高考物理带电粒子在复合场中的运动解题技巧(超强)及练习题
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一、带电粒子在复合场中的运动专项训练
1.下图为某种离子加速器的设计方案.两个半圆形金属盒内存在相同的垂直于纸面向外的匀强磁场.其中MN 和M N ''是间距为h 的两平行极板,其上分别有正对的两个小孔O 和
O ',O N ON d ''==,P 为靶点,O P kd '=(k 为大于1的整数)。极板间存在方向向上的匀强电场,两极板间电压为U 。质量为m 、带电量为q 的正离子从O 点由静止开始加
速,经O '进入磁场区域.当离子打到极板上O N ''区域(含N '点)或外壳上时将会被吸收。两虚线之间的区域无电场和磁场存在,离子可匀速穿过。忽略相对论效应和离子所受的重力。求:
(1)离子经过电场仅加速一次后能打到P 点所需的磁感应强度大小; (2)能使离子打到P 点的磁感应强度的所有可能值;
(3)打到P 点的能量最大的离子在磁场中运动的时间和在电场中运动的时间。 【来源】2015年全国普通高等学校招生统一考试物理(重庆卷带解析) 【答案】(1)22qUm B =
(2)22nqUm B =,2
(1,2,3,,1)n k =-L (3)
22
22(1)t qum k -磁,2
2(1)=k m t h qU
-电 【解析】 【分析】
带电粒子在电场和磁场中的运动、牛顿第二定律、运动学公式。 【详解】
(1)离子经电场加速,由动能定理:
2
12
qU mv =
可得2qU
v m
=
磁场中做匀速圆周运动:
2
v qvB m r
=
刚好打在P 点,轨迹为半圆,由几何关系可知:
2
kd r =
联立解得B =
; (2)若磁感应强度较大,设离子经过一次加速后若速度较小,圆周运动半径较小,不能直接打在P 点,而做圆周运动到达N '右端,再匀速直线到下端磁场,将重新回到O 点重新加速,直到打在P 点。设共加速了n 次,有:
212
n nqU mv =
2n
n n
v qv B m r =
且:
2
n kd r =
解得:B =
,
要求离子第一次加速后不能打在板上,有
12
d r >
且:
2112
qU mv =
2
111
v qv B m r =
解得:2n k <,
故加速次数n 为正整数最大取21n k =- 即:
B =
2(1,2,3,,1)n k =-L ;
(3)加速次数最多的离子速度最大,取21n k =-,离子在磁场中做n -1个完整的匀速圆周运动和半个圆周打到P 点。 由匀速圆周运动:
22r m
T v qB
ππ=
=
22=(1)22
2(1)
T t n T qum k -+=-磁
电场中一共加速n 次,可等效成连续的匀加速直线运动.由运动学公式
221(1)2
k h at -=
电 qU
a mh
=
可得:22(1)=k m
t h qU -电
2.两块足够大的平行金属极板水平放置,极板间加有空间分布均匀、大小随时间周期性变化的电场和磁场,变化规律分别如图1、图2所示(规定垂直纸面向里为磁感应强度的正方向)。在t =0时刻由负极板释放一个初速度为零的带负电的粒子(不计重力),若电场强度E 0、磁感应强度B 0、粒子的比荷
q
m 均已知,且00
2m t qB π=,两板间距
20
2
010mE h qB π=。
(1)求粒子在0~t 0时间内的位移大小与极板间距h 的比值。 (2)求粒子在板板间做圆周运动的最大半径(用h 表示)。
(3)若板间电场强度E 随时间的变化仍如图1所示,磁场的变化改为如图3所示,试画出粒子在板间运动的轨迹图(不必写计算过程)。
【来源】带电粒子的偏转
【答案】(1)粒子在0~t 0时间内的位移大小与极板间距h 的比值115
s h = (2)粒子在极板间做圆周运动的最大半径225h R π
= (3)粒子在板间运动的轨迹如图:
【解析】 【分析】 【详解】
(1)设粒子在0~t 0时间内运动的位移大小为s 1
2
1012s at =
① 0qE
a m
=②
又已知2002
00
102,mE m t h qB qB ππ== 联立解得:
115
s h = (2)解法一
粒子在t 0~2t 0时间内只受洛伦兹力作用,且速度与磁场方向垂直,所以粒子做匀速圆周运动。设运动速度大小为v 1,轨道半径为R 1,周期为T ,则
10v at =
2
1101
mv qv B R =
联立解得:15h R π
= 又00
2m
T t qB π=
= 即粒子在t 0~2t 0时间内恰好完成一个周期的圆周运动。
在2t 0~3t 0时间内,粒子做初速度为v 1的匀加速直线运动,设位移大小为s 2
2
210012
s v t at =+
解得:235
s h =
由于s 1+s 2<h ,所以粒子在3t 0~4t 0时间内继续做匀速圆周运动,设速度大小为v 2,半径为R 2,有:
210v v at =+
22
202
mv qv B R =