直流无刷电机及驱动器介绍

合集下载

FD6288直流无刷电机三相250V栅极驱动器

FD6288直流无刷电机三相250V栅极驱动器

FD6288FD6288三相250V 栅极驱动器概述FD6288是一款集成了三个独立的半桥栅极驱动集成电路芯片,专为高压、高速驱动MOSFET 和IGBT 设计,可在高达+250V 电压下工作。

FD6288内置VCC/VBS 欠压(UVLO )保护功能,防止功率管在过低的电压下工作。

FD6288内置直通防止和死区时间,防止被驱动的高低侧MOSFET 或IGBT 直通,有效保护功率器件。

FD6288内置输入信号滤波,防止输入噪声干扰。

封装TSSOP20QFN24产品特点● 悬浮绝对电压+250V ● 电源电压工作范围:4.8~20V ● 集成三个独立的半桥驱动● 输出电流+1.5A/-1.8A● 3.3V/5V 输入逻辑兼容● VCC/VBS 欠压保护(UVLO )● 内置直通防止功能● 内置200ns 死区时间 ● 内置输入滤波功能● 高低端通道匹配● 输出与输入同相应用三相直流无刷电机驱动订购信息P re li mi na ry1.绝对最大额定值(除非特殊说明,所有管脚均以COM 作为参考点)电压超过绝对最大额定值,可能会损坏芯片。

芯片长久地工作在推荐的工作条件之上,可能会影响其可靠性。

不建议芯片在推荐的工作条件之上长期工作。

注意:在任何情况下,不要超过P D 。

2. 推荐工作条件(所有电压均以COM 为参考点)建议不超过推荐的工作条件,或将绝对最大额定值设计为工作条件。

注1:V S1,2,3为(COM-2V )到250V 时,HO 正常工作。

V S1,2,3为(COM-2V )到(COM-V BS )时,HO 逻辑状态保持。

注2:V S1,2,3为(COM-50V ),宽50ns 的瞬态负电压时,HO 正常工作。

mi3. 静态电气参数(除非特别注明,否则T A =25︒C ,V CC =V BS1,2,3=15V ,V S =COM )4. 动态电气参数(除非特别注明,否则T A =25︒C ,V CC =V BS1,2,3=15V ,V S =COM )e5. 电路框图6. 芯片引脚配置 6.1 TSSOP20HIN1VS1HO1HIN3HIN2VCC LIN2VS2HO2VB2LIN3LIN1HO3VB3LO2LO1VS3LO3COM VB1图6-1 封装管脚图表6-1 管脚说明i y6.2 QFN24LIN1LIN2LIN3VCC COMLO3LO2LO1VS3VS1VB2HO2VS2VB3HO3HO1VB1HIN1HIN2HIN3NC NC NC NC图6-2 封装管脚图表6-2 管脚说明P i ny7. 开关时间测试标准8. 传输时间匹配测试标准50%50%HIN LIN9. 直通防止功能芯片内部设计专门用于防止功率管直通的保护电路,能有效地防止高侧和低侧输入信号受到干扰时造成的功率管直通损坏。

无刷直流电机驱动器说明书

无刷直流电机驱动器说明书

无刷直流电机驱动器说明书-CAL-FENGHAI.-(YICAI)-Company One1无刷驱动器DBLS-02一概述:本控制驱动器为闭环速度型控制器,采用最近型IGBT和MOS功率器,利用直流无刷电机的霍尔信号进行倍频后进行闭环速度控制,控制环节设有PID速度调节器,系统控制稳定可靠,尤其是在低速下总能达到最大转矩,速度控制范围150~10000rpm。

二产品特征:1、 PID速度、电流双环调节器2、高性能低价格3、 20KHZ斩波频率4、电气刹车功能,使电机反应迅速5、过载倍数大于2,在低速下转矩总能达到最大6、具有过压、欠压、过流、过温、霍尔信号非法等故障报警功能三电气指标标准输入电压:24VDC~48VDC,最大电压不超过60VDC。

最大输入过载保护电流:15A、30A两款连续输出电流:15A加速时间常数出厂值:秒其他可定制四端子接口说明 :1、电源输入端:引角序号引角名中文定义1V+直流+24~48VDC输入2GND GND输入引角序号引角名中文定义1MA电机A相2MB电机B相3MC电机C相4GND地线5HA霍尔信号A相输入端6HB霍尔信号B相输入端7HC霍尔信号C相输入端8+5V霍尔信号的电源线GND:信号地F/R:正、反转控制,接GND反转,不接正转,正反转切换时,应先关断ENEN:使能控制:EN接地,电机转(联机状态),EN不接,电机不转(脱机状态)BK:刹车控制:当不接地正常工作,当接地时,电机电气刹车,当负载惯量较大时,应采用脉宽信号方式,通过调整脉宽幅值来控制刹车效果。

SV ADJ:外部速度衰减:可以衰减从0~100%,当外部速度指令接时,通过该电位器可以调速试机PG:电机速度脉冲输出:当极对数为P时,每转输出6P个脉冲(OC门输入)ALM:报警输出:当电路处于报警状态时,输出低电平(OC门输出)+5V:调速电压输出,可用电位器在SV和GND形成连续可调内置电位器:调节电机速度增益,可以从0~100%范围内调速。

无刷直流电机驱动器说明书

无刷直流电机驱动器说明书

无刷直流电机驱动器说明书————————————————————————————————作者:————————————————————————————————日期:无刷驱动器DBLS-02一概述:本控制驱动器为闭环速度型控制器,采用最近型IGBT和MOS功率器,利用直流无刷电机的霍尔信号进行倍频后进行闭环速度控制,控制环节设有PID速度调节器,系统控制稳定可靠,尤其是在低速下总能达到最大转矩,速度控制范围150~10000rpm。

二产品特征:1、 PID速度、电流双环调节器2、高性能低价格3、 20KHZ 斩波频率4、电气刹车功能,使电机反应迅速5、过载倍数大于2,在低速下转矩总能达到最大6、具有过压、欠压、过流、过温、霍尔信号非法等故障报警功能三电气指标标准输入电压:24VDC~48VDC,最大电压不超过60VDC。

最大输入过载保护电流:15A、30A两款连续输出电流:15A加速时间常数出厂值:0.2秒其他可定制四端子接口说明 :1、电源输入端:引角序号引角名中文定义1V+ 直流+24~48VDC输入2GND GND输入2、电机输入端:引角序号引角名中文定义1MA 电机A相2MB 电机B相3MC 电机C相4GND 地线5HA 霍尔信号A相输入端6HB 霍尔信号B相输入端7HC 霍尔信号C相输入端8+5V 霍尔信号的电源线3、控制信号部分GND:信号地F/R:正、反转控制,接GND反转,不接正转,正反转切换时,应先关断ENEN:使能控制:EN接地,电机转(联机状态),EN不接,电机不转(脱机状态)BK:刹车控制:当不接地正常工作,当接地时,电机电气刹车,当负载惯量较大时,应采用脉宽信号方式,通过调整脉宽幅值来控制刹车效果。

SV ADJ:外部速度衰减:可以衰减从0~100%,当外部速度指令接6.25V时,通过该电位器可以调速试机PG:电机速度脉冲输出:当极对数为P时,每转输出6P个脉冲(OC门输入)ALM:报警输出:当电路处于报警状态时,输出低电平(OC门输出)+5V:调速电压输出,可用电位器在SV和GND形成连续可调内置电位器:调节电机速度增益,可以从0~100%范围内调速。

无刷直流电动机及驱动系统设计

无刷直流电动机及驱动系统设计

无刷直流电动机及驱动系统设计无刷直流电动机是一种能够将电能转化为机械能的电机,它不仅具有高效率、高功率密度、大扭矩和高转速等优点,同时还能在宽范围内调整转速和控制扭矩。

因此,无刷直流电动机及其驱动系统设计成为了工业应用和个人消费电子产品中常见的一种电机类型。

无刷直流电动机驱动系统由电机本体、功率器件、传感器、微控制器和控制算法等组成。

首先,电机本体是电机的核心部分,包括转子、定子、磁铁和绕组等。

转子是电机的运动部分,由永磁体和轴承支撑。

定子是电机的静止部分,由铁芯和绕组组成。

磁铁是电机的永磁体,产生磁场以与永磁体上的磁场相互作用。

绕组是由导线绕制的线圈,通过流过电流产生磁场。

其次,功率器件是驱动系统的关键部分,用于将电能从电源转化为机械能。

一般采用MOSFET或IGBT等功率器件,以实现高速开关和较高电流能力。

它们能够承受高电压和大电流,并快速切换,使得电机能够根据控制信号调整转速和扭矩。

传感器是驱动系统中用于检测电机位置和转速的重要组成部分。

常见的传感器有霍尔传感器、反电动势传感器和编码器等。

霍尔传感器通过检测磁场强度变化来确定转子的位置,反电动势传感器通过测量绕组中电流变化产生的反电动势来确定电机的转速,编码器则能够提供更准确的位置和速度信息。

微控制器是驱动系统中负责控制电机运行的核心部件。

它包含了控制算法、控制逻辑和通信接口等功能,通过与传感器和功率器件进行交互来实现对电机转速、扭矩和方向的精确控制。

微控制器能够根据输入的控制信号,通过调节电流和电压来控制电机的运行状态。

最后,控制算法是驱动系统的重要组成部分,在实际应用中起到至关重要的作用。

常见的控制算法包括PID控制、电流环控制、速度环控制和位置环控制等。

PID控制通过调整比例、积分和微分控制器的系数来达到稳定控制的效果。

电流环控制通过直接或间接测量电机电流,以控制电机的转矩和速度。

速度环控制通过测量电机转速,并根据所需转速和实际转速之间的差异来调整控制信号。

直流电机无刷驱动器

直流电机无刷驱动器

一绪论1.1研究背景、现状及意义自1835年世界上第一台应用电动机问世以来,电动机作为机电能转换装置,其应用范围已遍及国民经济生活的各个领域。

电动机主要有同步电动机、异步电动机与直流电动机三种,其容量小到几瓦,大到上万千瓦。

由于直流电动机具有非常优秀的线性机械特性、宽的调速范围、大的起动转矩、简单的控制电路等优点,一直被广泛地应用在各种驱动装置和伺服系统中,但由于直流电动机采用电刷和换相器换相,存在机械摩擦,从而产生电火花、噪音、电磁干扰等问题;另外,由于机械换相器的存在,使传统直流电动机的制造相对复杂,成本较高,维护困难。

这些问题的存在,限制了直流电动机的进一步应用。

长期以来,人们一直在寻找一种不用电刷和换相器的直流电动机。

20世纪30年代,已经有学者开始研究以电子换相取代机械换相的无刷直流电动机,但由于当时大功率电子器件处于初级发展阶段,使这种电动机只能停留在实验室研究阶段,无法推广应用。

1955年美国D.哈里森等人首次申请了用晶体管换相电路代替机械电刷的专利,宣告现代无刷直流电动机的诞生。

1962年,借助于霍尔元件之利,实现了换相的无刷直流电动机。

1978年,原西德曼内斯曼公司在汉诺威贸易博览会上推出了MA C方波无刷直流电动机(Brushless DC Motor,简称BLDCM)及其驱动器,标志着利用电子换相的无刷直流电动机真正进入实用阶段。

无刷直流电动机利用电子换相器取代了机械电刷和机械换相器,使这种电动机不仅保留了直流电动机的优点,而且又具有交流电动机的结构简单、运行可靠、维护方便等优点,所以无刷直流电动机一经问世就以极快的速度发展和普及。

1986年,H.R.博尔顿对方波无刷直流电动机进行了全面系统的总结,成为方波无刷直流电动机研究的经典文献,它标志着方波无刷直流电动机在理论上达到了成熟。

按照流入电枢绕组的电流波形的不同,直流无刷电动机可分为方波永磁无刷直流电动机(BLDCM)和正弦波型永磁无刷直流电动机(Permanent Magnet Synchronous Motor,简称PMSM)。

直流无刷电机驱动器BLDC图形图像

直流无刷电机驱动器BLDC图形图像

3 BLDC 概述BLDC系列无刷直流电机及驱动器是由常州合泰电机电器有限公司最新推出 针对于小功率电机拖动领域的高科技产品。

随着电子技术的高速发展 电子产品的工艺和性能也不断更新和提高 本产品采用超大规模的硬件集成电路 具有高度的抗干扰性及快速的响应性 从控制性能上与传统直流电机相比又具有免维护、长寿命、恒力矩等优势。

本品适合驱动峰值电流在15A以下、电源电压在50V 以内的任何一款低压三相无刷直流电机 广泛应用于针织设备、医疗设备、食品机械、电动工具、园林机械等一系列电气自动化控制领域。

特点● SPWM纯正弦波脉宽调制技术 电流、速度双闭环 低速力矩大 运转平稳。

高速力矩输出平稳 最高转速达8000 rpm/min。

最大1 75调速比 与4对级无刷直流电机配套时 最低转速可达60rpm/min。

电机级数越多 调速比越宽。

灵活的霍尔磁极位置设定 60°/300°/120°/240°电角度可选 适配不同规格电机。

提供两种调速方式 面板电位器给定、模拟量输入端子给定 方便用户使用。

启停、快速制动、正反转切换输入信号光电隔离。

测速输出、报警输出信号光电隔离 OC门输出。

过流、过压、堵转、电机失控报警。

性能指标电气性能环境温度Tj25??C时输入电源24 50V直流电源供电 容量 根据电机功率选择。

输出电流额定15A 瞬时最大45A≤3s。

驱动方式SPWM正弦波驱动输出。

绝缘电阻常温常压下 500MΩ。

绝缘强度常温常压下500V/分钟。

重量约300克。

环境要求冷却方式自然冷却。

使用场合避免粉尘、油雾及腐蚀性气体。

使用温度0??C 50??C。

环境湿度80RH 不凝露 不结霜。

震动最大不超过5.7m/s2。

保存20??C 125??C 避免灰尘 最好使用原包装盒。

订货号017N01 无无刷刷直直流流电电机机驱驱动动器器SSPPWWMM恒恒流流控控制制 运运行行平平稳稳 扭扭矩矩恒恒定定合合泰泰电电机机BBLLDDCC--55001155AA 功能及使用 3 电源接口DC、DC- 直流24 50DC 通常采用线性电源见附录 线性电源原理图供电 用户须注意整流滤波后电源纹波电压 不可超过50VDC 以免损坏驱动器 线性电源的额定输出电流应大于驱动器输出电流的60。

无刷直流电机的驱动电路

无刷直流电机的驱动电路

无刷直流电机的驱动电路一、无刷直流电机简介无刷直流电机是一种通过电子方式实现电机转子磁场与定子磁场的同步旋转,无需刷子与换向器来调整磁场方向的电机。

它具有高效率、高转矩密度、长寿命等优点,被广泛应用于工业、航空航天、交通工具等领域。

二、无刷直流电机的基本原理无刷直流电机的驱动主要是通过电子器件来控制电机的磁场和转子的位置。

基本原理如下: 1. 无刷直流电机的转子上安装有磁体,称为永磁体,用来产生转子磁场。

2. 定子上绕有若干个线圈,通过电流激励产生定子磁场。

3. 当定子磁场与转子磁场交叉时,产生转矩,使电机转动。

三、无刷直流电机的驱动电路设计要求设计无刷直流电机的驱动电路时,需要满足以下要求: 1. 高效率:电路应尽可能减少能量的损耗,以提高电机的效率。

2. 稳定性:电路应具有良好的稳定性,能够在各种工作条件下保持电机的正常运行。

3. 可调性:电路应具备可调节转速和转向的功能,以满足不同应用场景的需求。

4. 保护功能:电路应具备过流、过温等保护功能,以确保电机和电路的安全运行。

四、无刷直流电机的驱动电路设计方案4.1 无刷直流电机驱动电路的基本组成无刷直流电机的驱动电路通常由以下几部分组成: 1. 电源模块:提供电机驱动所需的电压和电流。

2. 电流检测模块:用于检测电机驱动电路中的电流情况,保护电机和电路的安全。

3. 电压转换模块:用于将电源提供的电压转换为电机所需的工作电压。

4. 逻辑控制模块:根据输入信号控制电机的转速和转向。

5. 保护模块:监测电机驱动电路的工作状态,当出现异常情况时进行相应的保护。

4.2 无刷直流电机驱动电路的工作原理无刷直流电机的驱动电路工作原理如下: 1. 逻辑控制模块接收输入信号,根据信号产生驱动电流的时序。

2. 驱动电流经过电流检测模块后,进入电机的定子线圈。

3. 电机定子线圈中的电流产生定子磁场,与转子磁场交叉产生转矩。

4. 电压转换模块将电源提供的电压转换为电机所需的工作电压。

直流无刷电机及其驱动技术

直流无刷电机及其驱动技术

OVDCOND寄存器的值由霍尔传感器输出的二进制编码绕组通电顺序决定。
A+C- A+B- C+B- C+A- B+A- B+C-
例1 由单片机控制的BLDC系统:
例2 单片三相无刷直流电动机控制器SI9979
SI9979特点
霍尔传感器输入信号处理,60及120度间隔选择,提供霍尔传感器电源。 自动换相功能 集成逆变器高端驱动 PWM输入及处理 电流限制,欠电压保护 20到40电源电压
PMSM的问题
控制比直流伺服电机要复杂的多; 要想实现力矩控制,必须有角位置传感器,以测量d-q坐标系的旋转角; 反电势必须是正弦波的,这对电机制造及工艺提出了较高的要求。
反电势必须是正弦波的才能产生正弦电流
3.3 无刷直流电动机 (Brushless Direct Current Motor ,BLDC)
附:电角度和机械角度
机械角度是指电机转子的旋转角度,由Θm表示; 电角度是指磁场的旋转角度,由Θe表示。 当转子为一对极时,Θm=Θe; 当转子为n对极时,Θe=nΘm。
2. 工作原理
1)旋转磁场的产生 假定电机定子为3相6极,星型连接。转子为一对极。
电流方向不同时,产生的磁场方向不同。 若绕组的绕线方向一致,当电流从A相绕组流进,从B相绕组流出时,电流在两个绕组中产生的磁动势方向是不同的。
BLDC电机的机械特性曲线
在连续工作区,电机可被加载直至额定转矩Tr. 在电机起停阶段,需要额外的力矩克服负载惯性。这时可使其短时工作在短时工作区,只要其不超过电机峰值力矩Tp且在特性曲线之内即可。
4、PWM控制技术
为了使BLDC 电机速度可变,必须在绕组的两端加可变电压。 利用PWM控制技术,通过控制PWM 信号的不同占空比,则绕组上平均电压可以被控制,从而控制电机转速。 在控制系统中采用DSP或单片机时,可利用器件中的PWM产生模块产生PWM波形。 根据转速要求设定占空比,然后输出6路PWM信号,加到6个功率管上。 以dsPIC30F2010单片机为例:

无刷直流电机驱动器设计及性能分析

无刷直流电机驱动器设计及性能分析

无刷直流电机驱动器设计及性能分析近年来,随着技术的发展,无刷直流电机在家用电器、工业机器人、无人机等诸多领域中得到广泛应用。

其高效、低噪音、轻便等优势备受青睐。

而其驱动器则是其能够正常工作的关键。

本文将对无刷直流电机驱动器的基本原理、设计方法及性能分析进行探讨。

一、无刷直流电机驱动器基本原理无刷直流电机驱动器(BLDC)是由功率电子器件和从电源充电的电容器构成的。

功率电子器件是根据电机之间的驱动信号产生高速的交替变化,从而实现电机转速的变化。

由于 BLDC 电机没有换向器,因此无需要芯片来控制半导体器件的开关,包括N-通道 MOS 开关和 P-通道 MOS 开关。

BLDC 电机驱动器的基本原理是控制三个相位通道的 MOS 开关,在每个电机旋转位置的感应中断输入往复计数器,然后即使转动位置控制逐个 MOS 开关。

BLDC 电机转动,而我们所说的桥式整流器此时就不需要。

在驱动器中,每个 MOS 开关只在一半的电压和电流下开启,并在检测到输出电平之后进行关闭。

然后,它们主要用于切换电机的工作电压。

在电机旋转时,BLDC 驱动器应在每个位置处精确控制电机输入的电压和电流。

在控制器中,应有一个电压比例反馈回路以改变速度。

此时,驱动器将从电机光电池接收任彼此间的信号,直接提供电动力。

二、无刷直流电机驱动器设计方法1.选择适当的功率元器件在设计 BLDC 驱动器时,首先需要考虑的是选取适当的功率元器件。

为了实现高性能与高效率,需要选择高质量的 Mosfet 元器件(低电阻、低加电压、低反馈电容),以及更实用、便于焊接和组装的电阻、电容和电感器等高精度元器件。

2.确定布局和排线在回路设计的过程中,布局和排线也是非常重要的,其中关键布局需要进行特别的选择。

布线方案直接影响 BLDC 驱动器的性能和噪声,也会影响温度的稳定性。

因此,建议使用双面 PCB 板逐层布线,并结合物理上更大的泳道。

在布线结束后,需要进行连通性测试以确保无误。

直流无刷电机驱动器工作原理

直流无刷电机驱动器工作原理

直流无刷电机驱动器工作原理
直流无刷电机驱动器工作原理是通过电子元件来控制电机的转速和方向。

它通常由功率电源、电机驱动电路和控制器三部分组成。

功率电源提供足够的电压和电流给电机驱动器。

它通常会将可变的交流电源转换为直流电源,以满足电机的电力需求。

然后,电机驱动电路将来自功率电源的电力信号传递给电机。

电机驱动电路包括电流放大器和电流传感器。

电流放大器负责控制电流的大小,以控制电机的转速和动力输出。

电流传感器用于监测电机的电流,以便及时传输正确的电流信号给电流放大器。

控制器是整个驱动器的“大脑”,它负责控制电机驱动电路的工作方式。

控制器通常由微处理器和相关的控制算法组成,通过对电机的控制信号进行处理和调节,实现电机的精确转速和方向控制。

控制器还可以根据要求提供各种附加功能,例如启动和停止电机、调整电机的转速、实现定速运行和反向旋转等。

直流无刷电机驱动器通过功率电源、电机驱动电路和控制器的协同工作,实现对电机的转速和方向的精确控制。

这种驱动器常见于许多应用领域,例如工业自动化、机器人技术、电动车辆和家电等。

它的高效性、可靠性和精确性使直流无刷电机驱动器在现代电动设备中得到广泛应用。

无刷直流电机的原理与驱动

无刷直流电机的原理与驱动

无刷直流电机的原理与驱动
无刷直流电机是一种将直流电能转变为机械能的设备。

它与传统的刷式直流电机相比,具有更高的效率、更长的寿命和更低的噪音。

无刷直流电机的工作原理主要涉及三个部分:转子、定子和驱动电路。

首先,转子是电机的旋转部件。

它由多个永磁体组成,这些永磁体将会产生磁场。

当电机给定电流时,转子中的磁场仍然保持不变。

其次,定子是电机的固定部件。

它包括绕组和传感器。

绕组是由三组线圈组成的,通常称为A、B、C相。

每个相都包含多个线圈,它们按特定的顺序连接在一起。

而传感器则用来检测转子位置,通常采用霍尔元件进行检测。

最后,驱动电路是控制电机运行的关键。

在无刷直流电机中,驱动电路必须能够根据转子的位置和速度来调整电流的方向和幅度。

这通常通过硬件或软件来实现。

当转子的位置发生改变时,传感器会发送信号给驱动电路,从而使电流按照正确的顺序通过绕组。

总结而言,无刷直流电机依靠转子的磁场和定子的绕组以及驱动电路的控制来实现电能到机械能的转换。

这种电机在许多领域有广泛的应用,例如汽车、工业自动化和家用电器等。

三相无刷直流电机驱动原理

三相无刷直流电机驱动原理

三相无刷直流电机驱动原理一、引言三相无刷直流电机是一种广泛应用于工业和家电领域的电机,其驱动原理是通过电子器件实现电机转子的控制和驱动。

本文将从三相无刷直流电机的基本结构、工作原理以及驱动器件的选择和控制方法等方面进行介绍。

二、三相无刷直流电机的基本结构三相无刷直流电机由转子、定子和传感器组成。

转子是由永磁体组成,定子则由三组线圈(A、B、C相)和磁铁组成。

传感器用于检测转子位置,通常采用霍尔元件或光电传感器。

三、三相无刷直流电机的工作原理三相无刷直流电机通过交替激励定子线圈,产生磁场,使转子转动。

其工作原理可以简单描述为以下几个步骤:1. 传感器检测转子位置:传感器会实时检测转子的位置,并将检测结果反馈给控制器。

2. 控制器计算相应的电流:根据传感器反馈的转子位置信息,控制器会计算出相应的电流值,并将电流信号发送给电机驱动器。

3. 电机驱动器控制电流:电机驱动器根据控制器发送的电流信号,控制电流的大小和方向,使电机产生适当的转矩。

4. 电机转子运动:根据电机驱动器控制的电流信号,电机转子会按照一定的顺序和速度进行旋转。

5. 重复上述步骤:电机会不断地重复执行上述步骤,以保持转子的稳定转动。

四、三相无刷直流电机驱动器件的选择选择适合的驱动器件对于三相无刷直流电机的正常运行至关重要。

常用的驱动器件包括功率MOSFET、IGBT和功率集成电路等。

1. 功率MOSFET:功率MOSFET具有开关速度快、损耗小等特点,适合用于中低功率的电机驱动。

2. IGBT:IGBT具有较高的工作电压和工作温度范围,适合用于高功率电机驱动。

3. 功率集成电路:功率集成电路集成了多种功能和保护电路,能够提供更全面的电机驱动控制。

五、三相无刷直流电机的控制方法三相无刷直流电机的控制方法主要有霍尔传感器反馈控制和电动势反馈控制。

1. 霍尔传感器反馈控制:通过采集霍尔传感器检测的转子位置信息,实时调整电机驱动器的输出电流,以控制电机转速和转向。

直流无刷电机原理及驱动技术

直流无刷电机原理及驱动技术

直流无刷电机原理及驱动技术直流无刷电机(Brushless DC Motor,简称BLDC)是一种以电子换向的方式驱动的电机。

相对于传统的有刷直流电机,无刷直流电机具有更高的效率、更低的能量损耗、更长的寿命和更高的输出功率等优点,因此在许多应用领域得到了广泛应用。

直流无刷电机的工作原理比较复杂,它的转子由一组磁钢组成,分布在转子的外围,并以等间距排列。

在转子的外围,固定了一组电磁铁使得它们的磁极排列和磁铁相互间隔的磁极相对应。

电机通过控制器产生的脉冲信号,控制转子磁极的磁场的极性和强度。

当转子的磁场与电磁铁的磁场产生的磁力相互作用时,就会产生力矩推动转子旋转。

为了控制无刷电机的旋转方向和速度,需要使用电子换向技术。

电子换向可以通过测量转子位置并实时调整电流来实现。

电子换向通常通过三相电流反馈控制来实现。

这意味着需要三个传感器来测量电机的电流,并通过调整电流来实现换向控制。

无刷直流电机的驱动技术有多种,其中最常见的是基于PWM调制的驱动技术。

PWM调制将直流电源与电机连接,并以一定的频率调制电源电压,控制电机的运转速度和力矩。

这种驱动方式能够提高电机的效率,并减少能量损失。

此外,也可以使用传统的定向控制器来实现无刷电机的驱动,通过测量转子位置并控制定子线圈的电流来实现精确的转子控制。

在应用中,无刷电机的驱动技术还可以根据具体的需求进行调整。

例如,使用传感器和反馈控制器来实现闭环控制,可以提高驱动系统的响应速度和稳定性。

此外,还可以使用无传感器的反电动势控制技术,通过测量电机绕组的电流反电动势来测量转子位置,从而实现换向控制。

总之,直流无刷电机通过电子换向和驱动技术,实现了高效、低能耗、长寿命和高输出功率的特点。

在各种应用领域,比如磁盘驱动器、家用电器、汽车等,无刷电机都发挥了重要的作用。

进一步的研究和发展无刷直流电机驱动技术,可以进一步提高其性能,推动其应用范围的拓展。

无刷直流电机简介

无刷直流电机简介

无刷直流电机简介导言:无刷直流电机是一种常用于工业和家用电器的电机类型。

相较于传统的有刷直流电机,无刷直流电机具有更高的效率、更低的噪音和更长的寿命。

本文将对无刷直流电机进行详细介绍,包括其原理、结构、工作特性以及应用领域等方面。

一、原理无刷直流电机是一种基于霍尔效应的电机。

它由转子、定子、永磁体和驱动电机控制器组成。

无刷直流电机的转子由多个钢芯和多个绕组组成,绕组悬浮在转子轴上。

当转子转动时,控制器通过电流传感器检测转子位置,进而控制定子绕组的电流方向和大小,从而实现效果良好的转矩输出。

二、结构无刷直流电机的结构相对简单,由永磁体和转子组成。

常见的永磁体材料有多种选择,如永磁铁氧体、钕铁硼和硬磁材料等。

转子通过电机轴连接到驱动装置上,使转子能够旋转。

另外,无刷直流电机通常还具有散热装置以保持其工作温度。

三、工作特性1.高效率:无刷直流电机的转换效率通常可以达到90%以上,相较于有刷直流电机的60%-70%,能够更好地转化电能为机械能,减少能量损耗。

2.高转矩:无刷直流电机具有较高的初始转矩,能够在启动瞬间提供更大的扭矩,适用于启动重负载。

3.宽调速范围:无刷直流电机的调速范围较宽,可以通过改变驱动电机控制器的电流和电压来实现。

4.高精度:无刷直流电机的控制器能够精确地检测转子位置和速度,可以实现高精度的转速控制。

5.低噪音:无刷直流电机由于不需要有刷子,噪音更低,能够在要求低噪音的场合使用。

四、应用领域1.工业自动化:无刷直流电机在工业机械自动化中广泛应用,如数控机床、输送设备、机器人等。

2.家电:无刷直流电机可用于家电产品中,如电风扇、吸尘器、洗衣机等。

3.电动工具:无刷直流电机在电动工具中的运用越来越普遍,如电钻、电锤等。

4.汽车工业:无刷直流电机在汽车工业中应用广泛,如电动车、车载空调、电动窗等。

5.医疗设备:无刷直流电机在医疗设备中有着重要的应用,如手术机器人、血液离心机等。

结语:无刷直流电机以其高效率、高性能和低噪音的特点,成为现代工业和家庭电器中一种重要的驱动装置。

无刷直流电机驱动方案

无刷直流电机驱动方案

无刷直流电机驱动方案引言无刷直流电机(Brushless DC Motor,简称BLDC)由于其高效率、高转速、高力矩密度等优点,在众多工业和消费电子设备中得到广泛应用。

而BLDC电机的驱动方案则是保证其正常运转和性能发挥的核心要素。

本文将介绍无刷直流电机驱动方案的基本原理和常见的控制方式。

同时,还会讨论一些常见的驱动方案,并比较它们的特点和适用场景。

无刷直流电机的基本原理电机结构BLDC电机的结构与传统的直流电机相似,都由转子、定子、电刷和永磁体组成。

但其不同之处在于BLDC电机的转子上没有电刷,而是通过控制器来实现对定子绕组的电流控制。

工作原理BLDC电机采用电子换向技术,通过控制器对定子绕组的电流进行精确控制,从而实现电机转子的正常运转。

具体而言,BLDC电机的驱动过程可以分为六个步骤:1.磁极A和磁极B受到电流,而磁极C不受电流,此时A磁极和B磁极之间产生差异磁场,转子受到力矩作用转动;2.当转子旋转到一定角度时,磁极A与磁极B之间不再有差异磁场,此时磁极A和磁极C之间产生差异磁场,继续驱动转子旋转;3.转子继续旋转,磁极A与磁极C之间不再有差异磁场,此时磁极B和磁极C之间产生差异磁场,继续驱动转子旋转;4.转子继续旋转,磁极B与磁极C之间不再有差异磁场,此时磁极B和磁极A之间产生差异磁场,继续驱动转子旋转;5.转子继续旋转,磁极B与磁极A之间不再有差异磁场,此时磁极C和磁极A之间产生差异磁场,继续驱动转子旋转;6.转子继续旋转,磁极C与磁极A之间不再有差异磁场,此时磁极C和磁极B之间产生差异磁场,继续驱动转子旋转。

通过不断地交替改变电流的流向,BLDC电机可以实现高效、平稳的运动。

无刷直流电机的驱动控制方式传感器反馈控制传感器反馈控制是一种常见的BLDC电机驱动方式,通过磁编器或霍尔效应传感器等装置,实时检测转子位置和转速,并反馈给控制器。

控制器根据传感器的反馈信息,控制定子绕组的电流,从而实现对电机的精确控制。

直流无刷电机和驱动器

直流无刷电机和驱动器

直流无刷电机和驱动器众所周知,直流电机具有最优越的调速性能,主要表现在调速方便(可无级调速),调速范围宽,低速性能好(启动转矩大,启动电流小),运行平稳,噪音低,效率高,应用场合从工业到民用(如家电、汽车等)场合极其广泛。

但是由于无刷直流电动机<>功率因数高,又无转子损耗所以效率很高,转子转速严格与电源频率保持同步,转子磁场用永久磁铁产生。

磁铁现在多采用稀土永磁材料,我国稀土材料的贮量占世界贮量的70%左右,发展永磁式 '>无刷直流电动机正是我们应该充分发挥的资源优势,目前这种电机广泛应用于数控机床的进给驱动,机器人的伺服驱动以及新一代家用电器的变速驱动中,由于变频调速方法具有高效率、宽范围和高精度的调速性能,因此应用前景十分看好。

永磁无刷直流电动机调速系统中的驱动器一般采用电压源型脉宽调制(PWM)交-直-交变频器。

变频器性能的优劣,一要看其输出交流电压的谐波对电机的影响:谐波造成电机发热,能耗增加,引起电磁和机械噪声。

二要看对电网的谐波污染和输入功率因数。

这两方面,对于在量大面广的家用电器中的应用尤为重要,它直接关系到能量的节省、噪音对环境的影响和对电网的污染。

由高开关频率自关断器件组成的PWM交-直-交变频器再加上合理的控制可以达到较高的性能。

就系统的控制器而言,因运动控制系统是快速系统,特别是交流电机高性能的控制需要实时快速处理多种信号,为进一步提高控制系统的综合性能,近几年国外一些大公司纷纷推出较MCU性能更加优越的DSP(数字信号处理器)单片电机控制器,如ADI的ADMC3xx 系列,TI的TMS320C24系列及Motorola的DSP56F8xx系列。

都是由一个以DSP为基础的内核,配以电机控制所需的外围功能电路,集成在单一芯片内,使价格大大降低,体积缩小,结构紧凑,使用便捷,可靠性提高。

现DSP的最大速度可达20~40MIPS以上,指令执行时间或完成一次动作的时间快达几十纳秒,它和普通的MCU相比,运算及处理能力增强10~50倍,确保系统有更优越的控制性能。

直流无刷电机及驱动器介绍

直流无刷电机及驱动器介绍

技术部直流无刷电机及驱动器介绍---培训讲义编制/整理:徐兴强日期:2010-5-5一、产品技术特点1)既具有AC电机的优点:结构简单,运行可靠,维护方便等;2)又具有DC电机的优点:调速性能好,运行效率高,无励磁损耗等;3)同时,与DC有刷电机比较:无接触磨损,无火花,低噪音,无辐射干扰等;4)再有,与伺服电机比较:控制/驱动原理较简单,可灵活多变,且成本较低;有较高的成套性价比,实用性很强。

主要缺陷:低速启动时,有轻微震动;但不会失步(比较于步进电机)。

二、主要应用方面1)在精密电子设备和器械中的应用如:电脑硬盘的主轴驱动,激光打印机,复印机,医疗器械,卫星太阳能帆板驱动,医疗监控设备等。

2)在家用电器中的应用如:空调器、洗衣机、电热器、吸尘器、电风扇、搅拌机等。

3)在电瓶车/牵引机中的应用4)在工业系统中的应用如:工业缝纫机、纺织印花机、等等;5)在军事工业和航空航天中的应用三、特殊功能与性能分析# 典型特性曲线,如下:##由以上特性曲线可知:1)电机的最大转矩为启动和堵转时的转矩;2)在同一转速下,改变供电电压,可以改变电机的输出转矩;3)在相同转矩时,改变供电电压,可以改变电机的转速。

即:在驱动电路中,通过PWM方式改变供电电压的平均值,在保证转矩不变的情况下,可以实现对电机的平稳调速。

###BLDC与AC交流感应式电机相比,具有如下优点:1)转子采用永磁体,无需激励电流。

故,同样的电功率,可以获得更大的机械功率;2)转子无铜损,无铁损,发热更小;3)启动、堵转时力矩大,更适合于阀门打开、关闭瞬间需要力矩大的场合;4)电机的输出力矩与工作电压、电流成正比,从而可以简化力矩的检测电路,并更加可靠;5)利用PWM调制方式改变供电电压的平均值,可以实现平稳调速,使调速、驱动功率电路更加简单,综合成本降低;6)利用PWM调低供电电压来启动电机,可以有效减小启动电流;7)采用PWM调制的直流电压,相对于正弦交流电压,电磁辐射更小,对电网的谐波干扰更小;8)采用闭环转速控制电路,可在负载力矩变化时,保持电机的转速不变。

无刷直流电机的驱动电路

无刷直流电机的驱动电路

无刷直流电机的驱动电路1. 引言无刷直流电机(Brushless DC Motor,简称BLDC)是一种通过电子控制器来驱动的电动机。

与传统的有刷直流电机相比,BLDC电机具有高效率、高功率密度、长寿命、低噪音和低维护成本等优点。

本文将详细介绍无刷直流电机的驱动原理和常用的驱动电路。

2. 无刷直流电机的工作原理无刷直流电机由定子和转子组成。

定子上通常布置有三个绕组,称为A相、B相和C相,每个绕组之间相隔120度。

转子上装有永磁体,当定子绕组通以合适的电流时,会在转子上产生磁场。

通过改变定子绕组中的电流方向,可以实现对转子磁场方向的控制。

BLDC电机的驱动原理基于霍尔效应或传感器less技术。

在霍尔效应驱动中,安装在定子上的霍尔传感器用于检测转子位置,并将信号反馈给控制器。

而在传感器less驱动中,则通过测量定子上产生的反电动势(Back Electromotive Force,简称BEMF)来推测转子位置。

3. 无刷直流电机的驱动电路3.1 相互导通型驱动电路相互导通型驱动电路是最简单的一种BLDC电机驱动电路。

它由六个功率开关组成,分别用于控制A相、B相和C相的绕组。

这些功率开关可以是MOSFET、IGBT或SiC 等器件。

在相互导通型驱动电路中,任意两个绕组之间只能有一个处于导通状态,其余两个则需要断开。

通过控制三个绕组之间的导通状态,可以实现对BLDC电机的转子位置和速度的控制。

3.2 基于霍尔效应的驱动电路基于霍尔效应的驱动电路使用霍尔传感器来检测转子位置,并将信号反馈给控制器。

根据转子位置,控制器会依次打开或关闭相应的功率开关,以实现对BLDC电机的精确控制。

这种驱动方式需要使用专门设计的集成电路(IC),用于处理霍尔传感器产生的信号,并生成适当的控制信号。

常见的IC包括TI公司的DRV8301和Infineon公司的TLE9879等。

3.3 传感器less驱动电路传感器less驱动电路是一种更为先进的驱动方式,它通过测量定子绕组上产生的BEMF来推测转子位置。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

技术部
直流无刷电机及驱动器介绍
---培训讲义
编制/整理:徐兴强
日期:2010-5-5
一、产品技术特点
1)既具有AC电机的优点:结构简单,运行可靠,维护方便等;
2)又具有DC电机的优点:调速性能好,运行效率高,无励磁损耗等;
3)同时,与DC有刷电机比较:无接触磨损,无火花,低噪音,无辐射干扰等;4)再有,与伺服电机比较:控制/驱动原理较简单,可灵活多变,且成本较低;有较高的成套性价比,实用性很强。

主要缺陷:低速启动时,有轻微震动;但不会失步(比较于步进电机)。

二、主要应用方面
1)在精密电子设备和器械中的应用
如:电脑硬盘的主轴驱动,激光打印机,复印机,医疗器械,卫星太阳能帆板驱动,医疗监控设备等。

2)在家用电器中的应用
如:空调器、洗衣机、电热器、吸尘器、电风扇、搅拌机等。

3)在电瓶车/牵引机中的应用
4)在工业系统中的应用
如:工业缝纫机、纺织印花机、等等;
5)在军事工业和航空航天中的应用
三、特殊功能与性能分析
# 典型特性曲线,如下:
##由以上特性曲线可知:
1)电机的最大转矩为启动和堵转时的转矩;
2)在同一转速下,改变供电电压,可以改变电机的输出转矩;
3)在相同转矩时,改变供电电压,可以改变电机的转速。

即:在驱动电路中,通过PWM方式改变供电电压的平均值,在保证转矩不变的情况下,可以实现对电机的平稳调速。

###BLDC与AC交流感应式电机相比,具有如下优点:
1)转子采用永磁体,无需激励电流。

故,同样的电功率,可以获得更大的机械功率;
2)转子无铜损,无铁损,发热更小;
3)启动、堵转时力矩大,更适合于阀门打开、关闭瞬间需要力矩大的场合;
4)电机的输出力矩与工作电压、电流成正比,从而可以简化力矩的检测电路,并更加可靠;
5)利用PWM调制方式改变供电电压的平均值,可以实现平稳调速,使调速、驱动功率电路更加简单,综合成本降低;
6)利用PWM调低供电电压来启动电机,可以有效减小启动电流;
7)采用PWM调制的直流电压,相对于正弦交流电压,电磁辐射更小,对电网的谐波干扰更小;
8)采用闭环转速控制电路,可在负载力矩变化时,保持电机的转速不变。

####BLDC的特殊功能和性能综述:
1)开关阀的速度可调
由上曲线,BLDC启动时力矩大,有利于阀门打开、关闭瞬间需要力矩大的场合;且可以实现无级调速。

2)分段变速运行:适于不同的行程段有不同的运行速度要求之场合。

3)柔性开启和关闭
从最低档逐渐升速,直到用户设定值;可以降低启动电流,减小减速齿轮的撞击等。

4)自动变速:由给定值和反馈值比较后形成偏差值,进行自动调节。

5)无摩擦制动:不需要专门的制动电路或装置。

电机断电后,转子动能通过定子线圈转化成电能,若将输出短路,则该电能将会对转子产生制动作用,使电机立刻停止。

6)力矩检测和过力矩保护
通过检测直流电机的电流来计算输出力矩,使检测电路简单、可靠。

四、驰卡沙(TSUKASA)电机介绍
参见驰卡沙《产品手册》TG-99、TG-22系列。

五、AT-10K /AT-30K驱动器介绍
参见艾而特《AT-10K/AT-30K产品规格书》
(见后面附件)
六、市场业务宣导与推广建议
1)替代AC异步电机场合:
重点突出:低速平稳特性,无励磁损耗,体积小,高效率,发热少,节能减排等环保优点。

2)替代DC有刷电机场合:
重点突出:无换向碳刷,无滑环摩擦,无损耗,无火花、噪音和电磁干扰;使用寿命长等优点。

3)竞争伺服电机的场合:
重点突出:较高的性价比和产品实用性,简单的控制原理和实现方法,避免在某些场合出现“大马拉小车”的资源浪费情况,避免系统工程师在设计
选型时,由AC电机直接上升到伺服电机的“跳级”现象。

正确导向应是:AC电机---DC电机(无刷)---伺服电机
4)配套驱动器的产品特点
重点突出:控制方案灵活多变,配套型号规格齐全,通用性和兼容性强,
自主设计开发可行性强,维修方便等。

产品规格书
产品名称:直流无刷电机驱动器(PCB组件)产品型号:AT-10K / AT-30K
文件编号:SPEC.AT-10K.001 当前版次:B版
发行范围:公司内部/ 业务客户生效日期:2010年5月10日
编制/日期:李军华/ 2010-5-6 核准/日期:徐兴强/ May8, 2010
1.0功能特点
●工业级MCU控制,运行稳定、可靠;
●启动、停止、换向、无级调速功能;
●过电流保护功能;
●接口简便,有较高的产品性价比。

2.0主要应用
AT-10K:专业配套TSUKASA /TG-22系列电机或同等规格的其它品牌电机(BLDC)。

AT-30K:专业配套TSUKASA /TG-99系列电机或同等规格的其它品牌电机(BLDC)。

3.0技术规格
序号项目规格描述备注
1. 电源电压DC12V / DC24V ±10% +/-极性
2. 消耗电流(空载)DC60mA max. at DC24V 控制电路
3. 输出电流(带负载能力)DC2.0A max. at DC24V
4. 调速范围500rpm min.
5. 过电流保护负载电流保护阀值2.0A,并自复到允许值堵转或故障时
6. 使用环境条件温度:0-+40℃湿度:85%RH以下
7. 保存环境条件温度:-10-+60℃湿度:85%RH以下
8. 外形尺寸67.0mm x 44.0mm x 28.0mm max.
9. 产品重量50g以下
序号项目规格描述备注
1. 电源电压DC12V/DC24V ±10% +/-极性
2. 消耗电流(空载)DC60mA max. at DC24V 控制电路
3. 输出电流(带负载能力)DC3.0A max. at DC24V
4. 调速范围70rpm min.
5. 过电流保护负载电流保护阀值3.0A,并自复到允许值堵转或故障时
6. 使用环境条件温度:0-+40℃湿度:85%RH以下
7. 保存环境条件温度:-10-+60℃湿度:85%RH以下
8. 外形尺寸67.0mm x 44.0mm x 28.0mm max.
9. 产品重量50g以下
第1页共2页
4.0接线端子示意图
AT-10K: AT-30K:
接口定义如下:
J1:Vm / GND :DC12V--24V供电电源,Vm接DC+,GND接DC-
J2:U / V / W :接马达3相驱动电源
a /
b /
c :接马达的3个位置传感器(HALL)
+5V / GND:接马达霍尔传感器供电电源
J3:S(Speed):调速信号输入,模拟量,0.5V—4.5VDC连续可调;
ST(Stop):急停信号输入,开关量,低电平(接地)有效;
D(Direction):换向信号输入,开关量,H/L电平对应CCW / CW运转方向;
CP(Clock Pulse):霍尔信号输出,脉冲量,用于计数或测速等;
+5V/GND:对外输出电源(负载电流<30mA,注意:切莫再把外部电源接入!)5.0外形尺寸(AT-10K / AT-30K相同)
第2页共2页。

相关文档
最新文档