos sin 2cos sin ππθθθθθθ=.874381=+ (16)(本题满分12分) 求幂级数∑∞=--+-121))12(11()1(n n n x n n 的收敛区间与和函数f(x).【分析】 先求收敛半径,进而可确定收敛区间. 而和函数可利用逐项求导得到.【详解】 因为11)12()12()12)(1(1)12)(1(lim=+--⨯+++++∞→n n n n n n n n n ,所以当21x <时,原级数绝对收敛,当21x >时,原级数发散,因此原级数的收敛半径为1,收敛区间为(-1,1)记 121(1)(),(1,1)2(21)n nn S x x x n n-∞=-=∈--∑, 则 1211(1)(),(1,1)21n n n S x x x n -∞-=-'=∈--∑,122211()(1),(1,1)1n n n S x x x x ∞--=''=-=∈-+∑. 由于 (0)0,(0)S S '== 所以 201()()arctan ,1xxS x S t dt dt x t '''===+⎰⎰2001()()arctan arctan ln(1).2x x S x S t dt tdt x x x '===-+⎰⎰又21221(1),(1,1),1n nn x x x x ∞-=-=∈-+∑从而 22()2()1x f x S x x=++2222arctan ln(1),(1,1).1x x x x x x=-++∈-+ (17)(本题满分11分)如图,曲线C 的方程为y=f(x),点(3,2)是它的一个拐点,直线1l 与2l 分别是曲线C 在点(0,0)与(3,2)处的切线,其交点为(2,4). 设函数f(x)具有三阶连续导数,计算定积分⎰'''+32.)()(dx x f x x【分析】 题设图形相当于已知f(x)在x=0的函数值与导数值,在x=3处的函数值及一阶、二阶导数值. 【详解】 由题设图形知,f(0)=0, 2)0(='f ; f(3)=2, .0)3(,2)3(=''-='f f 由分部积分,知⎰⎰⎰+''-''+=''+='''+330302232)12)(()()()()()()(dx x x f x f x x x f d x x dx x f x x=dx x f x f x x f d x ⎰⎰'+'+-='+-3330)(2)()12()()12(=.20)]0()3([216=-+f f(18)(本题满分12分)已知函数f(x)在[0,1]上连续,在(0,1)内可导,且f(0)=0,f(1)=1. 证明: (I )存在),1,0(∈ξ 使得ξξ-=1)(f ;(II )存在两个不同的点)1,0(,∈ζη,使得.1)()(=''ζηf f【分析】 第一部分显然用闭区间上连续函数的介值定理;第二部分为双介值问题,可考虑用拉格朗日中值定理,但应注意利用第一部分已得结论.【详解】 (I ) 令x x f x F +-=1)()(,则F(x)在[0,1]上连续,且F(0)=-1<0, F(1)=1>0,于是由介值定理知,存在),1,0(∈ξ 使得0)(=ξF ,即ξξ-=1)(f .(II ) 在],0[ξ和]1,[ξ上对f(x)分别应用拉格朗日中值定理,知存在两个不同的点)1,(),,0(ξζξη∈∈,使得0)0()()(--='ξξηf f f ,ξξζ--='1)()1()(f f f于是 .1111)(1)()()(=-⋅-=--⋅=''ξξξξξξξξζηf f f f (19)(本题满分12分)设函数)(y ϕ具有连续导数,在围绕原点的任意分段光滑简单闭曲线L 上,曲线积分⎰++Ly x xydydx y 4222)(ϕ的值恒为同一常数.(I )证明:对右半平面x>0内的任意分段光滑简单闭曲线C ,有022)(42=++⎰Cyx xydydx y ϕ;(II )求函数)(y ϕ的表达式.【分析】 证明(I )的关键是如何将封闭曲线C 与围绕原点的任意分段光滑简单闭曲线相联系,这可利用曲线积分的可加性将C 进行分解讨论;而(II )中求)(y ϕ的表达式,显然应用积分与路径无关即可.【详解】 (I )如图,将C 分解为:21l l C +=,另作一条曲线l=++⎰Cy x x y d ydx y 4222)(ϕ-++⎰+314222)(l l y x x y d ydx y ϕ022)(3242=++⎰+l l y x x y d ydx y ϕ.(II ) 设2424()2,22y xyP Q x yx yϕ==++,,P Q 在单连通区域0x >内具有一阶连续偏导数,由(Ⅰ)知,曲线积分24()22Ly dx xydyx y ϕ++⎰在该区域内与路径无关,故当0x >时,总有Q Px y∂∂=∂∂. 24252422422(2)4242,(2)(2)Q y x y x xy x y y x x y x y ∂+--+==∂++ ① 243243242242()(2)4()2()()4().(2)(2)P y x y y y x y y y y y y x y x y ϕϕϕϕϕ'''∂+-+-==∂++ ② 比较①、②两式的右端,得435()2,()4()2. y y y y y y y ϕϕϕ'=-⎧⎨'-=⎩ 由③得2()y y c ϕ=-+,将()y ϕ代入④得 535242,y cy y -= 所以0c =,从而2().y y ϕ=-(20)(本题满分9分)已知二次型21232221321)1(22)1()1(),,(x x a x x a x a x x x f +++-+-=的秩为2.(I ) 求a 的值;(II ) 求正交变换Qy x =,把),,(321x x x f 化成标准形; (III ) 求方程),,(321x x x f =0的解.【分析】 (I )根据二次型的秩为2,可知对应矩阵的行列式为0,从而可求a 的值;(II )是常规问题,先求出特征值、特征向量,再正交化、单位化即可找到所需正交变换; (III )利用第二步的结果,通过标准形求解即可.③ ④【详解】 (I ) 二次型对应矩阵为⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-++-=200011011a a a a A , 由二次型的秩为2,知 020011011=-++-=aa a a A ,得a=0.(II ) 这里⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=200011011A , 可求出其特征值为0,2321===λλλ. 解 0)2(=-x A E ,得特征向量为:⎪⎪⎪⎭⎫⎝⎛=⎪⎪⎪⎭⎫ ⎝⎛=100,01121αα,解 0)0(=-x A E ,得特征向量为:.0113⎪⎪⎪⎭⎫ ⎝⎛-=α由于21,αα已经正交,直接将21,αα,3α单位化,得:⎪⎪⎪⎭⎫ ⎝⎛-=⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎭⎫ ⎝⎛=01121,100,01121321ηηη令[]321ααα=Q ,即为所求的正交变换矩阵,由x=Qy ,可化原二次型为标准形:),,(321x x x f =.222221y y +(III ) 由),,(321x x x f ==+222122y y 0,得k y y y ===321,0,0(k 为任意常数).从而所求解为:x=Qy=[]⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-==⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡0003321c c k k ηηηη,其中c 为任意常数. (21)(本题满分9分)已知3阶矩阵A 的第一行是c b a c b a ,,),,,(不全为零,矩阵⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=k B 63642321(k 为常数),且AB=O, 求线性方程组Ax=0的通解.【分析】 AB=O, 相当于告之B 的每一列均为Ax=0的解,关键问题是Ax=0的基础解系所含解向量的个数为多少,而这又转化为确定系数矩阵A 的秩.【详解】 由AB=O 知,B 的每一列均为Ax=0的解,且.3)()(≤+B r A r(1)若k 9≠, 则r(B)=2, 于是r(A)1≤, 显然r(A)1≥, 故r(A)=1. 可见此时Ax=0的基础解系所含解向量的个数为3-r(A)=2, 矩阵B 的第一、第三列线性无关,可作为其基础解系,故Ax=0 的通解为:2121,,63321k k k k k x ⎪⎪⎪⎭⎫ ⎝⎛+⎪⎪⎪⎭⎫ ⎝⎛=为任意常数.(2) 若k=9,则r(B)=1, 从而.2)(1≤≤A r1) 若r(A)=2, 则Ax=0的通解为:11,321k k x ⎪⎪⎪⎭⎫⎝⎛=为任意常数.2) 若r(A)=1,则Ax=0 的同解方程组为:0321=++cx bx ax ,不妨设0≠a ,则其通解为2121,,1001k k a c k a b k x ⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-+⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-=为任意常数.(22)(本题满分9分)设二维随机变量(X,Y)的概率密度为 .,20,10,0,1),(其他x y x y x f <<<<⎩⎨⎧=求:(I ) (X,Y)的边缘概率密度)(),(y f x f Y X ; (II )Y X Z -=2的概率密度).(z f Z【分析】 求边缘概率密度直接用公式即可;而求二维随机变量函数的概率密度,一般用分布函数法,即先用定义求出分布函数,再求导得到相应的概率密度.【详解】 (I ) 关于X 的边缘概率密度)(x f X =⎰+∞∞-dy y x f ),(=.,10,0,20其他<<⎪⎩⎪⎨⎧⎰x dy x=.,10,0,2其他<<⎩⎨⎧x x关于Y 的边缘概率密度)(y f Y =⎰+∞∞-dx y x f ),(=.,20,0,12其他<<⎪⎩⎪⎨⎧⎰y dx y=.,20,0,21其他<<⎪⎩⎪⎨⎧-y y (II ) 令}2{}{)(z Y X P z Z P z F Z ≤-=≤=, 1) 当0<z 时,0}2{)(=≤-=z Y X P z F Z ;2) 当20<≤z 时,}2{)(z Y X P z F Z ≤-= =241z z -; 3) 当2≥z 时,.1}2{)(=≤-=z Y X P z F Z即分布函数为: .2,20,0,1,41,0)(2≥<≤<⎪⎩⎪⎨⎧-=z z z z z z F Z故所求的概率密度为:.,20,0,211)(其他<<⎪⎩⎪⎨⎧-=z z z f Z (23)(本题满分9分)设)2(,,,21>n X X X n 为来自总体N(0,1)的简单随机样本,为样本均值,记.,,2,1,n i X X Y i i =-=求:(I ) i Y 的方差n i DY i ,,2,1, =; (II )1Y 与n Y 的协方差).,(1n Y Y Cov【分析】 先将i Y 表示为相互独立的随机变量求和,再用方差的性质进行计算即可;求1Y 与n Y 的协方差),(1n Y Y Cov ,本质上还是数学期望的计算,同样应注意利用数学期望的运算性质.【详解】 由题设,知)2(,,,21>n X X X n 相互独立,且),,2,1(1,0n i DX EX i i ===,.0=X E(I )∑≠--=-=ni j j i i i X n X n D X X D DY ]1)11[()(=∑≠+-nij ji DXnDX n 221)11(=.1)1(1)1(222n n n nn n -=-⋅+- (II ) )])([(),(111n n n EY Y EY Y E Y Y Cov --= =)])([()(11X X X X E Y Y E n n --= =)(211X X X X X X X E n n +-- =211)(2)(X E X X E X X E n +-=22121)(][20X E X D X X X E n nj j +++-∑==.112nn n -=+-。
2005考研数一真题及解析
![2005考研数一真题及解析](https://img.taocdn.com/s3/m/dd800b9358fafab068dc029e.png)
2005年全国硕士研究生入学统一考试数学(一)试卷一、填空题(本题共6小题,每小题4分,满分24分.把答案填在题中横线上)(1)曲线122+=x x y 的斜渐近线方程为 _____________.(2)微分方程x x y y x ln 2=+'满足91)1(-=y 的解为____________。
(3)设函数181261),,(222z y x z y x u +++=,单位向量}1,1,1{31=n ,则)3,2,1(nu∂∂=.________。
(4)设Ω是由锥面22y x z +=与半球面222y x R z --=围成的空间区域,∑是Ω的整个边界的外侧,则⎰⎰∑=++zdxdy ydzdx xdydz ____________。
(5)设123,,ααα均为3维列向量,记矩阵123(,,)=A ααα,123123123(,24,39)=++++++B ααααααααα,如果1=A ,那么=B 。
(6)从数1,2,3,4中任取一个数,记为X , 再从X ,,2,1 中任取一个数,记为Y , 则}2{=Y P =____________。
二、选择题(本题共8小题,每小题4分,满分32分。
每小题给出的四个选项中,只有一项符合题目要求,把所选项前的字母填在题后的括号内)(7)设函数n n n x x f 31lim )(+=∞→,则()f x 在),(+∞-∞内(A)处处可导 (B )恰有一个不可导点(C )恰有两个不可导点 (D)至少有三个不可导点(8)设()F x 是连续函数()f x 的一个原函数,""N M ⇔表示"M 的充分必要条件是",N 则必有(A )()F x 是偶函数()f x ⇔是奇函数 (B )()F x 是奇函数()f x ⇔是偶函数(C )()F x 是周期函数()f x ⇔是周期函数 (D )()F x 是单调函数()f x ⇔是单调函数(9)设函数⎰+-+-++=yx y x dt t y x y x y x u )()()(),(ψϕϕ, 其中函数ϕ具有二阶导数,ψ 具有一阶导数,则必有(A)2222y ux u ∂∂-=∂∂(B )2222yux u ∂∂=∂∂(C)222yu y x u ∂∂=∂∂∂(D )222x uy x u ∂∂=∂∂∂ (10)设有三元方程ln e 1xz xy z y -+=,根据隐函数存在定理,存在点(0,1,1)的一个邻域,在此邻域内该方程(A)只能确定一个具有连续偏导数的隐函数(,)z z x y =(B )可确定两个具有连续偏导数的隐函数(,)x x y z =和(,)z z x y = (C )可确定两个具有连续偏导数的隐函数(,)y y x z =和(,)z z x y = (D )可确定两个具有连续偏导数的隐函数(,)x x y z =和(,)y y x z =(11)设21,λλ是矩阵A 的两个不同的特征值,对应的特征向量分别为12,αα,则1α,12()+A αα线性无关的充分必要条件是(A )01≠λ (B )02≠λ (C)01=λ (D)02=λ(12)设A 为(2)n n ≥阶可逆矩阵,交换A 的第1行与第2行得矩阵**.,B A B 分别为,A B 的伴随矩阵,则(A)交换*A 的第1列与第2列得*B (B)交换*A 的第1行与第2行得*B(C )交换*A 的第1列与第2列得*-B (D)交换*A 的第1行与第2行得*-B(13)设二维随机变量(,)X Y 的概率分布为已知随机事件}0{=X 与}1{=+Y X 相互独立,则(A )0.2,0.3a b == (B )0.4,0.1a b == (C)0.3,0.2a b == (D)0.1,0.4a b == (14)设)2(,,,21≥n X X X n 为来自总体(0,1)N 的简单随机样本,X 为样本均值,2S 为样本方差,则(A))1,0(~N X n (B )22~()nS n χ(C ))1(~)1(--n t SXn (D )2122(1)~(1,1)nii n X F n X=--∑三 、解答题(本题共9小题,满分94分。
2005年考研数学二试题及答案
![2005年考研数学二试题及答案](https://img.taocdn.com/s3/m/b9abfe2e80eb6294dc886cb2.png)
2005年数学二试题分析、详解和评注一、填空题(本题共6小题,每小题4分,满分24分。
把答案填在题中横线上)(1)设xx y )sin 1(+=,则π=x dy= 。
(2) 曲线xx y 23)1(+=的斜渐近线方程为。
(3)=--⎰1221)2(xxxdx(4) 微分方程x x y y x ln 2=+'满足91)1(-=y 的解为(5)当0→x 时,2)(kx x =α与x x x x cos arcsin 1)(-+=β是等价无穷小,则k= .(6)设321,,ααα均为3维列向量,记矩阵),,(321ααα=A ,)93,42,(321321321ααααααααα++++++=B , 如果1=A ,那么=B 。
二、选择题(本题共8小题,每小题4分,满分32分. 每小题给出的四个选项中,只有一项符合题目要求,把所选项前的字母填在题后的括号内)(7)设函数n nn xx f 31lim )(+=∞→,则f(x )在),(+∞-∞内(A ) 处处可导。
(B ) 恰有一个不可导点。
(C ) 恰有两个不可导点. (D ) 至少有三个不可导点。
[ ] (8)设F(x )是连续函数f (x )的一个原函数,""N M ⇔表示“M 的充分必要条件是N ”,则必有(A) F (x )是偶函数⇔f(x)是奇函数。
(B ) F (x)是奇函数⇔f (x )是偶函数。
(C ) F(x)是周期函数⇔f(x)是周期函数.(D ) F (x )是单调函数⇔f (x )是单调函数。
[ ](9)设函数y=y(x )由参数方程⎩⎨⎧+=+=)1ln(,22t y t t x 确定,则曲线y=y (x )在x=3处的法线与x 轴交点的横坐标是(A) 32ln 81+。
(B) 32ln 81+-. (C) 32ln 8+-. (D) 32ln 8+。
[ ](10)设区域}0,0,4),{(22≥≥≤+=y x y x y x D ,f (x )为D 上的正值连续函数,a,b 为常数,则=++⎰⎰σd y f x f y f b x f a D)()()()((A) πab 。
2005考研数一真题及解析
![2005考研数一真题及解析](https://img.taocdn.com/s3/m/cafbe1a8a32d7375a517807d.png)
页脚内容12005年全国硕士研究生入学统一考试数学(一)试卷一、填空题(本题共6小题,每小题4分,满分24分.把答案填在题中横线上)(1)曲线122+=x x y 的斜渐近线方程为 _____________.(2)微分方程x x y y x ln 2=+'满足91)1(-=y 的解为____________.(3)设函数181261),,(222z y x z y x u +++=,单位向量}1,1,1{31=n ρ,则)3,2,1(n u∂∂=.________.(4)设Ω是由锥面22y x z +=与半球面222y x R z --=围成的空间区域,∑是Ω的整个边界的外侧,则⎰⎰∑=++zdxdy ydzdx xdydz ____________.(5)设123,,ααα均为3维列向量,记矩阵123(,,)=A ααα,123123123(,24,39)=++++++B ααααααααα,如果1=A ,那么=B .(6)从数1,2,3,4中任取一个数,记为X , 再从X ,,2,1Λ中任取一个数,记为Y , 则}2{=Y P =____________.二、选择题(本题共8小题,每小题4分,满分32分.每小题给出的四个选项中,只有一项符合题目要求,把所选项前的字母填在题后的括号内)页脚内容2(7)设函数n nn xx f 31lim )(+=∞→,则()f x 在),(+∞-∞内 (A)处处可导 (B)恰有一个不可导点 (C)恰有两个不可导点(D)至少有三个不可导点(8)设()F x 是连续函数()f x 的一个原函数,""N M ⇔表示"M 的充分必要条件是",N 则必有 (A)()F x 是偶函数()f x ⇔是奇函数(B)()F x 是奇函数()f x ⇔是偶函数 (C)()F x 是周期函数()f x ⇔是周期函数(D)()F x 是单调函数()f x ⇔是单调函数(9)设函数⎰+-+-++=yx yx dt t y x y x y x u )()()(),(ψϕϕ, 其中函数ϕ具有二阶导数,ψ 具有一阶导数,则必有(A)2222y ux u ∂∂-=∂∂(B)2222yu x u ∂∂=∂∂(C)222y u y x u ∂∂=∂∂∂(D)222x uy x u ∂∂=∂∂∂ (10)设有三元方程ln e 1xz xy z y -+=,根据隐函数存在定理,存在点(0,1,1)的一个邻域,在此邻域内该方程 (A)只能确定一个具有连续偏导数的隐函数(,)z z x y = (B)可确定两个具有连续偏导数的隐函数(,)x x y z =和(,)z z x y = (C)可确定两个具有连续偏导数的隐函数(,)y y x z =和(,)z z x y = (D)可确定两个具有连续偏导数的隐函数(,)x x y z =和(,)y y x z =页脚内容3(11)设21,λλ是矩阵A 的两个不同的特征值,对应的特征向量分别为12,αα,则1α,12()+A αα线性无关的充分必要条件是 (A)01≠λ(B)02≠λ(C)01=λ(D)02=λ(12)设A 为(2)n n ≥阶可逆矩阵,交换A 的第1行与第2行得矩阵**.,B A B 分别为,A B 的伴随矩阵,则 (A)交换*A 的第1列与第2列得*B (B)交换*A 的第1行与第2行得*B (C)交换*A 的第1列与第2列得*-B(D)交换*A 的第1行与第2行得*-B(13)设二维随机变量(,)X Y 的概率分布为已知随机事件}0{=X 与}1{=+Y X 相互独立,则 (A)0.2,0.3a b ==(B)0.4,0.1a b ==(C)0.3,0.2a b ==(D)0.1,0.4a b ==(14)设)2(,,,21≥n X X X n Λ为来自总体(0,1)N 的简单随机样本,X 为样本均值,2S 为样本方差,则页脚内容4(A))1,0(~N X n(B)22~()nS n χ(C))1(~)1(--n t SXn (D)2122(1)~(1,1)nii n X F n X=--∑三 、解答题(本题共9小题,满分94分.解答应写出文字说明、证明过程或演算步骤) (15)(本题满分11分)设}0,0,2),{(22≥≥≤+=y x y x y x D ,]1[22y x ++表示不超过221y x ++的最大整数. 计算二重积分⎰⎰++Ddxdy y x xy .]1[22(16)(本题满分12分)求幂级数∑∞=--+-121))12(11()1(n n n x n n 的收敛区间与和函数()f x .(17)(本题满分11分)页脚内容5页脚内容6如图,曲线C 的方程为()y f x =,点(3,2)是它的一个拐点,直线1l 与2l 分别是曲线C 在点(0,0)与(3,2)处的切线,其交点为(2,4).设函数()f x 具有三阶连续导数,计算定积分⎰'''+302.)()(dx x f x x页脚内容7(18)(本题满分12分)已知函数()f x 在[0,1]上连续,在(0,1)内可导,且(0)0,(1)1f f ==. 证明: (I)存在),1,0(∈ξ 使得ξξ-=1)(f .(2)存在两个不同的点)1,0(,∈ζη,使得.1)()(=''ζηf f页脚内容8(19)(本题满分12分)设函数)(y ϕ具有连续导数,在围绕原点的任意分段光滑简单闭曲线L 上,曲线积分24()22L y dx xydyx y φ++⎰Ñ的值恒为同一常数.(I)证明:对右半平面0x >内的任意分段光滑简单闭曲线,C 有24()202Cy dx xydyx yφ+=+⎰Ñ.(2)求函数)(y ϕ的表达式.页脚内容9(20)(本题满分9分)已知二次型21232221321)1(22)1()1(),,(x x a x x a x a x x x f +++-+-=的秩为2. (I)求a 的值;(2)求正交变换x y =Q ,把),,(321x x x f 化成标准形. (3)求方程),,(321x x x f =0的解.页脚内容10(21)(本题满分9分)已知3阶矩阵A 的第一行是c b a c b a ,,),,,(不全为零,矩阵12324636k ⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦B (k 为常数),且=AB O ,求线性方程组0x =A 的通解.页脚内容11(22)(本题满分9分)设二维随机变量(,)X Y 的概率密度为(,)f x y = 10 01,02x y x <<<<其它求:(I)(,)X Y 的边缘概率密度)(),(y f x f Y X .(2)Y X Z -=2的概率密度).(z f Z页脚内容12(23)(本题满分9分)设)2(,,,21>n X X X n Λ为来自总体(0,1)N 的简单随机样本,X 为样本均值,记.,,2,1,n i X X Y i i Λ=-= 求:(I)i Y 的方差n i DY i ,,2,1,Λ=.(2)1Y 与n Y 的协方差1Cov(,).n Y Y页脚内容13页脚内容142005年考研数学一真题解析一、填空题(本题共6小题,每小题4分,满分24分. 把答案填在题中横线上)(1)曲线122+=x x y 的斜渐近线方程为 .4121-=x y 【分析】 本题属基本题型,直接用斜渐近线方程公式进行计算即可.【详解】 因为a=212lim )(lim 22=+=∞→∞→x x x x x f x x , []41)12(2lim )(lim -=+-=-=∞→∞→x x ax x f b x x , 于是所求斜渐近线方程为.4121-=x y (2)微分方程x x y y x ln 2=+'满足91)1(-=y 的解为.91ln 31x x x y -=. 【分析】直接套用一阶线性微分方程)()(x Q y x P y =+'的通解公式:⎰+⎰⎰=-])([)()(C dx e x Q e y dx x P dx x P , 再由初始条件确定任意常数即可.【详解】 原方程等价为x y xy ln 2=+', 于是通解为 ⎰⎰+⋅=+⎰⋅⎰=-]ln [1]ln [2222C xdx x xC dx e x e y dx x dx x页脚内容15 =2191ln 31xC x x x +-, 由91)1(-=y 得C=0,故所求解为.91ln 31x x x y -= (3)设函数181261),,(222z y x z y x u +++=,单位向量}1,1,1{31=n ρ,则)3,2,1(n u ∂∂=33. 【分析】 函数u(x,y,z)沿单位向量γβαcos ,cos ,{cos =n ρ}的方向导数为:γβαcos cos cos zu y u x u n u ∂∂+∂∂+∂∂=∂∂ 因此,本题直接用上述公式即可.【详解】 因为3x x u =∂∂,6y y u =∂∂,9z z u =∂∂,于是所求方向导数为 )3,2,1(n u∂∂=.33313131313131=⋅+⋅+⋅ (4)设Ω是由锥面22y x z +=与半球面222y x R z --=围成的空间区域,∑是Ω的整个边界的外侧,则⎰⎰∑=++zdxdy ydzdx xdydz 3)221(2R -π. 【分析】本题∑是封闭曲面且取外侧,自然想到用高斯公式转化为三重积分,再用球面(或柱面)坐标进行计算即可.【详解】 ⎰⎰∑=++zdxdy ydzdx xdydz ⎰⎰⎰Ωdxdydz 3=.)221(2sin 33200402R d d d R ⎰⎰⎰-=πππθϕϕρρ页脚内容16(5)设321,,ααα均为3维列向量,记矩阵),,(321ααα=A ,)93,42,(321321321ααααααααα++++++=B , 如果1=A ,那么=B 2 .【分析】 将B 写成用A 右乘另一矩阵的形式,再用方阵相乘的行列式性质进行计算即可.【详解】 由题设,有)93,42,(321321321ααααααααα++++++=B=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡941321111),,(321ααα, 于是有 .221941321111=⨯=⋅=A B(6)从数1,2,3,4中任取一个数,记为X, 再从X ,,2,1Λ中任取一个数,记为Y, 则}2{=Y P = 4813 . 【分析】 本题涉及到两次随机试验,想到用全概率公式, 且第一次试验的各种两两互不相容的结果即为完备事件组或样本空间的划分.【详解】 }2{=Y P =}12{}1{===X Y P X P +}22{}2{===X Y P X P+}32{}3{===X Y P X P +}42{}4{===X Y P X P页脚内容17=.4813)4131210(41=+++⨯ 二、选择题(本题共8小题,每小题4分,满分32分. 每小题给出的四个选项中,只有一项符合题目要求,把所选项前的字母填在题后的括号内)(7)设函数n n n x x f 31lim )(+=∞→,则f(x)在),(+∞-∞内(A) 处处可导. (B) 恰有一个不可导点.(C) 恰有两个不可导点. (D) 至少有三个不可导点. [ C ]【分析】 先求出f(x)的表达式,再讨论其可导情形.【详解】 当1<x 时,11lim )(3=+=∞→n n n x x f ;当1=x 时,111lim )(=+=∞→n n x f ; 当1>x 时,.)11(lim )(3133x x x x f n n n =+=∞→ 即.1,11,1,,1,)(33>≤≤--<⎪⎩⎪⎨⎧-=x x x x x x f 可见f(x)仅在x=1±时不可导,故应选(C).(8)设F(x)是连续函数f(x)的一个原函数,""N M ⇔表示“M 的充分必要条件是N ”,则必有(A) F (x)是偶函数⇔f(x)是奇函数.(B ) F(x)是奇函数⇔f(x)是偶函数.(C) F(x)是周期函数⇔f(x)是周期函数.页脚内容18(D) F(x)是单调函数⇔f(x)是单调函数. [ A ]【分析】 本题可直接推证,但最简便的方法还是通过反例用排除法找到答案.【详解】 方法一:任一原函数可表示为⎰+=xC dt t f x F 0)()(,且).()(x f x F =' 当F(x)为偶函数时,有)()(x F x F =-,于是)()1()(x F x F '=-⋅-',即 )()(x f x f =--,也即)()(x f x f -=-,可见f(x)为奇函数;反过来,若f(x)为奇函数,则⎰x dt t f 0)(为偶函数,从而⎰+=xC dt t f x F 0)()(为偶函数,可见(A)为正确选项.方法二:令f(x)=1, 则取F(x)=x+1, 排除(B)、(C); 令f(x)=x, 则取F(x)=221x , 排除(D); 故应选(A). (9)设函数⎰+-+-++=yx y x dt t y x y x y x u )()()(),(ψϕϕ, 其中函数ϕ具有二阶导数,ψ 具有一阶导数,则必有(A) 2222y u x u ∂∂-=∂∂. (B ) 2222yu x u ∂∂=∂∂. (C) 222y u y x u ∂∂=∂∂∂. (D) 222x u y x u ∂∂=∂∂∂. [ B ] 【分析】 先分别求出22x u ∂∂、22yu ∂∂、y x u ∂∂∂2,再比较答案即可. 【详解】 因为)()()()(y x y x y x y x xu --++-'++'=∂∂ψψϕϕ, )()()()(y x y x y x y x yu -+++-'-+'=∂∂ψψϕϕ,页脚内容19于是 )()()()(22y x y x y x y x xu -'-+'+-''++''=∂∂ψψϕϕ, )()()()(2y x y x y x y x yx u -'++'+-''-+''=∂∂∂ψψϕϕ, )()()()(22y x y x y x y x yu -'-+'+-''++''=∂∂ψψϕϕ, 可见有2222yu x u ∂∂=∂∂,应选(B). (10)设有三元方程1ln =+-xz e y z xy ,根据隐函数存在定理,存在点(0,1,1)的一个邻域,在此邻域内该方程(A) 只能确定一个具有连续偏导数的隐函数z=z(x,y).(B) 可确定两个具有连续偏导数的隐函数x=x(y,z)和z=z(x,y).(C) 可确定两个具有连续偏导数的隐函数y=y(x,z)和z=z(x,y).(D)可确定两个具有连续偏导数的隐函数x=x(y,z)和y=y(x,z). [ D ] 【分析】 本题考查隐函数存在定理,只需令F(x,y,z)=1ln -+-xz e y z xy , 分别求出三个偏导数y x z F F F ,,,再考虑在点(0,1,1)处哪个偏导数不为0,则可确定相应的隐函数.【详解】 令F(x,y,z)=1ln -+-xz e y z xy , 则z e y F xz x +=', y z x F y -=',x e y F xz z +-='ln ,页脚内容20 且 2)1,1,0(='x F ,1)1,1,0(-='y F ,0)1,1,0(='z F . 由此可确定相应的隐函数x=x(y,z)和y=y(x,z). 故应选(D).(11)设21,λλ是矩阵A 的两个不同的特征值,对应的特征向量分别为21,αα,则1α,)(21αα+A 线性无关的充分必要条件是(A) 01≠λ. (B) 02≠λ. (C) 01=λ. (D) 02=λ. [ B ]【分析】 讨论一组抽象向量的线性无关性,可用定义或转化为求其秩即可.【详解】 方法一:令 0)(21211=++αααA k k ,则022211211=++αλαλαk k k , 0)(2221121=++αλαλk k k .由于21,αα线性无关,于是有⎩⎨⎧==+.0,022121λλk k k 当02≠λ时,显然有0,021==k k ,此时1α,)(21αα+A 线性无关;反过来,若1α,)(21αα+A 线性无关,则必然有02≠λ(,否则,1α与)(21αα+A =11αλ线性相关),故应选(B).方法二: 由于 ⎥⎦⎤⎢⎣⎡=+=+21212211121101],[],[)](,[λλαααλαλααααA , 可见1α,)(21αα+A 线性无关的充要条件是.001221≠=λλλ故应选(B).(12)设A 为n (2≥n )阶可逆矩阵,交换A 的第1行与第2行得矩阵B, **,B A 分别为A,B 的伴随矩阵,则页脚内容21(A)交换*A 的第1列与第2列得*B . (B) 交换*A 的第1行与第2行得*B .(C) 交换*A 的第1列与第2列得*B -. (D) 交换*A 的第1行与第2行得*B -. [ C ]【分析】 本题考查初等变换的概念与初等矩阵的性质,只需利用初等变换与初等矩阵的关系以及伴随矩阵的性质进行分析即可.【详解】 由题设,存在初等矩阵12E (交换n 阶单位矩阵的第1行与第2行所得),使得 B A E =12,于是 12*11212*12***12*)(E A E E A E A A E B -=⋅===-,即*12*B E A -=,可见应选(C).(13)设二维随机变量(X,Y) 的概率分布为 X Y 0 1 0 0.4 a 1 b 0.1已知随机事件}0{=X 与}1{=+Y X 相互独立,则(A) a=0.2, b=0.3 (B) a=0.4, b=0.1(C) a=0.3, b=0.2 (D) a=0.1, b=0.4 [ B ]【分析】 首先所有概率求和为1,可得a+b=0.5, 其次,利用事件的独立性又可得一等式,由此可确定a,b 的取值.页脚内容22【详解】 由题设,知 a+b=0.5又事件}0{=X 与}1{=+Y X 相互独立,于是有 }1{}0{}1,0{=+===+=Y X P X P Y X X P ,即 a=))(4.0(b a a ++, 由此可解得 a=0.4, b=0.1, 故应选(B).(14)设)2(,,,21≥n X X X n Λ为来自总体N(0,1)的简单随机样本,X 为样本均值,2S 为样本方差,则(A) )1,0(~N X n (B) ).(~22n nS χ(C) )1(~)1(--n t SXn (D) ).1,1(~)1(2221--∑=n F X X n n i i [ D ] 【分析】 利用正态总体抽样分布的性质和2χ分布、t 分布及F 分布的定义进行讨论即可.【详解】 由正态总体抽样分布的性质知,)1,0(~10N X n nX =-,可排除(A); 又)1(~0-=-n t SX n nS X ,可排除(C); 而)1(~)1(1)1(2222--=-n S n S n χ,不能断定(B)是正确选项. 因为 ∑=-n i in X X 222221)1(~),1(~χχ,且∑=-ni i n X X 222221)1(~)1(~χχ与相互独立,于是).1,1(~)1(1122212221--=-∑∑==n F XX n n XX ni ini i故应选(D).三 、解答题(本题共9小题,满分94分.解答应写出文字说明、证明过程或演算步骤.)页脚内容23(15)(本题满分11分)设}0,0,2),{(22≥≥≤+=y x y x y x D ,]1[22y x ++表示不超过221y x ++的最大整数. 计算二重积分⎰⎰++Ddxdy y x xy .]1[22 【分析】 首先应设法去掉取整函数符号,为此将积分区域分为两部分即可. 【详解】 令 }0,0,10),{(221≥≥<+≤=y x y x y x D , }0,0,21),{(222≥≥≤+≤=y x y x y x D . 则⎰⎰++Ddxdy y x xy ]1[22=⎰⎰⎰⎰+122D D xydxdy xydxdy dr r d dr r d ⎰⎰⎰⎰+=20213132cos sin 2cos sin ππθθθθθθ=.874381=+(16)(本题满分12分)求幂级数∑∞=--+-121))12(11()1(n n n x n n 的收敛区间与和函数f(x).【分析】 先求收敛半径,进而可确定收敛区间. 而和函数可利用逐项求导得到.【详解】 因为11)12()12()12)(1(1)12)(1(lim=+--⨯+++++∞→n n n n n n n n n ,所以当21x <时,原级数绝对收敛,当21x >时,原级数发散,因此原级数的收敛半径为1,收敛区间为(-1,1)记 121(1)(),(1,1)2(21)n nn S x x x n n -∞=-=∈--∑,页脚内容24则 1211(1)(),(1,1)21n n n S x x x n -∞-=-'=∈--∑,122211()(1),(1,1)1n n n S x x x x∞--=''=-=∈-+∑. 由于 (0)0,(0)0,S S '==所以 201()()arctan ,1xxS x S t dt dt x t '''===+⎰⎰2001()()arctan arctan ln(1).2x x S x S t dt tdt x x x '===-+⎰⎰又21221(1),(1,1),1n nn x xx x ∞-=-=∈-+∑ 从而 22()2()1x f x S x x =++2222arctan ln(1),(1,1).1x x x x x x =-++∈-+(17)(本题满分11分)如图,曲线C 的方程为y=f(x),点(3,2)是它的一个拐点,直线1l 与2l 分别是曲线C 在点(0,0)与(3,2)处的切线,其交点为(2,4). 设函数f(x)具有三阶连续导数,计算定积分⎰'''+302.)()(dx x f x x【分析】 题设图形相当于已知f(x)在x=0的函数值与导数值,在x=3处的函数值及一阶、二阶导数值. 【详解】 由题设图形知,f(0)=0, 2)0(='f ; f(3)=2, .0)3(,2)3(=''-='f f 由分部积分,知页脚内容25⎰⎰⎰+''-''+=''+='''+330302232)12)(()()()()()()(dx x x f x f x x x f d x x dx x f x x=dx x f x f x x f d x ⎰⎰'+'+-='+-33030)(2)()12()()12(=.20)]0()3([216=-+f f (18)(本题满分12分)已知函数f(x)在[0,1]上连续,在(0,1)内可导,且f(0)=0,f(1)=1. 证明: (I )存在),1,0(∈ξ 使得ξξ-=1)(f ;(II )存在两个不同的点)1,0(,∈ζη,使得.1)()(=''ζηf f【分析】 第一部分显然用闭区间上连续函数的介值定理;第二部分为双介值问题,可考虑用拉格朗日中值定理,但应注意利用第一部分已得结论.【详解】 (I ) 令x x f x F +-=1)()(,则F(x)在[0,1]上连续,且F(0)=-1<0, F(1)=1>0,于是由介值定理知,存在),1,0(∈ξ 使得0)(=ξF ,即ξξ-=1)(f .(II ) 在],0[ξ和]1,[ξ上对f(x)分别应用拉格朗日中值定理,知存在两个不同的点)1,(),,0(ξζξη∈∈,使得0)0()()(--='ξξηf f f ,ξξζ--='1)()1()(f f f于是 .1111)(1)()()(=-⋅-=--⋅=''ξξξξξξξξζηf f f f (19)(本题满分12分)页脚内容26设函数)(y ϕ具有连续导数,在围绕原点的任意分段光滑简单闭曲线L 上,曲线积分⎰++Ly x xydydx y 4222)(ϕ的值恒为同一常数.(I )证明:对右半平面x>0内的任意分段光滑简单闭曲线C ,有022)(42=++⎰Cy x xydydx y ϕ;(II )求函数)(y ϕ的表达式.【分析】 证明(I )的关键是如何将封闭曲线C 与围绕原点的任意分段光滑简单闭曲线相联系,这可利用曲线积分的可加性将C 进行分解讨论;而(II )中求)(y ϕ的表达式,显然应用积分与路径无关即可. 【详解】 (I )1lo X l 3如图,将C 分解为:21l l C +=,另作一条曲线3l 围绕原点且与C 相接,则=++⎰Cyx xydydx y 4222)(ϕ-++⎰+314222)(l l yx xydydx y ϕ022)(3242=++⎰+l l yx xydydx y ϕ.(II ) 设2424()2,22y xyP Q x yx yϕ==++,,P Q 在单连通区域0x >内具有一阶连续偏导数,由(Ⅰ)知,曲线积分24()22Ly dx xydyx y ϕ++⎰在该区域内与路径无关,故当0x >时,总有Q Px y∂∂=∂∂.页脚内容2724252422422(2)4242,(2)(2)Q y x y x xy x y y x x y x y ∂+--+==∂++g ① 243243242242()(2)4()2()()4().(2)(2)P y x y y y x y y y y y y x y x y ϕϕϕϕϕ'''∂+-+-==∂++ ② 比较①、②两式的右端,得435()2,()4()2. y y y y y y y ϕϕϕ'=-⎧⎨'-=⎩ 由③得2()y y c ϕ=-+,将()y ϕ代入④得 535242,y cy y -= 所以0c =,从而2().y y ϕ=- (20)(本题满分9分)已知二次型21232221321)1(22)1()1(),,(x x a x x a x a x x x f +++-+-=的秩为2. (I ) 求a 的值;(II ) 求正交变换Qy x =,把),,(321x x x f 化成标准形;(III ) 求方程),,(321x x x f =0的解.【分析】 (I )根据二次型的秩为2,可知对应矩阵的行列式为0,从而可求a 的值;(II )是常规问题,先求出特征值、特征向量,再正交化、单位化即可找到所需正交变换; (III )利用第二步的结果,通过标准形求解即可.【详解】 (I ) 二次型对应矩阵为页脚内容28⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-++-=200011011a a a a A ,由二次型的秩为2,知 0200011011=-++-=a a a a A ,得a=0.(II ) 这里⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=200011011A , 可求出其特征值为0,2321===λλλ.解 0)2(=-x A E ,得特征向量为:⎪⎪⎪⎭⎫⎝⎛=⎪⎪⎪⎭⎫ ⎝⎛=100,01121αα,解 0)0(=-x A E ,得特征向量为:.0113⎪⎪⎪⎭⎫ ⎝⎛-=α由于21,αα已经正交,直接将21,αα,3α单位化,得:⎪⎪⎪⎭⎫ ⎝⎛-=⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎭⎫ ⎝⎛=01121,100,01121321ηηη令[]321ααα=Q ,即为所求的正交变换矩阵,由x=Qy ,可化原二次型为标准形:),,(321x x x f =.222221y y +(III ) 由),,(321x x x f ==+222122y y 0,得k y y y ===321,0,0(k 为任意常数).页脚内容29从而所求解为:x=Qy=[]⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-==⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡0003321c c k k ηηηη,其中c 为任意常数. (21)(本题满分9分)已知3阶矩阵A 的第一行是c b a c b a ,,),,,(不全为零,矩阵⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=k B 63642321(k 为常数),且AB=O, 求线性方程组Ax=0的通解.【分析】 AB=O, 相当于告之B 的每一列均为Ax=0的解,关键问题是Ax=0的基础解系所含解向量的个数为多少,而这又转化为确定系数矩阵A 的秩.【详解】 由AB=O 知,B 的每一列均为Ax=0的解,且.3)()(≤+B r A r(1)若k 9≠, 则r(B)=2, 于是r(A)1≤, 显然r(A)1≥, 故r(A)=1. 可见此时Ax=0的基础解系所含解向量的个数为3-r(A)=2, 矩阵B 的第一、第三列线性无关,可作为其基础解系,故Ax=0 的通解为:2121,,63321k k k k k x ⎪⎪⎪⎭⎫⎝⎛+⎪⎪⎪⎭⎫ ⎝⎛=为任意常数.(2) 若k=9,则r(B)=1, 从而.2)(1≤≤A r1) 若r(A)=2, 则Ax=0的通解为:11,321k k x ⎪⎪⎪⎭⎫⎝⎛=为任意常数.2) 若r(A)=1,则Ax=0 的同解方程组为:0321=++cx bx ax ,不妨设0≠a ,则其通解为页脚内容302121,,1001k k a c k a b k x ⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-+⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-=为任意常数.(22)(本题满分9分)设二维随机变量(X,Y)的概率密度为.,20,10,0,1),(其他x y x y x f <<<<⎩⎨⎧=求:(I ) (X,Y)的边缘概率密度)(),(y f x f Y X ; (II )Y X Z -=2的概率密度).(z f Z【分析】 求边缘概率密度直接用公式即可;而求二维随机变量函数的概率密度,一般用分布函数法,即先用定义求出分布函数,再求导得到相应的概率密度. 【详解】 (I ) 关于X 的边缘概率密度)(x f X =⎰+∞∞-dy y x f ),(=.,10,0,20其他<<⎪⎩⎪⎨⎧⎰x dy x=.,10,0,2其他<<⎩⎨⎧x x关于Y 的边缘概率密度)(y f Y =⎰+∞∞-dx y x f ),(=.,20,0,12其他<<⎪⎩⎪⎨⎧⎰y dx y页脚内容31=.,20,0,21其他<<⎪⎩⎪⎨⎧-y y (II ) 令}2{}{)(z Y X P z Z P z F Z ≤-=≤=,1) 当0<z 时,0}2{)(=≤-=z Y X P z F Z ; 2) 当20<≤z 时,}2{)(z Y X P z F Z ≤-==241z z -; 3) 当2≥z 时,.1}2{)(=≤-=z Y X P z F Z即分布函数为: .2,20,0,1,41,0)(2≥<≤<⎪⎩⎪⎨⎧-=z z z z z z F Z 故所求的概率密度为:.,20,0,211)(其他<<⎪⎩⎪⎨⎧-=z z z f Z (23)(本题满分9分)设)2(,,,21>n X X X n Λ为来自总体N(0,1)的简单随机样本,X 为样本均值,记.,,2,1,n i X X Y i i Λ=-= 求:(I ) i Y 的方差n i DY i ,,2,1,Λ=; (II )1Y 与n Y 的协方差).,(1n Y Y Cov【分析】 先将i Y 表示为相互独立的随机变量求和,再用方差的性质进行计算即可;求1Y 与n Y 的协方差),(1n Y Y Cov ,本质上还是数学期望的计算,同样应注意利用数学期望的运算性质.页脚内容32 【详解】 由题设,知)2(,,,21>n X X X n Λ相互独立,且 ),,2,1(1,0n i DX EX i i Λ===,.0=X E(I )∑≠--=-=nij j i i i X n X n D X X D DY ]1)11[()( =∑≠+-n i j j i DXn DX n 221)11(=.1)1(1)1(222n n n nn n -=-⋅+- (II ) )])([(),(111n n n EY Y EY Y E Y Y Cov --= =)])([()(11X X X X E Y Y E n n --= =)(211X X X X X X X E n n +-- =211)(2)(X E X X E X X E n +-=22121)(][20X E X D X X X E n n j j +++-∑= =.112nn n -=+-。
2005—数一真题、标准答案及解析
![2005—数一真题、标准答案及解析](https://img.taocdn.com/s3/m/0d428d976137ee06eff9189a.png)
x2005年考研数学一真题、填空题(本题共6小题,每小题4分,满分24分.把答案填在题中横线上)(4)设 是由锥面zx 2 y 2与半球面zR 2 x 2 y 2围成的空间区域,是的整个边界的外侧,则 xdydz ydzdx zdxdy _______________ .(5) 设1, 2 , 3均为3维列向量,记矩阵A(1,2,3), B (1 2 3 , 1 2 2 4 3 , 1 3 2 93 ),如果A 1,那么B _..(6) 从数1,2,3,4中任取一个数,记为 X,再从1,2, ,X 中任取一个数,记为 Y,则P{Y 2} = ___________ .二、选择题(本题共8小题,每小题4分,满分32分.每小题给出的四个选项中,只有一项符合题目要求, 把所选项前的字母填在题后的括号内)(7)设函数 f(x) lim ?1 x 3n ,则 f(x)在(,)内n '(A) 处处可导. (B)恰有一个不可导点.(C)恰有两个不可导点•(D)至少有三个不可导点.[](1)曲线y2x 2x1的斜渐近线方程为 (2)微分方程xy2y xlnx 满足 y(1)-的解为. 9(3)设函数 u(x, y, z)2x 1 —6 2y 12 2—,单位向量n 18舟1,1,1},则(1,2,3)N"表示“ M的充分必要条件是N ”,则必有(A)F(x)是偶函数f(x)是奇函数•(B)F(x)是奇函数f(x)是偶函数•(C)F(x)是周期函数f(x)是周期函数•(D)F(x)是单调函数f(x)是单调函数•(9)设函数u(x, y)X y(x y)(x y) x y数,则必有2u2u2 • y (B)2u2 x(A)2 x222(C)u u(D)u2 •x y y x y[ ](t)dt,其中函数具有二阶导数,具有一阶导2u2 •y2u厂[](8)设F(x)是连续函数f(x)的一个原函数,"M内该方程(A) 只能确定一个具有连续偏导数的隐函数 z=z(x,y).(B) 可确定两个具有连续偏导数的隐函数x=x(y,z)和 z=z(x,y).(C) 可确定两个具有连续偏导数的隐函数 y=y(x,z)和 z=z(x,y).(D) 可确定两个具有连续偏导数的隐函数 x=x(y,z)和 y=y(x,z). [](11) 设1, 2是矩阵A 的两个不冋的特征值,对应的特征向量分别为1?2 ,则 1 , A( 12)线性无关的充分必要条件是(A)10.(B)20. (C)10.(D)2 0.[ ](12) 设A 为n (n 2)阶可逆矩阵,交换A 的第1行与第2行得矩阵B, A *,B *分别为A,B的伴随矩阵,则(A) 交换A *的第1列与第2列得B *. (B)交换A *的第1行与第 2行得*B .(C) 交换A *的第1列与第2列得 B *.(D)交换A *的第1行与第2行得 *B .[ ](13)设二维随机变量(X,Y)的概率分布为X^^^Y 0 1 0 0.4 a 1b0.1已知随机事件{X 0}与{X Y 1}相互独立,则 (A) a=0.2, b=0.3 (B) a=0.4, b=0.1(C) a=0.3, b=0.2 (D) a=0.1, b=0.4三、解答题(本题共 9小题,满分94分.解答应写出文字说明、证明过程或演算步骤•)(15) (本题满分11分) 设D {( x, y) x 2y 2 <2, x 0, y 0} , [1 x 2 y 2]表示不超过1 x 2 y 2的最大整数.计算重积分 xy[1 x 2 y 2]dxdy.D(16)(本题满分12分)(14) 设X-X 2, ,X n (n 2)为来自总体N(0,1)的简单随机样本, X 为样本均值,S 2为样本方差, 则 (A)nX ~ N(0,1)(B)(C)(n 1)X~t( n 1) (D)SnS 2(n).(nn21)X 1 —F (1, n 1). X i 2i 22的切线,其交点为(2,4).设函数f(x)具有三阶连续导数,计算定积分/X x) f (x)dx.(18)(本题满分12分)已知函数f(x)在[0,1]上连续,在(0,1)内可导,且f(0)=0,f(1)=1.证明:(I)存在(0,1),使得f( ) 1 ;(II)存在两个不同的点,(0,1),使得f ( )f ( ) 1.(19)(本题满分12分)的值恒为同一常数(I)证明:对右半平面x>0内的任意分段光滑简单闭曲线C,有(y)dx2xydy0 ;C 2x y(II)求函数(y)的表达式.(20)(本题满分9分)已知二次型f(X1,X2X) (1 a)x;(1 a)x;2x f 2(1 a)x1x2 的秩为 2.(I)求a的值;(II)求正交变换x Qy,把f (x1, x2 ,x3)化成标准形;(III)求方程f (x1,x2,x3) =0 的解.(21)(本题满分9分)已知3阶矩阵A的第一行是(a,b,c),a,b,c不全为零,线性方程组Ax=0的通解..(22)(本题满分9分)设二维随机变量(X,Y)的概率密度为123矩阵B 24 6 (k为常数),且AB=O,求36k求幕级数(1)n1(1n 1 (17)(本题满分11分) ----------- )x2n的收敛区间与和函数n(2n 1)f(x).如图,曲线C的方程为y=f(x),点(3,2)是它的一个拐点,直线h与丨2分别是曲线C在点(0,0)与(3,2)处设函数(y)具有连续导数,在围绕原点的任意分段光滑简单闭曲线L上,曲线积分:,L (y)dx 2xydy 2x2f (x, y) 1,0 x 1,0 y 2x, 0, 其他.求:(I) (X,Y)的边缘概率密度f X (x), f Y(y);(II)Z 2X Y的概率密度f z(z).(23)(本题满分9分)设X i, X2,,X n(n 2)为来自总体N(0,1)的简单随机样本,X为样本均值,记Y i X i X,i 1,2, ,n.求:(I)Y i 的方差DY,i 1,2, ,n ;(II)第与Y n的协方差COV(Y i,Y n).2005年考研数学一真题解析、填空题(本题共6小题,每小题4分,满分24分.把答案填在题中横线上)2x 的斜渐近线方程为 2x 1【分析】 本题属基本题型,直接用斜渐近线方程公式进行计算即可u_ 1 1 1111 <3(1)曲线y【详解】 因为a=limxf(x) x2xlim 2 --------- x2x xa2(1 1于是所求斜渐近线方程为y 2x ?(2)微分方程xy 2y xlnx 满足y(1)-的解为y 9-xlnx ・ 3 9【分析】直接套用一阶线性微分方程yP(x)yQ(x)的通解公式:P (x)dx P(x)dxy e [ Q(x)edx C],再由初始条件确定任意常数即可【详解】原方程等价为2y -y xIn x , 2dx于是通解为 y e x [ In x 2dxe xdxC] 2x ln xdx C]=1xln x31由y(1)—得e=o ,故所求解为9eg ,x1 x. 9(3)设函数 u(x, y, z) 162y_12218,单位向量n1^{1,1,1},则V 3(1,2,3)3{cos , cos , cos u ucos n x u u ycos zcos 因此,本题直接用上述公式即可 .Ilx【详解】 因为二uu于是所求方向导数为x 3 y 6z 9X 2 【分析】函数 u(x,y,z)沿单位向量}的方向导数为:n(1,2,3)_3 J3 3 73 3 73 3 *(4)设是由锥面z Jx2y2与半球面z J R2 x22y围成的空间区域,是的整个边界的外侧,则xdydz ydzdx zdxdy 2 (1423 尹3.【分析】本题是封闭曲面且取外侧,自然想到用高斯公式转化为三重积分,再用球面(或柱面)坐标进行计算即可•【详解】xdydz ydzdx zdxdy3dxdydz= 3 R 2d- 24 si nd d0 072 32 (1 ——)R .2(5)设1, 2 , 3均为3维列向量,记矩阵A(1,2, 3 ), B ( 1 2 3 , 1 224 3 , 1 3 2 9 3 ),如果A 1,那么B 2【分析】将B写成用A右乘另一矩阵的形式,再用方阵相乘的行列式性质进行计算即可【详解】由题设,有B ( 1 2 3, 1 22 43, 1 32 93)1 1 1=(1, 2, 3)1 2 31 4 91 1 1A 1 2 3 1 22.1 4 9(6)从数1,2,3,4中任取一个数,记为X,再从1,2, ,X中任取一个数,记为Y,则P{Y 2}= .48【分析】本题涉及到两次随机试验,想到用全概率公式,且第一次试验的各种两两互不相容的结果即为完备事件组或样本空间的划分•【详解】P{Y 2} = P{X 1}P{Y 2X 1} + P{ X 2}P{Y 2X 2}+ P{X 3}P{Y 2X 3}+ P{X 4}P{Y 2X 4}于是有【分析】本题可直接推证,但最简便的方法还是通过反例用排除法找到答案xF(x) ° f (t)dt C 为偶函数,可见(A)为正确选项.1 2方法二:令 f(x)=1,则取 F(x)=x+1,排除(B)、(C);令 f(x)=x,则取 F(x)= x ,排除(D);故应选(A).2x y(9) 设函数 u(x, y) (xy) (x y)(t)dt ,其中函数x y具有二阶导数,具有一阶导,则必有22 2 2u u u u (A)2 2 . (B )22 .xy xy2222uu u u(C)2 .(D)2 .[B ]x yyx yx、选择题 (0(本题共8小题,每小题 1 1 1) 13 2 3 4)48.4分,满分32分.每小题给出的四个选项中,只有项符合题目要求,把所选项前的字母填在题后的括号内)(7)设函数 f (x) lim n :1x 3n,则 f(x)在(n t(B)恰有一个不可导点【分析】 先求出f(x)的表达式, 再讨论其可导情形 .【详解】当:x 1时, f(x) lim nJ 1 : 3nx 1 ;当: x 1时, f(x) lim n n J 1 1 1 ;当:x 1时, f(x) lim ; n3x ( 13nD n |x 3即 f (x)x 3, x 1,1, 1 x 1, 可见f(x)仅在x=x 3, x 1.1时不可导,故应选(C).(8) (B) (B ) (C) (D) 设F(x)是连续函数 F(x)是偶函数F(x)是奇函数F(x)是周期函数F(x)是单调函数f(x)的一个原函数,"M N"表示“ M 的充分必要条件是 f(x)是奇函数. f(x)是偶函数.f(x)是周期函数. f(x)是单调函数. N ”,则必有【详解】 方法一:任一原函数可表示为 F(x)x0 f(t)dt C ,且 F (x) f(x).当F(x)为偶函数时,有F ( x) F(x),于是F(x) ( 1) F (x),f ( x) f(x),也即 f( x) f (x),可见f(x)为奇函数;反过来,若f(x)为奇函数,则°f(t)dt 为偶函数,从而(A) 处处可导. (C)恰有两个不可导点. (D)至少有三个不可导点【分析】先分别求出2u~2x2u~2y2—,再比较答案即可.【详解】因为—x(x y) (x y) (x y) (x y),2u~2x2u2u~2y(x y) (x y) (x y) (x y), (x(x(xy) (x y) (x y) (x y),y)y)(x(xy)y)(x(xy)y)(x(xy),y),2 可见有—2x 2-2,应选(B). y(10)设有三元方程xy zln xze 根据隐函数存在定理, 存在点(0,1,1)的一个邻域,在此邻域内该方程(E)(F)(G)(H) 只能确定一个具有连续偏导数的隐函数可确定两个具有连续偏导数的隐函数可确定两个具有连续偏导数的隐函数可确定两个具有连续偏导数的隐函数z=z(x,y).x=x(y,z)和z=z(x,y).y=y(x,z)和z=z(x,y).x=x(y,z)和y=y(x,z).【分析】本题考查隐函数存在定理,只需令F(x,y,z)= xy zlny xze 1,分别求出三个偏导数F z,F x,F y,再考虑在点(0,1,1)处哪个偏导数不为则可确定相应的隐函数【详解】令F(x,y,z)= xy zln y xze 1F x xzy e z,F y F z xzIn y e x,且F x(01,1) ,F y(0,1,1) 1,F z(0,1,1) 0.由此可确定相应的隐函数x=x(y,z)禾廿y=y(x,z).故应选(D).(11)设2是矩阵A的两个不同的特征值, 对应的特征向量分别为2,则 1 , A( 1 2)线性无关的充分必要条件是(A) 1 0. (B) 2 0. (C) 1 0. (D) 2 0.【分析】讨论一组抽象向量的线性无关性,可用定义或转化为求其秩即可【详解】方法一:令 k 1k ?A( 12) 0,则k r 1 k ?1 1 k ?2 (k1k 2 1) 1 k 2 2 2 0.由于1, 2线性无关,于是有 & k ?k 2 210, 0.当2 0时,显然有k 1 0,k 2 0,此时1,A( 12)线性无关;反过来,若1,A( 1线性无关,则必然有 0(,否则, 1 与A( 12)= 1 1线性相关),故应选(B).方法二: 由于 1, A( 12)][ 11[1, 2]02,可见 1, A( 1 2)线性无关的充要条件是 (12) n 2)阶可逆矩阵,交换 随矩阵,则 (B)交换A *的第1列与第2列得B *. (C) 交换A *的第1列与第2列得 B *. 2 0.故应选(B).* *的第1行与第2行得矩阵B, A , B 分别为A,B(B)(D) [C ] 【分析】本题考查初等变换的概念与初等矩阵的性质, 矩阵的性质进行分析即可. 的伴交换A *的第1行与第2行得B * .交换A *的第1行与第2行得 B *. 只需利用初等变换与初等矩阵的关系以及伴随 【详解】由题设,存在初等矩阵 E 12 (交换n 阶单位矩阵的第 * 于是 B (E 12A)* * * A E 12 * A E 12 E 12 1 A * E 12,即 A * E 12 B *,可见应选(C).(13) 设二维随机 变量(X,Y) 0 的概率分布为 10 0.4 a1 b0.1Y 1}相互独立,则1行与第2行所得),使得 E 12 A已知随机事件{X 0}与{X (B) a=0.2, b=0.3 (C) a=0.3, b=0.2(B) a=0.4, b=0.1 (D)a=0.1, b=0.4【分析】 首先所有概率求和为 1,可得a+b=0.5,其次,利用事件的独立性又可得一等式,由此可确定 a,b 的取值.【详解】由题设,知 a+b=0.5又事件{X 0}与{X Y 1}相互独立,于是有P{X 0, X Y 1} P{X 0}P{X Y 1},即 a=(0.4 a)(a b),由此可解得a=0.4, b=0.1,故应选(B).三、解答题(本题共 9小题,满分94分.解答应写出文字说明、证明过程或演算步骤 (15)(本题满分11分)重积分 xy[1 x 2 y 2]dxdy.D【分析】 首先应设法去掉取整函数符号,为此将积分区域分为两部分即可 【详解】 令 D 1{(x, y) 0 x 2 y 2 1,x 0, y 0},设 D {(x, y)x 2 y 2 2, x 0, y0} , [1 X 2 y 2]表示不超过1 X 2 y 2的最大整数.计算(14) 设 X 1,X 2, ,X n (n2)为来自总体N(0,1)的简单随机样本,X 为样本均值,S 2为样本方差,(B)nX ~ N(0,1) (B)nS 22(n).(C)(n 1)XS ~t(n 1)(D)nX i 2i 2【分析】 利用正态总体抽样分布的性质和2分t 分布及F 分布的定义进行讨论即可【详解】 由正态总体抽样分布的性质知,~ N(0,1),可排除(A);又X 0 S n 选项.誓〜t(n 1),可排除(6而(n 1)S12(n 1)S 2(n 1), 不能断定(B)是正确因为X 12n22(1), X ii 22 2(n 1),且 X 12 2 (1)与 X i 〜i 22(n 1)相互独立,于是X 121).故应选(D)..) (n 1)X 12 n —〜F(1,nX i 2i 2D 2 {(x, y) 1 x 2 y 2 2x 0,y C}.则2xy[1 xy 2]dxdy = = xydxdy 2xydxdyDD 1D22 ・2sin cos d 1r 3dr2 2 32 2sin cos dr dr11 3 7=8 4 8.(16) (本题满分 12分)求幕级数(1)n1(11 \ 2n)x 的收敛区间与和函数 f(x).n 1 n (2 n 1)【分析】先求收敛半径, 进而可确定收敛区间 . 而和函数可利用逐项求导得到【详解】 因为lim1)(2n 1) 1n (2 n 1)1,所以当x 2 1时,n(2n 1) 1时,原级数发散,因此原级数的收敛半径为1,收敛区间为(一1,1)原级数绝对收敛,当x 2 1n(n 1)(2 n 1)如图,曲线C的方程为y=f(x),点(3,2)是它的一个拐点,直线11与丨2分别是曲线C在点(0,0)与(3,2)处S(x)(1)n1x2n2n(2n 1),x 1,1),n 1 2 n 1S (x)nn 1 2n (1) x1由于S(0)0, S (0) 0,所以S(x)x0S (t)dtS(x)x0S(t)dt又(n 1n 1 2n 1) x1从而f(x)2S(x) x2S(X)1 2x arcta nx ln(1,1),11 x2,x(1,1>^dt01 t2xarctantdtarcta nx,1 2xarctanx ln(1 x ).22x2,xx(1,1),x2)2x2,x1 x(1,1).则S(x)22上x2n (17)(本题满分11分)32的切线,其交点为(2,4).设函数f(x)具有三阶连续导数,计算定积分o (x 2 x)f (x)dx.【分析】 题设图形相当于已知 f(x)在x=0的函数值与导数值,(18)(本题满分12分)已知函数f(x)在[0,1]上连续,在(0,1)内可导,且f(0)=0,f(1)=1.证明: (I) 存在 (0,1),使得 f( )1;(II) 存在两个不同的点, (0,1),使得f ( )f ( ) 1.【分析】第一部分显然用闭区间上连续函数的介值定理;第二部分为双介值问题,可考虑用拉格朗日 中值定理,但应注意利用第一部分已得结论【详解】(I )令F(x) f(x) 1 x ,则F(x)在[0,1]上连续,且F(0)=-1<0, F(1)=1>0,于是由介值定理知,存在(0,1),使得F( ) 0,即f( ) 1(II )在[0,]和[,1]上对f(x)分别应用拉格朗日中值定理, 知存在两个不同的点(0, ), ( ,1),f( ) f(0) f ( ) f(1) f()0 , 1(19)(本题满分12分)的值恒为同一常数⑴证明:对右半平面x>o 内的任意分段光滑简单闭曲线C ,有 C (y 2x x;ry° ;(II )求函数 (y)的表达式•【分析】 证明(I )的关键是如何将封闭曲线C 与围绕原点的任意分段光滑简单闭曲线相联系,这可在x=3处的函数值及一阶、 二阶导数值【详解】 由题设图形知,f(0)=0, f (0) 2 ; f(3)=2, 2, f (3) 0.由分部积分,知32 3 2o (x 2 x)f (x)dx o (x 2 x)df (x) (x 2x)f (x)3f (x)(2x 1)dx3(2x 1)df (x)(2x 1) f (x)30 f (x)dx=16 2[ f (3)f(0)]20.使得f ()于是f ( )f ()f( ) 1 f()11.设函数(y)具有连续导数,在围绕原点的任意分段光滑简单闭曲线L 上,曲线积分I(y)dx 2xydy 2x 2利用曲线积分的可加性将C进行分解讨论;而(II)中求(y)的表达式,显然应用积分与路径无关即可【详解】(I)如图,将C分解为:C l i 12,另作一条曲线(y)dx 2xydy 0C 2x2 y4(y)dx 2xydy*32x2 y4(y)dx 2xydy 0 II 2x2y4•(II)设P __(y)2x2y4,Q, P,Q在单连通区域X 0内具有一阶连续偏导数,由(i)知, 2x2 y4曲线积分(y)dx2x22xydy在该区域内与路径无关,故当X 0时,总有—―x y2y(2x2y4) 4xg2xy ,2 c 54x y 2y(2x2y4)2 2 4 2(2x y )2(y)(2x y4) 4 (y)y32 4 2(2x y ) 2 4 32x (y) (y)y 4 (y)y ②2 4 2(2x y )比较①、②两式的右端,得(y) 2y,(y)y44 (y)y 2y5.由③得(y) y2(y)代入④得2y5 4cy3 2y5,所以c0,从而(y)(20)(本题满分9分)已知二次型f (x1, x2, x3) (1 a)x:(1 a)x| 2x3 2(1 a)X i X2的秩为2.(I)求a的值;(II)求正交变换x Qy,把f(x1,x2,x3)化成标准形;(III)求方程f(X1,X2,X3)=0的解.【分析】(I)根据二次型的秩为2,可知对应矩阵的行列式为先求出特征值、特征向量,再正交化、单位化即可找到所需正交变换;准形求解即可•0,从而可求a的值;(II)是常规问题, (III )利用第二步的结果,通过标【详解】(I )二次型对应矩阵为112 01即为所求的正交变换矩阵,由x=Qy ,可化原二次型为标准形:2 2f (X 1,X 2,X 3)= 2y 1 2y 2.(21)(本题满分9分)36( k 为常数),且AB=O,求 k线性方程组Ax=0的通解.【分析】AB=O,相当于告之B 的每一列均为 Ax=0的解,关键问题是Ax=0的基础解系所含解向量的由二次型的秩为2, (II ) (2E (0E由于这里AA)x A)x2已经正交, 0,得 a=0.可求出其特征值为0,得特征向量为:0,得特征向量为:直接将3单位化, 2 2, 3 0.得:(III )由 f (x 1, x 2, x 3) = 2 y-|22y ;,得 y 10, y 2 0, y 3 k ( k 为任意常数)从而所求解为:x=Qy= 1c ,其中c 为任意常数. 0已知3阶矩阵A 的第一行是(a,b,c ), a,b,c 不全为零,矩阵B个数为多少,而这又转化为确定系数矩阵 A 的秩. 0,关于Y 的边缘概率密度f Y (y) =f (x, y)dx =1 ydx,02y 2, 其他.【详解】 由AB=O 知,B 的每一列均为Ax=O 的解,且r(A) r(B) 3.1,显然r(A) 1,故r(A)=1.可见此时Ax=0的基础解系所含解 第三列线性无关,可作为其基础解系,故 Ax=0的通解为:13x k 1 2k 2 6 , k 1, k 2为任意常数.3k(2)若 k=9,则 r(B)=1,从而 1 r(A) 2.求:(I ) (X,Y)的边缘概率密度 f X (x), f Y (y);【分析】 求边缘概率密度直接用公式即可;而求二维随机变量函数的概率密度,一般用分布函数法, 即先用定义求出分布函数,再求导得到相应的概率密度关于X 的边缘概率密度2x,0 x 1, 0,其他.(1)若 k 9,则 r(B)=2,于是 r(A)向量的个数为 3-r(A)=2,矩阵B 的第一1)若r(A)=2,贝U Ax=0的通解为:x k 1 2 , k 1为任意常数2)r(A)=1,则Ax=0的同解方程组为:ax 1 bx 2 cx 3 0 ,不妨设a 0 ,则其通解为k 1 k 2a0 ,k 1, k 2为任意常数. 1(22) (本题满分9分)设二维随机变量(X,Y)的概率密度为f (x, y)1,0 x 1,0 y 2x, 0, 其他.(II ) Z 2X Y 的概率密度f z (Z ).f x (x)=f (x, y)dy =2xdy,00,x 1, 其他.【详解】(I )1 =(1丫,0 y 2, 02其他._ 1 2 =Z 4Z ;【分析】 先将Y 表示为相互独立的随机变量求和,再用方差的性质进行计算即可;求 差Cov(Y 「Y n ),本质上还是数学期望的计算,同样应注意利用数学期望的运算性质【详解】由题设,知X 1, X 2, ,X n (n 2)相互独立,且1 1 D[(1 -)X i n1)2 DX i Adj n n j i(II )令 F Z (Z )P{Z z} P{2Xz},0时, F Z (Z ) P{2X YZ }Z 2 时,F Z (Z ) P{2XZ }3)2 时,F Z (Z ) P{2X Y Z } 1.即分布函数为:F Z ⑵Z 0,1 2Z4 1,,0 Z 0, Z 2, Z 2.故所求的概率密度为:f Z (Z )1 1Z ,0,0 Z 其他. 2, (23) (本题满分9分) 设 X 1, X 2, ,X n (n 2)为来自总体N(0,1)的简单随机样本,X 为样本均值,记Y iX i X,i 1,2, ,n.求:(I ) Y 的方差DYJ1,2, ,n ; (II )Y 与Y n 的协方差CovMY n ).£与Y n 的协方EX i 0,DX i1(i 1,2,,n),EX 0.nX j ]n j i(I ) DY i D(X i X)(n 1)2 1 /八n 1= 2 2 (n1) .n n n(II) Cov(Y1,Y n)E[(Y EYj(Y n EY n)]= E(Y i Y n)E[(X1X)(X n X)]= E(X i X n X1X2X n X X )= E(X i X n)2E(X1X) EX2=0 -E[X2n n DX (EX)2X i X j]j 2。
2005年考研数学二试题及答案
![2005年考研数学二试题及答案](https://img.taocdn.com/s3/m/a7de21dc43323968001c9213.png)
2005年数学二试题分析、详解和评注一、填空题(本题共6小题,每小题4分,满分24分。
把答案填在题中横线上)(1)设x x y )sin 1(+=,则π=x dy= 。
(2) 曲线xx y 23)1(+=的斜渐近线方程为.(3)=--⎰1221)2(xxxdx(4) 微分方程x x y y x ln 2=+'满足91)1(-=y 的解为 (5)当0→x 时,2)(kx x =α与x x x x cos arcsin 1)(-+=β是等价无穷小,则k= 。
(6)设321,,ααα均为3维列向量,记矩阵),,(321ααα=A ,)93,42,(321321321ααααααααα++++++=B , 如果1=A ,那么=B 。
二、选择题(本题共8小题,每小题4分,满分32分。
每小题给出的四个选项中,只有一项符合题目要求,把所选项前的字母填在题后的括号内)(7)设函数n nn xx f 31lim )(+=∞→,则f (x )在),(+∞-∞内(A ) 处处可导。
(B) 恰有一个不可导点. (C ) 恰有两个不可导点。
(D ) 至少有三个不可导点. [ ] (8)设F(x )是连续函数f(x)的一个原函数,""N M ⇔表示“M 的充分必要条件是N",则必有(A) F(x)是偶函数⇔f (x)是奇函数. (B) F (x )是奇函数⇔f(x)是偶函数。
(C) F (x )是周期函数⇔f(x )是周期函数. (D) F(x)是单调函数⇔f(x )是单调函数。
[ ](9)设函数y=y(x )由参数方程⎩⎨⎧+=+=)1ln(,22t y t t x 确定,则曲线y=y (x)在x=3处的法线与x 轴交点的横坐标是(A) 32ln 81+. (B ) 32ln 81+-. (C) 32ln 8+-。
(D) 32ln 8+。
[ ](10)设区域}0,0,4),{(22≥≥≤+=y x y x y x D ,f (x)为D 上的正值连续函数,a,b为常数,则=++⎰⎰σd y f x f y f b x f a D)()()()((A ) πab . (B)π2ab . (C) π)(b a +. (D ) π2ba + . [ ] (11)设函数⎰+-+-++=yx yx dt t y x y x y x u )()()(),(ψϕϕ, 其中函数ϕ具有二阶导数,ψ 具有一阶导数,则必有(A ) 2222y u x u ∂∂-=∂∂. (B ) 2222yux u ∂∂=∂∂. (C ) 222yuy x u ∂∂=∂∂∂。
2005年考研数学二试题及答案
![2005年考研数学二试题及答案](https://img.taocdn.com/s3/m/872c050abfd5b9f3f90f76c66137ee06eff94e10.png)
2005年数学二试题分析、详解和评注一、填空题(本题共6小题,每小题4分,满分24分. 把答案填在题中横线上)(1)设xx y )sin 1(+=,则π=x dy= .(2) 曲线xx y 23)1(+=的斜渐近线方程为.(3)=--⎰1221)2(xxxdx(4) 微分方程x x y y x ln 2=+'满足91)1(-=y 的解为(5)当0→x 时,2)(kx x =α与x x x x cos arcsin 1)(-+=β是等价无穷小,则k= .(6)设321,,ααα均为3维列向量,记矩阵),,(321ααα=A ,)93,42,(321321321ααααααααα++++++=B , 如果1=A ,那么=B .二、选择题(本题共8小题,每小题4分,满分32分. 每小题给出的四个选项中,只有一项符合题目要求,把所选项前的字母填在题后的括号内)(7)设函数n nn xx f 31lim )(+=∞→,则f(x)在),(+∞-∞内(A) 处处可导. (B) 恰有一个不可导点.(C) 恰有两个不可导点. (D) 至少有三个不可导点. [ ] (8)设F(x)是连续函数f(x)的一个原函数,""N M ⇔表示“M 的充分必要条件是N ”,则必有(A) F(x)是偶函数⇔f(x)是奇函数. (B ) F(x)是奇函数⇔f(x)是偶函数.(C) F(x)是周期函数⇔f(x)是周期函数.(D) F(x)是单调函数⇔f(x)是单调函数. [ ](9)设函数y=y(x)由参数方程⎩⎨⎧+=+=)1ln(,22t y t t x 确定,则曲线y=y(x)在x=3处的法线与x轴交点的横坐标是(A) 32ln 81+. (B) 32ln 81+-. (C) 32ln 8+-. (D) 32ln 8+. [ ](10)设区域}0,0,4),{(22≥≥≤+=y x y x y x D ,f(x)为D 上的正值连续函数,a,b为常数,则=++⎰⎰σd y f x f y f b x f a D)()()()((A) πab . (B)π2ab . (C) π)(b a +. (D) π2b a + . [ ] (11)设函数⎰+-+-++=yx yx dt t y x y x y x u )()()(),(ψϕϕ, 其中函数ϕ具有二阶导数,ψ 具有一阶导数,则必有(A) 2222yux u ∂∂-=∂∂. (B ) 2222y u x u ∂∂=∂∂. (C) 222yuy x u ∂∂=∂∂∂. (D)222x u y x u ∂∂=∂∂∂. [ ](12)设函数,11)(1-=-x xex f 则 (A) x=0,x=1都是f(x)的第一类间断点. (B ) x=0,x=1都是f(x)的第二类间断点.(C) x=0是f(x)的第一类间断点,x=1是f(x)的第二类间断点. x=0是f(x)的第二类间断点,x=1是f(x)的第一类间断点. [ ](13)设21,λλ是矩阵A 的两个不同的特征值,对应的特征向量分别为21,αα,则1α,)(21αα+A 线性无关的充分必要条件是(A) 01≠λ. (B) 02≠λ. (C) 01=λ. (D) 02=λ. [ ] (14)设A 为n (2≥n )阶可逆矩阵,交换A 的第1行与第2行得矩阵B, **,B A 分别为A,B 的伴随矩阵,则(A) 交换*A 的第1列与第2列得*B . (B) 交换*A 的第1行与第2行得*B .(C) 交换*A 的第1列与第2列得*B -. (D) 交换*A 的第1行与第2行得*B -. [ ] 三 、解答题(本题共9小题,满分94分.解答应写出文字说明、证明过程或演算步骤.)(15)(本题满分11分)设函数f(x)连续,且0)0(≠f ,求极限.)()()(lim⎰⎰--→x xx dtt x f x dtt f t x(16)(本题满分11分) 如图,1C 和2C 分别是)1(21x e y +=和x e y =的图象,过点(0,1)的曲线3C 是一单调增函数的图象. 过2C 上任一点M(x,y)分别作垂直于x 轴和y 轴的直线x l 和y l . 记21,C C 与x l 所围图形的面积为)(1x S ;32,C C 与y l 所围图形的面积为).(2y S 如果总有)()(21y S x S =,求曲线3C 的方程).(y x ϕ=(17)(本题满分11分)如图,曲线C 的方程为y=f(x),点(3,2)是它的一个拐点,直线1l 与2l 分别是曲线C 在点(0,0)与(3,2)处的切线,其交点为(2,4). 设函数f(x)具有三阶连续导数,计算定积分⎰'''+32.)()(dx x f x x(18)(本题满分12分)用变量代换)0(cos π<<=t t x 化简微分方程0)1(2=+'-''-y y x y x ,并求其满足2,10='===x x y y的特解.(19)(本题满分12分)已知函数f(x)在[0,1]上连续,在(0,1)内可导,且f(0)=0,f(1)=1. 证明: (I )存在),1,0(∈ξ 使得ξξ-=1)(f ;(II )存在两个不同的点)1,0(,∈ζη,使得.1)()(=''ζηf f (20)(本题满分10分)已知函数z=f(x,y) 的全微分ydy xdx dz 22-=,并且f(1,1,)=2. 求f(x,y)在椭圆域}14),{(22≤+=y x y x D 上的最大值和最小值.(21)(本题满分9分) 计算二重积分σd y x D⎰⎰-+122,其中}10,10),{(≤≤≤≤=y x y x D .(22)(本题满分9分)确定常数a,使向量组,),1,1(1Ta =α,)1,,1(2T a =αT a )1,1,(3=α可由向量组,),1,1(1T a =β,)4,,2(2T a -=βT a a ),,2(3-=β线性表示,但向量组321,,βββ不能由向量组321,,ααα线性表示.(23)(本题满分9分)已知3阶矩阵A 的第一行是c b a c b a ,,),,,(不全为零,矩阵⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=k B 63642321(k 为常数),且AB=O, 求线性方程组Ax=0的通解.以下题型均在05年考研文登数学辅导班中讲过1..【分析】 本题属基本题型,幂指函数的求导(或微分)问题可化为指数函数求导或取对数后转化为隐函数求导.【详解】 方法一: xx y )sin 1(+==)sin 1ln(x x e +,于是]sin 1cos )sin 1[ln()sin 1ln(xxx x e y x x +⋅++⋅='+,从而 π=x dy=.)(dx dx y ππ-='方法二: 两边取对数,)sin 1ln(ln x x y +=,对x 求导,得xx x x y y sin 1cos )sin 1ln(1+++=', 于是 ]sin 1cos )sin 1[ln()sin 1(xxx x x y x+⋅++⋅+=',故π=x dy=.)(dx dx y ππ-='【评注】 幂指函数的求导问题,既不能单纯作为指数函数对待,也不能单纯作为幂函数,而直接运用相应的求导公式.2..【分析】 本题属基本题型,直接用斜渐近线方程公式进行计算即可.【详解】 因为a=,1)1(lim )(lim23=+=+∞→+∞→xx x x x f x x[]23)1(lim)(lim 2323=-+=-=+∞→+∞→xxx ax x f b x x , 于是所求斜渐近线方程为.23+=x y 【评注】 如何求垂直渐近线、水平渐近线和斜渐近线,是基本要求,应熟练掌握。
2005年考研数学一试题分析、详解和评注
![2005年考研数学一试题分析、详解和评注](https://img.taocdn.com/s3/m/234f74e380eb6294dd886c88.png)
2005年数学一试题分析、详解和评注一、填空题(本题共6小题,每小题4分,满分24分. 把答案填在题中横线上)(1)曲线122+=x x y 的斜渐近线方程为 .4121-=x y【分析】 本题属基本题型,直接用斜渐近线方程公式进行计算即可.【详解】 因为a=212lim )(lim22=+=∞→∞→x x x x x f x x , []41)12(2lim)(lim -=+-=-=∞→∞→x x ax x f b x x ,于是所求斜渐近线方程为.4121-=x y 【评注】 如何求垂直渐近线、水平渐近线和斜渐近线,是基本要求,应熟练掌握。
这里应注意两点:1)当存在水平渐近线时,不需要再求斜渐近线;2)若当∞→x 时,极限xx f a x )(lim∞→=不存在,则应进一步讨论+∞→x 或-∞→x 的情形,即在右或左侧是否存在斜渐近线。
完全类似例题见《数学复习指南》(理工类)P.192【例7.32】(2) 微分方程x x y y x ln 2=+'满足91)1(-=y 的解为.91ln 31x x x y -=. 【分析】直接套用一阶线性微分方程)()(x Q y x P y =+'的通解公式:⎰+⎰⎰=-])([)()(C dx e x Q e y dxx P dx x P , 再由初始条件确定任意常数即可.【详解】 原方程等价为x y xy ln 2=+', 于是通解为 ⎰⎰+⋅=+⎰⋅⎰=-]ln [1]ln [2222C xdx x xC dx ex ey dxx dxx =2191ln 31x C x x x +-, 由91)1(-=y 得C=0,故所求解为.91ln 31x x x y -=【评注】 本题虽属基本题型,但在用相关公式时应注意先化为标准型. 另外,本题也可如下求解:原方程可化为x x xy y x ln 222=+',即 x x y x ln ][22=',两边积分得C x x x xdx x y x +-==⎰332291ln 31ln , 再代入初始条件即可得所求解为.91ln 31x x x y -=完全类似公式见《数学复习指南》(理工类)P.154(3)设函数181261),,(222z y x z y x u +++=,单位向量}1,1,1{31=n ,则)3,2,1(nu∂∂=33. 【分析】 函数u(x,y,z)沿单位向量γβαcos ,cos ,{cos =n}的方向导数为:γβαcos cos cos zu y u x u n u ∂∂+∂∂+∂∂=∂∂ 因此,本题直接用上述公式即可.【详解】 因为3x x u =∂∂,6y y u =∂∂,9zz u =∂∂,于是所求方向导数为)3,2,1(nu ∂∂=.33313131313131=⋅+⋅+⋅ 【评注】 本题若n=},,{l n m 非单位向量,则应先将其单位化,从而得方向余弦为:,cos 222ln m m ++=α,cos 222ln m n ++=β222cos ln m l ++=α.完全类似例题见《数学复习指南》(理工类)P.330【例12.30】(4)设Ω是由锥面22y x z +=与半球面222y x R z --=围成的空间区域,∑是Ω的整个边界的外侧,则⎰⎰∑=++zdxdy ydzdx xdydz 3)221(2R -π. 【分析】本题∑是封闭曲面且取外侧,自然想到用高斯公式转化为三重积分,再用球面(或柱面)坐标进行计算即可.【详解】⎰⎰∑=++zdxdy ydzdx xdydz ⎰⎰⎰Ωdxdydz 3=.)221(2sin 3320402R d d d R⎰⎰⎰-=πππθϕϕρρ .【评注】 本题属基本题型,不论是用球面坐标还是用柱面坐标进行计算,均应特别注意计算的准确性,主要考查基本的计算能力.完全类似例题见《数学复习指南》(理工类)P.325【例12.22】(5)设321,,ααα均为3维列向量,记矩阵),,(321ααα=A ,)93,42,(321321321ααααααααα++++++=B , 如果1=A ,那么=B 2 .【分析】 将B 写成用A 右乘另一矩阵的形式,再用方阵相乘的行列式性质进行计算即可.【详解】 由题设,有)93,42,(321321321ααααααααα++++++=B=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡941321111),,(321ααα, 于是有 .221941321111=⨯=⋅=A B【评注】 本题相当于矩阵B 的列向量组可由矩阵A 的列向量组线性表示,关键是将其转化为用矩阵乘积形式表示。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
=
¶2u ¶x 2
.
【答】 应选 (B) .
【解】 因
¶u ¶x
=
j ¢( x
+
y)
+ j¢(x
-
y)
+y
(x
+
y)
-y
(x
-
y)
,且
¶u ¶y
=
j ¢( x
+
y)
- j ¢( x
-
y) +y
(x
+
y)
-y
(x
-
y)
,
故
¶2u ¶x2
=
j ¢¢( x
+
y)
- j ¢¢( x
-
y)
+y
¢( x
+
y)
-y
l1 l2
ù úû
,
所以 a 1
,
A(a1
+
a2
)
线性
1 无关的充要条件是 0
l1 l2
= l2
¹ 0.
故选 (B) .
【解法二】 由题意,知 Aa1 = l1a1, Aa2 = l2a2 . 设 k1a1 + k2 A(a1 + a 2 ) = 0 ,则有 k1a1 + k2l1a1 + k2l2a 2 = 0 ,即有 (k1 + k2l1 )a1 + k2l2a 2 = 0 . 因a1,a 2 是属于不同特征值的特征向量,故a1,a 2 线性无关,于是有 k1 + k2l1 = 0 , k2l2 = 0 . 因此当 l2 ¹ 0 时,有 k1 = 0, k2 = 0 ,此时a1 , A(a1 + a 2 ) 线性无关; 反之,若a1, A(a1 + a2 ) 线性无关,则必然有 l2 ¹ 0 (否则,由 l2 = 0 ,可见 k2 可以不
A (a1 + a2 ) 线性无关的充分必要条件是
(A) l1 ¹ 0
(B) l2 ¹ 0
(C) l1 = 0
(D) l2 = 0 .
【答】 应选 (B) .
【解法一】 因a1,a 2 是属于不同特征值的特征向量,故a1,a 2 线性无关.
而[a1, A(a1 + a 2 )] = [a1, l1a1 + l2a 2 ] = [a1,a 2 ]êëé01
=
1 2
x
-
1 4
.
【解】
因a
= lim x®¥
y x
=
lim
x®¥
2
x x+
1
=
1 2
,
b
=
lim(
x®¥
y
-
ax)
=
lim(
x®¥
2
x x
2
+
1
-
1 2
x)
=
-
1 4
,
故
y
=
x2 2x +1
的斜渐近线为
y
=
1 2
x
-
1 4
.
(2)
微分方程 xy¢ + 2 y
=
x ln x 满足 y(1)
=
-
1 9
故选 (D) .
åX
2 i
/
(n
-1)
åX
2 i
i=2
i=2
三、解答题(本题共 9 小题,满分 94 分. 解答应写出文字说明、证明过程或演算步骤. )
{X + Y = 1}相互独立,知 P{X = 0, X + Y = 1} = P{X = 0}× P{X + Y = 1},即
a = (0.4 + a)(a + b) . 于是可解得 a = 0.4, b = 0.1,故选 (B) .
(14) 设 X1, X 2 ,L, X n (n ³ 2) 为来自总体 N (0,1) 的简单随机样本, X 为样本均值, S 2 为
P{Y = 2} =
.
【答】
应填
13 48
.
å { } å 4
【解】 由全概公式,得 P{Y = 2} = P{X = i}P Y = 2 X = i
i=2
=
4 i=2
1 4
×
1 i
=
13 48
.
二、选择题:(本题共 8 小题,每小题 4 分,满分 32 分. 在每小题给出的四个选项中, 只有一个是符合题目要求的,把所选项前的字母填在题后的括号内. )
郝海龙:考研数学复习大全·配套光盘·2005 年数学试题详解及评分参考
2005 年全国硕士研究生入学统一考试 数学试题详解及评分参考
数 学(一)
一、填空题(本题共 6 小题,每小题 4 分,满分 24 分. 把答案填在题中横线上.)
(1)
曲线 y
=
x 2 的斜渐近线方程为 2x +1
.
【答】 应填
y
nX S
~
t
(n
-1)
,故排除选项(A)、(B)、(C);
又由
c
2
分布的产生模式,知
X
2 1
~
c 2 (1) ,
n
n
å å X
2 i
~
c 2 (n -1) ,且
X
2 1
与
X
2 i
相互独立,于是由
F
分布的产生模式,有
i=2
i=2
X
2 1
/1
n
~
F
(1,
n
-
1)
,即
(n
-
n
1)
X
2 1
~
F (1, n -1) .
¢( x
-
y)
,
¶2u ¶x¶y
=
j ¢¢( x
+
y)
- j ¢¢( x
-
y)
+y
¢( x
+
y)
+y
¢(x
-
y)
,
¶2u ¶y2
= j¢¢(x
+
y)
+ j¢¢(x
-
y)
+y
¢(x
+
y)
-y
¢(x
-
y) .
因此
¶2u ¶x2
=
¶2u ¶y 2
.
故选 (B) .
(10) 设有三元方程 xy - z ln y + e xz = 1,根据隐函数存在定理,存在点 (0,1,1) 的一个邻域,
样本方差,则
(A) nX ~ N (0,1)
(B) nS 2 ~ c 2 (n).
(C)
(n -1)X S
~ t(n -1)
【答】 应选 (D) .
(D)
(n
-
1)
X
2 1
n
~ F (1, n - 1).
åX
2 i
i=2
【 解 】 根 据 正 态 总 体 抽 样 分 布 理 论 , 有 n X ~ N (0,1) , (n -1)S 2 ~ c 2 (n -1) ,
(E(1) (2) A)-1
=-
A
A E -1 -1 (1) (2)
= - A*E(-11) (2)
= - A*E12 ,即
A*E12 = -B* ,故选 (C).
(13) 设二维随机变量 ( X ,Y ) 的概率分布为
Y X
0
1
0
0.4
a
1
b
0.1
2005 年 • 盘·2005 年数学试题详解及评分参考
=
1 3
,
u¢z
|(1,2,3)
=
z 9
1 (1,2,3) = 3 ,故
gradu
|(1,2,3)
=
{13
,
1 3
,
13}
,从而
¶ur ¶n
|(1,2,3)
=
{13
,
1 3
,
13}×
1 {1,1,1} = 3
3 3
.
(4) 设 W 是由锥面 z = x 2 + y 2 与半球面 z = R 2 - x 2 - y 2 围成的空间区域, S 是 W 的
则必有
(A) F(x) 是偶函数 Û f (x) 是奇函数.
(B) F(x) 是奇函数 Û f (x) 是偶函数.
(C) F(x) 是周期函数 Û f (x) 是周期函数. (D) F(x) 是单调函数 Û f (x) 是单调函数.
【答】 应选 (A) .
【解】 取 f (x) = cos x +1, F (x) = sin x + x +1,可见 (B), (C), (D)均不正确. 故选 (A) .
.
【答】 应填 2.
æ1 1 1ö æ1 1 1ö
11 1
【解】 因 B = (a1,a2 ,a3 ) çç1
2
3
÷ ÷
=
A çç1
2
3
÷ ÷
,故
B
=
A
1
2
3 = 2 A =2.
çè1 4 9 ÷ø çè1 4 9 ÷ø
149
(6) 从数1, 2,3, 4 中任取一个数,记为 X ,再从1,2,L, X 中任取一个数,记为Y ,则
为 0,即a1 与 A(a1 + a 2 ) = l1a1 线性相关,矛盾!),故选 (B) .