青岛版-数学-七年级上册-《整式的加减》分层练习 (2)
青岛版-数学-七年级上册-《整式的加减》综合练习 (2)
整式的加减一、选择题1.下列各组中的两项是同类项的是 ( )(A )ab 与 abc . (B )35-与3x -.(C )y x 25与 x y 23. (D )xy 2-与.yx 5- 2.下列运算中正确的是 ( )(A )ab b a 532=+; (B )532532a a a =+;(C )06622=-ab b a ; (D )022=-ba ab .3.若mxy 2-和331y x n 是同类项,则 ( ) (A )1,1==n m ; (B )3,1==n m . (C )1,3==n m ; (D )3,3==n m .4.下列运算中,正确的是 ( )(A )c b a c b a 25)2(5-+=+-. (B )c b a c b a 25)2(5+-=+-.(C )c b a c b a 25)2(5++=+-. (D )c b a c b a 25)2(5--=+-.5.)]([c b a ---去括号应得 ( )(A )c b a -+-; (B )c b a +--; (C )c b a ---; (D )c b a ++-.6.不改变ab a b b a ++--2223的值,把二次项放在前面有“+”号的括号里,一次项放在前面有“-”号的括号里,下列各式正确的是 ( )(A ))()23(22a b ab b a +-+++. (B ))()23(22a b ab b a -----+. (C ))()23(22a b ab b a --+-+. (D ))()23(22a b ab b a --+++. 7.两个5次多项式相加,结果一定是 ( )(A )5次多项式. (B )10次多项式.(C )不超过5次的多项式. (D )无法确定.8.化简)2()2()2(++---x x x 的结果等于 ( )(A )63-x (B )2-x(C )23-x (D )3-x9.一个长方形的一边长是b a 32+,另一边的长是b a +,则这个长方形的周长是 ( )(A )b a 1612+; (B )b a 86+.(C )b a 83+; (D )b a 46+.10.下列等式成立的是 ( )(A )13)13(--=--m m . (B )123)12(3+-=--x x x x .(C )b a b a -=-5)(5. (D )y x y x 47)4(7+-=+-.二、填空题11.去括号填空:=+--)(3c b a x _______________12.(_____)422-=-+-a b ab a a . 13.减去26xy 等于25xy 的代数式是 ___________________ .14.已知a 是正数,则=-a a 73 ____________________.15.三个连续自然数中最小的一个数是14+n ,则它们的和是____________ .16.大客车上原有)5(b a -人,中途上车若干人,车上共有乘客)58(b a -人,则中途上车的乘客是_____人.三、解答题17.合并同类项(1)a a a 653+- . (2)y x y ax y x 2226-+.(3)n m mn n m mn 2222783+-+-. (4)89266233++---x x x x .18.已知14+-n xy 与425y x m 是同类项,求n m +2的值.19.有一个两位数,它的十位数字是各位数字的8倍,则这个两位数一定是9的倍数,试说明理由.20.已知c b a ,,在数轴上的对应点如图所示,化简c b a c b a a ++-++-.a b d c四、化简求值题21.化简(1))69()3(522x x x +--++-. (2))324(2)132(422+--+-x x x x .(3)]2)34(7[522x x x x ----.(4)222)(3)()(4)()(2n m n m n m n m n m +++-+++-+.22.先化简,再求值(1))35()2143(3232a a a a a a ++--++- 其中 1-=a .(2)y x y x xy y x 22227.03.05.02.0+-- 其中32,1=-=y x .23.已知122+-=x x A ,3622+-=x x B .求 : (1)B A 2+. (2)B A -2.24.已知01)1(2=-++y x ,求)3()5(222xy xy xy xy ---的值.25.把多项式y x y x 3222-+-写成两个二项式的和.26.已知 32=+ab a ,12=+b ab ,试求 222b ab a ++,22b a -的值.参考答案一、选择题1.D2.D3.C4.D5.A6.C7.C8.C9.B 10.B二、填空题11.c b a x -+-3 12.224b ab a +- 13.211xy 14.a 4- 15.612+n 16.b a 43-三、解答题17.(1)a 4 (2)y x 2- (3)n m mn 22910+- (4)6343++-x x 18.52,3,1=+==n m n m 19.设个位数字为a ,则十位数字为a 8,则这个两位数可以表示成a a a 8180=+,故是9的倍数。
(人教版)青岛市七年级数学上册第二单元《整式的加减》测试(有答案解析)
一、选择题1.下列各等式的变形中,等式的性质运用正确的是( )A .由02x =,得2x =B .由14x -=,得5x =C .由23a =,得23a =D .由a b =,得a b c c = 2.把方程13124x x -+=-去分母,得( ) A .2(1)1(3)x x -=-+ B .2(1)4(3)x x -=++C .2(1)43x x -=-+D .2(1)4(3)x x -=-+ 3.定义运算“*”,其规则为2*3a b a b +=,则方程4*4x =的解为( ) A .3x =-B .3x =C .2x =D .4x = 4.已知5x =是关于x 的方程4231x m x +=+的解,则方程3261x m x +=+的解是_________.A .53B .53-C .-2D .15.方程6x+12x-9x=10-12-16的解为( )A .x=2B .x=1C .x=3D .x=-2 6.若代数式4x +的值是2,则x 等于( ) A .2B .2-C .6D .6- 7.若代数式x +2的值为1,则x 等于( )A .1B .-1C .3D .-3 8.关于y 的方程331y k +=与350y +=的解相同,则k 的值为( )A .-2B .34C .2D .43- 9.将方程2152132x x -+=-去分母,得( ) A .()()211352x x -=-+B .416152x x -=-+C .416152x x -=--D .()()2216352x x -=-+ 10.把方程112x =变形为2x =,其依据是( ) A .等式的性质1B .等式的性质2C .乘法结合律D .乘法分配律 11.下列方程的变形,符合等式的性质的是( )A .由2x ﹣3=7,得2x=7﹣3B .由3x ﹣2=x+1,得3x ﹣x=1﹣2C .由﹣2x=5,得x=﹣3D .由﹣13x=1,得x=﹣3 12.已知代数式2x-6与3+4x 的值互为相反数,那么x 的值等于( )A .2B .12C .-2D .1-2二、填空题13.学校组织一次数学知识竞赛,共有20道题,每一题答对得5分,答错或不答都倒扣1分,小明最终得到76分,那么他答对了______道题.14.方程 2243x -=的解是__________ 15.如图,折线AC -CB 是一条公路的示意图,8km AC =,甲骑摩托车从A 地沿这条公路到B 地,速度为40km/h ,乙骑自行车从C 地沿这条公路到B 地,速度为10km/h ,两人同时出发,结果甲比乙早到6分钟.则这条公路的长为________.16.如果34x x =-+,那么3x +________4=.17.若2a +1与212a +互为相反数,则a =_____. 18.猪是中国十二生肖排行第十二的动物,对应地支为“亥”.现规定一种新的运算,a 亥b ab b =-,则满足等式123x -亥61=-的x 的值为__________. 19.在方程431=-x 的两边同时_________,得x =___________. 20.已知关于x 的方程3223x m -=+的解是x m =,则m 的值为_________.三、解答题21.某校开展校园艺术节系列活动,派小明到文体超市购买若干个文具袋作为奖品.这种文具袋标价每个10元,请认真阅读结账时老板与小明的对话图片,解决下面两个问题: ()1求小明原计划购买文具袋多少个?()2学校决定,再次购买钢笔和签字笔共50支作为补充奖品,其中钢笔标价每支8元,签字笔标价每支6元.经过沟通,这次老板给予8折优惠,合计272元.问小明购买了钢笔和签字笔各多少支?22.一位商人来到一座新城市,想租一套房子,A家房东的条件是先交2000元,每月租金1200元;B家房东的条件是每月租金1400元.(1)这位商人想在这座城市住半年,则租哪家的房子划算?(2)如果这位商人想住一年,租哪家的房子划算?(3)这位商人住多长时间时,租两家的房子租金一样?23.小明解方程21152x x a-++=时,由于粗心大意,在去分母时,方程左边的1没有乘以10,由此求得的解为4x=,试求a的值,并正确求出方程的解.24.小丽用的练习本可以从甲乙两家商店购买,已知两家商店的标价都是每本 2 元,甲商店的优惠条件是:购买十本以上,从第 11 本开始按标价的 70%出售;乙商店的优惠条件是:从第一本起按标价的80%出售。
青岛版-数学-七年级上册-《整式的加减》复习学案 (2)
第六章整式的加减复习学案指出下列多项式每一项的系数和次数, 分别是几次几项式① 3a -2b+1 ② 2x 2-3x+5③ 2a -ab 2 ④ 1-x+ x 24.观察下面一列单项式:x -,22x ,34x -,48x ,516x -,…,根据其中的规律,得出第十个单项式是5.把多项式x y x x 3143+-+-按项的次数由高到低排列(二)同类项1.定义:所含 相同,并且 也相同的项,叫做同类项。
常数项都是同类项。
(要牢记!)2.概念: 叫做合并同类项。
3.合并同类项的法则对应训练1.判别下列各题中的两个项是不是同类项。
2.单项式 2x 2y 和( )是同类项:①5xy ②13x 2y ③x 2yz ④2a 2b ⑤-21x 2y 3、合并下列多项式中的同类项:(1)3a+(-5a) (2)4m 2n+ m 2n (3)-0.3ab+0.3ab4、合并下列各项式的同类项:(1)13x-3x-10x ; (2)x 2y-4x 2y+2x 2y ;(3)2m 2+1-3m-7-3m 2+5 (4)5ab-4a 2b-8ab 2+3ab-ab 2-4a 2b 。
5、先化简,再求值:(1) 2x 2-5xy+2y 2+x 2-xy-2y 2,其中x=-1,y=2;(2)a3-3a2b+ab2+3a2b-b3-ab2,其中a=14,b=-12。
(三)去括号1.去括号法则:(1)括号前面是“+”号时(2)括号前面是“-”号时.2.添括号法则:(1)所添括号前面是“+”时,(2)所添括号前面是“-”时,对应训练1、判断:下列去括号有没有错误?若有错,请改正:(1)a2-(2a-b+c) = a2-2a-b+c;(2)-(x-y)+(xy-1) =-x-y+xy-1.2、根据去括号法则,在___上填上“+”号或“-”号:(1)a___(-b+c)=a-b+c(2)a___(b-c-d)=a-b+c+d(3)____(a-b)___(c+d)=c+d-a+b3、去括号:(1)a+(b-c);(2)a-(b-c);(3)a+(-b+c);(4)a-(-b-c).(四)整式的加减1. 概括:整式的加减运算是,有括号,先去括号,有同类项再合并同类项。
青岛版七年级数学上册《第六章整式的加减》单元测试卷-附答案
青岛版七年级数学上册《第六章整式的加减》单元测试卷-附答案学校:___________班级:___________姓名:___________考号:___________(满分100分,限时60分钟)一、选择题(每小题3分,共36分) 1.在式子x+y ,0,-3x 2,y ,x+13,1x中,单项式共有( )A.2个B.3个C.4个D.5个 2.下列式子:2a 2b ,3xy-2y 2与a+b 2,4,-m ,x+yz 2x,ab−c π其中多项式有( )A.2个B.3个C.4个D.5个3.下列说法正确的是( ) A.xy 25的系数是-5B.单项式a 的系数为1,次数是0C.22a 3b 5的次数是6D.xy+x-1是二次三项式 4.下列去括号错误的是( ) A.x-(3y −12)=x −3y +12B.m+(-n+a-b )=m-n+a-bC.-12(4x-6y+3)=-2x+3y+3D5.若代数式5x 3m-1y 2与-2x 8y 2m+n 是同类项,则( ) A.m=73,n=-83B.m=3,n=4C.m=7,n=-4 D.m=3,n=-436.下列运算正确的是()A.5a3+3a3=8a6B.3a3-2a3=1C.4a3-3a3=aD.-4a3+3a3=-a37.下列说法中错误的是()A.2x2-3xy-1是二次三项式B.单项式-a的系数与次数都是1C.数字0也是单项式D.把多项式-2x2+3x3-1+x按x的降幂排列是3x3-2x2+x-18.已知a2+b2=6,ab=-2,则代数式(4a2+3ab-b2)-(7a2-5ab+2b2)=()A.-34B.-14C.-2D.29.下列去括号正确的是()A.a-(2b+c)=a-2b+cB.a-2(b-c)=a-2b+cC.-3(a+b)=-3a+3bD.-(a-b)=-a+b10.若2x3y m+(n-2)x是关于x,y的五次二项式,则关于m,n的值的描述正确的是()A.m=3,n≠2B.m=2,n=3C.m=3,n=2D.m=2,n≠211.已知代数式M=2x2-1,N=x2-2,则M、N的大小关系是()A.M>NB.M=NC.M<ND.无法确定12.将两个边长分别为a和b(a>b)的正方形纸片按图1、图2两种方式置于长方形ABCD中(图1、图2中两张正方形纸片均有部分重叠),长方形中未被这两张正方形纸片覆盖的部分用阴影表示,设图1中阴影部分的周长为C1,图2中阴影部分的周长为C2,则C1-C2的值为()图1图2A.0B.a-bC.2a-2bD.2b-2a二、填空题(每小题3分,共18分)13.去括号:2a-[3b-(c+d)]=。
(人教版)青岛市七年级数学上册第二单元《整式的加减》测试卷(包含答案解析)
一、选择题1.下列方程中,解为x=-2的方程是( ) A .2x+5=1-xB .3-2(x -1)=7-xC .x -5=5-xD .1-14x=34x 2.在2019年女排世界杯比赛中,中国队以11场全胜积32分的成绩成为女排世界杯五冠王、女排世界杯比赛积分规则如表所示,若中国队以大比分3:2取胜的场次有x 场,则根据以上信息所列方程正确的是( )A .3x+2x =32B .3(11﹣x )+3(11﹣x )+2x =32C .3(11﹣x )+2x =32D .3x+2(11﹣x )=323.已知下列四个应用题:①现有60个零件的加工任务,甲单独每小时可以加工4个零件,乙单独每小时可以加工6个零件.现甲乙两人合作,问两人开始工作几小时后还有20个零件没有加工?②甲乙两人从相距60km 的两地同时出发,相向面行,甲的速度是4/km h ,乙的速度是6/km h ,问经过几小时后两人相遇后又相距20km ?③甲乙两人从相距60km 的两地相向面行,甲的速度是4/km h ,乙的速度是6/km h ,如果甲先走了20km 后,乙再出发,问乙出发后几小时两人相遇?④甲乙两人从相距20km 的两地同时出发,背向而行,甲的速度是4/km h ,乙的速度是6/km h ,问经过几小时后两人相距60km ?其中,可以用方程462060x x ++=表述题目中对应数量关系的应用题序号是( )A .①②③④B .①③④C .②③④D .①②4.小丽买了20支铅笔,店主给她8折优惠(即按标价的80%出售),结果共便宜了1.6元,则每支铅笔的标价是( ) A .0.20元B .0.40元C .0.60元D .0.80元5.如图所示,两人沿着边长为90 m 的正方形,按A →B →C →D →A …的方向行走,甲从A 点以65 m/min 的速度、乙从B 点以75 m/min 的速度行走,当乙第一次追上甲时,将在正方形的( )边上.A .BCB .DC C .ADD .AB6.下列变形中,正确的是( ) A .变形为B .变形为C .变形为D .变形为7.下列解方程的过程中,移项正确的是( ) A .由,得 B .由,得 C .由,得 D .由,得8.在三峡大坝截流时,用载重卡车将一堆石料运到围堰龙口,第一次运了这堆石料的少万方,第二次运了剩下的多万方,此时还剩下万方未运,若这堆石料共有万方,于是可列方程为( ) A . B . C . D .9.下列方程中,是一元一次方程的是( ) A .243x x -=B .0x =C .21x y +=D .11x x-=10.解方程-3x=2时,应在方程两边( ) A .同乘以-3B .同除以-3C .同乘以3D .同除以311.某种商品进价为800元,标价1 200元,由于该商品积压,商店准备打折销售,但要保证利润率不低于20%,则至少可以打 ( ) A .6折B .7折C .8折D .9折12.某种高端品牌的家用电器,若按标价打八折销售该电器一件,则可获纯利润500元,其利润率为20%,则该电器的标价为( ) A .3750元B .4000元C .4250元D .3500元二、填空题13.解关于x 的方程,有如下变形过程:①由2316x =-,得2316x =-; ②由342x -=,得324x =-;③由0.221 1.530.1x x -+=+,得366045x x +=-+; ④由253x x-=,得352x x -=. 以上变形过程正确的有_____.(只填序号)14.若关于x 的方程2x+a=9﹣a (x ﹣1)的解是x=3,则a 的值为_____. 15.对于数a ,b 定义这样一种运算:*2a b b a =-,例如1*3231=⨯-,若()3*11x +=,则x 的值为______.16.日历中同一竖列相邻三个数的和是63,则这三个数分别是______________.17.某长方形足球场的周长为340米,长比宽多20米,问这个足球场的长和宽各是多少米. (1)若设这个足球场的宽为x 米,那么长为_______米。
七年级数学上册 第六章 整式的加减单元测试2(新版)青岛版
整式的加减一、单项选择题〔共10题;共30分〕1.以下计算正确的选项是〔〕A. 3x-5x=-2xB. 3x2+x=4x3C.7a+4b=11ab D. -3ab2-a2b=-4a2.给出以下式子:0,3a,π,, 1,3a2+1,-,+y.其中单项式的个数是〔〕A. 5个B. 1个C. 2个D. 3个3.减去2﹣x等于3x2﹣x+6的整式是〔〕A. 3x2﹣2x+8B. 3x2+8C. 3x2﹣2x﹣4 D. 3x2+44.一个单项式的系数是2,次数是3,那么这个单项式可以是〔〕A. 2y3B. 2xy3C. ﹣2xy2D . 3x25.以下说法正确的选项是〔〕A. ﹣5,a不是单项式B. ﹣的系数是﹣2C. ﹣的系数是﹣,次数是4 D. x2y的系数为0,次数为26.以下说法正确的选项是〔〕A. 单项式xy的系数是,次数是1 B. 单项式﹣πa2b3的系数是﹣,次数是6C. 单项式x2的系数是1,次数是2 D. 多项式2x3﹣3x2y2+x﹣1叫三次四项式7.以下各组运算,结果正确的选项是( ).A. 3a +3b =6aB. -2x -2x =0C. 9x-6x =3D. 3y2-y2=2y28.单项式3x a+1y4与﹣2y b﹣2x3是同类项,那么以下单项式,与它们属于同类项的是〔〕A. ﹣5x b﹣3y4B. 3x b y4C. x a y4D. ﹣x a y b+19.A=5a﹣3b,B=﹣6a+4b,那么A﹣B等于〔〕A. ﹣a+bB. 11a+bC. 11a﹣7bD. ﹣a﹣7b10.多项式x2﹣2xy3﹣y﹣1是〔〕A. 三次四项式B. 三次三项式C. 四次四项式D. 四次三项式二、填空题〔共8题;共24分〕11.假设5x m+1y5与3x2y5是同类项,那么m=________.12.假设多项式a2﹣12ab+kb2是完全平方式,那么常数k的值为________.13.单项式5x2y的系数为________14.当 m=________时,多项式3x3﹣3mxy﹣3y2﹣9xy﹣8中不含xy项.15.假设关于a,b的多项式〔a2+2ab﹣b2〕﹣〔a2+mab+2b2〕中不含ab项,那么m=________.16.单项式﹣a2b3c的系数是________,次数是________;多项式2b4+ ab2﹣5ab﹣1的次数是________,二次项的系数是________.17.单项式的次数是________ .18.一组按规律排列的式子.其中第8个式子是________,第n个式子是________ 〔n为正整数〕.三、解答题〔共6题;共36分〕19.先化简,再求值:2x2+xy+3y2﹣x2+2xy﹣4y2,其中x=2,y=﹣1.20.观察下面一列单项式:﹣x,2x2,﹣3x3, 4x4,…,﹣19x19, 20x20,…〔1〕写出第99个,第 2022个单项式;〔2〕写出第n个单项式.21.某同学做一道数学题:“两个多项式A,B=4x2﹣5x﹣6,试求A+B〞,这位同学把“A+B〞看成“A﹣B〞,结果求出答案是﹣7x2+10x+12,那么A+B的正确答案是多少?22.﹣4xy n+1与是同类项,求2m+n的值.23.先化简,再求值:﹣6x+3〔3x2﹣1〕﹣〔9x2﹣x+3〕,其中.24.先化简,再求值:,其中,.四、综合题〔共10分〕25.A=2x2﹣9x﹣11,B=3x2﹣6x+4.求:〔1〕A﹣B;〔2〕A+2B.。
青岛版-数学-七年级上册-《整式的加减》单元练习2 (2)
整式的加减一、选择题1、原产量n 吨,增产30%后的产量应为( )A.(1-30%)n 吨B.(1+30%)n 吨C.n+30%吨D.30%n 吨2、下列说法正确的是( ) A.31312的系数为x π B.xxy 21212的系数为C.552的系数为x -D.332的系数为x3、下列计算正确的是( ) A.4x-9x+6x=-x B .02121=-a a C .x x =-23 D .xy-2xy=3xy4、买一个足球需要m 元,买一个篮球需要n 元,则买4个足球和7个篮球共需要( )元。
A.4m+7nB.28mnC.7m+4nD.11mn5、计算:3562+-a a 与1252-+a a 的差,结果正确的是( )A.432+-a aB.232+-a aC.272+-a aD.472+-a a二、填空题6、列式表示:p 的3倍的41是________________。
7、0.4xy³的次数为__________________________。
8、多项式154122--+ab ab b =________________。
9、写出-5x³y²的一个同类项:__________________。
10、三个连续奇数,中间一个是n ,则这三个连续奇数的和为____________。
11、观察下列算式:⋅⋅⋅⋅⋅⋅=+=-=+=-=+=-=+=-=+=-;;;;;94545734345232331212101012222222222若字母n 表示自然数,请你把观察到的规律用含n 的式子表示出来:_______。
三、解答题12、计算:(1);6321+-stst(2);67482323---++-aaaaaa(3).355264733---+++xyxyxxyxy13、计算(1)2(2a-3b)+3(2b-3a);(2)[])2(2)32(3)222222yxyxxxyxxyx+-----(14、先化简,再求值:9共16分)(1);其中3),23(31423223-=-+--+xxxxxxx(2).221)43()3(5212222-==-=-+---cbacaacbacaacba,,,其中四、综合应用:(18分)15、如图在一长方形休闲广场的四角都设计一块半径相同的四分之一圆形的花坛,若圆形的半径为r米,广场长为a米,宽为b米。
青岛版七年级上册数学第6章 整式的加减 含答案
青岛版七年级上册数学第6章整式的加减含答案一、单选题(共15题,共计45分)1、下列结论正确的是()A. 一定比大B. 不是单项式C. 和是同类项 D. 是方程的解2、下列各式计算正确的是()A. B. C. D.3、在下列各式中,去括号正确的是()A.3(x−1)−2 (2+3x)=3x−3−4+6xB.3(x−1) − 2 (2x +3 ) = 3x−1−4+3x C.3(x−1)−2 (2+3x)=3x−3−4−6x D.3(x−1) − 2 (2x +3 ) = 3x−1−4−3x4、已知一个两位数,个位数字为b,十位数字比个位数字大a,若将十位数字和个位数字对调,得到一个新的两位数,则原两位数与新两位数之差为( )A.9a-9bB.9b-9aC.9aD.-9a5、下列计算正确的是()A. B. C. D.6、x2+ax﹣2y+7﹣(bx2﹣2x+9y﹣1)的值与x的取值无关,则﹣a+b的值为()A.3B.1C.-2D.27、下列各式计算正确的是()A.2+b=2bB. - =C.(2a 2)3=8a 5D.a 6÷a 4=a 28、若x<0,则等于()A.-xB.0C.2xD.-2x9、下列去括号正确的是()A. B. C.D.10、下列运算结果正确的是()A. B. C. D.11、若m=x3-3x2y+2xy2+3y2, n=x3-2x2y+xy2-5y3,则2x3-7x2y+5xy2+14y3的值为()A.m+nB.m-nC.3m-nD.n-3m12、下列计算正确的是()A. B. C. D.13、当a=5,b=3时,a﹣[b﹣2a﹣(a﹣b)]等于()A.10B.14C.﹣10D.414、下列运算正确的是()A. B. C. D.15、下列运算正确的是()A. a•a3=a3B. (ab)3=a3bC. (a3)2=a6D. 2a2 +a=3a3二、填空题(共10题,共计30分)16、﹣3x+2x=________;5m﹣m﹣8m=________.17、若4a2b2n+1与a m b3是同类项,则m+n=________.18、若单项式与单项式是同类项,则________.19、如果单项式﹣x3y a与x b y是同类项,那么(2a﹣b)2017=________.20、若关于 x 的多项式的值与 x 的取值无关,则 a-b 的值是________21、计算:________.22、a、b在数轴上的位置如图所示,则化简的结果是________.23、若与的和仍为单项式,则这两个单项式的和为________.24、数a,b、c在数轴上的位置如图所示:化简:|a﹣b|﹣|b﹣c|﹣|a|的结果是________.25、若单项式﹣2x a﹣1y3与3x﹣b y2a+b是同类项,则b a的值为________.三、解答题(共5题,共计25分)26、设,,.当时,求A-(B+C)的值.27、已知单项式- m2x-1n9和m5n3y是同类项,求代数式x-5y的值.28、已知单项式与是同类项,求的值.29、已知﹣x a y b﹣4是八次单项式,求代数式3a+3b﹣12的值.30、在关于的多项式中,无论取任何数,多项式的值都不变,求的值.参考答案一、单选题(共15题,共计45分)1、C2、D3、C4、C5、D7、D8、D9、D10、D11、C12、C13、B14、D15、C二、填空题(共10题,共计30分)16、17、18、19、20、22、23、24、25、三、解答题(共5题,共计25分)26、27、29、30、。
青岛版七年级上册数学第6章 整式的加减含答案
青岛版七年级上册数学第6章整式的加减含答案一、单选题(共15题,共计45分)1、下列算式中,结果等于a6的是()A.a 4+a 2B.(a 2)2•a 2C.a 2•a 3D.a 2+a 2+a 22、下列运算正确的是()A.a 3+a 2=a 5B.a 2÷a 3=aC.2a 3•a 2=2a 5D.(2a 2)3=8a 53、下列计算正确的是()A.a 2+a 2=2a 4B.a 5·a 2=a 10C.(a 5)2=a 7D.a 6÷a 3=a 34、下列各式中与多项式2x﹣(﹣3y﹣4z)相等的是()A.2x+(﹣3y+4z)B.2x+(3y﹣4z)C.2x+(﹣3y﹣4z) D.2x+(3y+4z)5、关于x的多项式ax+bx合并同类项后的结果为0,则下列说法正确的是()A.a、b都必为0B.a、b、x都必为0C.a、b必相等D.a、b 必互为相反数6、一个多项式与2x2+2x-1的和是x+2,则这个多项式为()A.x 2-5x+3B.-x 2+x-1C.-2x 2-x+3D.x 2-5x-137、若单项式3x²y n与-2x m y3是同类项,则()A.m=2,n=-3B.m=-2,n=3C.m=-2,n=-3D.m=2,n=38、已知和是同类项,则的值是()A.-1B.1C.2D.39、下列每组中的两个代数式,属于同类项的是()A.3m 3n 2和﹣3m 2n 3B.xy与2xyC.5 3与a 3D.7x与7y10、下列各组单项式中,为同类项的是()A.a 3与a 2B.﹣3与aC.2xy与2xD. 与2a 211、与﹣2ab是同类项的为()A.-2acB.2ab 2C.abD.﹣2abc12、下列算式中,与a-b-c的值不相等的是( )A.a-(b+c)B.a- (b -c)C.(a- b)+(-c)D.(-c)十(b -a)13、下列计算中,正确的是()A. B. C.D.14、若的值为7,则的值为( )A.0B.24C.34D.4415、下列说法正确的是()A. 是单项式B.3a 2bc的次数是二次C.3x 3+x 2y是二次三项式D.三次单项式(-1)2n xy n的系数是1二、填空题(共10题,共计30分)16、计算:3m﹣2(m﹣n)= ________17、如果单项式与的和是,那么________,________.18、若﹣5x2y m与x n y的差是单项式,则m+n=________.19、有理数,,在数轴上的位置如图所示,化简式子:________.20、若单项式2a x﹣2y b3与﹣3a3b2x﹣y是同类项,则x﹣5y的值是________21、如果关于字母x的多项式的值与x的值无关,则mn=________.22、如果关于字母x的代数式-3x2+mx+nx2-x+10的值与x的取值无关,则m=________,n=________。
初中数学青岛版七年级上册第6章 整式的加减6.4整式的加减-章节测试习题(2)
章节测试题1.【题文】化简求值:,其中,b=2.【答案】,10.【分析】原式去括号合并得到最简结果,把a与b的值代入计算即可求出值.【解答】解:原式==;把a=﹣1,b=2代入得:6+4=10.2.【题文】化简:(1)(2)【答案】(1);(2).【分析】①原式合并同类项即可得到结果;②原式去括号合并即可得到结果.【解答】解:①原式=﹣3x2+2y﹣1;②原式=﹣2a+3b﹣4a+5b=﹣6a+8b.3.【题文】已知,.(A、B为关于的多项式)如果A﹣B的结果中不含一次项和常数项,求的值【答案】1【分析】将A与B代入A﹣B中,去括号合并得到最简结果,根据结果中不含一次项与常数项,求出m与n的值,即可求出所求式子的值.【解答】解:A﹣B=(5x2﹣mx+n)﹣(3y2﹣2x+1)=5x2﹣mx+n﹣3y2+2x﹣1=5x2﹣3y2+(2﹣m)x+n﹣1,∵A﹣B的结果中不含一次项和常数项,∴2﹣m=0,n﹣1=0,即m=2,n=1,则m2+n2﹣2mn=(m﹣n)2=1.4.【题文】先化简,再求值:(其中)【答案】0【分析】先去括号,再合并同类项,最后代入求值.【解答】解:;将代入上式,原式=.5.【答题】计算:a﹣(a﹣b)=______.【答案】b【分析】根据去括号的法则把本题中的括号去掉,再合并同类项即可得解. 【解答】解:a-(a-b)=a-a+b=b.故答案为:b.6.【答题】已知a2﹣ab=3,b2+ab=2,则代数式(3a2﹣2ab﹣b2)﹣(a2﹣2ab﹣3b2)的值是______.【答案】10【分析】先化简,再整体代入求值.【解答】解:原式∵∴∴原式=10.故答案为:10.7.【答题】多项式2(x2﹣3xy﹣y2)﹣(x2+2mxy+2y2)中不含xy项,则m=______.【答案】﹣3【分析】先化简,再令xy项的系数为零解答即可.【解答】解:∵又∵多项式中不含项,∴解得故答案为:8.【答题】计算:3a2﹣6a2=______.【答案】﹣3a2.【分析】合并同类项即可得解.【解答】3a2﹣6a2=(3-6)a2=-3a2.故答案是: ﹣3a2.9.【答题】若单项式3x m+6y2和x3y n是同类项,则(m+n)2017=______.【答案】﹣1【分析】本题考查了同类项的定义,同类项定义中的两个“相同”:(1)所含字母相同;(2)相同字母的指数相同.【解答】解:∵3x m+6y2和x3y n是同类项,∴m+6=3,n=2,解得:m=﹣3,则(m+n)2017=(﹣3+2)2017=﹣1.故答案为:﹣1.10.【答题】当 x=,y=10 时,代数式(3xy+5x)-3(xy+x)的值为______. 【答案】1【分析】先化简,再代入求值.【解答】解:当时,故答案为:1.11.【答题】化简:4a﹣(a﹣3b)=______.【答案】3a+3b【分析】根据去括号的法则把本题中的括号去掉,再合并同类项即可得解. 【解答】4a﹣(a﹣3b)=4a﹣a+3b=3a+3b,故答案为:3a+3b.12.【答题】如果单项式x a+1y3与2x3y b﹣1是同类项,那么a b=______.【答案】16【分析】根据同类项的定义:所含字母相同,并且相同字母的指数也分别相同的项,叫同类项,解答即可.【解答】因为单项式x a+1y3与2x3y b﹣1是同类项,所以a+1=3,b-1=3,所以a=2,b=4,所以a b=16.故答案是:16.13.【答题】若多项式2(x2-xy-3y2)-(3x2-axy+y2)中不含xy项,则a=______【答案】2【分析】本题考查了整式的含与不含问题求字母的值,解答的步骤是先去括号合并同类项,然后令不含项的系数等于零求解.【解答】2(x2-xy-3y2)-(3x2-axy+y2)=2x2-2xy-6y2-3x2+axy+y2=-x2+(a-2)xy-5y2由题意得a-2=0,∴a=2,14.【答题】将减去,结果是______.【答案】【分析】根据整式的加减计算即可.【解答】解:==.故答案为:.15.【答题】已知与是同类项,则=______.【答案】1【分析】两个单项式是同类项需同时满足两个条件:(1)两个单项式中所含字母相同;(2)两个单项式中同一字母的指数相等.【解答】∵与是同类项,∴,解得:,∴.故答案为:1.16.【答题】去括号,并合并同类项:3x+1﹣2(4﹣x)=______.【答案】5x﹣7【分析】根据整式的加减计算即可.【解答】3x+1﹣2(4﹣x)=3x+1﹣8+2x=5x﹣7,故答案为:5x﹣7.17.【答题】已知与是同类项,则 5m+3n 的值是______.【答案】13【分析】本题考查了同类项定义.同类项定义中的两个“相同”:相同字母的指数相同.【解答】同类项是指所含字母相同,且相同字母的指数也相同的单项式.根据题意可得:,解得:,则5m+3n=10+3=13.18.【答题】若3a4b3m+2n与-5a2m+3n b6是同类项,则|m+n|=______.【答案】2【分析】本题考查了同类项定义.同类项定义中的两个“相同”:相同字母的指数相同.【解答】解:由同类项的定义,可知2m+3n=4①,3m+2n=6②,①+②得:5(m+n)=10,解得:m+n=2,∴|m+n|=2.故答案为:2.19.【答题】一个多项式加上-x2+x-2得x2-1,则此多项式应为______.【答案】2x2-x+1【分析】根据整式的加减计算即可.【解答】根据题意得:这个多项式为(x²−1)−(−x²+x−2)=x²−1+x²−x+2=2x²−x+1.故答案为:2x²−x+1.20.【答题】数a,b在数轴上对应点的位置如图所示,化简a-|b-a|= ______ .【答案】b【分析】先化简绝对值,再根据整式的加减即可.【解答】由图可知,,∴,∴.即答案为:.。
青岛版七年级数学上册整式的加减单元测试2
青岛版七年级数学上册整式的加减单元测试2一、选择题(共10小题;共50分)1. 若,,则等于A. C.2. 下列选项中,两个单项式属于同类项的是A. 与B. 与C. 与D. 与3. 如果与是同类项,那么,的值分别是A. B. C. D.4. 已知关于的多项式的取值不含项,那么的值是B. D.5. 小博表演扑克牌游戏,她将两副牌分别交给观众和观众,然后背过脸去,请他们各自按照她的口令操作:.在桌上摆堆牌,每堆牌的张数要相等,每堆多于张,但是不要告诉我;.从第堆牌中拿出张牌放到第堆里;.从第堆牌中拿出张牌放到第堆里;.数一下此时第堆牌的张数,从第堆牌中取出与第堆相同张数的牌放在第堆里;.从第堆牌中拿出张牌放在第堆中.小博转过头来问这两名观众:“请告诉我现在第堆有多少张牌,我就能告诉你们最初的每堆牌数.”观众说张,观众说张,小博猜两人最初每一堆里放的牌数分别为A. ,B. ,C. ,D. ,6. 下列运算正确的是A. B.C. D.7. 若多项式与的差与的取值无关,则的值为A. C.8. 已知与是同类项,则的值是A. B. C. D.9. 已知,,则的值是B. D.10. 某商店在甲批发市场以每包元的价格进了包茶叶,又在乙批发市场以每包元()的价格进了同样的包茶叶如乘商家以每包元的价格卖出这种茶叶,那么这家商店A. 盈利了B. 亏损C. 不盈不亏D. 盈亏不能确定二、填空题(共6小题;共30分)11. 合并同类项:.12. 化简.13. 多项式中有项,其中最高次项是.14. 已知与是同类项,则.15. 如图,约定:上方相邻两数之和等于这两个数下方箭头共同指向的数(图).示例(图):即,则.16. 如图是一个多边形钢板,已知,,且,比长,比长,则这个多边形钢板的周长为.三、解答题(共8小题;共104分)17. 求减去的差.18. 先化简,再求值:,其中.19. 合并同类项:(1);(2);(3);(4).20. 已知两个单项式与的和仍是单项式,试判断与是否是同类项.21. 已知多项式是六次四项式,单项式与该多项式的次数相同,求、的值.22. 某商店以每件元的价格购进件甲种商品,以每件元的价格购进件乙种商品,且.(1)若该商店将甲种商品提价,乙种商品提价全部出售,则可获利多少元?(用含有,的式子表示结果)(2)若该商店将两种商品都以元的价格全部出售,这次买卖该商店是盈利还是亏损,请说明理由?23. 计算:(1);(2).24. 设.(1)当,时,求的值;(2)若,则()中.答案第一部分1. B2. D3. A4. D 【解析】关于的多项式的取值不含项,,解得:.5. A6. C7. C 【解析】两个多项式的差与的取值无关,且,解得:,,则.8. A 【解析】由题意,得,移项,得,.9. A10. A【解析】根据题意知,购进这些茶叶的总成本为元,卖出这些茶叶的销售额为(元),则所获总利润为,所以这家商店盈利了,第二部分11.12.【解析】.13. 四,【解析】多项式有,,,四项,项的次数是次方,为最高次项.14.15.【解析】由题意可得,,,.16.第三部分17. .18. ,当时,19. (1)(2)(3)(4)20. 由题意得与是同类项,根据同类项的定义得解得,.根据同类项的定义得与是同类项.21. 因为已知多项式的次数是六次,所以,即,所以.因为已知多项式与已知单项式的次数相同,所以,即,所以.22. (1)总进价为:元,总售价为:(元),商店获利为:答:商店可获利元.(2)此次买卖该商店亏损,理由如下:总售价为:,又,,,此次买卖该商店亏损.23. (1).(2).24. (1),当,时,(2)【解析】由,得到,故答案为:.。
七年级数学上册 第六章 整式的加减 6.4《整式的加减》分层练习 青岛版
6.4 整式的加减基础训练一、填空题1.3x 与-5x 的和是 ,3x 与-5x 的差是 .2.如果代数式2x 3和x m 的和是一个单项式,则m = .3.某公园门票票价为成人每张20元,儿童每张10元,如果某天公园卖出x 张成人票,y 张儿童票,那么这一天公园的门票收入为 元.二、选择题4. a -b, b -c, c -a 三个多项式的和是( )A.3a +3b +3cB.0C.2a +2b +2cD.2a -2b -2c5.m -n =21,则-3(n -m )=( ) A.32 B. 32 C.16 D. 236.多项式5x 2+3x -5加上-3x 后等于( )A.5x 2-5B.5x 2-6x -5C.5x 2+6x -5D.5x 2+57.在日历中,数a 的前面一个数和正下方一个数分别是( )A.a +1和a +7B.a -1和a +7C.a +1和a +8D.a -1和a +88.有一列数2,4,6,8,10,…,第n 个数是( )A. nB.2nC.12D.2n三.解答题:9.求3x 2+y 2-5xy 与-4xy -y 2+7x 2的和.10.已知某三角形的一条边长为m +n ,另一条边长比这条边长大m -3,第三条边长等于2n -m ,求这个三角形的周长.综合提高一.填空题1.联欢会上,小明按照3个红气球.2个绿气球.1个黄气球的顺序把气球串起来装饰教室,当n 为自然数时,第6n +5个气球的颜色是 .2.七年级⑵班同学参加数学课外活动小组的有x 人,参加合唱队的有y 人,而参加合唱队人数是参加篮球队人数的5倍,且每位同学最多只能参加一项活动,则三个课外小组的人数共 人.3.商品原价a 元,第一次降价x %,第二次又降价y 元,则现价是 元.二.选择题4.两列火车都从A 地驶向B 地,已知甲车的速度为x 千米/时,乙车的速度为y 千米/时,经过3时,乙车距离B 地5千米,此时甲车距离B 地( )千米.A.3(-x +y )-5B.3(x +y )-5C.3(-x +y )+5D.3(x +y )+55.已知x <-2,则|x +2|-|1-x |=( )A.1B.-3C.2x +1D.-2x -16.电视机按原价的80%出售,每台售价为a 元,这批电视机的原价为( )元. A.10080a B.80100a C.10020a D.20100a 7.已知长方形的长为(2b -a ),宽比长少b ,则这个长方形的周长是( )A.3b -2aB.3b +2aC.6b -4aD.6b +4a8.已知股市交易中每买.卖一次需交7.5‰的各种费用,某投资者以每股5元的价格买入上海某股票4000股,当该股票涨到6元时全部卖出,则该投资者实际盈利为( )A.4000元B.3970元C.3820元D.3670元三.解答题:9.已知x 2-xy =60,xy -y 2=40,求代数式x 2-y 2和x 2-2xy +y 2的值.10.A.B 两家公司都准备招聘技术人才,两家公司其他条件类似,工资待遇如下:A 公司年薪2万元,每年加工龄工资400元;B 公司半年工资1万元,每半年加工龄工资100元. 从经济收入来考虑,选择哪一家公司有利.参考答案基础训练1.-2x 8x2. 33. 20x+10y4-8 BBABB9. 2m+4n-3 10.综合提高1.绿色2. X+6y/53. a(1-)-y4-8 CBBCD9. 100 , 20 10. 选B公司如有侵权请联系告知删除,感谢你们的配合!如有侵权请联系告知删除,感谢你们的配合!。
青岛版-数学-七年级上册-《整式的加减》单元测试2 (2)
整式的加减一、选择题(每题3分,共30分)1.小明身上带着a 元去商店里买学习用品,付给服务员b 元,找回c 元,小明身上还有( ) A.c 元 B.(a+c )元 C.(a -b+c )元 D.(a -b )元.2.对于代数式a+2b ,下列描述正确的是( )A.a 与2b 的平方的和 B.a 与b 的平方和C.a 与b 的和的平方D.a 与b 的平方的和 3.下列各组单项式中,是同类项的是( )A. 32ba 与b a 2 B.y x 23与23xy C.a 与1 D. bc 2与abc 24.下列计算正确的是( ) A.x x x =-45 B.2x x x =+ C.85332x x x =+ D.33323x x x =+-5.如果单项式22m x y +与nx y 的和仍然是一个单项式,则m 、n 的值是( )A.m=2,n=2B.m=-1,n=2C.m=-2,n=2D.m=2,n=-1 6.下列各题去括号所得结果正确的是()A.22(2)2x x y z x x y z --+=-++ B.(231)231x x y x x y --+-=+-+C.3[5(1)]351x x x x x x ---=--+D.22(1)(2)12x x x x ---=--- 7.不改变多项式3223324b ab a b a -+-的值,把后三项放在前面是“-”号的括号中,正确的是( )A.32233(24)b ab a b a --+ B.32233(24)b ab a b a -++ C.32233(24)b ab a b a --+-D.32233(24)b ab a b a -+- 8.若A 是一个七次多项式,B 也是一个七次多项式,则B A +一定是( ) A.十四次多项式 B.七次多项式 C.不高于七次多项式或单项式 D.六次多项式 9.当x 分别取2和-2时,多项式x5+2x3-5的值( )A.互为相反数B.互为倒数C. 异号不等D. 相等10.如图是一个正三角形场地,如果在每边上放2盆花共需要3盆花;如果在每边上放3盆花共需要6盆花,如果在每边上放n(n>1)盆花,那么共需要花盆()A.3nB.3n-1C.3n-2D.3n-3二、填空题(每题3分,共15分)11.“x的2倍与1的和”用代数式表示为___.12. 把多项式3322543yxxyyx-+-按y的降幂排列是_________.13.若nyx32与25yx m-是同类项,则m= _______ n= _______.14.多项式322223x x y y-+是_____次 _______项式.15.一个多项式加上22xx-+-得到12-x,则这个多项式是 ____________.三、解答题(本题共60分)16.(每题4分,共16分)化简:(1)xyyxxyyx222223-+-(2)222252214.041abbaabba+--(3)(7m2n-5mn)-(4m2n-5mn) (4)2222 5(3)2(7) a b ab a b ab---17. (每题6分,共12分)先化简,再求值(1)233(4333)(4)a a a a a+-+--+,其中a=-2(2)22222222(22)(33)(33)x y xy x y x y x y xy⎡⎤---++-⎣⎦,其中x=-1,y=2.18.(本题8分)按下图方式摆放餐桌和椅子:(1)1张餐桌可坐4人,2张餐桌可坐_______人. (2)按照上图的方式继续排列餐桌,完成下表.19.(本题8分)设a表示一个两位数,b表示一个三位数,把a放在b的左边,组成一个五位数x,把b放在a的左边组成一个五位数y,试问9能否整除yx-?请说明理由.20.(本题10分)先阅读下面文字,然后按要求解题.例:1+2+3+…+100=?如果一个一个顺次相加显然太繁,我们仔细分析这100个连续自然数的规律和特点,可以发现运用加法的运算律,是可以大大简化计算,提高计算速度的.因为1+100=2+99=3+98=…=50+51=101,所以将所给算式中各加数经过交换、结合以后,可以很快求出结果.解1+2+3+…+100=(1+100)+(2+99)+(3+98)+…+(50+51)=101× = . (1)补全例题解题过程;(2)计算a+(a+b)+(a+2b)+(a+3b)+…+(a+99b).参考答案一、选择题1.C2.D3.A4.D5.B6. B7.A8.C9.C 10.D 二、填空题11.2x+1 12. 300+b 13.本题答案不唯一.14. 3223345x y x xy y ++-- 15. 3, 2. 16. 70 17. 四,三18.122+-x x 19. -47 20. 9x三、解答题21. (1)2234x y xy - (2)214a b - (3) 3m2n (4)3a2b -ab222.(1)原式化简得32353a a a -++- ,则当a =-2时,原式=7.(2)原式化简得22x y xy -+,则当x =-1,y =2时,原式=-623.32232()243(2623)312A B C x x x x x x x x -+=-++-+-++-=-+,当2-=x 时,原式=024. (1)6 (2) 8,10,22+n25.解:由题意得:b a x +=1000,a b y +=100,b a y x 99999-=-,所以9能整除y x -.26.(1)50、5050,(2)(100a+4950b );。
青岛版初中数学七年级上册第六章整式的加减去括号
解:原式 = - 7x(-x)+(-7)x
解:原式 = 4×(-a)+4b+4×(-c) = - 4a+4b- 4c
(-y)+(-7)xz] = 7x+7y-7z
我的知识我应用
8a+2b+4(5a-b) 解:原式=8a+2b+20a-4b
=28a-2b (5a-3b)-3(a2-2b)+7(3b+2a) 解:原式=5a-3b-3a2+6b+21b+14a
3、当括号前带有数字因数时,这个数字因数要 乘以括号内的每一项,切勿漏乘某些项。
4、括号内原有几项,去掉括号后仍有几项,不 能丢项。
这节课我们学到了什么?
1.去括号的根据是:分配律 2.去括号的法则 3.去括号在整式加减中的运用
作业:
1. 课本68页 练习 第1题 2. 课本71页 习题2.2 第2、3、5题
=13a+b
(2)(5a-3b)-3(a2 -2b)
解:原式 5a 3b 3a2 6b
5a 3b 3a2
练习:去括号
① 9(x-z)
②-3(-b+c)
解:原式 =-3×(-b)+(-3)xc
解:原式 = 9x+9×(-z)
=3b-3c
= 9x- 9z
④-7(-x-y+z)
③4(-a+b-c)
①+(- a+c)
② - (- a+c)
= 1x(-a+c) = 1x(-a)+1xc
= -a+c
=(-1)x(-a+c) =(-1)x(-a)+(-1)x c
青岛市七年级数学上册第二单元《整式的加减》检测卷(包含答案解析)
一、选择题1.若│x -2│+(3y+2)2=0,则x+6y 的值是( ) A .-1B .-2C .-3D .322.下列各等式的变形中,等式的性质运用正确的是( ) A .由02x=,得2x = B .由14x -=,得5x = C .由23a =,得23a =D .由a b =,得a b c c= 3.新制作的渗水防滑地板是形状完全相同的长方形.如图,三块这样的地板可以拼成一个大的长方形.如果大长方形的周长为150cm ,那么一块渗水防滑地板的面积是( ).A .2450cmB .2600cmC .2900cmD .21350cm 4.一元一次方程的解是( )A .B .C .D .5.下列各题正确的是( ) A .由743x x =-移项得743x x -= B .由213132x x --=+去分母得()()221133x x -=+- C .由()()221331x x ---=去括号得42391x x ---= D .由()217x x +=+去括号、移项、合并同类项得5x =6.一项工程,甲单独做需10天完成,乙单独做需6天完成.现由甲先做2天,乙再加入合做,完成这项工程共需多少天?若设完成这项工程共需x 天,依题意可得方程( )A .106x x +=1 B .22106x x +-+=1 C .2106x x -+=1 D .222106x x x --++=17.已知a=2b ,则下列选项错误的是( ) A .a+c=c+2b B .a ﹣m=2b ﹣m C .2ab = D .2ab= 8.已知方程(1)30mm x -+=是关于x 的一元一次方程,则m 的值是( )A .±1B .1C .-1D .0或19.某校在举办“读书月”的活动中,将一些图书分给了七年一班的学生阅读,如果每人分3本,则剩余20本:如果每人分4本,则还缺25本.若设该校七年一班有学生x 人,则下列方程正确的是( ) A .3x ﹣20=24x +25 B .3x +20=4x ﹣25 C .3x ﹣20=4x ﹣25D .3x +20=4x +2510.如图,正方ABCD 形的边长是2个单位,一只乌龟从A 点出发以2个单位/秒的速度顺时针绕正方形运动,另有一只兔子也从A 点出发以6个单位/秒的速度逆时针绕正方形运动,则第2020次相遇在( )A .点AB .点BC .点CD .点D11.一张试卷共有25道题,若做对1题得4分,做错1题扣1分,小明做了全部试题只得了70分,那么小明做对了( )道. A .17B .18C .19D .2012.甲、乙、丙三辆卡车所运货物的质量之比为,已知甲车比乙车少运货物吨,则三辆卡车共运货物( ) A .吨B .吨C .吨D .吨二、填空题13.如图,折线AC -CB 是一条公路的示意图,8km AC =,甲骑摩托车从A 地沿这条公路到B 地,速度为40km/h ,乙骑自行车从C 地沿这条公路到B 地,速度为10km/h ,两人同时出发,结果甲比乙早到6分钟.则这条公路的长为________.14.桐桐的爸爸三年前在银行办理了一份3000元的定期存款,今年到期时的本息和为3243元,请你帮桐桐的爸爸算一算这种储蓄的年利率,若设年利率为x%,则可列方程为________________.(前一年的利息不计入下一年本金)15.若方程2(2)3m m x x ---=是一元一次方程,则m =________.16.一列火车匀速行驶,经过一条长600米的隧道需要45秒的时间,隧道的顶部一盏固定灯,在火车上垂直照射的时间为15秒,则火车的长为_____.17.小明说小红的年龄比他大两岁,他们的年龄和为18岁,两人年龄各是多少岁?若设小明x 岁,则小红的年龄为__________岁.根据题意,列出的方程是______________________. 18.完成下面的填空:一家商店将某种服装按成本价提高40%后标价,又以八折(即按标价的80%)优惠卖出,结果每件仍获利15元,这种服装每件的成本是多少元?我们知道,每件商品的利润是商品售价与商品成本价的差,如果设每件服装的成本价为x 元,那么每件服装的标价为_________元;每件服装的实际售价为___________元;每件服装的利润为____________元. 由此,列出方程_________________. 解这个方程,得x =______________. 因此每件服装的成本价是___________元.19.小亮用40元钱买了5千克苹果和2千克香蕉,找回4元.已知每千克香蕉的售价是每千克苹果售价的2倍,则每千克苹果的售价是________元.20.若关于x 的方程3x m -2-m =0是一元一次方程,则m =________,方程的解为________.三、解答题21.解下列方程(1)32(4)25x x --=-; (2) 212164y y -+-=-; (3)312423(1)32x x x -+-+=-; (4)4 1.550.8 1.20.50.20.1x x x----= ; (5) 315x x +-= ; (6)解下列关于x 的方程211423x m mx ---=. 22.小明解方程21152x x a-++=时,由于粗心大意,在去分母时,方程左边的1没有乘以10,由此求得的解为4x =,试求a 的值,并正确求出方程的解.23.为鼓励居民节约用电,某市试行每月阶梯电价收费制度,具体执行方案如下: 档次 每户每月用电量(度) 执行电价(元/度) 第一档 小于或等于2000.5 第二档 大于200且小于或等于450时,超出200的部分0.7 第三档大于450时,超出450的部分1(1)一户居民七月份用电300度,则需缴电费__________元.(2)某户居民五、六月份共用电500度,缴电费290元.已知该用户六月份用电量大于五月份,且五、六月份的用电量均小于450度.①请判断该户居民五、六月份的用电量分别属于哪一个档次?并说明理由. ②求该户居民五、六月份分别用电多少度?24.学友书店推出售书优惠方案:①一次性购书不超过100元,不享受优惠;②一次性购书超过100元但不超过200元一律打九折;③一次性购书超过200元一律打八折.如果王明同学一次性购书付款162元,那么王明所购书的原价为多少? 25.一种商品每件成本a 元,按成本增加22%标价. (1)每件标价多少元?(2)由于库存积压,实际按标价的九折出售,每件是盈利还是亏损?盈利或亏损多少元?26.学校要购入两种记录本,预计花费460元,其中A 种记录本每本3元,B 种记录本每本2元,且购买A 种记录本的数量比B 种记录本的2倍还多20本. (1)求购买A 和B 两种记录本的数量;(2)某商店搞促销活动,A 种记录本按8折销售,B 种记录本按9折销售,则学校此次可以节省多少钱?【参考答案】***试卷处理标记,请不要删除一、选择题 1.B 解析:B 【分析】根据非负数的性质,可求得x 、y 的值,再将x ,y 的值代入可得出答案. 【详解】解:∵│x -2│+(3y+2)2=0, ∴x-2=0且3y+2=0, 解得x=2,y=-23, ∴x+6y=2+6×(-23)=2-4=-2. 故选:B . 【点睛】本题考查了非负数的性质,能够利用非负数的和为零得出x 、y 的值是解题关键.2.B解析:B 【解析】 【分析】利用等式的基本性质判断即可. 【详解】解:A 、由02x=,得x=0,不符合题意; B 、由x-1=4,得x=5,符合题意;C 、由2a=3,得a=32,不符合题意; D 、由a=b ,c≠0,得a bc c=,不符合题意; 故选:B .【点睛】本题考查了等式的性质,熟练掌握等式的基本性质是解题的关键.3.A解析:A 【分析】设小长方形的长为x ,根据大的长方形对边相等得到小长方形的宽为2x ,再根据长方形的周长列等量关系得到2(2x+2x+x )=150,再解方程求出x ,然后计算小长方形的面积. 【详解】解:设小长方形的长为x ,则宽为2x , 根据题意得2(2x+2x+x )=150, 解得x=15, 2x=30,所以x•2x=15×30=450.答:一块渗水防滑地板的面积为450cm 2. 故选A . 【点睛】本题考查了一元一次方程的应用:首先审题找出题中的未知量和所有的已知量,直接设要求的未知量或间接设一关键的未知量为x ,然后用含x 的式子表示相关的量,找出之间的相等关系列方程、求解、作答,即设、列、解、答.4.A解析:A 【解析】 【分析】先移项,再合并同类项,把x 的系数化为1即可; 【详解】 原式= ;=故选A. 【点睛】本题考查解一元一次方程,熟练掌握计算法则是解题关键.5.D解析:D 【分析】根据解一元一次方程的步骤计算,并判断. 【详解】A 、由743x x =-移项得743x x -=-,故错误;B 、由213132x x --=+去分母得()()221633x x -=+-,故错误;C 、由()()221331x x ---=去括号得42391x x --+=,故错误;D 、由()217x x +=+去括号得:227x x +=+, 移项、合并同类项得5x =,故正确. 故选:D . 【点睛】本题主要考查了一元一次方程的解法,注意移项要变号,但没移的不变;去分母时,常数项也要乘以分母的最小公倍数;去括号时,括号前是“-”号的,括号里各项都要变号.6.C解析:C 【分析】设总工作量为1,从而可得甲、乙的工作效率,再根据“甲完成的工作量+乙完成的工作量1=”建立方程即可得. 【详解】设总工作量为1,则甲的工作效率为110,乙的工作效率为16, 若设完成这项工程共需x 天,则甲工作的天数为x 天,乙工作的天数为(2)x -天,由题意得:21106x x -+=, 故选:C . 【点睛】本题考查了列一元一次方程,读懂题意,正确找出等量关系是解题关键.7.D解析:D 【分析】根据等式的性质判断即可. 【详解】解:A 、因为a=2b ,所以a+c=c+2b ,正确; B 、因为a=2b ,所以a-m=2b-m ,正确; C 、因为a=2b ,所以2a=b ,正确; D 、因为a=2b ,当b≠0,所以ab=2,错误; 故选D . 【点睛】此题考查比例的性质,关键是根据等式的性质解答.8.C解析:C 【分析】直接利用一元一次方程的定义进而分析得出答案. 【详解】∵方程(1)30m m x -+=是关于x 的一元一次方程, ∴1m =,10m -≠, 解得:1m =-. 故选:C . 【点睛】本题主要考查了一元一次方程的定义,正确把握一元一次方程的定义是解题关键.9.B解析:B 【分析】如果每人分 3 本,则剩余 20 本,此时这些图书的数量可表示为3x+20;如果每人分 4 本,则还缺25本,此时这些图书的数量可表示为4x-25,据此列出方程即可. 【详解】解:根据题意可得:3x +20=4x ﹣25. 故选B . 【点睛】本题考查了一元一次方程的应用,找到图书的数量是相等的是解题关键.10.A解析:A 【分析】设运动x 秒后,乌龟和兔子第2020次相遇,根据路程=速度×时间,即可得出关于x 的一元一次方程,解之即可得出x 的值,将其代入2x 中可求出乌龟运动的路程,再结合正方形的周长,即可得出乌龟和兔子第2020次相遇点. 【详解】解:设运动x 秒后,乌龟和兔子第2020次相遇, 依题意,得:2x +6x =2×4×2020,解得:x =2020, ∴2x =4040.又∵4040÷(2×4)=505,505为整数, ∴乌龟和兔子第2020次相遇在点A . 故选:A . 【点睛】本题考查了一元一次方程的应用,找准等量关系,正确列出一元一次方程是解题的关键.11.C解析:C 【分析】此题等量关系为:做对题所得分-做错题所扣分数=70分,设小明做对了x 道,则做错了(25-x)道,根据题意列方程求解即可. 【详解】解:设小明做对了x 道,则做错了(25-x)道, 根据题意得:4x-(25-x)×1=70, 解得:x=19, 故选:C . 【点睛】本题考查了一元一次方程的应用,解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系,列出方程组,再求解.12.C解析:C 【解析】 【分析】本题可以设甲,乙,丙三辆卡车所运货物的质量分别为:6x ,7x ,4.5x ,根据乙车运货量-甲车运货量=12吨,可以列出方程7x-6x=12,解得即可. 【详解】解:设甲,乙,丙三辆卡车所运货物的质量分别为:6x 吨,7x 吨,4.5x 吨, 根据题意得:7x-6x=12, 解得:x=12.所以三辆卡车共运货物=6x+7x+4.5x=17.5x=17.5×12=210. 故选:C . 【点睛】此题考查了一元一次方程的应用,解题的关键是:根据题意设甲,乙,丙三辆卡车所运货物的质量分别为:6x 吨,7x 吨,4.5x 吨,找到等量关系,然后列出方程.二、填空题13.12km 【分析】首先设这条公路的长为xkm 由题意得等量关系:乙骑自行车行驶(x-8)千米的时间-6分钟=甲骑摩托车从A 地沿这条公路到B 地的时间根据等量关系列出方程即可【详解】解:设这条公路的长为xk解析:12km 【分析】首先设这条公路的长为xkm ,由题意得等量关系:乙骑自行车行驶(x-8)千米的时间-6分钟=甲骑摩托车从A 地沿这条公路到B 地的时间,根据等量关系列出方程即可. 【详解】解:设这条公路的长为xkm .由题意,得86401060x x -=-.解得:12x =. 故答案为:12km . 【点睛】此题主要考查了一元一次方程的应用,关键是正确理解题意,找出题目中的等量关系,列出方程.14.【分析】本利和=本金+利息=本金+本金×年利率×年数把相关数值代入即可【详解】本题相等关系为本金+利息=本息和其中利息=本金×年数×年利率故可列方程为故答案为:【点睛】本题考查了列一元一次方程得到本 解析:300030003%3243x +⨯⨯=【分析】本利和=本金+利息=本金+本金×年利率×年数,把相关数值代入即可. 【详解】本题相等关系为“本金+利息=本息和”,其中利息=本金×年数×年利率,故可列方程为300030003%3243x +⨯⨯=.故答案为:300030003%3243x +⨯⨯=. 【点睛】本题考查了列一元一次方程,得到本利和的等量关系是解决本题的关键.注意本题的利息应算三年的利息.15.1或2【分析】利用一元一次方程的定义分和两种情况讨论即可求出m 的值【详解】①当时由题意得且解得;②当时解得综上或2故答案为:或2【点睛】本题考查了一元一次方程的定义以及绝对值熟练掌握一元一次方程的定解析:1或2 【分析】利用一元一次方程的定义,分20m -≠和20m -=两种情况讨论,即可求出m 的值. 【详解】①当20m -≠时,由题意得|2|1m -=,且210m --≠,解得1m =; ②当20m -=时,解得2m =. 综上,1m =或2. 故答案为:1或2. 【点睛】本题考查了一元一次方程的定义以及绝对值,熟练掌握一元一次方程的定义,利用分类讨论思想是解本题的关键.16.【分析】设火车的长度为x 米则火车的速度为根据列车的速度×时间=列车长度+隧道长度列方程求解即可【详解】设火车的长度为x 米则火车的速度为依题意得:45×=600+x 解得:x=300故答案为:300【点解析:【分析】设火车的长度为x 米,则火车的速度为15x,根据列车的速度×时间=列车长度+隧道长度列方程,求解即可. 【详解】设火车的长度为x 米,则火车的速度为15x,依题意得: 45×15x=600+x 解得:x =300. 故答案为:300. 【点睛】本题考查了一元一次方程的应用,学生理解题意的能力,根据隧道顶部一盏固定灯在火车上垂直照射的时间为15秒钟,可知火车的速度为15x,根据题意可列方程求解. 17.【解析】【分析】若设小明x 岁则小红的年龄(x+2)岁根据小明和小红的年龄和为18岁可列一元一次方程求解【详解】(1)根据题意设小明岁则小红的年龄为(2)设小明x 岁则可列方程:【点睛】本题考查一元一次解析:(2)x +, (2)18x x ++= 【解析】 【分析】若设小明x 岁,则小红的年龄 (x+2)岁,根据小明和小红的年龄和为18岁,可列一元一次方程求解. 【详解】(1)根据题意,设小明x 岁,则小红的年龄为(2)x + (2)设小明x 岁,则可列方程:(2)18x x ++= 【点睛】本题考查一元一次方程的应用,根据题意列出正确的一元一次方程是解题关键.18.【解析】【分析】根据题意可得每件衣服的标价售价利润关于x 的代数式根据售价-标价=利润列出方程求解即可【详解】每件服装的标价为:(1+40)x 每件服装的实际售价为:(1+40)x×80每件服装的利润为解析:(140%)x + (140%)80%x +⋅ (140%)80%x x +⋅-(140%)80%15x x +⋅-= 125 125【解析】 【分析】根据题意可得每件衣服的标价、售价、利润关于x 的代数式,根据售价-标价=利润列出方程求解即可. 【详解】每件服装的标价为:(1+40%)x , 每件服装的实际售价为:(1+40%)x×80%, 每件服装的利润为:(1+40%)x×80%−x ,列出方程:(1+40%)x×80%−x=15,解方程得:x=125,因此每件服装的成本价是125元.【点睛】此题考查一元一次方程的应用,解题关键在于理解题意找出等量关系.19.4【解析】【分析】直接设每千克苹果的售价是x元则每千克香蕉售价2x 元利用40元钱买了5千克苹果和2千克香蕉找回4元得出方程求出答案【详解】设每千克苹果的售价是x元则每千克香蕉售价2x元根据题意可得:解析:4【解析】【分析】直接设每千克苹果的售价是x元,则每千克香蕉售价2x元,利用40元钱买了5千克苹果和2千克香蕉,找回4元得出方程求出答案.【详解】设每千克苹果的售价是x元,则每千克香蕉售价2x元,,根据题意可得:5×x+2×2x=40-4,解得:x=4.即:每千克香蕉售价4元.故答案为:4.【点睛】此题主要考查了一元一次方程的应用,正确表示出两种水果的价格是解题关键.20.x=1【解析】【分析】根据一元一次方程的定义得到:m-2=1进而求得M结合m的值可得原方程为3x-3=0求解可得方程的解【详解】由题意得:m-2=1解得:m=3所以原方程为3x-3=0解得x=1【点解析:x=1【解析】【分析】根据一元一次方程的定义得到:m-2=1,进而求得M,结合m的值可得原方程为3x-3=0,求解可得方程的解【详解】由题意得:m-2=1,解得:m=3所以原方程为3x-3=0解得x=1【点睛】此题考查一元一次方程的知识,熟练掌握一元一次方程的定义是关键三、解答题21.(1)4x =;(2)4y =-;(3)83x =;(4)117x =-;(5)2x =-或32x =;(6)2+364=-m x m. 【分析】 (1)先两边同时乘以5去分母,然后去括号解方程即可;(2)先两边同时乘以12去分母,然后去括号解方程即可;(3)先两边同时乘以6去分母,然后去括号解方程即可;(4)先两边同时乘以1去分母,然后去括号解方程即可;(5)分①当x≤13时,②当x >13时,两种情况,分别求出x 即可; (6)把m 当成已知数,先两边同时乘以12去分母,然后去括号解方程即可.【详解】解:(1)103(4)510--=-x x10312510-+=-x x351022--=--x x832-=-x4x =;(2)()()4216224--+=-y y8461224---=-y y224+16=-y28y =-4y =-;(3)()()2311232418(1)--++=-x x x62126121818--++=-x x x1218182-=-+x x616-=-x83x =; (4)()()()24 1.5550.8101.2---=-x x x832541210--+=-x x x1710121-+=-x x711-=x117x =-; (5)315x x +-=①当x≤13时, ()315+-+=x x24x -=2x =-,-2<13, ∴2x =-满足;②当x >13时, ()315+-=x x46x =32x = 3123>, ∴32x =满足, ∴2x =-或32x =; (6)()()32641--=-x m mx63644--=-x m mx644+3+6-=-x mx m()642+3-=m x m2+364=-m x m. 【点睛】 本题是对解一元一次方程的考查,熟练掌握一元一次方程的解法是解决本题的关键. 22.=1a ,原方程的解为:13x =【分析】首先根据错误的作法“方程左边的1没有乘以10”而得出4x =,代入错误方程,然后求出a 的值,最后进一步解方程即可.【详解】∵去分母时,方程左边的1没有乘以10,∴2(21)15()x x a -+=+,∵此时解得4x =,∴2(241)15(4)a ⨯-+=+,解得:=1a ,∴原方程为:211152x x --+=, 去分母可得:2(21)105(1)x x -+=-, 去括号可得:421055x x -+=-,移项、化简可得:13x -=-,解得:13x =,∴=1a ,原方程的解为:13x =.【点睛】本题主要考查了一元一次方程的求解,熟练掌握相关方法是解题关键.23.(1) 170元;(2)①五月份用电量在第一档,六月份用电量在第二档. ②设五、六月份分别用电100度、400度.【分析】(1)根据阶梯电价收费制度,七月份用电300度属于第二档,所以应缴电费200×0.5+100×0.7=170(元);(2)①分情况进行讨论,从而确定五六月份的用电量分别位于哪一档;②由①的结论,设五月份用电x 度,列方程求解即可.【详解】解:(1) ∵200<300小于450∴应缴电费:200×0.5+100×0.7=170(元)故答案为:170(2)①因为两个月的总用电量为500度,所以每个月用电量不可能都在第一档;假设该用户五、六月每月用电均超过200度,此时的电费共计200×0.5+200×0.5+100×0.7=270(元),而270<290,不符合题意;又因为六月份用电量大于五月份,所以五月份用电量在第一档,六月份用电量在第二档.②设五月份用电x 度,则六月份用电(500-x)度,根据题意,得0.5x+200×0.5+0.7×(500-x-200)=290解得x=100,500-x=400.答:该户居民五、六月份分别用电100度、400度.【点睛】本题考查了一元一次方程的应用以及有理数的混合运算,解题的关键是:(1)根据收费标准列式计算;(2)分情况讨论用电量,列出关于x 的一元一次方程.24.180元或202.5元【分析】先根据题意判断出可能打折的情况,再分别算出可能的可能的原价.【详解】∵200×0.9=180,200×0.8=160,160<162<180,∴一次性购书付款162元,可能有两种情况.162÷0.9=180元;162÷0.8=202.5元.故王明所购书的原价一定为180元或202.5元.【点睛】本题考查打折销售问题,关键在于分类讨论.25.(1)1.22a ;(2)盈利0.098a【分析】(1)根据:标价=成本()122%⨯+,列出代数式,再进行整理即可;(2)根据:售价=标价0.9⨯,利润=售价-成本,列出代数式,即可得出答案.【详解】(1)∵每件成本a 元,原来按成本增加22%定出价格,∴每件售价为()122% 1.22a a +=(元);(2)现在售价:1.220.9 1.098a a ⨯=(元);每件还能盈利:1.0980.098a a a -=(元);∴实际按标价的九折出售,盈利0.098a (元)【点睛】本题考查了列代数式,解决问题的关键是读懂题意,找到等量关系,注意把列出的式子进行整理.26.(1)购买A 种记录本120本,B 种记录本50本;(2)学校此次可以节省82元钱.【分析】根据两种记录本一共花费460元即可列出方程【详解】(1)设购买B 种记录本x 本,则购买A 种记录表(2x +20)本,依题意,得:3(2x +20)+2x =460,解得:x =50,∴2x +20=120.答:购买A 种记录本120本,B 种记录本50本.(2)460﹣3×120×0.8﹣2×50×0.9=82(元).答:学校此次可以节省82元钱.【点睛】根据题意中的等量关系列出方程是解决问题的关键。
(人教版)青岛市七年级数学上册第二单元《整式的加减》检测题(含答案解析)
一、选择题1.下列方程中,解为x=-2的方程是( )A .2x+5=1-xB .3-2(x -1)=7-xC .x -5=5-xD .1-14x=34x 2.定义运算“*”,其规则为2*3a b a b +=,则方程4*4x =的解为( ) A .3x =-B .3x =C .2x =D .4x = 3.已知5x =是关于x 的方程4231x m x +=+的解,则方程3261x m x +=+的解是_________.A .53B .53-C .-2D .14.甲乙两人骑摩托车从相距170千米的A ,B 两地相向而行,2小时相遇,如果甲比乙每小时多行5千米,则乙每小时行( )A .30千米B .40千米C .50千米D .45千米 5.下列方程变形一定正确的是( )A .由x +3=-1,得x =-1+3B .由7x =-2,得x =-74C .由12x =0,得x =2 D .由2=x -1,得x =1+2 6.解方程-3x=2时,应在方程两边( ) A .同乘以-3 B .同除以-3 C .同乘以3 D .同除以37.下列变形不正确的是( )A .由2x-3=5得:2x=8B .由-23x=2得:x=-3C .由2x=5得:x=25D .由x+5 =3x-2得:7=2x8.下列说法正确的是( )A .若a c =b c ,则a=bB .若-12x=4y ,则x=-2y C .若ax=bx ,则a=bD .若a 2=b 2,则a=b 9.整式mx n +的值随x 的取值不同而不同,下表是当x 取不同值时对应的整式的值.则关于x 的方程8mx n --=的解为( )A .1x =-B .0x =C .1x =D .2x =10.若关于x 的方程230x m -+=无解,340x n -+=只有一个解,450x k -+=有两个解,则,,m n k 的大小关系是( )A .m>n>kB .n>k>mC .k>m>nD .m> k> n 11.某商场的老板销售一种商品,标价为360元,可以获得80%的利润,则这种商品进价多少( )A .80元B .200元C .120元D .160元 12.下列判断错误的是 ( ) A .若,则 B .若,则 C .若,则 D .若,则二、填空题13.我们规定:若关于x 的一元一次方程ax =b 的解为b +a ,则称该方程为“和解方程“. 例如:方程2x =﹣4的解为x =﹣2,而﹣2=﹣4+2,则方程2x =﹣4为“和解方程”.请根据上述规定解答下列问题:(1)已知关于x 的一元一次方程3x =a 是“和解方程”,则a 的值为_____;(2)已知关于x 的一元一次方程﹣2x =ab +b 是“和解方程“,并且它的解是x =b ,则a +b 的值为_____.14.美术馆举办的一次画展中,展出的油画作品和国画作品共有100幅,其中油画作品数量是国画作品数量的2倍多7幅,则展出的油画作品有______________幅.15.请阅读下面的诗句:“栖树一群鸦,鸦树不知数,四只栖一树,五只没处去,五只栖一树,闲了一棵树,请你仔细数,鸦树各几何?”诗中谈到的鸦为_____只,树为_____棵. 16.若关于x 的方程1253n ax bx x x +-+=+是一元一次方程,则a n +=_________ ,b_________.17.小石在解关于x 的方程225a x x -=时,误将等号前的“2x -”看作“3x -”,得出解为1x =-,则a 的值是_________,原方程的解为__________ .18.5个人用5天完成了某项工程的14,如果再增加工作效率相同的10个人,那么完成这项工作前后共用_____天.19.某校组织七年级学生参加研学活动,如果单独租用45座车若干辆,则刚好坐满;如果单独租用60座客车,则可少租2辆,并且剩余15座.该校参加研学活动的有_______人. 20.某次数学测验中有16道选择题,评分办法:答对一道得6分,答错一道扣2分,不答得0分.某学生有一道题未答,那么这个同学至少要答对________道题,成绩才能在60分以上.三、解答题21.解方程:(1)3(26)17x x +=--;(2)4(2)13(1)x x --=-;(3)4(1)5(3)11x x +--=;(4)14(1)(26)112x x --+=. 22.解方程32324343x x -=-. 23.小明解方程21152x x a -++=时,由于粗心大意,在去分母时,方程左边的1没有乘以10,由此求得的解为4x =,试求a 的值,并正确求出方程的解.24.如图,在一条不完整的数轴上从左到右有点A ,B ,C ,其中AB =2BC ,设点A ,B ,C 所对应数的和是m .(1)若点C 为原点,BC =1,则点A ,B 所对应的数分别为 , ,m 的值为 ;(2)若点B 为原点,AC =6,求m 的值.(3)若原点O 到点C 的距离为8,且OC =AB ,求m 的值.25.解下列方程(1)5m-8m-m=3-11;(2)3x+3=2x+726.某同学在解方程21132y y a -+=-去分母时,方程右边的-1没有乘6,结果求得方程的解为y =2,试求a 的值及此方程的解.【参考答案】***试卷处理标记,请不要删除一、选择题1.B解析:B【分析】将x=-2代入方程,使方程两边相等即是该方程的解.【详解】将x=-2代入,A.左边≠右边,故不是该方程的解;B.左边=右边,故是该方程的解;C. .左边≠右边,故不是该方程的解;D. .左边≠右边,故不是该方程的解;故选:B.【点睛】此题考查一元一次方程的解使方程左右两边相等的未知数的值即是方程的解,熟记定义即可解答.2.D解析:D【分析】根据新定义列出关于x 的方程,解之可得.【详解】∵4*x=4, ∴234x ⨯+=4, 解得x=4,故选:D .【点睛】 本题主要考查解一元一次方程,去分母、去括号、移项、合并同类项、系数化为1,这仅是解一元一次方程的一般步骤,针对方程的特点,灵活应用,各种步骤都是为使方程逐渐向x=a 形式转化.3.B解析:B【分析】根据方程的解求得m 的值,然后将m 的值代入方程3261x m x +=+求解x 的值即可.【详解】解:∵x=5是关于x 的方程4x+2m=3x+1的解,∴20+2m=15+1,解得:m=-2,∴方程变为3x-4=6x+1,解得:x=53-. 故选B.【点睛】本题考查了二元一次方程的解的知识,解题的关键是根据方程的解求得m 的值,难度不大. 4.B解析:B【解析】【分析】相向而行,2小时相遇,那么相应的等量关系为:甲2小时走的路程+乙2小时走的路程=170,把相关数值代入即可求解.【详解】解:乙每小时行x 千米,甲每小时走(x+5)千米,则2x+2(x+5)=170,解得x=40,选B.【点睛】本题主要考查用一元一次方程解决行程问题中的相遇问题;得到甲乙行程和的等量关系是解决本题的关键.5.D解析:D【分析】根据等式的性质,可得答案.【详解】解:由x+3=-1,得x=-1-3,所以A选项错误;由7x=-2,得x=-27,所以B选项错误;由12x=0,得x=0,所以C选项错误;由2=x-1,得x=1+2,所以D选项正确.故选D.【点睛】本题考查了等式的性质,熟记等式的性质是解题关键.6.B解析:B【分析】利用等式的性质判断即可.【详解】解:利用等式的性质解方程-3x=2时,应在方程的两边同除以-3,故选:B.【点睛】此题考查了解一元一次方程,熟练掌握运算法则是解本题的关键.7.C解析:C【分析】根据等式的性质逐一进行判断即可得答案.【详解】A.由2x-3=5的两边同时加上3得:2x=8,故该选项正确,B.由-23x=2的两边同时乘以32得:x=-3,故该选项正确,C.由2x=5的两边同时除以2得:x=52,故该选项错误,D.由x+5=3x-2的两边同时加上(2-x)得:7=2x,故该选项正确,【点睛】本题考查了等式性质:1、等式的两边同时加上或减去同一个数或字母,等式仍成立;2、等式的两边同时乘以或除以同一个不为0数或字母,等式仍成立.8.A解析:A【分析】按照分式和整式的性质解答即可.【详解】解:A .因为C 做分母,不能为0,所以a=b ;B .若-x=4y ,则x=-8y ;C .当x=0的时候,不论a ,b 为何数,00a b ⨯=⨯,但是a 不一定等于b ;D .a 和b 可以互为相反数.故选 :A【点睛】本题考查了整式和分式的性质,掌握整式和分式的性质是解答本题的关键.9.A解析:A【分析】根据题意得出方程组,求出m 、n 的值,再代入求出x 即可.【详解】根据表格可知0x =时,4mx n +=-,所以4n =-.2x =时,4mx n +=,所以244m -=,移项得244m =+,合并同类项,得28m =系数化为1,得4m =.所以原方程为448x -+=,移项,得484x -=-.合并同类项,得44x -=系数化为1,得1x =-.故选A .【点睛】本题考查了解一元一次方程和二元一次方程的解,能求出m 、n 的值是解此题的关键. 10.A解析:A【分析】要比较m 、n 、k 的大小,只有从给出已知条件中,算出其值,比较它们的大小,就会迎刃而解了.解:(1)∵|2x−3|+m =0无解,∴m >0.(2)∵|3x−4|+n =0有一个解,∴n =0.(3)∵|4x−5|+k =0有两个解,∴k <0.∴m >n >k .故选:A .【点睛】本题主要考查的是含有绝对值符号的一元一次方程的拓展计算题,要充分利用已知条件.难易适中.11.B解析:B【分析】利用公式:标价=(1+利润率)×进价,列出方程,求解即可.【详解】设进价为x 元.标价=(1+利润率)×进价根据题意,列方程:(180%)360x +=解得200x =故选B.【点睛】本题考查了一元一次方程的应用,属于典型题,熟练掌握价格公式是解题关键. 12.D解析:D【解析】【分析】根据等式的基本性质分别对每一项进行分析,即可得出答案.【详解】A. 若a=b ,则a−3=b−3,正确;B. 若a=b ,则7a−1=7b−1,正确;C. 若a=b ,则,正确; D. 当c=0时,若,a 就不一定等于b ,故本选项错误;故选D.【点睛】此题考查等式的性质,解题关键在于掌握其性质定义. 二、填空题13.【详解】解:(1)解方程3x=a得x=∵关于x的一元一次方程3x=a是和解方程∴=3+a解得a=﹣;(2)∵方程﹣2x=ab+b的解是x=b∴﹣2b=ab+b∵方程﹣2x=ab+b是和解方程∴b=a解析:92-113-【详解】解:(1)解方程3x=a得x=,∵关于x的一元一次方程3x=a是“和解方程”,∴=3+a,解得a=﹣;(2)∵方程﹣2x=ab+b的解是x=b,∴﹣2b=ab+b,∵方程﹣2x=ab+b是“和解方程“,∴b=ab+b﹣2,即b=﹣2b﹣2,解得b=﹣,∴a=﹣3,∴a+b=﹣3﹣=﹣.故答案为﹣,﹣.14.69【详解】设国画为x幅则油画为(2x+7)幅根据题意可得:x+2x+7=100解得:x=31则2x+7=69即油画作品的数量为69幅考点:一元一次方程的应用解析:69【详解】设国画为x幅,则油画为(2x+7)幅,根据题意可得:x+2x+7=100,解得:x=31,则2x+7=69,即油画作品的数量为69幅.考点:一元一次方程的应用.15.10【分析】本题涉及两种分配方法关键是不管怎么分配鸦的总数是不变的可设树有x棵即可列方程:4x+5=5(x﹣1)求解【详解】解:设树有x棵依题意列方程:4x+5=5(x﹣1)解得:x=10所以树有1解析:10【分析】本题涉及两种分配方法,关键是不管怎么分配鸦的总数是不变的,可设树有x棵,即可列方程:4x+5=5(x﹣1)求解.【详解】解:设树有x 棵依题意列方程:4x+5=5(x ﹣1)解得:x =10所以树有10棵,鸦的个数为:10×4+5=45故答案为45,10【点睛】本题是典型的分配问题.不管怎么分配鸦的个数是不变的是解题关键.16.4或0≠-1【分析】根据一元一次方程的定义可知二次项系数为0则求出n 的值再根据二次项系数为0一次项系数不等于0求出a 的值即可【详解】解:根据一元一次方程的定义可知二次项系数为0则解得n=1或-3把代解析:4或0 ≠-1【分析】根据一元一次方程的定义可知,二次项系数为0,则12+=n ,求出n 的值,再根据二次项系数为0,一次项系数不等于0,求出a 的值即可.【详解】解:根据一元一次方程的定义可知,二次项系数为0,则12+=n ,解得n=1或-3, 把12+=n 代入方程得:2253-+=+ax bx x x ,整理得:()()23150-+--+=a x b x , ∴a-3=0,-b-1≠0,解得:a=3,b≠-1,∴a+n=4或0,故答案为:4或0;≠,-1.【点睛】本题是对一元一次方程定义的考查,熟练掌握一元一次方程是解决本题的关键. 17.-4;【分析】把x=-1代入中求出a 的值再求出原方程的解即可【详解】解:根据题意得:x=-1是的解∴把x=-1代入得:解得:∴原方程为:-8-2x=5x 解得:故答案为:-4;【点睛】本题考查了一元一解析:-4; 87-【分析】把x=-1代入235a x x -=中求出a 的值,再求出原方程的解即可【详解】解:根据题意,得:x=-1是235a x x -=的解,∴把x=-1代入235a x x -=得:23(1)5(1)a -⨯-=⨯-解得:4a =-∴原方程为:-8-2x=5x解得:87 x故答案为:-4;8 7【点睛】本题考查了一元一次方程,熟练掌握运算法则是解题的关键18.10【分析】由已知5个人用5天完成了某项工程的那么1个人用的天数为5×5再增加工作效率相同的10个人完成剩下的设用x天则1个人用(5+10)x因为工作效率相同根据题意列方程求解【详解】设增加10人再解析:10【分析】由已知5个人用5天完成了某项工程的14,那么1个人用的天数为5×5,再增加工作效率相同的10个人完成剩下的34,设用x天,则1个人用(5+10)x,因为工作效率相同,根据题意列方程求解.【详解】设增加10人再完成剩余的34为x天,根据题意列方程得:(5+10)x=3×5×5,解得:x=5,5+5=10(天).故答案为:10.【点睛】本题考查的是一元一次方程的应用,解答此题的关键是根据已知找出等量关系,其等量关系是后面的工作量是前面的工作量的3倍.19.405【分析】设租用45座车x辆则租用60座客车为(x-2)辆根据等量关系列出方程即可求解【详解】设租用45座车x辆则租用60座客车为(x-2)辆根据题意得:45x=60(x-2)-15解得:x=9解析:405【分析】设租用45座车x辆,则租用60座客车为(x-2)辆,根据等量关系,列出方程,即可求解.【详解】设租用45座车x辆,则租用60座客车为(x-2)辆,根据题意得:45x=60(x-2)-15,解得:x=9,45×9=405(人),答:该校参加研学活动的有405人.故答案是:405.【点睛】本题主要考查一元一次方程的实际应用,找出等量关系,列出方程,是解题的关键. 20.12【解析】【分析】找到关键描述语进而找到所求的量的等量关系得到不等式6x-2(15-x )>60求解即可【详解】设答对x 道故6x-2(15-x )>60解得:x >所以至少要答对12道题成绩才能在60分解析:12【解析】【分析】找到关键描述语,进而找到所求的量的等量关系.得到不等式6x-2(15-x )>60,求解即可.【详解】设答对x 道.故6x-2(15-x )>60解得:x >908. 所以至少要答对12道题,成绩才能在60分以上.【点睛】考查一元一次不等式组的应用,将现实生活中的事件与数学思想联系起来,读懂题列出不等式关系式即可求解.三、解答题21.(1)5x =-;(2)6x =;(3)8x =;(4)6x =【分析】(1)去括号,移项及合并同类项,系数化为1即可求解.(2)去括号,移项及合并同类项,系数化为1即可求解.(3)去括号,移项及合并同类项,系数化为1即可求解.(4)去括号,移项及合并同类项,系数化为1即可求解.【详解】(1)去括号,得61817x x +=--.移项及合并同类项,得735x =-.系数化为1,得5x =-.(2)去括号,得48133x x --=-.移项,得43381x x -=-++.合并同类项,得6x =.(3)去括号,得4451511x x +-+=.移项,得4511415x x -=--.合并同类项,得8x -=-.系数化为1,得8x =.(4)去括号,得44311x x ---=.移项,得41143x x -=++.合并同类项,得318x =.系数化为1,得6x =.【点睛】本题考查了解一元一次方程的问题,掌握解一元一次方程的方法是解题的关键. 22.1x =【分析】方程去分母,去括号,移项合并,将y 系数化为1即可求出解.【详解】 解:原方程可化为332204433x x ⎛⎫⎛⎫-+-= ⎪ ⎪⎝⎭⎝⎭,即32(1)(1)043x x -+-=. 将(1)x -看作一个整体进行合并,得32(1)043x ⎛⎫+-=⎪⎝⎭,所以10x -=,移项,得1x =.【点睛】本题考查了解一元一次方程,其步骤为:去分母,去括号,移项合并,将未知数系数化为1,求出解.23.=1a ,原方程的解为:13x =【分析】首先根据错误的作法“方程左边的1没有乘以10”而得出4x =,代入错误方程,然后求出a 的值,最后进一步解方程即可.【详解】∵去分母时,方程左边的1没有乘以10,∴2(21)15()x x a -+=+,∵此时解得4x =,∴2(241)15(4)a ⨯-+=+,解得:=1a ,∴原方程为:211152x x --+=, 去分母可得:2(21)105(1)x x -+=-,去括号可得:421055x x -+=-,移项、化简可得:13x -=-,解得:13x =,∴=1a ,原方程的解为:13x =.【点睛】本题主要考查了一元一次方程的求解,熟练掌握相关方法是解题关键.24.(1)﹣3,﹣1,﹣4;(2)﹣2;(3)8或-40.【分析】(1)根据数轴上的点对应的数即可求解;(2)根据数轴上原点的位置确定其它点对应的数即可求解;(3)根据原点在点C的右边先确定点C对应的数,进而确定点B、点A所表示的数即可求解.【详解】解:(1)∵点C为原点,BC=1,∴B所对应的数为﹣1,∵AB=2BC,∴AB=2,∴点A所对应的数为﹣3,∴m=﹣3﹣1+0=﹣4;故答案为:﹣3,﹣1,﹣4;(2)∵点B为原点,AC=6,AB=2BC,AB+BC=AC,∴AB=4,BC=2,∴点A所对应的数为﹣4,点C所对应的数为2,∴m=﹣4+2+0=﹣2;(3)∵原点O到点C的距离为8,∴点C所对应的数为±8,∵OC=AB,∴AB=8,当点C对应的数为8,∵AB=8,AB=2BC,∴BC=4,∴点B所对应的数为4,点A所对应的数为﹣4,∴m=4﹣4+8=8;当点C所对应的数为﹣8,∵AB=8,AB=2BC,∴BC=4,∴点B所对应的数为﹣12,点A所对应的数为﹣20,∴m=﹣20﹣12﹣8=﹣40.【点睛】本题考查了数轴,解决本题的关键是数形结合思想的灵活运用.25.(1)m=2;(2)x=4【分析】(1)先合并同类项,再化系数为1解一元一次方程即可;(2)先移项,再合并同类项解一元一次方程即可.【详解】(1)合并同类项,得:﹣4m=﹣8,系数化为1,得: m=2,(2)移项,得:3x﹣2x=7﹣3,合并同类项,得: x=4.【点睛】本题考查解一元一次方程,熟练掌握一元一次方程的解法及步骤是解答的关键.26.y=-3.【分析】根据题意得到去分母结果,把y=2代入求出a的值,即可确定出方程的解.【详解】根据题意去分母得:4y-2=3y+3a-1,把y=2代入得:6=6+3a-1,解得:a=13,方程为12131 32yy+-=-,去分母得:4y-2=3y+1-6,解得:y=-3.【点睛】此题考查了一元一次方程的解,方程的解即为能使方程左右两边相等的未知数的值.。
青岛版数学七年级上册 《整式的加减》同步练习
青岛版数学七年级上册 6.4 整式的加减一.选择1. 化简(-2x+y)+3(x-2y)等于()A.-5x+5y B.-5x-y C.x-5y D.-x-y2. 多项式-a2-1与3a2-2a+1的和为()A.2a2-2aB.4a2-2a+2C.4a2-2a-2D.2a2+2a3.在5a+(________)=5a-2a2-b中,括号内应填()A.2a2+bB.2a2-bC.-2a2+bD.-2a2-b4. 已知长方形的长为(2b-a),宽比长少b,则这个长方形的周长是()A、3b-2aB、3b+2aC、6b-4aD、6b+4a5.A=x2-2x-3,B=2x2-3x+4,则A-B等于()A. x2-x-1B. -x2+x+1C. 3x2-5x-7D. -x2+x-7二.填空1.a2+7-2(10a-a2)=____________2.一个多项式减去a2-b2等于a2+b2+c2,则原多项式是.3.已知某三角形的一条边长为m+n,另一条边长比这条边长大m-3,第三条边长等于2n-m,求这个三角形的周长为________4.七年级⑵班同学参加数学课外活动小组的有x人,参加合唱队的有y人,而参加合唱队人数是参加篮球队人数的5倍,且每位同学最多只能参加一项活动,则三个课外小组的人数共人.5.粗心的周华在做多项式a3+2a+3加一个单项式时,误做成了减法,得到结果为a3+3,则要加的单项式为_______,正确的结果应是_________.三.计算1.求多项式3x2+y2-5xy与-4xy-y2+7x2的和.2.计算:⑴(3a2+2a+1)-(2a2+3a-5)⑵已知A=x2-5x,B=x2-10x+5,求A+2B的值3.先化简,再求值(1)4(y +1)+4(1-x )-4(x +y ),其中,x =71,y =314。
(2)4a 2b -[3ab 2-2(3a 2b -1)],其中a =-0.1,b =1。
七年级数学上册第六章整式的加减单元测试2(无答案)青岛版(最新整理)
七年级数学上册第六章整式的加减单元测试2(无答案)(新版)青岛版编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(七年级数学上册第六章整式的加减单元测试2(无答案)(新版)青岛版)的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为七年级数学上册第六章整式的加减单元测试2(无答案)(新版)青岛版的全部内容。
整式的加减一、单选题(共10题;共30分)1。
下列计算正确的是()A。
3x-5x=-2x B. 3x2+x=4x3C. 7a+4b=11ab D。
-3ab2-a2b=-4a2。
给出下列式子:0,3a,π,, 1,3a2+1,-,+y.其中单项式的个数是()A. 5个B。
1个 C. 2个D. 3个3。
减去2﹣x等于3x2﹣x+6的整式是()A. 3x2﹣2x+8 B。
3x 2+8 C. 3x2﹣2x﹣4 D。
3x2+4 4。
已知一个单项式的系数是2,次数是3,则这个单项式可以是()A. 2y3B。
2xy3C。
﹣2xy2D. 3x25.下列说法正确的是()A。
﹣5,a不是单项式B. ﹣的系数是﹣2C. ﹣的系数是﹣,次数是4 D. x2y的系数为0,次数为26。
下列说法正确的是( )A. 单项式xy的系数是,次数是1 B. 单项式﹣πa2b3的系数是﹣,次数是6C. 单项式x2的系数是1,次数是2 D。
多项式2x3﹣3x2y2+x﹣1叫三次四项式7。
下列各组运算,结果正确的是().A. 3a +3b =6aB. -2x -2x =0 C。
9x—6x =3 D. 3y2—y2=2y28。
已知单项式3x a+1y4与﹣2y b﹣2x3是同类项,则下列单项式,与它们属于同类项的是( )A. ﹣5x b﹣3y4B.3x b y4C。
青岛第三十七中学七年级数学上册第二章《整式的加减》(答案解析)
1.下面用数学语言叙述代数式1a﹣b,其中表达正确的是()A.a与b差的倒数B.b与a的倒数的差C.a的倒数与b的差D.1除以a与b的差C 解析:C【分析】根据代数式的意义,可得答案.【详解】用数学语言叙述代数式1a﹣b为a的倒数与b的差,故选:C.【点睛】此题考查了代数式,解决问题的关键是结合实际,根据代数式的特点解答.2.某公司今年2月份的利润为x万元,3月份比2月份减少8%,4月份比3月份增加了10%,则该公司4月份的利润为(单位:万元)()A.(x﹣8%)(x+10%)B.(x﹣8%+10%)C.(1﹣8%+10%)x D.(1﹣8%)(1+10%)x D解析:D【分析】首先利用减小率的意义表示出3月份的利润,然后利用增长率的意义表示出4月份的利润.【详解】解:由题意得3月份的产值为(1﹣8%)x,4月份的产值为(1﹣8%)(1+10%)x.故选:D.【点睛】本题考查了列代数式,正确理解增长率以及下降率的定义是关键.3.已知一个多项式与3x2+9x的和等于5x2+4x﹣1,则这个多项式是()A.2x2﹣5x﹣1 B.﹣2x2+5x+1 C.8x2﹣5x+1 D.8x2+13x﹣1A解析:A【分析】根据由题意可得被减式为5x2+4x-1,减式为3x2+9x,求出差值即是答案.【详解】由题意得:5x2+4x−1−(3x2+9x),=5x2+4x−1−3x2−9x,=2x2−5x−1.故答案选A.【点睛】本题考查了整式的加减,解题的关键是熟练的掌握整式的加减运算.4.已知-25a 2m b 和7b 3-n a 4是同类项,则m +n 的值是( ) A .2 B .3C .4D .6C解析:C 【分析】本题根据同类项的性质求解出m 和n 的值,代入求解即可. 【详解】由已知得:2431m n =⎧⎨-=⎩,求解得:22m n =⎧⎨=⎩,故224m n +=+=; 故选:C . 【点睛】本题考查同类项的性质,按照对应字母指数相同原则列式求解即可,注意计算仔细. 5.化简2a -[3b -5a -(2a -7b )]的值为( ) A .9a -10b B .5a +4b C .-a -4b D .-7a +10b A解析:A 【解析】2a -[3b -5a -(2a -7b)]=2a-(3b-5a-2a+7b)=2a-(10b-7a)=2a-10b+7a=9a-10b , 故选A.【点睛】本题考查去括号,合并同类项,解题的关键是按运算的顺序先去括号,然后再进行合并同类项.6.如图,a ,b 在数轴上的位置如图所示:,那么||||a b a b -++的结果是( )A .2b -B .2bC .2a -D .2a A解析:A 【分析】根据数轴上点的位置判断出绝对值里边式子的正负,原式利用绝对值的代数意义化简,计算即可得到结果. 【详解】解:根据题意得:b <a <0,且|a |<|b |, ∴a -b >0,a +b <0, ∴原式=a -b -a -b =-2b . 故选:A . 【点睛】此题主要考查了数轴以及绝对值,熟练掌握绝对值的性质是解本题的关键. 7.如图,填在下面各正方形中的4个数之间都有相同的规律,根据此规律,m 的值是( )A .38B .52C .74D .66 C解析:C 【分析】分析前三个正方形可知,规律为右上和左下两个数的积减左上的数等于右下的数,且左上,左下,右上三个数是相邻的偶数.因此,图中阴影部分的两个数分别是左下是8,右上是10. 【详解】 解:8×10−6=74, 故选:C . 【点睛】本题是一道找规律的题目,要求学生通过观察,分析、归纳发现其中的规律,并应用发现的规律解决问题.解决本题的难点在于找出阴影部分的数. 8.下列式子中,是整式的是( ) A .1x + B .11x + C .1÷x D .1x x+ A 解析:A 【分析】根据整式的定义即单项式和多项式统称为整式,找出其中的单项式和多项式即可. 【详解】解:A. 1x +是整式,故正确; B.11x +是分式,故错误; C. 1÷x 是分式,故错误;D.1x x +是分式,故错误. 故选A. 【点睛】本题主要考查了整式,关键是掌握整式的概念. 9.下列同类项合并正确的是( ) A .x 3+x 2=x 5 B .2x ﹣3x =﹣1 C .﹣a 2﹣2a 2=﹣a 2 D .﹣y 3x 2+2x 2y 3=x 2y 3D解析:D 【分析】根据合并同类项系数相加字母及指数不变,可得答案. 【详解】解:A、x3与x2不是同类项,不能合并,故A错误;B、合并同类项错误,正确的是2x﹣3x=﹣x,故B错误;C、合并同类项错误,正确的是﹣a2﹣2a2=﹣3a2,故C错误;D、系数相加字母及指数不变,故D正确;故选:D.【点睛】本题考查了合并同类项,熟记合并同类项的法则,并根据合并同类项的法则计算是解题关键.10.将正整数按如图的规律排列:平移表中的方框,方框中的4个数的和可能是()A.2010 B.2014 C.2018 D.2022A解析:A【分析】设第二个为x,则第一个,第三个,第四个分别为:x-1,x+1,x+2,总和为:4x+2,分别令代数式为:2010,2014,2018,2022,算出x再判断.【详解】解: 设第二个为x,则第一个,第三个,第四个分别为:x-1,x+1,x+2,总和为:4x+2.当4x+2=2010时,x=502,则x-1=501;当4x+2=2014时,x=503,则x-1=502;当4x+2=2018时,x=504,则x-1=503;当4x+2=2022时,x=505,则x-1=504;由图可知每行有9个数,∵504÷9=56,可以除尽故504为某行的最后一位.表格如下:496497498499500501502503504 505506507508509510511512513由图可知:501+502+503+504=2010满足题意.故选A.【点睛】本题考查找规律的能力,关键在于通过图形找出四个相连数的关系列出方程.BC=,11.点O,A,B,C在数轴上的位置如图所示,其中O为原点,2 =,若C点所表示的数为x,则A点所表示的数为()OA OBA .2x -+B .2x --C .2x +D .-2A解析:A 【分析】由BC=2,C 点所表示的数为x ,求出B 表示的数,然后根据OA=OB ,得到点A 、B 表示的数互为相反数,则问题可解. 【详解】解:∵BC=2,C 点所表示的数为x , ∴B 点表示的数是x-2, 又∵OA=OB ,∴B 点和A 点表示的数互为相反数, ∴A 点所表示的数是-(x-2),即-x+2. 故选:A . 【点睛】此题考查用数轴上的点表示数的方法和数轴上两点间的距离以及相反数的性质,解答关键是应用数形结合思想解决问题. 12.代数式213x -的含义是( ). A .x 的2倍减去1除以3的商的差 B .2倍的x 与1的差除以3的商 C .x 与1的差的2倍除以3的商 D .x 与1的差除以3的2倍B 解析:B 【分析】代数式表示分子与分母的商,分子是2倍的x 与1的差,据此即可判断. 【详解】代数式213x -的含义是2倍的x 与1的差除以3的商. 故选:B . 【点睛】本题考查了代数式,正确理解代数式表示的意义是关键.13.若a 、b 互为相反数,c 、d 互为倒数,m 的绝对值等于1,则()2a b cd m +-+的值是( ). A .0 B .-2C .0或-2D .任意有理数A解析:A 【分析】根据相反数的定义得到0a b +=,由倒数的定义得到cd=1,根据绝对值的定义得到|m|=1,将其代入()2a b cd m +-+进行求值.【详解】∵a ,b 互为相反数, ∴0a b +=, ∵c ,d 互为倒数, ∴cd =1,∵m 的绝对值等于1, ∴m =±1, ∴原式=0110-+= 故选:A. 【点睛】本题考查代数式求值,相反数,绝对值,倒数.能根据相反数,绝对值,倒数的定义求出+a b ,cd 和m 的值是解决此题的关键.14.某养殖场2018年底的生猪出栏价格为每千克a 元,受市场影响,2019年第一季度出栏价格平均每千克上升15%,到了第二季度平均每千克比第一季度又上升了20%,则第三季度初这家养殖场的生猪出栏价格是每千克( )元 A .(115%)(120%)a ++ B .(115%)20%a + C .(115%)(120%)a +- D .(120%)15%a + A解析:A 【分析】由题意可知:2019年第一季度出栏价格为2018年底的生猪出栏价格的(1+15%),第二季度平均价格每千克是第一季度的(1+20%),由此列出代数式即可. 【详解】第三季度初这家养殖场的生猪出栏价格是每千克(1+15%)(1+20%)a 元. 故选A . 【点睛】此题考查列代数式,注意题目蕴含的数量关系,找准关系是解决问题的关键. 15.下列说法错误的是( ) A .23-2x y 的系数是32-B .数字0也是单项式C .-x π是二次单项式D .23xy π的系数是23πC 解析:C 【分析】根据单项式的有关定义逐个进行判断即可. 【详解】A. 23-2x y 的系数是32-,故不符合题意;B. 数字0也是单项式 故不符合题意;C. -x π是一次单项式 ,故原选项错误D.23xy π的系数是23π,故不符合题意. 故选C . 【点睛】本题考查对单项式有关定义的应用,能熟记单项式的有关定义是解此题关键. 1.多项式2213383x kxy y xy --+-中,不含xy 项,则k 的值为______.【分析】根据不含xy 项即xy 项的系数为0求出k 的值【详解】解:原式∵不舍项∴故答案为【点睛】本题考查了多项式要求多项式中不含有那一项应让这一项的系数为0解析:19【分析】根据不含xy 项即xy 项的系数为0求出k 的值. 【详解】解:原式2213383x k xy y ⎛⎫=+--+⎪⎝⎭,∵不舍xy 项,∴1303k -=,19k =,故答案为19. 【点睛】本题考查了多项式,要求多项式中不含有那一项,应让这一项的系数为0. 2.已知123112113114,,,...,1232323438345415a a a =+==+==+=⨯⨯⨯⨯⨯⨯依据上述规律,则 99a =________.【解析】试题解析:1009999. 【解析】 试题等号右边第一式子的第一个加数的分母是从1开始,三个连续的数的积,分子是1;第二个加数的分子是1,分母是2,结果的分子是2,分母是1×3=3;等号右边第二个式子的第一个加数的分母是从2开始,三个连续的数的积,分子是1;第二个加数的分子是1,分母是3,结果的分子是3,分母是2×4=8;等号右边第三个式子的第一个加数的分母是从3开始,三个连续的数的积,分子是1;第二个加数的分子是1,分母是4,结果的分子是4,分母是3×5=15. 所以a 99=991100991019999+=⨯.考点:规律型:数字的变化类.3.a -b ,b -c ,c -a 三个多项式的和是____________0【解析】(a-b )+(b-c )+(c-a )=a-b+b-c+c-a=a-a+b-b+c-c=0故答案为0解析:0 【解析】(a-b )+(b-c )+(c-a )=a-b+b-c+c-a=a-a+b-b+c-c=0, 故答案为0.4.如果一个多项式与另一多项式223m m -+的和是多项式231m m +-,则这个多项式是_________.【分析】根据题意列出算式利用整式的加减混合运算法则计算出结果【详解】解:设这个多项式为A 则A=(3m2+m-1)-(m2-2m+3)=3m2+m-1-m2+2m-3=2m2+3m-4故答案为2m2+ 解析:2234m m +-【分析】根据题意列出算式,利用整式的加减混合运算法则计算出结果. 【详解】解:设这个多项式为A, 则A=(3m 2+m-1)-(m 2-2m+3) =3m 2+m-1-m 2+2m-3 =2m 2+3m-4, 故答案为2m 2+3m-4. 【点睛】本题考查了整式的加减运算,掌握整式的加减混合运算法则是解题的关键. 5.用代数式表示:(1)甲数与乙数的和为10,设甲数为y ,则乙数为____; (2)甲数比乙数的2倍多4,设甲数为x ,则乙数为____;(3)大华身高为a (cm),小亮身高为b (cm),他们俩的平均身高为____cm ; (4)把a (g)盐放进b (g)水中溶化成盐水,这时盐水的含盐率为____%;(5)某船在一条河中逆流行驶的速度为5 km/h ,顺流行驶速度是y km/h ,则这条河的水流速度是______km/h .(1)10-y(2)(3)(4)(5)【分析】(1)乙数=和-甲数y 据此解答;(2)甲数x=2个乙数+4从而得出乙数;(3)平均身高=(大华的身高a+小亮的身高b )÷2据此解答;(4)利用:含盐率=解析:(1)10-y (2)42x - (3)2a b+ (4)100a a b + (5)52y - 【分析】(1)乙数=和-甲数y ,据此解答; (2)甲数x=2个乙数+4,从而得出乙数;(3)平均身高=(大华的身高a+小亮的身高b )÷2,据此解答; (4)利用:含盐率=100%⨯盐的质量盐水的质量,据此解答,(5) 利用顺行速度-逆水速度=12水流速度列出式子即可. 【详解】(1) 甲数与乙数的和为10,设甲数为y ,则乙数为:10y -; (2)甲数比乙数的2倍多4,设甲数为x ,则乙数为:42x -; (3)大华身高为a (cm),小亮身高为b (cm),他们俩的平均身高为:2a b+cm ; (4)把a (g)盐放进b (g)水中溶化成盐水,这时盐水的含盐率为:100aa b+%; (5)某船在一条河中逆流行驶的速度为5 km/h ,顺流行驶速度是y km/h ,则这条河的水流速度是:52y - km/h . 故答案为:(1)1?0y -; (2) 42x -; (3) 2a b+ ;(4) 100a a b +; (5) 52y -.【点睛】本题考查了列代数式,比较简单,列代数式时,要先认真审题,抓住关键词语,并注意书写的规范性.6.将一列数1,2,3,4,5,6---,…,按如图所示的规律有序排列.根据图中排列规律可知,“峰1”中峰顶位置(C 的位置)是4,那么“峰206”中C 的位置的有理数是______.-1029【分析】由题意根据图中排列规律得出每5个数为一组依次排列所以峰n 中峰顶C 的位置的有理数的绝对值为以此进行分析即可【详解】解:由图可知每5个数为一组依次排列所以峰n 中峰顶C 的位置的有理数的绝解析:-1029 【分析】由题意根据图中排列规律得出每5个数为一组依次排列,所以“峰n”中峰顶C 的位置的有理数的绝对值为51n -,以此进行分析即可. 【详解】解:由图可知,每5个数为一组依次排列,所以“峰n”中峰顶C 的位置的有理数的绝对值为51n -,当206n =时,52061103011029⨯-=-=,因为1029是奇数,所以“峰206”中C 的位置的有理数是1029-. 故答案为:1029-. 【点睛】本题考查图形的数字规律,熟练掌握根据图中排列规律得出每5个数为一组依次排列,所以“峰n”中峰顶C 的位置的有理数的绝对值为51n -是解题的关键.7.已知22 251,34A x ax y B x x by =+-+=+--,且对于任意有理数 ,x y ,代数式 2A B - 的值不变,则12()(2)33a Ab B ---的值是_______.-2【分析】先根据代数式为定值求出ab 的值及的值然后对所求代数式进行变形然后代入计算即可【详解】∵对于任意有理数代数式的值不变∴∵∴原式=故答案为:-2【点睛】本题主要考查代数式的求值能够对代数式进解析:-2 【分析】先根据代数式 2A B -为定值求出a,b 的值及 2A B -的值,然后对所求代数式进行变形,然后代入计算即可. 【详解】222(251)2(34)A B x ax y x x by -=+-+-+-- 222512628x ax y x x by =+-+--++ (6)(25)9a x b y =-+-+∵对于任意有理数 ,x y ,代数式 2A B - 的值不变∴60,250a b -=-=,29A B -=56,2a b ∴==∵121()(2)2(2)333a Ab B a b A B ---=--- ∴原式=51629653223-⨯-⨯=--=- 故答案为:-2 【点睛】本题主要考查代数式的求值,能够对代数式进行化简,变形是解题的关键.8.如图,有一种飞镖游戏,将飞镖圆盘八等分,每个区域内各有一个单项式,现假设你的每支飞镖均能投中目标区域,如果只提供给你四支飞镖且都要投出,那么要使你投中的目标区域内的单项式之和为a+2b ,共有_____种方式(不考虑投中目标的顺序).2【分析】根据整式的加减尝试进行即可求解【详解】解:当投中的目标区域内的单项式为ab ﹣b2b 时a+b ﹣b+2b =a+2b ;当投中的目标区域内的单项式为﹣a2a02b 时﹣a+2a+0+2b =a+2b 故解析:2【分析】根据整式的加减尝试进行即可求解.【详解】解:当投中的目标区域内的单项式为a 、b 、﹣b 、2b 时,a+b ﹣b+2b =a+2b ;当投中的目标区域内的单项式为﹣a 、2a 、0、2b 时,﹣a+2a+0+2b =a+2b .故答案为2.【点睛】本题考查了整式的加减,解题的关键是尝试进行整式的加减.9.多项式234324x x x -+-按x 的降幂排列为______.【分析】先分清多项式的各项然后按多项式降幂排列的定义排列【详解】多项式的各项是3x2−2x3−4x4按x 降幂排列为故答案为:【点睛】本题考查了多项式我们把一个多项式的各项按照某个字母的指数从大到小或解析:432432x x x -++-【分析】先分清多项式的各项,然后按多项式降幂排列的定义排列.【详解】多项式234324x x x -+-的各项是3x 2,−2,x 3,−4x 4,按x 降幂排列为432432x x x -++-.故答案为:432432x x x -++-.【点睛】本题考查了多项式.我们把一个多项式的各项按照某个字母的指数从大到小或从小到大的顺序排列,称为按这个字母的降幂或升幂排列.要注意,在排列多项式各项时,要保持其原有的符号.10.在整式:32x y -,98b -,336b y -,0.2,57mn n --,26a b +-中,有_____个单项式,_____个多项式,多项式分别是_______.4【分析】根据单项式与多项式的概念即可求出答案【详解】解:单项式有2个:02多项式有4个:【点睛】本题考查单项式与多项式的概念解题的关键是正确理解单项式与多项式之间的联系本题属于基础题型解析:4 32x y -、336b y -、57mn n --、26a b +- 【分析】根据单项式与多项式的概念即可求出答案.【详解】解:单项式有2个:98b -,0.2,,多项式有4个:32x y -,336b y -,57mn n --26a b +- 【点睛】 本题考查单项式与多项式的概念,解题的关键是正确理解单项式与多项式之间的联系,本题属于基础题型.11.随着计算机技术的迅猛发展,电脑价格不断降低,某品牌的电脑按原价降低m 元后,又降价25%,现售价为n 元,那么该电脑的原售价为______.【分析】根据题意列出代数式解答即可【详解】解:该电脑的原售价故填:【点睛】此题考查了列代数式关键是读懂题意找出题目中的数量关系列出代数式解析:43n m + 【分析】根据题意列出代数式解答即可.【详解】解:该电脑的原售价4125%3n m n m +=+-, 故填:43n m +. 【点睛】 此题考查了列代数式,关键是读懂题意,找出题目中的数量关系,列出代数式. 1.已知,,a b c 在数轴上的位置如图所示,解答下列问题.(1)化简:||||||a b c b b a +--+-;(2)若a 的绝对值的相反数是2,b --的倒数是它本身,24c =,求2()a b c a b c -++-+-的值.解析:(1)2a b c -+;(2)-9【分析】(1)由数轴上的位置,先判断0,0,0+>-<-<a b c b b a ,再根据绝对值的意义进行化简,即可得到答案.(2)由绝对值的意义,倒数的定义,平方根的定义,先求出a 、b 、c 的值,再代入计算,即可得到答案.【详解】解:(1)由数轴可得:0c b a <<<,∴0,0,0+>-<-<a b c b b a ,∴原式2a b c b b a a b c =++--+=-+.(2)由题意,∵若a 的绝对值的相反数是2,b --的倒数是它本身,24c =,∴2,1,2a b c ==-=-,∴2()2a b c a b c a b c a b c -++-+-=-++--+=224149a b c -++=---=-.【点睛】本题考查了数轴的定义,绝对值的意义,倒数的定义,平方根的定义等知识,解题的关键是利用数轴正确判断0c b a <<<,从而进行解题.2.有这样一道题“求多项式3323323763363101a a b a b a a b a b a -+++--+的值,其中99.01,123.89a b ==-”,有一位同学把99.01a =抄成99.01,123.89a b =-=-抄成123.89b =,结果也正确,为什么?解析:见解析【分析】原式合并同类项得到最简结果为常数1,这个多项式的值与a 、b 的值无关,故a ,b 的值抄错后,答案仍然是1【详解】解:∵3323323763363101a a b a b a a b a b a -+++--+()()()33333227310663311a a a a b a b a b a b =+-+-++-+=;∴这个多项式的值与,a b 的值无关,故,a b 的值抄错后结果也正确.【点睛】此题考查了整式的加减——化简求值,涉及的知识有:去括号法则,以及合并同类项法则,熟练掌握运算法则是解本题的关键.3.如图,观察下列图形,可得它们是按一定规律排列的,依照此规律,解决下列问题.(1)第5个图形有_______颗五角星,第6个图形有_______颗五角星;(2)第2020个图形有_______颗五角星,第n 个图形有_______颗五角星.解析:(1)16,19;(2)6061,31n +.【分析】(1)将每一个图案分成两部分,最下面位置处的一个不变,其它的分三条线,每一条线上后一个图形比前一个图形多一个,根据此规律找出第5、6个图形中★的个数; (2)利用(1)中所得规律可得.【详解】解:(1)观察发现,第1个图形★的颗数是134+=,第2个图形★的颗数是1327+⨯=,第3个图形★的颗数是13310+⨯=,第4个图形★的颗数是13413+⨯=,所以第5个图形★的颗数是13516+⨯=,第6个图形★的颗数是13619+⨯=.故答案为:16,19.(2)由(1)知,第2020个图形★的颗数是1320206061+⨯=,第n 个图形★的颗数是31n +.故答案为:6061,31n +.【点睛】本题考查了图形变化规律的问题,把★分成两部分进行考虑,并找出第n 个图形★的个数的表达式是解题的关键.4.化简并求值:已知2232A a b ab abc =-+,小明错将“2A B -”看成“2A B +”,算得结果22434C a b ab abc =-+.(1)计算B 的表达式;(2)小强说正确结果的大小与c 的取值无关,对吗?请说明理由.(3)若18a =,15b = ,求正确结果的代数式的值. 解析:(1)2222a b ab abc -++;(2)小强的说法对,正确结果的取值与c 无关,理由见解析;(3)0.【分析】(1)由2A+B=C 得B=C-2A ,将C 、A 代入根据整式的乘法计算可得B ;(2)将A 、B 代入2A-B ,根据整式的加减运算法则进行化简,由化简后的代数式中无字母c 可知其值与c 无关;(3)将a 、b 的值代入计算即可.【详解】解:(1)∵2A B C +=,∴2B C A =-.B 22224342(32)a b ab abc a b ab abc =-+--+2222434642a b ab abc a b ab abc =-+-+-2222a b ab abc =-++;(2)222222(32)(22)A B a b ab abc a b ab abc -=-+--++222264222a b ab abc a b ab abc =-++--2285a b ab =-.因正确结果中不含c ,所以小强的说法对,正确结果的取值与c 无关;(3)将18a =, 15b =代入(2)中的代数式,得: 22221111858()5()8585a b ab -=⨯⨯-⨯⨯0= . 【点睛】本题主要考查整式的乘法,熟练掌握整式的乘法法则是解题的关键.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
整式的加减
基础训练
一、填空题
1.3x 与-5x 的和是 ________,3x 与-5x 的差是 __________ .
2.如果代数式2x3和x m 的和是一个单项式,则m= ________________.
3.某公园门票票价为成人每张20元,儿童每张10元,如果某天公园卖出x 张成人票,y 张
儿童票,那么这一天公园的门票收入为________________元.
二、选择题
4. a -b, b -c, c -a 三个多项式的和是( )
A.3a+3b+3c
B.0
C.2a+2b+2c
D.2a -2b -2c
5.m -n=21
,则-3(n -m )=( ) A.32 B. 32 C.16 D. 23
6.多项式5x2+3x -5加上-3x 后等于( )
A.5x2-5
B.5x2-6x -5
C.5x2+6x -5
D.5x2+5
7.在日历中,数a 的前面一个数和正下方一个数分别是( )
A.a+1和a+7
B.a -1和a+7
C.a+1和a+8
D.a -1和a+8
8.有一列数2,4,6,8,10,…,第n 个数是( )
A. n
B.2n
C.12
D.2n
三.解答题:
9.求3x2+y2-5xy 与-4xy -y2+7x2的和.
10.已知某三角形的一条边长为m+n ,另一条边长比这条边长大m -3,第三条边长等于2n -
m,求这个三角形的周长.
一.填空题
1.联欢会上,小明按照3个红气球.2个绿气球.1个黄气球的顺序把气球串起来装饰教室,
当n 为自然数时,第6n+5个气球的颜色是____________.
2.七年级⑵班同学参加数学课外活动小组的有x 人,参加合唱队的有y 人,而参加合唱队人
数是参加篮球队人数的5倍,且每位同学最多只能参加一项活动,则三个课外小组的人数共 _______人.
3.商品原价a 元,第一次降价x%,第二次又降价y 元,则现价是_________元.
二.选择题
4.两列火车都从A 地驶向B 地,已知甲车的速度为x 千米/时,乙车的速度为y 千米/时,
经过3时,乙车距离B 地5千米,此时甲车距离B 地( )千米.
A.3(-x+y )-5
B.3(x+y)-5
C.3(-x+y)+5
D.3(x+y)+5
5.已知x <-2,则|x+2|-|1-x|=( )
A.1
B.-3
C.2x+1
D.-2x -1
6.电视机按原价的80%出售,每台售价为a 元,这批电视机的原价为( )元. A.10080a B.80100a C.10020a D.20100
a
7.已知长方形的长为(2b -a ),宽比长少b ,则这个长方形的周长是( )
A.3b -2a
B.3b+2a
C.6b -4a
D.6b+4a
8.已知股市交易中每买.卖一次需交7.5‰的各种费用,某投资者以每股5元的价格买入上
海某股票4000股,当该股票涨到6元时全部卖出,则该投资者实际盈利为( )
A.4000元
B.3970元
C.3820元
D.3670元
三.解答题:
9.已知x2-xy=60,xy -y2=40,求代数式x2-y2和x2-2xy+y2的值.
10.A.B 两家公司都准备招聘技术人才,两家公司其他条件类似,工资待遇如下:A 公司年薪
2万元,每年加工龄工资400元;B 公司半年工资1万元,每半年加工龄工资100元. 从经
济收入来考虑,选择哪一家公司有利.
基础训练
-2x 8x 2. 3 3. 20x+10y
4-8 BBABB
9. 2m+4n-3 10.
综合提高
绿色 2. X+6y/5 3. a(1-)-y 4-8 CBBCD
9. 100 , 20 10. 选B公司。