第六章 异方差性
异方差性及其检验

异方差性及其检验I 概念对于多元线性回归模型同方差性假设为 如果出现即对于不同的样本点,随机干扰项的方差不再是常数,而是互不相同,不具有等同的分散程度,则认为出现了异方差(Heteroskedasticity ) II 类型同方差性假定是指,回归模型中不可观察的随机误差项i u 以解释变量X 为条件的方差是一个常数,因此每个i u 的条件方差不随X 的变化而变化,即有2()i i f X σ=≠常数在异方差的情况下,总体中的随机误差项i u 的方差 2i σ不再是常数,通常它随解释变量值的变化而变化,即异方差一般可归结为三种类型:01122 1,2,,i i i k ki i Y X X X i n ββββμ=+++++=2(), 1,2,...,i Var i n μσ==2(), 1,2,...,i i Var i nμσ==2()i i f X σ=异方差类型图:III来源(1)截面数据(不同样本点除解释变量外其他影响差异大)(2)时间序列(规模差异)(3)分组数据、异常值等(4)模型函数形式设置不正确和数据变形不正确(5)边错边改学习模型IV影响计量经济学模型一旦出现异方差,如果仍然用普通最小二乘法估计模型参数,会产生一系列不良后果。
(1)参数估计量非有效(2)OLS估计的随机干扰项的方差不再是无偏的(3)基于OLS估计的各种统计检验非有效(4)模型的预测失效V检验异方差性,即相对于不同的样本点,也就是相对于不同的解释变量观测值,随机干扰项具有不同的方差,那么检验异方差性,也就是检验随机干扰项的方差与解释变量观测值之间的相关性。
一般检验方法如下:(1)图示检验法(2)帕克(Park)检验与戈里瑟(Gleiser)检验(3)G-Q(Goldfeld-Quandt)检验(4)F检验(5)拉格朗日乘子检验(6)怀特检验(具体步骤随后介绍)VI修正方法加权最小二乘法定义:加权最小二乘法是对原模型加权,使之变成一个新的不存在异方差性的模型,然后采用OLS法估计其参数。
计量经济学第六章异方差性1

以因变量的拟合值 (或某个解释变量)为横坐 标,残差平方为纵坐标,将n个样本点的值描在 坐标系中。根据这n个点的分布情况,可以寻找 模型错误或方差不相同的证据。
残差散点图例
ei2
无趋势, 满足假定。
ei2
误差随 y 的增加 而增加
0
yi
0
ei2
ei2
yi
0
误差呈规律性变化,原因可能是模型不适合, 也可能是缺少某些重要值变量
yi
0
yi
二、异方差性的侦察
正式方法:检验随机误差项的方差与解 释变量观测值之间的相关性。
帕克(Park)检验
先做OLS回归,不考虑异方差性问题。 从OLS回归中获得ei2 ,作下述回归:
三、 已知时的异方差修正
以一元回归为例: yi=β1+β2xi+i
σi σi σi
2 σi
Var ( i ) = σ i2
(1)
用σi除上式得:yi = β ( 1 ) + β ( xi ) + i 1 2
σi
对上式进行OLS估计,即最小化如下函数:
min
∑σ
( 1
yi
i
1 β xi ) 2 = β1 2
t = (3.7601) (-1.6175) R2 = 0.1405 ①和②表明,可以拒绝同方差性(存在异方差)
③
异方差的修正
2 E ( i ) = CX i RD 1 变换: = 246.68 + 0.0368 salei salei salei se : (341.13) (0.0071) t : (0.6472) (5.1723) r 2 = 0.6258
异方差性的概念、类型、后果、检验及其修正方法含案例

Yi和Xi分别为第i个家庭的储蓄额和可支配收入。
在该模型中,i的同方差假定往往不符合实际情况。对高收 入家庭来说,储蓄的差异较大;低收入家庭的储蓄则更有规律 性(如为某一特定目的而储蓄),差异较小。
因此,i的方差往往随Xi的增加而增加,呈单调递增型变化 。
– 在选项中,EViews提供了包含交叉项的怀特检验“White Heteroskedasticity(cross terms)”和没有交叉项的怀特检 验“White Heteroskedasticity(no cross terms)” 这样两个 选择。
• 软件输出结果:最上方显示两个检验统计量:F统计 量和White统计量nR2;下方则显示以OLS的残差平 方为被解释变量的辅助回归方程的回归结果。
随机误差项具有不同的方差,那么: 检验异方差性,也就是检验随机误差项的方差与解
释变量观测值之间的相关性及其相关的“形式”。 • 各种检验方法正是在这个共同思路下发展起来的。
路漫漫其修远兮, 吾将上下而求索
问题在于:用什么来表示随机误差项的方差? 一般的处理方法:
路漫漫其修远兮, 吾将上下而求索
2.图示检验法
路漫漫其修远兮, 吾将上下而求索
3.模型的预测失效
一方面,由于上述后果,使得模型不具有良好的统计性质;
【书上这句话有点问题】
其中 所以,当模型出现异方差性时,Y预测区间的建立将发生困 难,它的预测功能失效。
路漫漫其修远兮, 吾将上下而求索
三、异方差性的检验(教材P111)
1.检验方法的共同思路 • 既然异方差性就是相对于不同的解释变量观测值,
(注意:其中的2完全可以是1)
第六章 异方差性讲解

例如,相较于没有先进设备的银行,那些拥有先进数据处理设备的 银行,在他们对帐户的每月或每季财务报告中,会出现更少的差错。
三、异方差产生的原因 例6-3
股票价格和消费者价格
30 25
智利
股票价格变化率
考虑如下20个国家在第二 次世界大战后直至1969年间的 股票价格(Y)和消费者价格 (X)的百分比变化的散点图。
第六章
异方差性
◆异方差性及其产生原因
◆ 异方差性的影响
◆ 异方差性的检验 ◆ 异方差性的的修正
第一节
—、异方差性的含义
对于多元线性回归模型
异方差性及其产生原因
Yi 0 1 X1i 2 X 2i
同方差性假设为
k X ki i
i 1, 2,
,n
(6-1)
Var(i ) 2 ,
如果出现
i 1, 2,..., n
Var(i ) i2 ,
i 1, 2,..., n
即对于不同的样本点,随机干扰项的方差不再是常数,而是互不相同 ,则认为出现了异方差性(Heteroskedasticity)。
二、异方差的类型
同方差性假定是指回归模型中不可观察的随机误差项 i 以解释变量X为 条件的方差是一个常数,因此每个i 的条件方差不随X的变化而变化,即有
20 15 10 5 0 0 5 10 15 消费者价格(%) 20 25
以色列 芬兰 墨西哥 奥地利 丹麦 法国印度 日本 澳大利亚 爱尔兰 英国 新瑞典 西兰 意大利荷兰 比利时 加拿大 德国 美国
图中,对智利的观测值Y 和X远大于对其他国家的观测 值,故可视为一个异常值,在 这种情况下,同方差性的假定 就难以维持了。
4.2 异方差性

• 其他检验也是如此。
3、模型的预测失效
一方面,由于上述后果,使得模型不具 有良好的统计性质;
所以,当模型出现异方差性时,参数OLS 估计值的变异程度增大,从而造成对Y的预测 误差变大,降低预测精度,预测功能失效。
四、异方差性的检验 Detection of Heteroscedasticity
OLS估计
ˆ exp( ˆ ˆ1 X i1 ˆ2 X i 2 L ˆk X ik ) ˆi2 ˆi2 f i 0
2、异方差稳健标准误法(Heteroscedasticity-Consistent
Variances and Standard Errors)
应用软件中推荐的一种选择。适合样本容量足 够大的情况。
仍然采用OLS,但对OLS估计量的标准差进行 修正。 与不附加选择的OLS估计比较,参数估计量没 有变化,但是参数估计量的方差和标准差变化 明显。 即使存在异方差、仍然采用OLS估计时,变量 的显著性检验有效,预测有效。
六、案例 —中国农村居民人均消费函数模型
~ y (y i ) 0ls e i i
~2 Var ( i ) E ( i2 ) e i
2、图示法
(1)用X-Y的散点图进行判断
看是否存在明显的散点扩大、缩小或复杂型 趋势(即不在一个固定的带型域中)。
~ 的散点图进行判断 (2)X- e i
2
看是否形成一斜率为零的直线。
~2 e i
wi 1/
f ( X i1 , X i 2 ,L , X ik )
一种具有应用价值的方法
Var(i | X i1,L , X ik ) 2 exp(0 1 X i1 L k X ik )
计量经济学:异方差性

计量经济学:异方差性异方差性在现实经济活动中,最小二乘法的基本假定并非都能满足,上一章介绍的多重共线性只是其中一个方面,本章将讨论违背基本假定的另一个方面——异方差性。
虽然它们都是违背了基本假定,但前者属于解释变量之间存在的问题,后者是随机误差项出现的问题。
本章将讨论异方差性的实质、异方差出现的原因、异方差的后果,并介绍检验和修正异方差的若干方法。
第一节异方差性的概念一、异方差性的实质第二章提出的基本假定中,要求对所有的i (i=1,2,…,n )都有2)(σ=i u Var (5.1)也就是说i u 具有同方差性。
这里的方差2σ度量的是随机误差项围绕其均值的分散程度。
由于0)(=i u E ,所以等价地说,方差2σ度量的是被解释变量Y 的观测值围绕回归线)(i Y E =ki k i X X βββ+++ 221的分散程度,同方差性实际指的是相对于回归线被解释变量所有观测值的分散程度相同。
设模型为n i u X X Y iki k i i ,,2,1221 =++++=βββ (5.2)如果其它假定均不变,但模型中随机误差项i u 的方差为).,,3,2,1(,)(22n i u Var i i ==σ (5.3)则称i u 具有异方差性。
由于异方差性指的是被解释变量观测值的分散程度是随解释变量的变化而变化的,如图5.1所示,所以进一步可以把异方差看成是由于某个解释变量的变化而引起的,则)()(222i i i X f u Var σσ== (5.4)图5.1二、产生异方差的原因由于现实经济活动的错综复杂性,一些经济现象的变动与同方差性的假定经常是相悖的。
所以在计量经济分析中,往往会出现某些因素随其观测值的变化而对被解释变量产生不同的影响,导致随机误差项的方差相异。
通常产生异方差有以下主要原因:1、模型中省略了某些重要的解释变量异方差性表现在随机误差上,但它的产生却与解释变量的变化有紧密的关系。
第六章 自相关性

进一步,如果
ut ut 1 t
其中
1,t满足E(t ) 0,Var(t )
2
,
cov(t , s ) 0, (t s)
则称ut是一阶线性自相关。
二、自相关性产生的原因
1、经济变量惯性的作用 2、经济行为的滞后性 3、一些随机偶然因素的干扰或影响 4、模型设定的偏误 5、蛛网现象模型
例如:“真实”的边际成本与产量之间的函数关
系式应为:
Yt
1
2 X t
3 X
2 t
ut
其中Yt表示边际成本,X t表示产量,由于认识上的偏
误可能建立如下模型: Yt 1 2 X t vt
其中vt
3
X
2 t
ut,这时由于vt中包含了带有X
2对边
t
际成本的系统影响,使得vt很有可能出现自相关性。
3、一些随机偶然因素的干扰或影响 通常偶然因素是指战争、自然灾害、政策制定
的错误后果、面对一些现象人们的心理因素等等, 这些因素可能影响若干时期,反映在模型中很容 易形成随机误差序列的自相关。
4、设定偏误:
所谓设定偏误是指所建模型“不真实”或“不正 确”。引起设定偏误的主要原因有:模型函数的形式 不正确或遗漏了主要变量。
1、经济变量惯性的作用 大多数经济时间数据都有一个明显的特点,就是
它的惯性,表现在时间序列数据不同时间的前后关联 上。
例如,绝对收入假设下居民总消费函数模型:
Ct=0+1Yt+t
t=1,2,…,n
由于消费习惯的影响被包含在随机误差项中, 则可能出现序列相关性(往往是正相关 )。
计量经济学第六章异方差性

构建统一的异方差 性处理框架
未来可以构建一个统一的异方 差性处理框架,整合现有的处 理方法和技巧,为实际应用提 供更为全面和系统的指导。同 时,该框架还可以为计量经济 学的教学和研究提供便利。
THANK YOU
感谢聆听
03
异方差性对假设检验 的影响
异方差性可能导致假设检验中的t统计 量和F统计量失效,从而影响假设检 验的结论。
异方差性下的模型选择和评价
异方差性检验
在进行模型选择和评价之前,需要对异方差性进行检验。常用 的异方差性检验方法有怀特检验、布雷施-帕甘检验等。
模型选择
在存在异方差性的情况下,应选择能够处理异方差性的模型, 如加权最小二乘法(WLS)、广义最小二乘法(GLS)等。
性质
异方差性违反了经典线性回归模型的同方差假设,可能导致参数 估计量的无偏性、有效性和一致性受到影响。
产生原因及影响
模型设定误差
模型遗漏了重要变量或函数形式设定错误。
数据采集问题
观测数据的误差或异常值。
产生原因及影响
• 经济现象本身:某些经济变量之间的关系可能随时间和空间的变化而变化,导致异方差性。
等级相关系数法
计算残差绝对值与解释变量之间的等 级相关系数,若显著则表明存在异方 差性。
Goldfeld-Quandt检验法
假设条件
该检验假设异方差性以解释变量的某个值为界,将样本分为两组,且两组的方差不同。
检验步骤
首先根据假设条件将样本分组,然后分别计算两组的残差平方和,最后构造F统计量进行假设检验。
05
异方差性在计量经济学模型中的应用
异方差性对模型设定的影响
01
异方差性可能导致参 数估计量的偏误
当存在异方差性时,普通最小二乘法 (OLS)的参数估计量可能不再具有无 偏性和一致性,从而导致估计结果的偏 误。
异方差性的概念、类型、后果、检验及其修正方法(含案例)

分别为两个子样对应的随机项方差。
H0成立,意味着同方差; H1成立,意味着异方差。
⑤构造统计量
nc 2 ~ e2i ( 2 k 1) nc nc F ~ F( k 1, k 1) nc 2 2 2 ~ e ( k 1 ) 1i 2
⑥检验。给定显著性水平,确定F分布表中相应的临界值
例4.1.2:以绝对收入假设为理论假设、以分组数据 (将居民按照收入等距离分成n组,取组平均数为样 本观测值)作样本建立居民消费函数:
Ci= 0+1Yi+i 一般情况下:居民收入服从正态分布,处于中等收入组中 的人数最多,处于两端收入组中的人数最少。而人数多的组 平均数的误差小,人数少的组平均数的误差大。所以样本观 测值的观测误差随着解释变量观测值的增大而先减后增。 如果样本观测值的观测误差构成随机误差项的主要部分,那 么对于不同的样本点,随机误差项的方差随着解释变量观测值
并不随解释变量 Xi的变化而变化,不论解释变量 的观测值是大还是小,每个i的方差保持相同, 即 i2 =常数 (i=1,2,…,n)
• 在异方差的情况下,i2已不是常数,它随Xi的
变化而变化,即
i2 =f(Xi) (i=1,2,…,n)
• 异方差一般可以归结为三种类型:
(1)单调递增型: i2=f(Xi)随Xi的增大而增大; (2)单调递减型: i2=f(Xi )随Xi的增大而减小; (3)复杂型: i2=f(Xi )随Xi的变化呈复杂形式。
③对每个子样本分别求回归方程,并计算各自的残差平方
e 2 ,较大的一 和。将两个残差平方和中较小的一个规定为 ~ 1i
nc 2 ~ k 1。 个规定为 e2i 。二者的自由度均为 2
2 2 H0 : 12 2 12 2 ④提出假设: ,H 1 : 2 12 与 2
异方差性-精选文档

• 解释变量的方差不随样本容量的增加而收敛——伪回归问题
2、对于每一种情形: • 表现形式是什么? • 产生的原因何在? • 造成的后果如何? • 如何检验其存在? • 如何解决和处理?
§4.1
异方差性
一、异方差的概念与类型 二、实际经济问题中的异方差性 三、异方差性的后果 四、异方差性的检验 五、异方差性的修正
# 异方差下随机误差项的方差-协方差阵
在其他假设不变的情况下,异方差意味着:
2 2 v a r ( ) E ( ) i i i
c o v ( ( i , j ) E i j ) 0
此时,随机误差项之间的方差-协方差阵为:
2 E ( 1) c o v ( ) E ( ) E ( ) n1 2 2 = W I 2 E ( ) 1 n 1 2 E ( ) 0 n
六、案例
一、异方差性的概念
对于模型:
Y X X X i 0 1 i i2 2 i k ki i
如果出现
2 V a r ( ) i i
即:对于不同的样本点,随机误差项的方差不再是同一个常数,而互 不相同,则认为出现了异方差性(Heteroskedasticity)。 注意:此处讨论异方差性时,并未改变其它基本假设,此时随机误差项 仍然满足:E(µi)=0,cov((µi,µj)=0。
【例4.1.3】:企业生产函数模型(截面资料)
Y i = β 0 A i 1 K i 2 L i 3 e I 被解释变量:产出量Y 解释变量:资本K、劳动L、技术A
ቤተ መጻሕፍቲ ባይዱ分析:
每个企业所处的外部环境对产出量的影响被包含在随机误差项中。
异方差性

建立一个不同地区国内生产总值与不同地 区人均消费性支出的回归模型: Zhichu=b1+b2gdp 用OLS法作回归 回归结果如下
EViews回归结果(OLS)
借助散点图观察是否具有异方差性
点击菜单栏中的Quick/Graph得到对话框, 在对话框里列出数列名称,(先列出的变 量为横坐标)然后点击OK。
Eviews软件的应用四
异方差性、异方差的检验和修正
异方差性的概念
经典线性回归模型假设回归扰动项是同方 差的。如果回归扰动项不满足这个条件, 即回归扰动项的方差随着自变量的不同而 不同,就存在异方差。
我们给出不同地区(30个地区)在2002年的国内生产 总值(GDP)和人均消费支出(zhichu)数据
点击show options出现更详细的对话框
在左上角图形类型Graph Type下拉列表中选择 Scatter Diagram,在右下角散点图项下选择 Regression line,然后点击OK
从图中可以看出来随机误差项存在异方差性
Goldfeld-Guandt检验
考虑一元回归模型 将数据按自变量大小排列。 省略中间的d项观测值。 拟合两个回归模型。每个回归模型都有(Nd)/2个数据。
3、生成W。W公式为W=1/e2
4、点击Eviews顶部quick/estimate equation,在弹出的对话框中输入zhichu c gdp,然后点击右下方的Option
选中Weighted LS/TSLS,并在Weigh中填入权数 变量名W(前面已经定义),然后点击OK
弹出加权最小二乘法(WLS)的结果
在窗口输入命令 SCALAR SIG1=@se
计量经济学分章习题与答案

第一章 导 论一、名词解释 1、截面数据2、时间序列数据3、虚变量数据4、内生变量与外生变量二、单项选择题1、同一统计指标按时间顺序记录的数据序列称为 ( )A 、横截面数据B 、虚变量数据C 、时间序列数据D 、平行数据2、样本数据的质量问题,可以概括为完整性、准确性、可比性和 ( )A 、时效性B 、一致性C 、广泛性D 、系统性3、有人采用全国大中型煤炭企业的截面数据,估计生产函数模型,然后用该模型预测未来 煤炭行业的产出量,这是违反了数据的哪一条原则。
( ) A 、一致性 B 、准确性 C 、可比性 D 、完整性4、判断模型参数估计量的符号、大小、相互之间关系的合理性属于什么检验? ( )A 、经济意义检验B 、统计检验C 、计量经济学检验D 、模型的预测检验5、对下列模型进行经济意义检验,哪一个模型通常被认为没有实际价值? ( )A 、i C (消费)5000.8i I =+(收入)B 、di Q (商品需求)100.8i I =+(收入)0.9i P +(价格)C 、si Q (商品供给)200.75i P =+(价格)D 、i Y (产出量)0.60.65i K =(资本)0.4i L (劳动)6、设M 为货币需求量,Y 为收入水平,r 为利率,流动性偏好函数为012M Y r βββμ=+++,1ˆβ和2ˆβ分别为1β、2β的估计值,根据经济理论有 ( ) A 、1ˆβ应为正值,2ˆβ应为负值 B 、1ˆβ应为正值,2ˆβ应为正值 C 、1ˆβ应为负值,2ˆβ应为负值 D 、1ˆβ应为负值,2ˆβ应为正值三、填空题1、在经济变量之间的关系中, 、 最重要,是计量经济分析的重点。
2、从观察单位和时点的角度看,经济数据可分为 、 、 。
为 、 、 。
四、简答题1、计量经济学与经济理论、统计学、数学的联系是什么?2、 模型的检验包括哪几个方面?具体含义是什么?五、计算分析题1、下列假想模型是否属于揭示因果关系的计量经济学模型?为什么?(1)t S =112.0+0.12t R ,其中t S 为第t 年农村居民储蓄增加额(单位:亿元),t R 为第t 年城镇居民可支配收入总额(单位:亿元)。
《异方差性》课件

03
异方差性的后果
模型预测的准确性下降
异方差性会导致模型的预测值偏 离真实值,降低预测的准确性。
在异方差性存在的情况下,模型 的预测结果可能变得不可靠,因 为模型没有充分考虑到数据的不
确定性。
异方差性可能导致模型在预测新 数据时表现不佳,因为模型没有 充分学习到数据的内在结构和变
化规律。
模型推断的可靠性降低
详细描述
社会数据在不同群体之间的分布往往存在显著的差异,这种差异反映了不同群体之间的异方差性。这 种异方差性可能与社会经济地位、文化背景等多种因素有关,需要深入分析其产生的原因和影响。
社会数据的异方差性分析
总结词
异方差性对社会政策制定和实施具有重 要影响。
VS
详细描述
社会政策的制定和实施需要考虑不同群体 的差异和特点,而异方差性的存在为社会 政策的制定提供了重要的参考信息。通过 对异方差性的分析和研究,我们可以更好 地了解不同群体的需求和诉求,制定更为 公正和有效的社会政策。
总结词
金融数据的异方差性分析有助于提高投资策略的有效性。
详细描述
通过对金融数据的异方差性进行分析,投资者可以更好地 理解市场的波动规律和风险特征,从而制定更为有效的投 资策略。这种基于异方差性的投资策略能够更好地适应市 场的变化,提高投资的收益和风险控制能力。
社会数据的异方差性分析
总结词
社会数据在不同群体之间存在显著的异方差性。
平方根变换
当数据分布不均,特别是偏度较大时,平方根变换可以改善数 据的正态性。
Box-Cox变换
是一种通用的数据变换方法,通过选择一个适当的λ值,使数据 达到最佳的正态分布状态。
模型选择和调整
混合效应模型
异方差性

:FGLS)法
o 在一般情况下,我们并不知道异方差的具体形式,需要 对异方差的函数形式做出估计,然后再进行加权最小二 乘估计,这种方法属于FGLS法 (伍德里奇,2000;赵国
庆,2001)
可行的广义最小二乘估计 对 yi B1 B2 x 2i B3 x 3i Bk x ki u i 。假定
同方差性
X:受教育年限
概 率 密 度
Y:工资
Y
X
异方差性
X:收入
概 率 密 度
Y:消费支出
Y
X
异方差性
X:时间
概 率 密 度
Y:打字错误
Y
X
产生异方差性的原因
原因 被解释变量:消费支出 解释变量:收入 解释变量与误差项相关 随着收入的增加,支出差异性更大
有重要的解释是影响支出的因素,物价上
对(1) ,各误差项方差相等
误差项方差未知 对 yi B1 B2 x 2i u i , i2 未知 If E(u i2 ) = σ 2 x 2i ,则
yi x 2i B1. u 1 B2 . x 2i i x 2i x 2i
模型无截距项
令
* y* = B1.x1i + B2 .x * + u * i 2i i
一般地
对 yi B1 B2 x 2i B3 x 3i Bk x ki u i 2 ˆ 用OLS方法估计模型参数,计算得 e i 和 y i
构建模型
ˆ ˆ ei2 A1 A 2 yi A3 yi2 vi
计算得判定系数R 2 构造统计量 s nR 2 2 (2) 对原假设 H0 : σ12 = σ2 = = σ 2 = σ2 2 n 如果 s -统计量显著,则拒绝原假设,认为误差项异方差
异方差模型

从这,我们可以看出 ε t 是高峰和肥尾的。 估计 在 ε t = z t ht 中,若 zt 服从标准的正态分布,则伪似然估计 (Quasi-Maximum-Likelihood Estimator)的对数似然函数为:
LT = − T 1 T ln 2π − ∑ ln ht2 + zt2 2 2 t =1
2
值,即 E (rt | Ft −1 ) = μ t ,相应地可以定义 rt 的条件方差 ht :
2
ht ≡ Var (rt | Ft −1 ) = E[(rt − μ t ) 2 | Ft −1 ] = E (ε t | Ft −1 )
2 2
(2)
式(2)是 GARCH 类波动率模型的核心部分,Engle(1982)首先提出了以 AR(q)结构 来对 ht 建模,这就是著名的自回归条件异方差模型(Auto-Regressive Conditional Heteroscedasticity,ARCH)。Engle 定义条件均值的残差序列 {ε t } 为:
无条件方差
E (ε t ) =
2
α0 1 − (α + β )
峰度 如果 1 − (α + β ) 2 − 2α 2 ,则峰度系数 E (ε t4 ) 3[1 − (α + β ) 2 ] == >3 [Var (ε t )]2 1 − (α + β ) 2 − 2α 2 从这,我们可以看出 ε t 是高峰和肥尾的。 估计 在 ε t = z t ht 中,若 zt 服从标准的正态分布,则伪似然估计 (Quasi-Maximum-Likelihood Estimator)的对数似然函数为:
可以写成为
ε t2 = α 0 + (α + β )ε t −1 2 + ε t2 − ht 2 − β (ε t2−1 − ht2−1 )
第六章 异方差性

f ( X ji ) 2 X e i ji
或
~ ln(ei 2 ) ln 2 ln X ji i
若在统计上是显著的,表明存在异方差性。
该检验的困难在于需要选择不同的解释变量, 尝试各种不同的函数形式,进行多次反复试 验,并且在进行实验的回归模型中,其随机 干扰项本身就可能不满足OLS的经典假设。
4、F 检验
考虑我们常用的多元线性回归模型
Yi 0 1 X 1i 2 X 2 i k X ki i
我们想检验
i=1,2…,n
2
是否与一个或者多个解释变量相关。
• 辅助回归:
2 e 0 1 X 1i ...... k X ki vi
S 其中, i 为第i个家庭的储蓄额, i 为第i个家庭的可支配收入。 Y
析:
在该模型中,假定 i 的方差为常数往往不符合实际情况。对于高收入
家庭来说,储蓄的差异较大;低收入家庭的储蓄则更有规律性(如为某一 特定的目的而储蓄),差异较小。因此 i 的方差往往随的Y 增加而增加, i 这属于递增型异方差。
四、异方差性的后果
计量经济学模型一旦出现异方差性,如果仍采 用OLS估计模型参数,会产生下列不良后果: 1. 参数估计量非有效
OLS估计量仍然具有线性性、无偏性,但不具 有有效性 因为在有效性证明中利用了 E(’)=2I 而且,在大样本情况下,尽管参数估计量具 有一致性,但仍然不具有渐近有效性。
3. 戈德菲尔德-匡特(Goldfeld-Quandt)检验 G-Q检验以F检验为基础,适用于样本容 量较大、异方差递增或递减的情况。
G-Q检验的思想:
先按某一解释变量对样本排序,再将样本一 分为二,对子样①和子样②分别作回归,然后利 用两个子样的残差平方和之比构造统计量进行异 方差检验,该统计量服从F分布。
异方差性

12
第三节 异方差性的检验
常用检验方法:
●图示检验法 ● Goldfeld-Quanadt检验 ● 戈里瑟检验
13
一、图示检验法
(一)相关图形分析
方差描述的是随机变量取值的(与其均值的)离散
程度。因为被解释变量 Y 与随机误差项
u 有相同的
方差,所以利用分析 Y 与 X 的相关图形,可以初略
地看到 Y 的离散程度与 X 之间是否有相关关系。 如果随着 X 的增加, 的离散程度为逐渐增大(或 Y 减小)的变化趋势,则认为存在递增型(或递减型) 的异方差。
2 1i 2 e2i为后一部分样本回归产生的残差平方和。它
们的自由度均为 [( n - c) / 2] - k ,k 为参数的个数。
19
在原假设成立的条件下,因 e1i 和 e2i 自由度均 χ 2 分布,可导出: 为 [( n - c ) / 2] - k ,
2 2
2 e2i n -c n -c F* = = 2 ~ F( - k, - k) 2 2 2 n -c e1i / [ - k ] e1i 2
性,但最小方差性不成立,从而导致参数的显著
性检验失效和预测的精度降低。
32
4.检验异方差性的方法有多种,常用的有图形法、 Goldfeld-Qunandt检验、以及Glejser检验。
5.异方差性的主要方法是加权最小二乘法。
33
第 五 章 结 束 了!
34
10
二、对参数显著性检验的影响
由于异方差的影响,使得无法正确估计参数的标
准误差,导致参数估计的 t 统计量的值不能正确
确定,所以,如果仍用 t 统计量进行参数的显著
性检验将失去意义。
异方差的性质

预测置信区间不准确
在异方差情况下,预测的置信区间可 能不准确,导致对预测结果的信任度 降低。
对统计推断的影响
统计推断有效性下
降
在异方差情况下,常用的统计推 断方法可能不再适用,导致推断 结果的不准确。
假设检验失效
在异方差情况下,假设检验的结 果可能受到影响,导致无法准确 地做出统计决策。
置信水平降低
由于异方差的存在,统计推断的 置信水平可能会受到影响,导致 对推断结果的信任度降低。
03
CATALOGUE
异方差的检验
图示检验法
残差图检验
通过绘制残差与拟合值的图形,观察 残差是否随拟合值的变动而出现系统 性模式,如随拟合值增大而逐渐增大 或减小。
QQ图检验
将残差与标准正态分布的期望值进行 比较,观察其是否落在预期的置信区 间内,判断残差是否服从正态分布。
总结词
医学研究数据中,由于个体差异、病情 进展和治疗方法等因素,常常表现出异 方差性。
VS
详细描述
在医学研究中,由于个体之间的差异、病 情进展的不同阶段以及治疗方法的多样性 等因素,数据分布往往不均匀。例如,不 同患者的生理指标、治疗效果等可能会有 很大的差异,导致数据异方差性的出现。
实例三:社会调查数据
通过计算残差的二次项与解释变量的线性组 合,构建统计量对异方差进行检验。
04
CATALOGUE
异方差的解决方法
数据变换法
平方根变换
通过取平方根的方式减小异方差的影 响,适用于数据分布为正态分布的情 况。
对数变换
通过取对数的方式减小异方差的影响 ,适用于数据分布为偏态分布的情况 。
幂变换
通过取幂的方式减小异方差的影响, 适用于数据分布为幂律分布的情况。