广东省深圳市锦华实验学校2020-2021学年八年级上学期第一次月考数学试题
2020-2021深圳锦华实验学校初二数学下期中第一次模拟试卷(带答案)
2020-2021深圳锦华实验学校初二数学下期中第一次模拟试卷(带答案)一、选择题1.下列运算正确的是( ) A .347+=B .1232=C .2(-2)2=-D .14216= 2.一次函数1y ax b =+与2y bx a =+在同一坐标系中的图像可能是( )A .B .C .D .3.下列四组线段中,可以构成直角三角形的是( ) A .1,2,3B .2,3,4C .23D 2,3,54.已知P (x ,y )是直线y =1322x -上的点,则4y ﹣2x +3的值为( ) A .3B .﹣3C .1D .05.把式子1a- ) A a B a -C .aD .a --6.李老师为了了解学生暑期在家的阅读情况,随机调查了20名学生某一天的阅读小时数,具体情况统计如下: 阅读时间(小时) 2 2.5 3 3.5 4 学生人数(名)12863则关于这20名学生阅读小时数的说法正确的是( ) A .众数是8 B .中位数是3 C .平均数是3D .方差是0.347.若正比例函数y =mx (m 是常数,m≠0)的图象经过点A (m ,4),且y 的值随x 值的增大而减小,则m 等于( ) A .2B .﹣2C .4D .﹣48.如图,函数y=2x 和y=ax+4的图象相交于A(m ,3),则不等式2x ax+4<的解集为( )A .3x 2>B .x 3>C .3x 2<D .x 3<9.如图,矩形纸片ABCD ,3AB =,点E 在BC 上,且AE EC =.若将纸片沿AE 折叠,点B 恰好落在AC 上,则矩形ABCD 的面积是( )A .12B .63C .93D .1510.星期天晚饭后,小丽的爸爸从家里出去散步,如图描述了她爸爸散步过程中离家的距离(km )与散步所用的时间(min )之间的函数关系,依据图象,下面描述符合小丽爸爸散步情景的是( )A .从家出发,休息一会,就回家B .从家出发,一直散步(没有停留),然后回家C .从家出发,休息一会,返回用时20分钟D .从家出发,休息一会,继续行走一段,然后回家11.《九章算术》勾股章有一问题,其意思是:现有一竖立着的木柱,在木柱上端系有绳索,绳索从木柱上端顺木柱下垂后,堆在地面的部分尚有3尺,牵着绳索退行,在离木柱根部8尺处时绳索用尽,请问绳索有多长?若设绳索长度为x 尺,根据题意,可列方程为 ( )A .82﹢x 2 = (x ﹣3)2B .82﹢(x +3)2= x 2C .82﹢(x ﹣3)2= x 2D .x 2﹢(x ﹣3)2= 8212.3x -有意义,则x 的取值范围是( )A .3x ≠B .3x >C .3x ≥D .3x ≤二、填空题13.函数21x y x +=-中,自变量x 的取值范围是 . 14.若由你选择一个喜欢的数值m ,使一次函数()2y m x m =-+的图象经过第一、二、四象限,则m 的值可以是___________.15.已知菱形ABCD 的边长为5cm ,对角线AC =6cm ,则其面积为_____cm 2. 16.在矩形ABCD 中,对角线AC 、BD 交于点O ,AB =1,∠AOB =60°,则AD =________.17.矩形两条对角线的夹角为60°,矩形的较短的一边为5,则矩形的对角线的长是_____.18.比较大小:23________13.19.如图,矩形ABCD 中,15cm AB =,点E 在AD 上,且9cm AE =,连接EC ,将矩形ABCD 沿直线BE 翻折,点A 恰好落在EC 上的点A'处,则'A C =____________cm .20.如图,在菱形ABCD 中,AC 与BD 相交于点O ,点P 是AB 的中点,PO =2,则菱形ABCD 的周长是_________.三、解答题21.如图,正方形网格中的每个小正方形边长都是l ,每个小格的顶点叫做格点.以格点为顶点分别按下列要求画图:(1)画出一个平行四边形,使其面积为6; (2)画出一个菱形,使其面积为4. (3)画出一个正方形,使其面积为5.22.如图1,在菱形ABCD 中,8AB =,83BD =P 是BD 上一点,点Q 在AB上,且PA PQ =,设PD x =.(1)当PA AB ⊥时,如图2,求PD 的长;(2)设AQ y =,求y 关于x 的函数关系式及其定义域; (3)若BPQ ∆是以BQ 为腰的等腰三角形,求PD 的长.23.已知,点()2,P m 是第一象限内的点,直线PA 交y 轴于点(),2B O ,交x 轴负半轴于点A .连接OP ,6AOP S ∆=.(1)求BOP ∆的面积; (2)求点A 的坐标和m 的值.24.为了保护环境,某开发区综合治理指挥部决定购买A ,B 两种型号的污水处理设备共10台.已知用90万元购买A 型号的污水处理设备的台数与用75万元购买B 型号的污水处理设备的台数相同,每台设备价格及月处理污水量如下表所示:(1)求m 的值;(2)由于受资金限制,指挥部用于购买污水处理设备的资金不超过165万元,问采用何种购买方案可以使得每月处理污水量的吨数为最多?并求出最多吨数.25.由于持续高温和连日无雨,水库蓄水量普遍下降,如图是某水库的蓄水量V (万立方米)与干旱持续时间t(天)之间的关系图,请根据此图,回答下列问题:(1)该水库原蓄水量为多少万立方米?持续干旱10天后,水库蓄水量为多少万立方米?(2)若水库的蓄水量小于400万立方米时,将发出严重干旱警报,请问持续干旱多少天后,将发出严重干旱警报?(3)按此规律,持续干旱多少天时,水库将干涸?【参考答案】***试卷处理标记,请不要删除一、选择题1.D解析:D【解析】【分析】根据二次根式的加减法对A进行判断;根据二次根式的性质对B、C进行判断;根据分母有理化和二次根式的性质对D进行判断.【详解】A32,所以A选项错误;B、原式=23B选项错误;C、原式=2,所以C选项错误;D 14621366⨯=⨯,所以D选项正确.故选D.【点睛】本题考查了二次根式的混合运算:先把二次根式化为最简二次根式,然后进行二次根式的乘除运算,再合并即可.在二次根式的混合运算中,如能结合题目特点,灵活运用二次根式的性质,选择恰当的解题途径,往往能事半功倍.2.C解析:C【解析】【分析】可用排除法,对各选项中函数图象的特点逐一分析即可.【详解】A.由y1的图象可知a< 0,b> 0;由y2的图象可知a>0,b>0,两结论相矛盾,故错误;B.由y1的图象可知a< 0,b> 0;由y2的图象可知a=0,b<0,两结论相矛盾,故错误;C. 正确;D.由y1的图象可知a> 0,b> 0;由y2的图象可知a<0,b<0,两结论相矛盾,故错误;故选:C.【点睛】此题考查一次函数的图象,熟记一次函数的图象与k及b值的关系是解题的关键.3.C解析:C【解析】【分析】求出两小边的平方和、最长边的平方,看看是否相等即可.【详解】A.∵12+22≠32,∴以1,2,3为边组成的三角形不是直角三角形,故本选项错误;B.∵22+32≠42,∴以2,3,4为边组成的三角形不是直角三角形,故本选项错误;C.∵12+)2=2,∴以1选项正确;D)2+32≠523,5为边组成的三角形不是直角三角形,故本选项错误.故选C.【点睛】本题考查了勾股定理的逆定理的应用,能熟记勾股定理的逆定理的内容是解答此题的关键.4.B解析:B【解析】【分析】根据点P(x,y)是直线y=1322x-上的点,可以得到y与x的关系,然后变形即可求得所求式子的值.【详解】∵点P(x,y)是直线y=1322x-上的点,∴y=13 22x-,∴4y=2x-6,∴4y-2x=-6,∴4y-2x+3=-3,故选B.【点睛】本题考查一次函数图象上点的坐标特征,解答本题的关键是明确题意,利用一次函数的性质解答.5.D解析:D【解析】【分析】先根据二次根式有意义的条件求出a的范围,再把根号外的非负数平方后移入根号内即可.【详解】Q1∴-≥a∴<a∴==故选D.【点睛】本题考查了二次根式的意义,解题的关键是能正确把根号外的代数式或数字移到根号内部,它是开方的逆运算.从根号外移到根号内要平方,并且移到根号内与原来根号内的式子是乘积的关系.如果根号外的数字或式子是负数时,代表整个式子是负值,要把负号留到根号外再平方后移到根号内.6.B解析:B【解析】【分析】A、根据众数的定义找出出现次数最多的数;B、根据中位数的定义将这组数据从小到大重新排列,求出最中间的2个数的平均数,即可得出中位数;C、根据加权平均数公式代入计算可得;D、根据方差公式计算即可.【详解】解: A、由统计表得:众数为3,不是8,所以此选项不正确;B、随机调查了20名学生,所以中位数是第10个和第11个学生的阅读小时数,都是3,故中位数是3,所以此选项正确;C、平均数=122 2.5386 3.5433.3520⨯+⨯+⨯+⨯+⨯=,所以此选项不正确;D、S2=120×[(2﹣3.35)2+2(2.5﹣3.35)2+8(3﹣3.35)2+6(3.5﹣3.35)2+3(4﹣3.35)2]=5.6520=0.2825,所以此选项不正确;故选B.【点睛】本题考查方差;加权平均数;中位数;众数.7.B解析:B【解析】【分析】利用待定系数法求出m,再结合函数的性质即可解决问题.【详解】解:∵y=mx(m是常数,m≠0)的图象经过点A(m,4),∴m2=4,∴m=±2,∵y的值随x值的增大而减小,∴m<0,∴m=﹣2,故选:B.【点睛】本题考查待定系数法,一次函数的性质等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.8.C解析:C【解析】【分析】【详解】解:∵函数y=2x和y=ax+4的图象相交于点A(m,3),∴3=2m,解得m=32.∴点A的坐标是(32,3).∵当3x2<时,y=2x的图象在y=ax+4的图象的下方,∴不等式2x<ax+4的解集为3x2 <.9.C解析:C【解析】【分析】证明30????,求出BC即可解决问题.BAE EAC ACE【详解】解:Q四边形ABCD是矩形,B∴∠=︒,90Q,EA=EC∴∠=∠,EAC ECAEAC BAEQ,??又∵将纸片沿AE折叠,点B恰好落在AC上,BAE EAC ACE\????,30AB=Q,3\==BC∴矩形ABCD的面积是3gAB BC=故选:C.【点睛】本题考查矩形的性质,翻折变换,直角三角形30°角性质等知识,解题的关键是灵活运用所学知识解决问题.10.D解析:D【解析】【分析】利用函数图象,得出各段的时间以及离家的距离变化,进而得出答案.【详解】由图象可得出:小丽的爸爸从家里出去散步10分钟,休息20分钟,再向前走10分钟,然后利用20分钟回家.故选:D.【点睛】本题考查了函数的图象,解题的关键是要看懂图象的横纵坐标所表示的意义,然后再进行解答.11.C解析:C【解析】【分析】设绳索长为x尺,根据勾股定理列出方程解答即可.解:设绳索长为x 尺,可列方程为(x-3)2+82=x 2, 故选:C . 【点睛】本题考查了勾股定理的应用,找准等量关系,正确列出一元二次方程是解题的关键.12.B解析:B 【解析】 【分析】根据被开方数大于等于0,分母不等于0列式计算即可得解. 【详解】由题意得,x-3>0, 解得x >3. 故选:B . 【点睛】本题考查了二次根式有意义的条件,二次根式中的被开方数必须是非负数,否则二次根式无意义.二、填空题13.x≠1【解析】x≠1解析:x≠1 【解析】10x -≠,x≠114.(答案不唯一满足均可)【解析】【分析】一次函数的图象经过第一二四象限列出不等式组求解即可【详解】解:一次函数的图象经过第一二四象限解得:m 的值可以是1故答案为:1(答案不唯一满足均可)【点睛】此题主解析:(答案不唯一,满足02m <<均可) 【解析】 【分析】一次函数()2y m x m =-+的图象经过第一、二、四象限,列出不等式组200,m m -<⎧⎨>⎩求解即可. 【详解】解:一次函数()2y m x m =-+的图象经过第一、二、四象限,200m m -<⎧⎨>⎩解得:02m <<m 的值可以是1.故答案为:1(答案不唯一,满足02m <<均可).【点睛】此题主要考查了一次函数图象,一次函数y kx b =+的图象有四种情况:①当0,0k b >>时,函数y kx b =+的图象经过第一、二、三象限;②当0,0k b ><时,函数y kx b =+的图象经过第一、三、四象限;③当0,0k b <>时,函数y kx b =+的图象经过第一、二、四象限;④当0,0k b <<时,函数y kx b =+的图象经过第二、三、四象限.15.24【解析】【分析】根据菱形的性质求出另一条对角线BD 的长然后再求面积即可【详解】如图所示:∵菱形ABCD 的边长为5cm 对角线AC =6cm ∴AC ⊥BD AO =CO =3cmBD=2BO ∴BO ==4(cm解析:24【解析】【分析】根据菱形的性质求出另一条对角线BD 的长,然后再求面积即可.【详解】如图所示:∵菱形ABCD 的边长为5cm ,对角线AC =6cm ,∴AC ⊥BD ,AO =CO =3cm ,BD=2BO ,∴BO =22AB AO -=4(cm),∴BD =8cm ,∴S 菱形ABCD =12×6×8=24(cm 2), 故答案为24.【点睛】本题考查了菱形的性质,熟练掌握菱形的对角线互相垂直平分以及菱形的面积等于对角线积的一半是解题的关键.16.【解析】【分析】【详解】解:∵四边形ABCD 是矩形∴AC=2OABD=2BOAC=BD ∴OB=OA ∵∴是等边三角形故答案为【点睛】本题考查矩形的对角线相等 3【解析】【分析】【详解】解:∵四边形ABCD 是矩形,∴AC=2OA ,BD=2BO ,AC=BD ,∴OB=OA ,∵60∠=o ,AOB ∴OAB V 是等边三角形,1OB AB ∴==22BD OB == 223AD BD AB =-=故答案为3.【点睛】本题考查矩形的对角线相等.17.10【解析】【分析】首先根据题意画出图形然后再根据矩形两条对角线的夹角为60°证得△AOB 是等边三角形即可解答本题【详解】解:如图:∵四边形ABCD 是矩形∴OA=ACOB=BDAC=BD∴OA=OB解析:10【解析】【分析】首先根据题意画出图形,然后再根据矩形两条对角线的夹角为60°,证得△AOB 是等边三角形,即可解答本题.【详解】解:如图:∵四边形ABCD 是矩形,∴OA=12AC ,OB=12BD ,AC=BD ∴OA=OB ,∵∠A0B=60°,∴△AOB 是等边三角形,∴OA=OB=AB=5, ∴AC=2OA=10,即矩形对角线的长为10.故答案为:10.【点睛】本题考查了矩形的性质以及等边三角形的判定与性质,弄清题意、画出图形是解答本题的关键.18.<【解析】试题解析:∵∴∴解析:<【解析】试题解析:∵∴19.8【解析】【分析】设A′C=xcm 先根据已知利用AAS 证明△A′BC≌△DCE 得出A′C=DE=xcm 则BC=AD=(9+x )cmA′B=AB=15cm 然后在Rt△A′BC 中由勾股定理可得BC2=A解析:8【解析】【分析】设A ′C=xcm ,先根据已知利用AAS 证明△A ′BC ≌△DCE ,得出A ′C=DE= xcm ,则BC=AD=(9+x )cm ,A ′B=AB=15cm ,然后在Rt △A ′BC 中,由勾股定理可得BC 2=A ′B 2+A ′C 2,即可得方程,解方程即可求得答案【详解】解:∵四边形ABCD 是矩形,∴AB=CD=15cm ,∠A=∠D=90°,AD ∥BC ,AD=BC ,∴∠DEC=∠A ′CB ,由折叠的性质,得:A ′B=AB=15cm ,∠BA ′E=∠A=90°,∴A ′B=CD ,∠BA ′C=∠D=90°,在△A ′BC 和△DCE 中,BA C D A CB DEC A B CD ∠=∠⎧⎪∠=∠=''⎨'⎪⎩∴△A ′BC ≌△DCE (AAS ),∴A ′C=DE ,设A ′C=xcm ,则BC=AD=DE+AE=x+9(cm ),在Rt △A ′BC 中,BC 2=A ′B 2+A ′C 2,即(x+9)2=x 2+152,解得:x=8,∴A ′C=8cm .故答案为:8.【点睛】此题考查了矩形的性质、全等三角形的判定与性质、勾股定理以及折叠的性质.此题难度适中,注意掌握数形结合思想与方程思想的应用,注意掌握折叠前后图形的对应关系.20.16【解析】【分析】根据菱形的性质可得AC⊥BDAB=BC=CD=AD再根据直角三角形的性质可得AB=2OP进而得到AB长然后可算出菱形ABCD的周长【详解】∵四边形ABCD是菱形∴AC⊥BDAB=解析:16【解析】【分析】根据菱形的性质可得AC⊥BD,AB=BC=CD=AD,再根据直角三角形的性质可得AB=2OP,进而得到AB长,然后可算出菱形ABCD的周长.【详解】∵四边形ABCD是菱形,∴AC⊥BD,AB=BC=CD=AD,∵点P是AB的中点,∴AB=2OP,∵PO=2,∴AB=4,∴菱形ABCD的周长是:4×4=16,故答案为:16.【点睛】此题主要考查了菱形的性质,关键是掌握菱形的两条对角线互相垂直,四边相等,此题难度不大.三、解答题21.(1)见解析;(2)见解析;(3)见解析【解析】【分析】(1)平行四边形面积为6,则可以为底边长为3,高为2,具体图形如下;(2)菱形面积为4,则对角线长度为2和4,据此可画出菱形;(3)要使正方形面积为5,则正方形的边长为5.【详解】(1)图形如下:(2)图形如下:(3)图形如下:【点睛】本题考查根据条件绘制四边形,注意在绘制前,需要根据四边形的特点,适当进行分析,以辅助完成绘图.22.(1)PD 83(2)3x-883≤x 163)(3)3【解析】【分析】(1)先根据菱形的边长和对角线的长得到∠ABO =30°,再根据PA AB ⊥,求出AP 的长,故可得到DP 的长;(2)作HP ⊥AB ,根据AP=PQ ,得到AH=QH=12y ,BH=8-12y ,BP=BD-DP=83再根据(1)可得HP=4312x ,在Rt △BPH 中,BP 2=HB 2+HP 2,化简即可求解,再求出x 的取值范围;(3)根据题意作图,由等腰三角形的性质可得△AQP 是等边三角形,故可得到DP 的长.【详解】(1)∵8AB =,83BD =∴BO=12BD 3⊥BD 故22AB BO -=4=12AB ∴∠ABO =30°=∠ADO ∵PA AB ⊥∴∠APB =90°-∠ABO =60°故∠PAD=∠APB -∠ADO =30°即∠PAD=∠ADO∴DP=AP设AP=x,则BP=2x,在Rt△ABP中,BP2=AB2+AP2即(2x)2=82+x2解得x=83 3故PD=833;(2)作HP⊥AB,∵AP=PQ∴AH=QH=1 2 y∴BH=BQ+QH=(8-y)+12y=8-12y,BP=BD-DP=83-x,由(1)可得HP=12BP=43-12x在Rt△BPH中,BP2=HB2+HP2即(83-x)2=(8-12y)2+(43-12x)2∵83-x>0,8-12y>0,43-12x>0∴化简得y=3x-8∵0≤3x-8≤8∴x的取值范围为83≤x≤163∴y关于x的函数关系式是y=3x-8(833≤x≤1633);(3)如图,若BPQ是以BQ为腰的等腰三角形,则∠QPB=∠QBP=30°,∴∠AQP=∠QPB+∠QBP=60°∵∠BAP=90°-∠QBP=60°,∴△APQ 是等边三角形,∠APQ=60°∴∠QPB +∠APQ=90°,则AP ⊥BP ,故O 点与P 点重合,∴PD=DO=12BD =43.【点睛】此题主要考查菱形的性质综合,解题的关键是熟知菱形的性质及含30度的直角三角形的性质.23.(1)2;(2)(40-,);m=3.【解析】【分析】(1)根据三角形面积公式求解;(2)先计算出S △AOB =4,利用三角形面积公式得12OA •2=4,解得OA=4,则A 点坐标为(4-,0);再利用待定系数法求直线AB 的解析式,然后把P (2,m )代入可求出m 的值.【详解】解:(1)△BOP 的面积=12×2×2=2; (2)∵S △AOP =6,S △POB =2,∴S △AOB =6-2=4, ∴12OA •OB=4,即12OA •2=4,解得:OA=4, ∴A 点坐标为(4-,0);设直线AB 的解析式为y=kx+b ,把A (-4,0)、B (0,2)代入得 402k b b -+=⎧⎨=⎩,解得:122k b ⎧=⎪⎨⎪=⎩, ∴直线AB 的解析式为y=12x+2, 把P (2,m )代入得:m=1+2=3.【点睛】本题考查了一次函数图象上点的坐标特征,图象上点的坐标适合解析式,也考查三角形的面积.解题的关键是熟练掌握一次函数的图形和性质,注意掌握数形结合的思想进行解题. 24.(1)m=18;(2)两种设备各购入5台,可以使得每月处理污水量的吨数为最多,最多为20000吨【解析】【分析】(1)根据90万元购买A型号的污水处理设备的台数与用75万元购买B型号的污水处理设备的台数相同,列出关于m的分式方程,求出m的值即可;(2)设购买A型设备x台,则B型设备(10-x)台,根据题意列出关于x的一元一次不等.式,求出x的取值范围,再设每月处理污水量为W吨,则W=2200x+1800(10-x)=400x+18000,根据一次函数的性质即可求出最大值.【详解】(1)由题意得:9753 m m=-,解得m=18,经检验m=18是原方程的根,故m的值为18;(2)设购买A型设备x台,B型设备(10-x)台,由题意得:18x+15(10-x)≤165,解得x≤5,设每月处理污水量为W吨,由题意得:W=2200x+1800(10-x)=400x+18000,∵400>0,∴W随着x的增大而增大,∴当x=5时,W最大值为400×5+18000=20000,即两种设备各购入5台,可以使得每月处理污水量的吨数为最多,最多为20000吨.【点睛】本题考查了一次函数与不等式的综合应用,属于方案比较问题,理解题意是解题关键.25.(1)水库原蓄水量为1 000万立方米,持续干旱10天后,蓄水量为800万立方米;(2)当v=400时,t=30,∴持续干旱30天后将发出严重干旱警报;(3)持续干旱50天后水库将干涸.【解析】【分析】(1)原蓄水量即t=0时v的值,t=50时,v=0,得v与t的函数关系,持续干旱10天后的蓄水量即t=10时v的值;(2)即找到v=400时,相对应的t的值;(3)从第10天到第30天,水库下降了800−400=400万立方米,一天下降=20万立方米,第30天的400万立方米还能用=20天,即50天时干涸.【详解】解:(1)当t=0时,v=1000∴水库原蓄水量为1000万米3,干涸的速度为1000÷50=20,所以v=1000-20t,当t=10时,v=800,∴水库原蓄水量为1 000万立方米,持续干旱10天后,蓄水量为800万立方米.(2)当v=400时,t=30,∴持续干旱30天后将发出严重干旱警报.(3)从第10天到第30天,水库下降了(800﹣400)万立方米,一天下降=20万立方米,故根据此规律可求出:30+=50天,那么持续干旱50天后水库将干涸.【点睛】本题考查了函数图象的问题,解题的关键是正确理解函数图象横纵坐标表示的意义,理解问题的过程,得到相应的点的意义.。
广东省深圳市2020年八年级上学期数学第一次月考试卷(II)卷
广东省深圳市2020年八年级上学期数学第一次月考试卷(II)卷姓名:________ 班级:________ 成绩:________一、单选题 (共10题;共20分)1. (2分)如图,点B、E在线段CD上,若∠C=∠D,则添加下列条件,不一定能使△ABC≌△EFD的是()A . BC=FD,AC=EDB . ∠A=∠DEF,AC=EDC . AC=ED,AB=EFD . ∠ABC=∠EFD,BC=FD2. (2分) (2020八下·上饶月考) 如图,在 ABCD中,对角线AC与BD相交于点O,过点O作EF⊥AC 交BC于点E,交AD于点F,连接AE、CF.则四边形AECF是()A . 梯形B . 矩形C . 菱形D . 正方形3. (2分) (2017八上·临海期末) 如图,已知ABC=ABD,要使,下列所添条件不一定成立的是()A . C= DB . CAB=DABC . BC=BDD . AC=AD4. (2分)(2018·深圳模拟) 如图,正方形ABCD中.点E,F分别在BC,CD上,△AEF是等边三角形.连接AC交EF于点G.过点G作GH⊥CE于点H.若,则 =()A . 6B . 4C . 3D . 25. (2分)观察图中尺规作图痕迹,下列结论错误的是()A . PQ为∠APB的平分线B . PA=PBC . 点A、B到PQ的距离不相等D . ∠APQ=∠BPQ6. (2分)下列判断正确的是()A . 等边三角形都全等B . 面积相等的两个三角形全等C . 腰长对应相等的两个等腰三角形全等D . 直角三角形和钝角三角形不可能全等7. (2分)在Rt△ABC和Rt△A'B'C'中,∠C=∠C'=90°,下列条件中,能判定Rt△ABC≌Rt△A'B'C'的个数为()①AC=A'B',∠A=∠A';②AC=A'C',AB=A'B';③AC=A'C',BC=B'C'; ④AB=A'B',∠A=∠A'.A . 1B . 2C . 3D . 48. (2分) (2019八上·肥城开学考) 下列结论正确的是()A . 面积相等的两个三角形全等B . 等边三角形都全等C . 底边和顶角对应相等的等腰三角形全等D . 两个等腰直角三角形全等9. (2分) (2018八上·宜兴月考) 下列语句中正确的有几个()①关于一条直线对称的两个图形一定能重合;②两个能重合的图形一定关于某条直线对称;③两个轴对称图形的对应点一定在对称轴的两侧;④一个圆有无数条对称轴.A . 1B . 2C . 3D . 410. (2分)如图1,M是铁丝AD的中点,将该铁丝首尾相接折成△ABC,且∠B = 30°,∠C = 100°,如图2.则下列说法正确的是()A . 点M在AB上B . 点M在BC的中点处C . 点M在BC上,且距点B较近,距点C较远D . 点M在BC上,且距点C较近,距点B较远二、填空题 (共10题;共11分)11. (1分)(2017·柘城模拟) 如图,在平面直角坐标系中,A、B两点分别在x轴、y轴上,OA=3,OB=4,连接AB.点P在平面内,若以点P、A、B为顶点的三角形与△AOB全等(点P与点O不重合),则点P的坐标为________.12. (1分)(2016·泰安) 如图,矩形ABCD中,已知AB=6,BC=8,BD的垂直平分线交AD于点E,交BC于点F,则△BOF的面积为________.13. (1分)实验回答:把一长一短两根细木棍的一端用螺钉铰合在一起,如图所示,使长木棍的另一端与射线BC的端点B重合,固定住长木棍,把短木棍摆起来,这说明________。
2020-2021学年人教版八年级数学上册第一次月考试卷(含答案)
2020-2021学年八年级上学期数学第一次月考试卷一、选择题(本大题共10小题,每小题4分,满分40分.)1.在平面直角坐标系中,点M(2019,-2019)在()A. 第一象限B. 第二象限C. 第三象限D. 第四象限2.下列函数:①y= 12x2-x;②y=-x+10;③y=2x;④y= x2-1.其中是一次函数的有()A. 1个B. 2个C. 3个D. 4个3.如图,在围棋盘上有三枚棋子,如果黑棋的位置用坐标表示为(0,-1),黑棋的位置用坐标表示为(-3,0),则白棋③的位置坐标表示为()A. (4,2)B. (-4,2)C. (4,-2)D. (-4,-2)4.若点(2-3m,-m)在第三象限,则m的取值范围是()A. m<0B. m<23C. 23<m<0 D. m>235.用固定的速度向容器里注水,水面的高度h和注水时间t的函数关系的大致图象如图,则该容器可能是()A. B. C. D.6.已知点M(-4,2),若点N是y轴上一动点,则M,N两点之间的距离最小值为()A. -4B. 2C. 4D. -27.若k<0,则在平面直角坐标系中,y=2kx-k+1的图象大致是()A. B. C. D.8.如图,在平面直角坐标系xOy中,将四边形ABCD先向下平移,再向右平移得到四边形A1B1C1D1,已知A(-3,5),B(-4,3),A1(3,3),则B1的坐标为()A. (1,2)B. (1,4)C. (2,1)D. (4,1)9.已知A(2,a)、B(-1,b)、C(c,0)都在一次函数y=kx+3(k<0)的图象上,则下列结论一定正确的是()A. a<bB. a>bC. a>3D. c<010.某乡村盛产葡萄,果大味美,甲、乙两个葡萄采摘园为吸引游客,在销售价格一样的基础上分别推出优惠方案,甲采摘园的优惠方案:游客进园需购买门票,采摘的所有葡萄按六折优惠.乙采摘园的优惠方案:游客无需买票,采摘葡萄超过一定数量后,超过的部分打折销售.活动期间,某游客的葡萄采摘量为xkg,若在甲采摘园所需总费用为y甲元,若在乙采摘园所需总费用为y乙元,y甲、y乙与x之间的函数图象如图所示,则下列说法错误的是()A. 甲采摘园的门票费用是60元B. 两个采摘园优惠前的葡萄价格是30元/千克C. 乙采摘园超过10kg后,超过的部分价格是12元/千克D. 若游客采摘18kg葡萄,那么到甲或乙两个采摘园的总费用相同二、填空题(本大题共4小题,每小题5分,满分20分)11.若(2,1)表示教室里第2列第1排的位置,则教室里第5列第6排的位置表示为________ 。
广东省2021八年级上学期数学第一次月考试卷(I)卷
广东省2021八年级上学期数学第一次月考试卷(I)卷姓名:________ 班级:________ 成绩:________一、单选题 (共10题;共20分)1. (2分) (2021八上·华容期末) 等腰三角形的两边长分别为,,则该三角形的周长为()A .B .C . 或D . 以上都不对2. (2分)(2020·西湖模拟) 如图,在△ABC中,∠B=50°,∠C=30°,分别以点A和点C为圆心,大于 AC的长为半径画弧,两弧相交于点M,N,作直线MN交BC于点D,连接AD,则∠BAD的度数为()A . 50°B . 60°C . 70°D . 80°3. (2分) (2020八上·北京期中) 如图,,则的长是()A .B .C .D .4. (2分) (2017八下·抚宁期末) 若直角三角形中,斜边的长为13,一条直角边长为5,则这个三角形的面积是()A . 20B . 30C . 40D . 605. (2分) (2018七上·宿州期末) 若n边形恰好有n条对角线,则n为()A . 4B . 5C . 6D . 76. (2分)如图:AC⊥BC,AC=BC,CD⊥AB,DE⊥BC,则图中共有等腰三角形()A . 2个B . 3个C . 4个D . 5个7. (2分)如图,已知OQ平分∠AOB,点P为OQ上任意一点,点N为OA上一点,点M为OB上一点,若∠PNO+∠PMO=180°,则PM和PN的大小关系是()A . PM>PNB . PM<PNC . PM=PND . 不能确定8. (2分)等腰三角形的两边分别为6cm、4cm,则它的周长是()A . 14cmB . 16cm或14cmC . 16cmD . 18cm9. (2分)如图,在等边△ABC中,BD平分∠AB C交AC于点D,过点D作DE⊥BC于点E,且CE=1.5,则AB的长为()A . 3B . 4.5C . 6D . 7.510. (2分) (2020八下·兴宾期中) 如果一个三角形的三个内角的度数之比为,那么这个三角形是()A . 锐角三角形B . 直角三角形C . 钝角三角形D . 锐角三角形或直角三角形二、填空题 (共6题;共6分)11. (1分) (2020八上·仪征月考) 如图,的3个顶点分别在小正方形的顶点(格点)上,这样的三角形叫做格点三角形,请在图中再画一个格点三角形,使得,图中最多能画________个格点三角形与全等(不含).12. (1分)如图,在平面直角坐标系中,直线AB与y轴在正半轴、x轴正半轴分别交A、B两点,M在BA 的延长线上,PA平分∠MAO,PB平分∠ABO,则∠P=________.13. (1分)如图,AD=BC,请添加一个条件,使图中存在全等三角形并给予证明.你所添加的条件为:________;得到的一对全等三角形是△________≌△________.14. (1分)如图,在△ABC中,AD是BC边上的高,BE是AC边上的高,且AD,BE交于点F,若BF=AC,CD =3,BD=8,则线段AF的长度为________.15. (1分)(2014·徐州) 如图,在等腰三角形纸片ABC中,AB=AC,∠A=50°,折叠该纸片,使点A落在点B处,折痕为DE,则∠CBE=________°.16. (1分)已知:直线l1∥l2 ,一块含30°角的直角三角板如图所示放置,∠1=25°,则∠2等于________.三、解答题 (共8题;共76分)17. (5分) (2020八上·齐齐哈尔月考) 如图,在△ABC中,∠A=40°,∠B=70°,CE平分∠ACB,CD⊥AB 于点D,DF⊥CE于点F,求∠CDF的度数.18. (15分) (2018八上·四平期末) 如图, AD是的平分线,点E在AB上,且交AC于点F.试说明: EC平分 .19. (5分) (2020七上·兴化月考) 在数轴上表示下列各数,并用“<”把它们连接起来.-(-4),-(+3.5),-1.5,0,20. (15分)(2018·建邺模拟) 如图,①四边形ABCD是平行四边形,线段EF分别交AD、AC、BC于点E、O、F,②EF⊥AC,③AO=CO.(1)求证:四边形AFCE是平行四边形;(2)在本题①②③三个已知条件中,去掉一个条件,(1)的结论依然成立,这个条件是________(直接写出这个条件的序号).21. (10分) (2019七下·抚州期末) 如图,已知:BC∥EF,BC=EF,AE=BD(1)试说明:△ABC≌△DEF;(2)判断DF与AC的位置关系,并说明理由.22. (5分) (2019八上·蓟州期中) 如图,等腰直角△ABC中,CA=CB,点E为△ABC外一点,CE=CA,且CD 平分∠ACB交AE于D,且∠CDE=60°.(1)求证:△CBE为等边三角形;(2)若AD=5,DE=7,求CD的长.23. (6分) (2020九上·枣阳期中) 已知:如图,等边△AOB的边长为4,点C为OA中点.(1)如图1,将OC绕点O顺时针旋转,使点C落到OB边的点D处,设旋转角为α(0°<α≤360°).则此时α=________;此时△COD是________ 三角形(填特殊三角形的名称).(2)如图2,固定等边△AOB不动,将(1)中得到的△OCD绕点O逆时针旋转,连接AC,BD,设旋转角为β(0°<β≤360°).①求证:AC=BD;②当OC∥AB时,直接写出旋转角β的度数为__▲__;③当A、C、D三点共线时,请求出线段BD的长.24. (15分) (2020七下·高淳期末) 已知,如图,E为BC延长线上一点,点D是线段AC上一点.(1)如图1,DF∥BC,作DG平分∠BDF交AB于G,DH平分∠GDC交BC于H,且∠BDC比∠ACB大20°,求∠GDH 的度数.(2)如图2,连接DE,若∠ABC的平分线与∠ADE的平分线相交于点P,BP交AC于点K.①设∠ABK=x,∠AKB=y,∠ADP=z,试用x,y,z表示∠E;②求证:∠P= (∠A-∠E).参考答案一、单选题 (共10题;共20分)答案:1-1、考点:解析:答案:2-1、考点:解析:答案:3-1、考点:解析:答案:4-1、考点:解析:答案:5-1、考点:解析:答案:6-1、考点:解析:答案:7-1、考点:解析:答案:8-1、考点:解析:答案:9-1、考点:解析:答案:10-1、考点:解析:二、填空题 (共6题;共6分)答案:11-1、考点:解析:答案:12-1、考点:解析:答案:13-1、考点:解析:答案:14-1、考点:解析:答案:15-1、考点:解析:答案:16-1、考点:解析:三、解答题 (共8题;共76分)答案:17-1、考点:解析:答案:18-1、考点:解析:答案:19-1、考点:解析:答案:20-1、答案:20-2、考点:解析:答案:21-1、答案:21-2、考点:解析:答案:22-1、答案:22-2、考点:解析:答案:23-1、考点:解析:答案:24-1、答案:24-2、考点:解析:第21 页共21 页。
2020—2021年人教版八年级数学上册第一次月考考试卷(完整版)
2020—2021年人教版八年级数学上册第一次月考考试卷(完整版) 班级: 姓名: 一、选择题(本大题共10小题,每题3分,共30分)1.﹣2的绝对值是( )A .2B .12C .12-D .2-2.已知点A (1,-3)关于x 轴的对称点A'在反比例函数ky=x 的图像上,则实数k 的值为( )A .3B .13C .-3D .1-33.已知三角形的三边长分别为2,a -1,4,则化简|a -3|+|a -7|的结果为( )A .2a -10B .10-2aC .4D .-44.已知-10m 是正整数,则满足条件的最大负整数m 为( )A .-10B .-40C .-90D .-1605.为考察甲、乙、丙、丁四种小麦的长势,在同一时期分别从中随机抽取部分麦苗,获得苗高(单位:cm )的平均数与方差为:x 甲=x 丙=13,x 乙=x 丁=15:s 甲2=s 丁2=3.6,s 乙2=s 丙2=6.3.则麦苗又高又整齐的是( )A .甲B .乙C .丙D .丁 6.如果2a a 2a 1+-+=1,那么a 的取值范围是( )A .a 0=B .a 1=C .a 1≤D .a=0a=1或7.如图,将▱ABCD 沿对角线AC 折叠,使点B 落在B ′处,若∠1=∠2=44°,则∠B 为( )A.66°B.104°C.114°D.124°8.已知直线a∥b,将一块含45°角的直角三角板(∠C=90°)按如图所示的位置摆放,若∠1=55°,则∠2的度数为()A.80°B.70°C.85°D.75°9.如图,将△ABC放在正方形网格图中(图中每个小正方形的边长均为1),点A,B,C恰好在网格图中的格点上,那么△ABC中BC边上的高是()A.102B.104C.105D.510.正比例函数y=kx(k≠0)的函数值y随着x增大而减小,则一次函数y=x+k的图象大致是()A. B.C. D.二、填空题(本大题共6小题,每小题3分,共18分)1.如果表示a、b的实数的点在数轴上的位置如图所示,那么化简|a﹣b|+2()a b的结果是________.2.已知菱形ABCD 的面积是12cm 2,对角线AC =4cm ,则菱形的边长是______cm .3.式子3x -在实数范围内有意义,则 x 的取值范围是________.4.如图,▱ABCD 中,AC 、BD 相交于点O ,若AD=6,AC+BD=16,则△BOC 的周长为________.5.如图,依据尺规作图的痕迹,计算∠α=_______°.6.如图,已知正方形ABCD 的边长为5,点E 、F 分别在AD 、DC 上,AE=DF=2,BE 与AF 相交于点G ,点H 为BF 的中点,连接GH ,则GH 的长为_______.三、解答题(本大题共6小题,共72分)1.解分式方程:2311x x x x +=--.2.先化简,再求值:24211326x x x x -+⎛⎫-÷ ⎪++⎝⎭,其中21x =.3.已知2a ﹣1的平方根为±3,3a +b ﹣1的算术平方根为4,求a +2b 的平方根.4.(1)如图(1),已知:在△ABC中,∠BAC=90°,AB=AC,直线m经过点A,BD⊥直线m, CE⊥直线m,垂足分别为点D、E.证明:DE=BD+CE.(2)如图(2),将(1)中的条件改为:在△ABC中,AB=AC,D、A、E三点都在直线m上,并且有∠BDA=∠AEC=∠BAC=α,其中α为任意锐角或钝角.请问结论DE=BD+CE是否成立?如成立,请你给出证明;若不成立,请说明理由.(3)拓展与应用:如图(3),D、E是D、A、E三点所在直线m上的两动点(D、A、E三点互不重合),点F为∠BAC平分线上的一点,且△ABF和△ACF均为等边三角形,连接BD、CE,若∠BDA=∠AEC=∠BAC,试判断△DEF的形状.5.如图,直线l1:y1=﹣x+2与x轴,y轴分别交于A,B两点,点P(m,3)为直线l1上一点,另一直线l2:y2=12x+b过点P.(1)求点P坐标和b的值;(2)若点C是直线l2与x轴的交点,动点Q从点C开始以每秒1个单位的速度向x轴正方向移动.设点Q的运动时间为t秒.①请写出当点Q在运动过程中,△APQ的面积S与t的函数关系式;②求出t为多少时,△APQ的面积小于3;③是否存在t的值,使△APQ为等腰三角形?若存在,请求出t的值;若不存在,请说明理由.6.为落实“美丽抚顺”的工作部署,市政府计划对城区道路进行了改造,现安排甲、乙两个工程队完成.已知甲队的工作效率是乙队工作效率的32倍,甲队改造360米的道路比乙队改造同样长的道路少用3天.(1)甲、乙两工程队每天能改造道路的长度分别是多少米?(2)若甲队工作一天需付费用7万元,乙队工作一天需付费用5万元,如需改造的道路全长1200米,改造总费用不超过145万元,至少安排甲队工作多少天?参考答案一、选择题(本大题共10小题,每题3分,共30分)1、A2、A3、C4、A5、D6、C7、C8、A9、A10、A二、填空题(本大题共6小题,每小题3分,共18分)1、﹣2b23、x≥34、145、56.6、三、解答题(本大题共6小题,共72分)1、x=323、±34、(1)见解析(2)成立(3)△DEF为等边三角形5、(1)b=72;(2)①△APQ的面积S与t的函数关系式为S=﹣32t+272或S=32t﹣272;②7<t<9或9<t<11,③存在,当t的值为3或9﹣6时,△APQ为等腰三角形.6、(1)乙工程队每天能改造道路的长度为40米,甲工程队每天能改造道路的长度为60米.(2)10天.。
2020—2021年人教版八年级数学上册第一次月考测试卷及答案【免费】
2020—2021年人教版八年级数学上册第一次月考测试卷及答案【免费】 班级: 姓名: 一、选择题(本大题共10小题,每题3分,共30分)1.若32a 3a +=﹣a 3a +,则a 的取值范围是( )A .﹣3≤a ≤0B .a ≤0C .a <0D .a ≥﹣32.若正多边形的内角和是540︒,则该正多边形的一个外角为( )A .45︒B .60︒C .72︒D .90︒3.语句“x 的18与x 的和不超过5”可以表示为( ) A .58x x +≤ B .58x x +≥ C .855x ≤+ D .58x x += 4.化简x 1x -,正确的是( ) A .x - B .x C .﹣x - D .﹣x5.如图,直线L 上有三个正方形a ,b ,c ,若a ,c 的面积分别为1和9,则b 的面积为( )A .8B .9C .10D .11 6.计算()22b a a -⨯的结果为( ) A .b B .b - C . ab D .b a7.如图,在OAB 和OCD 中,,,,40OA OB OC OD OA OC AOB COD ==>∠=∠=︒,连接,AC BD 交于点M ,连接OM .下列结论:①AC BD =;②40AMB ∠=︒;③OM 平分BOC ∠;④MO 平分BMC ∠.其中正确的个数为( ).A .4B .3C .2D .18.下列图形中,不是轴对称图形的是( )A .B .C .D .9.如图,平行于x 轴的直线与函数11k y (k 0x 0)x =>>,,22k y (k 0x 0)x=>>,的图象分别相交于A ,B 两点,点A 在点B 的右侧,C 为x 轴上的一个动点,若ABC 的面积为4,则12k k -的值为( )A .8B .8-C .4D .4-10.正比例函数y =kx (k ≠0)的函数值y 随着x 增大而减小,则一次函数y =x +k 的图象大致是( )A .B .C .D .二、填空题(本大题共6小题,每小题3分,共18分)1.16的平方根是 .2.计算:82-=_______.3.若a 、b 、c 为三角形的三边,且a 、b 满足229(2)0a b -+-=,则第三边c 的取值范围是_____________.4.如图,在△ABC 中,AC =8,BC =5,AB 的垂直平分线DE 交AB 于点D ,交边AC 于点E ,则△BCE 的周长为__________.5.如图所示,把一张长方形纸片沿EF 折叠后,点D C ,分别落在点D C '',的位置.若65EFB ︒∠=,则AED '∠等于________.6.在Rt ABC △中,∠ACB=90°,BC=2cm ,CD ⊥AB ,在AC 上取一点E ,使EC=BC ,过点E 作EF ⊥AC 交CD 的延长线于点F ,若EF=5cm ,则AE=________cm .三、解答题(本大题共6小题,共72分)1.解下列方程组:(1)257320x y x y -=⎧⎨-=⎩ (2)134342x y x y ⎧-=⎪⎨⎪-=⎩2.先化简,再求值:2222222a ab b a ab a b a a b-+-÷--+,其中a ,b 满足2a b-++=.(2)103.已知,a、b互为倒数,c、d互为相反数,求31-+++的值.ab c d4.如图,在Rt△ABC中,∠ACB=90°,∠A=40°,△ABC的外角∠CBD的平分线BE交AC的延长线于点E.(1)求∠CBE的度数;(2)过点D作DF∥BE,交AC的延长线于点F,求∠F的度数.5.如图1,在菱形ABCD中,AC=2,BD=23,AC,BD相交于点O.(1)求边AB的长;(2)求∠BAC的度数;(3)如图2,将一个足够大的直角三角板60°角的顶点放在菱形ABCD的顶点A 处,绕点A左右旋转,其中三角板60°角的两边分别与边BC,CD相交于点E,F,连接EF.判断△AEF是哪一种特殊三角形,并说明理由.6.“绿水青山就是金山银山”,为保护生态环境,A,B两村准备各自清理所属区域养鱼网箱和捕鱼网箱,每村参加清理人数及总开支如下表:(1)若两村清理同类渔具的人均支出费用一样,求清理养鱼网箱和捕鱼网箱的人均支出费用各是多少元;(2)在人均支出费用不变的情况下,为节约开支,两村准备抽调40人共同清理养鱼网箱和捕鱼网箱,要使总支出不超过102000元,且清理养鱼网箱人数小于清理捕鱼网箱人数,则有哪几种分配清理人员方案?参考答案一、选择题(本大题共10小题,每题3分,共30分)1、A2、C3、A4、C5、C6、A7、B8、A9、A10、A二、填空题(本大题共6小题,每小题3分,共18分)1、±2.23、1<c<5.4、135、50°6、3.三、解答题(本大题共6小题,共72分)1、(1)55xy=⎧⎨=⎩;(2)64xy=⎧⎨=⎩.2、1a b-+,-13、0.4、(1) 65°;(2) 25°.5、(1)2;(2)60︒;(3)见详解6、(1)清理养鱼网箱的人均费用为2000元,清理捕鱼网箱的人均费用为3000元;(2)分配清理人员方案有两种:方案一:18人清理养鱼网箱,22人清理捕鱼网箱;方案二:19人清理养鱼网箱,21人清理捕鱼网箱.。
广东省深圳市锦华实验学校2021-2021学年八年级第一学期第一次月考数学试卷(含解析)
广东省深圳市锦华实验学校2021-2021学年八年级上学期第一次月考数学试卷一、单项选择题〔共12小题〕1.在平面直角坐标系中,点〔2,-3〕,那么点在〔〕A.第一象限B.第二象限C.第三象限D.第四象限考点:平面直角坐标系及点的坐标答案:D试题解析:〔2,-3〕横纵坐标为正、负,在第四象限,应选D。
2.以以下各组数为三边的三角形中不是直角三角形的是〔〕A.9、12、15B.41、40、9C.25、7、24D.6、5、4考点:直角三角形与勾股定理答案:D试题解析:不能构成的是 6、5、4,应选D,其他选项都是勾股数。
3.在3.14,π,3.212212221,2+,,—5.121121112……中,无理数的个数为〔〕.A.5B.2C.3D.4考点:实数及其分类答案:C试题解析:无理数是无线不循环小数,满足条件的有π,2+,—5.121121112……,应选C。
4.以下计算正确的选项是〔〕A.B.C.D.考点:实数运算答案:C试题解析:,故A错;,故B错;,故C对;,故D错,应选C。
5.如果点P(在轴上,那么点P的坐标为〔〕A.(0,2)B.(2,0)C.(4,0)D.(0,考点:平面直角坐标系及点的坐标答案:B试题解析:P(在轴上,那么P的纵坐标为0,那么∴P的横坐标为2,∴P〔2,0〕。
应选B。
6.点P〔-3,5〕关于x轴的对称点P′的坐标是〔〕A.〔3,5〕B.〔5,-3〕C.〔3,-5〕D.〔-3,-5〕考点:平面直角坐标系及点的坐标答案:D试题解析:有题意可得,P、关于X轴对称,那么两点的纵坐标为相反数,横坐标相等,∴P′〔-3,-5〕,应选D。
7.如图,数轴上的点A、B、C、D分别表示数-2、1、2、3,那么表示数3-的点P应落在线段〔〕A.AO上B.OB上C.BC上D.CD上考点:二次根式的运算及其估值答案:B试题解析:∵在2~3之间,∴3-的值在0~1之间,∴P应落在线段OB上,应选B。
广东省深圳市八年级上学期数学第一次月考试卷
广东省深圳市八年级上学期数学第一次月考试卷姓名:________ 班级:________ 成绩:________一、单选题 (共12题;共24分)1. (2分)计算(−)2008×0.82009得()A . 0.8B . -0.8C . +1D . -12. (2分) (2017七上·临海期末) 下列各组中的两个项,不属于同类项的是().A . 2x2y与B . 1与C . 与D . 与n2m3. (2分) (2017七下·合浦期中) 若(x-5)(2x-n)=2x 2 +mx-15,则m、n的值分别是()A . m=7,n=3B . m=-7,n=3C . m=7,n=-3D . m=-7,n=-34. (2分)x15÷x3等于()A . x5B . x45C . x12D . x185. (2分)定义一种运算☆,其规则为a☆b=,根据这个规则,计算2☆3的值是()A .B .C . 5D . 66. (2分) (2017八上·官渡期末) 下列计算中,正确的是()A . (a2)4=a6B . a8÷a4=a2C . (ab2)3=ab6D . a2•a3=a57. (2分) (2019八上·海珠期末) 下列各式成立的是()A . =1B . (﹣a﹣b)2=(a+b)2C . (a﹣b)2=a2﹣b2D . (a+b)2﹣(a﹣b)2=2ab8. (2分)下列因式分解正确的是()A . x2-4=(x+4)(x-4)B . x2+2x+1=x(x+2)+1C . 3mx-6my=3m(x-6y)D . 2x+4=2(x+2)9. (2分) (2017七下·静宁期中) 下列叙述中,不正确的个数有()①所有的正数都是整数②|a|一定是正数③无限小数一定是无理数④(﹣2)3没有平方根⑤的平方根是±4⑥ .A . 3个B . 4个C . 5个D . 6个10. (2分)面积为10m2的正方形地毯,它的边长介于()A . 2m与3m之间B . 3m与4m之间C . 4m与5m之间D . 5m与6m之间11. (2分)(2018·深圳模拟) 下列说法:①平方根等于其本身的数有0,±1;②32xy3是4次单项式;③将方程中的分母化为整数,得;④平面内有4个点,过每两点画直线,可画6条.其中正确的有()A . 1个B . 2个C . 3个D . 4个12. (2分)如果x2+2(1-2m)x+9=0(m≠0)的左边是一个关于x的完全平方公式,则m等于().A . 1B . -1C . -1或1D . -1或2二、填空题 (共8题;共9分)13. (1分) (2018七上·营口期末) 若m、n满足,则的值等于________.14. (1分) (2017八下·禅城期末) 如果一个正整数能表示为两个正整数的平方差,那么称这个正整数为智慧数:如3=22﹣1,5=32﹣22 , 7=42﹣32 , 8=32﹣12 , 9=52﹣42 , 11=62﹣52…探索从1开始第20个智慧数是________.15. (1分)分解因式:x4﹣81=________。
2020—2021年人教版八年级数学上册第一次月考测试卷及答案【精品】
2020—2021年人教版八年级数学上册第一次月考测试卷及答案【精品】 班级: 姓名: 一、选择题(本大题共10小题,每题3分,共30分) 1.下列式子中,属于最简二次根式的是( )A .9B .7C .20D .132.估计7+1的值( )A .在1和2之间B .在2和3之间C .在3和4之间D .在4和5之间3.下列长度的三条线段,能组成三角形的是( )A .4cm ,5cm ,9cmB .8cm ,8cm ,15cmC .5cm ,5cm ,10cmD .6cm ,7cm ,14cm4.甲、乙二人做某种机械零件,已知每小时甲比乙少做8个,甲做120个所用的时间与乙做150个所用的时间相等,设甲每小时做x 个零件,下列方程正确的是( )A .1201508x x =-B .1201508x x =+C .1201508x x =-D .1201508x x =+ 5.若关于x 的一元二次方程2(2)26k x kx k --+=有实数根,则k 的取值范围为( )A .0k ≥B .0k ≥且2k ≠C .32k ≥D .32k ≥且2k ≠ 6.如果2a a 2a 1+-+=1,那么a 的取值范围是( )A .a 0=B .a 1=C .a 1≤D .a=0a=1或7.下列图形中,是轴对称图形的是( )A .B .C .D .8.如图,E 、F 分别是正方形ABCD 的边CD 、AD 上的点,且CE=DF ,AE 、BF 相交于点O ,下列结论:(1)AE=BF ;(2)AE ⊥BF ;(3)AO=OE ;(4)AOB DEOF S S 四边形∆=中正确的有( )A .4个B .3个C .2个D .1个9.如图,点E 在CD 的延长线上,下列条件中不能判定AB ∥CD 的是( )A .∠1=∠2B .∠3=∠4C .∠5=∠BD .∠B +∠BDC =180°10.“赵爽弦图”巧妙地利用面积关系证明了勾股定理,是我国古代数学的骄傲.如图所示的“赵爽弦图”是由四个全等的直角三角形和一个小正方形拼成的一个大正方形.设直角三角形较长直角边长为a ,较短直角边长为b .若ab=8,大正方形的面积为25,则小正方形的边长为( )A .9B .6C .4D .3二、填空题(本大题共6小题,每小题3分,共18分)1.因式分解:2()4()a a b a b ---=________.2.已知34(1)(2)x x x ---=1A x -+2B x -,则实数A=__________. 35a 13b ,则5a b +4.如图,已知函数y=x+b 和y=ax+3的图象交点为P ,则不等式x+b >ax+3的解集为________.5.如图,OP平分∠MON,PE⊥OM于点E,PF⊥ON于点F,OA=OB,则图中有__________对全等三角形.6.如图所示,每个小正方形的边长为1,A、B、C是小正方形的顶点,则ABC∠的度数为________.三、解答题(本大题共6小题,共72分)2.解方程组(1)43524x yx y+=⎧⎨-=⎩(2)12163213x yx y--⎧-=⎪⎨⎪+=⎩2.先化简,再求值:22121244x x xx x x+-⎛⎫-÷⎪--+⎝⎭,其中3x=3.已知5a﹣1的算术平方根是3,3a+b﹣1的立方根为2.(1)求a与b的值;(2)求2a+4b的平方根.4.小玲和弟弟小东分别从家和图书馆同时出发,沿同一条路相向而行,小玲开始跑步中途改为步行,到达图书馆恰好用30min.小东骑自行车以300m/min的速度直接回家,两人离家的路程y(m)与各自离开出发地的时间x(min)之间的函数图象如图所示(1)家与图书馆之间的路程为多少m,小玲步行的速度为多少m/min;(2)求小东离家的路程y关于x的函数解析式,并写出自变量的取值范围;(3)求两人相遇的时间.5.如图,在△ABC中,AB=BC,BD平分∠ABC,四边形ABED是平行四边形,DE 交BC于点F,连接CE求证:四边形BECD是矩形.6.文美书店决定用不多于20000元购进甲乙两种图书共1200本进行销售.甲、乙两种图书的进价分别为每本20元、14元,甲种图书每本的售价是乙种图书每本售价的1.4倍,若用1680元在文美书店可购买甲种图书的本数比用1400元购买乙种图书的本数少10本.(1)甲乙两种图书的售价分别为每本多少元?(2)书店为了让利读者,决定甲种图书售价每本降低3元,乙种图书售价每本降低2元,问书店应如何进货才能获得最大利润?(购进的两种图书全部销售完.)参考答案一、选择题(本大题共10小题,每题3分,共30分)1、B2、C3、B4、D5、D6、C7、B8、B9、A10、D二、填空题(本大题共6小题,每小题3分,共18分)1、()()()22a b a a -+-2、13、14、x >15、36、45°三、解答题(本大题共6小题,共72分)1、(1)21x y =⎧⎨=-⎩;(2)53x y =⎧⎨=⎩.2、3x3、(1)a=2,b=3(2)±44、(1)家与图书馆之间路程为4000m ,小玲步行速度为100m/s ;(2)自变量x 的范围为0≤x ≤403;(3)两人相遇时间为第8分钟.5、略6、(1)甲种图书售价每本28元,乙种图书售价每本20元;(2)甲种图书进货533本,乙种图书进货667本时利润最大.。
广东省深圳市2020年八年级上学期数学第一次月考试卷C卷
广东省深圳市2020年八年级上学期数学第一次月考试卷C卷姓名:________ 班级:________ 成绩:________一、选择题(每小题3分,共30分) (共10题;共30分)1. (3分)如图.若乙、丙都在甲的北偏东70°方向上.乙在丁的正北方向上,且乙到丙、丁的距离相同.则α的度数是()A . 25°B . 30°C . 35°D . 40°2. (3分) (2019八上·江岸月考) 下列长度的三条线段,其中能组成三角形的是()A . 4,5,6B . 3,3,6C . 1,3,5D . 2,4,83. (3分) (2017七下·云梦期末) 下列命题中,假命题是()A . 如果两条直线都与第三条直线平行,那么这两条直线也互相平行B . 在同一平面内,过一点有且只有一条直线与已知直线垂直C . 两条直线被第三条直线所截,同旁内角互补D . 两直线平行,内错角相等4. (3分) (2018八下·深圳月考) 如图,已知△ABC中,AC=3,BC=5,AB=7,在△ABC所在平面内一条直线,将△ABC分割成两个三角形,使其中有一个边长为3的等腰三角形,则这样的直线最多可画()A . 2条B . 3条C . 4条D . 5条5. (3分)如图,△ABC≌△AEF,AB=AE,∠B=∠E,则对于结论①AC=AF。
②∠FAB=∠EAB,③EF=BC,④∠EAB=∠FAC,其中正确结论的个数是A . 4个B . 3个C . 2个D . 1个6. (3分) (2017八下·宁德期末) 如图,等腰三角形ABC中,AB=AC,BD是AC边上的高,若∠A=36°,则∠DBC的大小是()A . 18°B . 36°C . 54°D . 72°7. (3分) (2018八上·苏州期末) 下列四个腾讯软件图标中,属于轴对称图形的是()A .B .C .D .8. (3分) (2019八上·鱼台期末) 如图.在△ABC中.∠B=30°.∠C=70°.AD是△ABC的一条角平分线.则∠CAD的角数为()A . 40°B . 45°C . 50°D . 55°9. (3分)直角三角形的两直角边分别为5、12,则斜边上的高为()A . 6B . 8C .D .10. (3分)(2020·自贡) 如图,在平行四边形中,,是锐角,于点E,F是的中点,连接;若,则的长为()A . 2B .C .D .二、填空题(每小题4分,共24分) (共6题;共24分)11. (4分) (2017七下·射阳期末) 一个多边形的每个外角都是60°,则这个多边形的边数为________12. (4分)如图所示,AC=DF,BD=EC,AC∥DF,∠ACB=80°,∠B=30°,则∠F=________.13. (4分) (2017八上·西湖期中) 如图,在中,,是边上的高,若,则等于________.14. (4分) (2019八上·和平期中) 如图,在四边形ABCD中,AB=CB,AD=CD.若∠A=108°,则∠C的大小=________(度).15. (4分) (2018九上·罗湖期末) 如图,Rt△ABC中,∠BAC=90。
2020-2021深圳锦华实验学校初二数学上期中第一次模拟试卷(带答案)
2020-2021深圳锦华实验学校初二数学上期中第一次模拟试卷(带答案)一、选择题1.“五一”期间,某中学数学兴趣小组的同学们租一辆小型巴士前去某地进行社会实践活动,租车租价为180元.出发时又增加了两位同学,结果每位同学比原来少分摊了3元车费.若小组原有x人,则所列方程为()A.18018032x x-=-B.18018032x x-=+C.18018032x x-=+D.18018032x x-=-2.如图,长方形ABCD沿AE折叠,使D点落在BC边上的F点处,∠BAF=600,那么∠DAE等于()A.45°B.30 °C.15°D.60°3.如图2,AB=AC,BE⊥AC于E,CF⊥AB于F,BE,CF交于D,则以下结论:①△ABE≌△ACF;②△BDF≌△CDE;③点D在∠BAC的平分线上.正确的是()A.①B.②C.①②D.①②③4.已知:如图,BD为△ABC的角平分线,且BD=BC,E为BD延长线上的一点,BE=BA,过E作EF⊥AB,F为垂足.下列结论:①△ABD≌△EBC;②∠BCE+∠BCD=180°;③AD=AE=EC;④BA+BC=2BF;其中正确的是()A.①②③B.①③④C.①②④D.①②③④5.如图,在△ABC和△CDE中,若∠ACB=∠CED=90°,AB=CD,BC=DE,则下列结论中不正确的是( )A .△ABC≌△CDEB .CE =AC C .AB⊥CD D .E 为BC 的中点6.如图,直线AB ∥CD ,∠C =44°,∠E 为直角,则∠1等于( )A .132°B .134°C .136°D .138°7.下列运算正确的是( )A .(-x 3)2=x 6B .a 2•a 3=a 6C .2a •3b =5abD .a 6÷a 2=a 3 8.已知2410x x --=,则代数式22(3)(1)3x x x ---+的值为( )A .3B .2C .1D .1-9.如图,有三种规格的卡片共9张,其中边长为a 的正方形卡片4张,边长为b 的正方形卡片1张,长,宽分别为a ,b 的长方形卡片4张.现使用这9张卡片拼成一个大的正方形,则这个大正方形的边长为( )A .2a+bB .4a+bC .a+2bD .a+3b 10.计算:(a -b)(a +b)(a 2+b 2)(a 4-b 4)的结果是( ) A .a 8+2a 4b 4+b 8B .a 8-2a 4b 4+b 8C .a 8+b 8D .a 8-b 8 11.若x 2+mxy+4y 2是完全平方式,则常数m 的值为( )A .4B .﹣4C .±4 D .以上结果都不对 12.已知a b 3132==,,则a b 3+的值为( ) A .1 B .2 C .3 D .27二、填空题13.如图是两块完全一样的含30°角的直角三角尺,分别记做△ABC 与△A′B′C′,现将两块三角尺重叠在一起,设较长直角边的中点为M ,绕中点M 转动上面的三角尺ABC ,使其直角顶点C 恰好落在三角尺A′B′C′的斜边A′B′上.当∠A =30°,AC =10时,两直角顶点C ,C′间的距离是_____.14.已知x 2+mx-6=(x-3)(x+n),则m n =______.15.当x =_____时,分式293x x -+的值为零. 16.如图,在ABC ∆中,B Ð与C ∠的平分线交于点P .若130BPC ∠=︒,则A ∠=______.17.若226m n -=-,且3m n -=-,则m n + =____.18.如图所示,已知△ABC 的周长是20,OB 、OC 分别平分∠ABC 和∠ACB ,OD ⊥BC 于D ,且OD=3,则△ABC 的面积是 .19.因式分解:2()4()a a b a b ---=___.20.计算:0113()22-⨯+-=______. 三、解答题21.先化简,再求值:2421a a a -⎛⎫÷- ⎪⎝⎭,其中5a =. 22.某地有两所大学和两条相交叉的公路,如图所示(点M ,N 表示大学,AO ,BO 表示公路).现计划修建一座物资仓库,希望仓库到两所大学的距离相等,到两条公路的距离也相等.你能确定仓库应该建在什么位置吗?在所给的图形中画出你的设计方案;23.已知一个多边形的内角和比其外角和的2倍多180°,求这个多边形的边数及对角线的条数?24.用A、B两种机器人搬运大米,A型机器人比B型机器人每小时多搬运20袋大米,A 型机器人搬运700袋大米与B型机器人搬运500袋大米所用时间相等.求A、B型机器人每小时分别搬运多少袋大米.25.已知a=23b=23求下列各式的值:(1)a2+2ab+b2(2)a2-b2【参考答案】***试卷处理标记,请不要删除一、选择题1.B解析:B【解析】【分析】设小组原有x人,根据题意可得,出发时又增加了两位同学,结果每位同学比原来少分摊了3元车费,列方程即可.【详解】设小组原有x人,可得:1801803.2x x-=+故选B.【点睛】考查由实际问题抽象出分式方程,读懂题目,找出题目中的等量关系是解题的关键. 2.C解析:C【解析】【分析】先根据矩形的性质得到∠DAF=30°,再根据折叠的性质即可得到结果.【详解】解:∵ABCD是长方形,∴∠BAD=90°,∵∠BAF=60°,∴∠DAF=30°,∵长方形ABCD沿AE折叠,∴△ADE≌△AFE,∴∠DAE=∠EAF=12∠DAF=15°.故选C.【点睛】图形的折叠实际上相当于把折叠部分沿着折痕所在直线作轴对称,所以折叠前后的两个图形是全等三角形,重合的部分就是对应量.3.D解析:D【解析】【分析】从已知条件进行分析,首先可得△ABE≌△ACF得到角相等,边相等,运用这些结论,进而得到更多的结论,最好运用排除法对各个选项进行验证从而确定最终答案.【详解】∵BE⊥AC于E,CF⊥AB于F∴∠AEB=∠AFC=90°,∵AB=AC,∠A=∠A,∴△ABE≌△ACF(①正确)∴AE=AF,∴BF=CE,∵BE⊥AC于E,CF⊥AB于F,∠BDF=∠CDE,∴△BDF≌△CDE(②正确)∴DF=DE,连接AD∵AE=AF,DE=DF,AD=AD,∴△AED≌△AFD,∴∠FAD=∠EAD,即点D在∠BAC的平分线上(③正确).故答案选D.考点:角平分线的性质;全等三角形的判定及性质.4.D解析:D【解析】【分析】根据SAS证△ABD≌△EBC,可得∠BCE=∠BDA,结合∠BCD=∠BDC可得①②正确;根据角的和差以及三角形外角的性质可得∠DCE=∠DAE,即AE=EC,由AD=EC,即可得③正确;过E作EG⊥BC于G点,证明Rt△BEG≌Rt△BEF和Rt△CEG≌Rt△AEF,得到BG=BF和AF=CG,利用线段和差即可得到④正确.【详解】解:①∵BD为△ABC的角平分线,∴∠ABD=∠CBD,∴在△ABD和△EBC中,BD BCABD CBD BE BA⎧⎪∠∠⎨⎪⎩===,∴△ABD≌△EBC(SAS),①正确;②∵BD为△ABC的角平分线,BD=BC,BE=BA,∴∠BCD=∠BDC=∠BAE=∠BEA,∵△ABD≌△EBC,∴∠BCE=∠BDA,∴∠BCE+∠BCD=∠BDA+∠BDC=180°,②正确;③∵∠BCE=∠BDA,∠BCE=∠BCD+∠DCE,∠BDA=∠DAE+∠BEA,∠BCD=∠BEA,∴∠DCE=∠DAE,∴△ACE为等腰三角形,∴AE=EC,∵△ABD≌△EBC,∴AD=EC,∴AD=AE=EC.③正确;④过E作EG⊥BC于G点,∵E是∠ABC的角平分线BD上的点,且EF⊥AB,∴EF=EG(角平分线上的点到角的两边的距离相等),∵在Rt △BEG 和Rt △BEF 中,BE BE EF EG =⎧⎨=⎩, ∴Rt △BEG ≌Rt △BEF (HL ),∴BG =BF ,∵在Rt △CEG 和Rt △AFE 中,AE CE EF EG =⎧⎨=⎩, ∴Rt △CEG ≌Rt △AEF (HL ),∴AF =CG ,∴BA +BC =BF +FA +BG−CG =BF +BG =2BF ,④正确.故选D .【点睛】本题考查了全等三角形的判定和全等三角形的对应边、对应角相等的性质,本题中熟练求证三角形全等和熟练运用全等三角形对应角、对应边相等的性质是解题的关键.5.D解析:D【解析】【分析】首先证明△ABC ≌△CDE ,推出CE=AC ,∠D=∠B ,由∠D+∠DCE=90°,推出∠B+∠DCE=90°,推出CD ⊥AB ,即可一一判断.【详解】在Rt △ABC 和Rt △CDE 中,AB CD BC DE =⎧⎨=⎩, ∴△ABC ≌△CDE ,∴CE =AC ,∠D =∠B ,90D DCE ∠+∠=o Q ,90B DCE ∴∠+∠=o ,∴CD ⊥AB ,D :E 为BC 的中点无法证明故A 、B 、C.正确,故选. D【点睛】本题考查全等三角形的判定和性质、解题的关键是熟练掌握全等三角形的判定和性质,属于基础题.6.B解析:B【解析】过E 作EF ∥AB ,求出AB ∥CD ∥EF ,根据平行线的性质得出∠C=∠FEC ,∠BAE=∠FEA ,求出∠BAE ,即可求出答案.解:过E 作EF ∥AB ,∵AB ∥CD ,∴AB ∥CD ∥EF ,∴∠C=∠FEC ,∠BAE=∠FEA ,∵∠C=44°,∠AEC 为直角,∴∠FEC=44°,∠BAE=∠AEF=90°﹣44°=46°,∴∠1=180°﹣∠BAE=180°﹣46°=134°,故选B .“点睛”本题考查了平行线的性质的应用,能正确作出辅助线是解此题的关键.7.A解析:A【解析】【分析】A .利用积的乘方与幂的乘方运算法则计算得到结果,即可做出判断;B .利用同底数幂的乘法法则计算得到结果,即可做出判断;C .利用单项式乘单项式法则计算得到结果,即可做出判断;D .利用同底数幂的除法法则计算得到结果,即可做出判断.【详解】A .(﹣x 3)2=x 6,本选项正确;B .a 2•a 3=a 5,本选项错误;C .2a •3b =6ab ,本选项错误;D .a 6÷a 2=a 4,本选项错误.故选A .【点睛】本题考查了同底数幂的除法,同底数幂的乘法,单项式乘单项式以及积的乘方与幂的乘方,熟练掌握运算法则是解答本题的关键.8.A解析:A【解析】【分析】先将原代数式进行去括号化简得出242x x -+,然后根据2410x x --=得出241x x -=,最后代入计算即可.由题意得:22(3)(1)3x x x ---+=242x x -+,∵2410x x --=,∴241x x -=,∴原式=242x x -+=1+2=3.故选:A.【点睛】本题主要考查了整式的化简求值,整体代入是解题关键. 9.A解析:A【解析】【分析】4张边长为a 的正方形卡片的面积为4a 2,4张边长分别为a 、b 的矩形卡片的面积为4ab ,1张边长为b 的正方形卡片面积为b 2,9张卡片拼成一个正方形的总面积=4a 2+4ab+b 2=(2a+b)2,所以该正方形的边长为:2a+b .【详解】设拼成后大正方形的边长为x ,∴4a 2+4ab+b 2=x 2,∴(2a+b)2=x 2,∴该正方形的边长为:2a+b.故选A.【点睛】本题主要考查了完全平方公式的几何意义,利用完全平方公式分解因式后即可得出大正方形的边长.10.D解析:D【解析】试题分析:根据平方差公式可直接求解,即原式=(22a b -)(22a b +)(44a b +)=(44a b -)(44a b +)=88a b -.故选D考点:平方差公式11.C解析:C【解析】∵(x±2y )2=x 2±4xy+4y 2, ∴在x 2+mxy+4y 2中,±4xy=mxy ,∴m=±4. 故选C .12.B解析:B分析:由于3a×3b=3a+b,所以3a+b=3a×3b,代入可得结论.详解:∵3a×3b=3a+b∴3a+b=3a×3b=1×2=2故选:B.点睛:本题考查了同底数幂的乘法法则的逆用.同底数幂的乘法法则:同底数的幂相乘,底数不变,指数相加.二、填空题13.5【解析】【分析】连接CC1根据M是ACA1C1的中点AC=A1C1得出CM=A1M=C1M=AC=5再根据∠A1=∠A1CM=30°得出∠CMC1=60°△MCC1为等边三角形从而证出CC1=CM解析:5【解析】【分析】连接CC1,根据M是AC、A1C1的中点,AC=A1C1,得出CM=A1M=C1M=12AC=5,再根据∠A1=∠A1CM=30°,得出∠CMC1=60°,△MCC1为等边三角形,从而证出CC1=CM,即可得出答案.【详解】解:如图,连接CC1,∵两块三角板重叠在一起,较长直角边的中点为M,∴M是AC、A1C1的中点,AC=A1C1,∴CM=A1M=C1M=12AC=5,∴∠A1=∠A1CM=30°,∴∠CMC1=60°,∴△CMC1为等边三角形,∴CC1=CM=5,∴CC1长为5.故答案为5.考点:等边三角形的判定与性质.14.1【解析】【分析】将已知等式右边利用多项式乘以多项式法则计算根据多项式相等的条件求出m与n的值即可得出mn的值【详解】∵x2+mx-6=(x-3)(x+n)=x2+nx-3x-3n=x2+(n-3)解析:1【解析】【分析】将已知等式右边利用多项式乘以多项式法则计算,根据多项式相等的条件求出m与n的值,即可得出m n的值.【详解】∵x2+mx-6=(x-3)(x+n)=x2+nx-3x-3n=x2+(n-3)x-3n,∴m=n-3,-3n=-6,解得:m=-1,n=2,∴m n=1.故答案为:1【点睛】本题考查了多项式乘以多项式以及多项式相等的条件,熟练掌握多项式乘以多项式法则是解题关键.15.3【解析】【分析】分式的值为零的条件:分子为0分母不为0据此即可求出x的值【详解】∵分式的值为零∴x2-9=0且x+3≠0解得:x=3故答案为:3【点睛】本题考查了分式的值为零的条件若分式的值为零需解析:3【解析】【分析】分式的值为零的条件:分子为0,分母不为0,据此即可求出x的值.【详解】∵分式293xx-+的值为零,∴x2-9=0,且x+3≠0,解得:x=3,故答案为:3【点睛】本题考查了分式的值为零的条件.若分式的值为零,需同时具备两个条件:(1)分子为0;(2)分母不为0.这两个条件缺一不可.16.80°【解析】【分析】根据三角形内角和可以求得∠PBC+∠PCB 的度数再根据角平分线的定义求出∠ABC+∠ACB 最后利用三角形内角和定理解答即可【详解】解:在△PBC 中∠BPC=130°∴∠PBC+解析:80°【解析】【分析】根据三角形内角和可以求得∠PBC+∠PCB 的度数,再根据角平分线的定义,求出∠ABC+∠ACB ,最后利用三角形内角和定理解答即可.【详解】解:在△PBC 中,∠BPC=130°,∴∠PBC+∠PCB=180°-130°=50°.∵PB 、PC 分别是∠ABC 和∠ACB 的角平分线,∴∠ABC+∠ACB=2(∠PBC+∠PCB )=2×50°=100°,在△ABC 中,∠A=180°-(∠ABC+∠ACB )=180°-100°=80°.故答案为80°.【点睛】本题主要考查了三角形的内角和定理和角平分线的定义,掌握三角形的内角和定理和角平分线的定义是解题的关键.17.2【解析】【分析】将利用平方差公式变形将m-n=3代入计算即可求出m+n 的值【详解】解:∵m2-n2=(m+n )(m-n )=6且m-n=3∴m+n=2【点睛】此题考查了利用平方差公式因式分解熟练掌握解析:2【解析】【分析】将22m n 利用平方差公式变形,将m-n=3代入计算即可求出m+n 的值。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
广东省深圳市锦华实验学校2020-2021学年八年级上学期第一次月考数学试题学校:___________姓名:___________班级:___________考号:___________一、单选题1.在平面直角坐标系中,已知点P (2,-3),则点P 在( )A .第一象限B .第二象限C .第三象限D .第四象限2.以下列各组数为三边的三角形中不是直角三角形的是( )A .9、12、15B .41、40、9C .25、7、24D .6、5、43.在3.14,π,3.212212221,2+√3,−227,−5.121121112⋯⋯中,无理数的个数为( )A .2B .3C .4D .5 4.下列计算正确的是( )A 9B 5C 1D .()2=4 5.(卷号)1762691829448704(题号)1763254237773824(题文)如果点P ()3,1m m ++在x 轴上,则点P 的坐标为( )A .(0,2)B .(2,0)C .(4,0)D .(0,4-)6.点()35P -,关于x 轴的对称点的坐标是( ) A .()35--, B .()35-, C .()35, D .()53-,7.如图,已知数轴上的点A B C D 、、、分别表示数2123-、、、,则表示数3P 应落在线段( )A .AO 上B .OB 上C .BC 上D .CD 上 8.下列说法中,不正确的是( ).A .3是2(3)-的算术平方根B .±3是2(3)-的平方根C .-3是2(3)-的算术平方根D .-3的立方根910b -=,那么2015()a b +的值为( )A .-1B .1C .20153D .20153-10.在直角坐标系中A (2,0)、B (-3,-4)、O (0,0),则△AOB 的面积( ) A .4 B .6 C .8 D .311.如图,在Rt △ABC 中,∠ACB =90°,AB =4.分别以AC ,BC 为直径作半圆,面积分别记为S 1,S 2,则S 1+S 2的值等于( ).A .2πB .3πC .4πD .8π二、填空题12.-27 的立方根为________________,5-________. 13.如果用(3,19)表示电影院的座位号是3排19号,那么(23,1)表示_______________;10排15号可表示为___________.14.如图,有一圆柱,其高为12cm ,它的底面半径为3cm ,在圆柱下底面A 处有一只蚂蚁,它想得到上面B 处的食物,则蚂蚁经过的最短路程为________ cm.(π取3)三、解答题15.如图,在四边形ABCD 中, AB=4,BC=3,CD=12,AD=13,∠B =90°,连接AC .求四边形ABCD 的面积.16.在数轴上作出表示.17.计算:(1)(2)998-22 23(3(4)318.先化简,再求值(a+b)2+(a-b)(2a+b)-3a2,其中:a=2219.如图,AD=8,CD=6,∠ADC=90°,AB=26,BC=24,求该图形的面积.20.如图正方形网格中的△ABC,若小方格边长为1,请你根据所学的知识(1)求△ABC的面积;(2)判断△ABC是什么形状? 并说明理由.21.在如图所示的直角坐标系中,每个小方格都是边长为1的正方形,△ABC的顶点均在格点上,点A的坐标是(﹣3,﹣1).(1)将△ABC沿y轴正方向平移3个单位得到△A1B1C1,画出△A1B1C1,并写出点B1坐标;(2)画出△A1B1C1关于y轴对称的△A2B2C2,并写出点C2的坐标.参考答案1.D【解析】根据各象限内点的坐标的符号特征,四个象限的符号特点分别是:第一象限(+,+);第二象限(-,+);第三象限(-,-);第四象限(+,-)可以得到答案.解:∵横坐标为正,纵坐标为负,∴点P(2,-3)在第四象限,故选D.“点睛”此题主要考查了各象限内点的坐标的符号特征,记住各象限内点的坐标的符号是解决的关键.2.D【解析】根据勾股定理的逆定理,只要两边的平方和等于第三边的平方即可构成直角三角形.只要判断两个较小的数的平方和是否等于最大数的平方即可判断.解:A、∵92+122=152,∴以这三个数为长度的线段能构成直角三角形;B、∵402+92=412 ,∴以这三个数为长度的线段能构成直角三角形;C、∵242+72=252,∴以这三个数为长度的线段能构成直角三角形;D、∵42+52≠362,∴以这三个数为长度的线段不能构成直角三角形.故选D.“点睛”本题主要考查了勾股定理的逆定理,已知三条线段的长,判断是否能构成直角三角形的三边,判断的方法是:判断两个较小的数的平方和是否等于最大数的平方即可判断.3.B【解析】【分析】无理数就是无限不循环小数.理解无理数的概念,一定要同时理解有理数的概念,有理数是整数与分数的统称.即有限小数和无限循环小数是有理数,而无限不循环小数是无理数.由此即可解题.【详解】解:根据无理数的定义可知:π,2+√3,−5.121121112⋯⋯是无理数,故选B.【点睛】此题主要考查了无理数的定义,其中初中范围内学习的无理数有:π,2π等;开方开不尽的数;以及像0.1010010001…,等有这样规律的数.4.C【分析】分别根据算术平方根的定义和立方根的定义逐项判断即得答案.【详解】解:A=9,故本选项计算错误,不符合题意;B5,故本选项计算错误,不符合题意;C1,故本选项计算正确,符合题意;D、(2=2,故本选项计算错误,不符合题意.故选:C.【点睛】本题考查了算术平方根和立方根的定义,属于基本题目,熟练掌握基本知识是解题的关键.5.B【解析】点P在x轴上,即y=0,可得出m的值,从而得出点P的坐标.解:∵点P(m+3,m+1)在x轴上,∴y=0,m+1=0解得m= -1,∴m+3=-1+3=2,∴点p的坐标为(2,0).故选B.6.A【解析】【分析】根据两点关于x轴对称,则横坐标不变,纵坐标互为相反数,进行解答.【详解】∵根据两点关于x轴对称,则横坐标不变,纵坐标互为相反数,∴点P(-3,5)关于x轴对称的点的坐标为(-3,-5).故选A【点睛】熟记对称点的坐标规律:两点关于x轴对称,则横坐标不变,纵坐标互为相反数;两点关于y轴对称,则纵坐标不变,横坐标互为相反数;两点关于原点对称,则横、纵坐标都是互为相反数.7.B【分析】根据估计无理数的方法得出0<31,进而得出答案.【详解】解:∵23,∴0<3<1,故表示数3P应落在线段OB上.故选:B.【点睛】此题主要考查了估算无理数的大小,得出38.C【解析】根据算术平方根、平方根、立方根的定义判断即可.A、3是(-3)2的算术平方根,正确;B、±3是(-3)2的平方根,正确;C、(-3)2的算术平方根是3,故本选项错误;D、3是(-3)3的立方根,正确.故选C.9.A【解析】根据非负数的性质列出方程求出a 、b 的值,然后代入代数式进行计算即可.10b -=,∴a+2=0,b-1=0,解得a=-2,b=1.∴a+b=-1, ()2015a b + =(-1)2015=-1.故选A .10.A【解析】由三个点的坐标可得,△AOB 的边OA=2,高为0-(-4)=4,据此求三角形的面积即可.解:△AOB 的面积=12×2×4=4. 故选A .“点睛”解决本题的关键是得到三角形相应的底边长度和高.当一边在坐标轴时,通常选用坐标轴上的边为三角形的底边.11.A【解析】根据半圆面积公式结合勾股定理,可知S 1+S 2等于以斜边为直径的半圆面积. 解:∵22111228AC S AC ππ⎛⎫== ⎪⎝⎭,2218S BC π=, ∴()2221211288S S AC BCAB πππ+=+==.故选A .“点睛”本题考查的是勾股定理,熟知在任何一个直角三角形中,两条直角边长的平方之和一定等于斜边的平方是解答此题的关键.12.-3; 2±;【解析】【分析】根据立方根、平方根的定义和倒数乘积等于1即可解题.【详解】解:(1)∵(-3)×(-3)×(-3)=-27,∴-27的立方根为-3;(2)4=,±2;(3)∵(1⎛⨯= ⎝⎭,∴-故答案为:-3;±2;13.23排1号; (10,15)【解析】根据有序数对(a ,b ),a 表示排,b 表示号,可得答案.解:用(3,19)表示电影院的座位号是3排19号,那么(23,1)表示23排1号;10排15号可表示为(10,15),故答案为23排1号;(10,15).14.15cm .【解析】本题应先把圆柱展开即得其平面展开图,则A ,B 所在的长方形的长为圆柱的高12cm ,宽为底面圆周长的一半为πr ,蚂蚁经过的最短距离为连接A ,B 的线段长,由勾股定理求得AB 的长.解:如图所示,圆柱展开图为长方形,则A ,B 所在的长方形的长为圆柱的高12cm ,宽为底面圆周长的一半为πrcm, 蚂蚁经过的最短距离为连接A ,B 的线段长,由勾股定理得=15cm .故蚂蚁经过的最短距离为15cm .(π取3)“点睛”解答本题的关键是计算出圆柱展开后所得长方形长和宽的值,然后用勾股定理计算即可.15.36【分析】由AB=4,BC=3,∠B=90°可得AC=5.可求得S △ABC ;再由AC=5,AD=13,CD=12,可得△ACD 为直角三角形,进而求得S △ACD ,可求S 四边形ABCD =S △ABC +S △ACD .【详解】∵∠ABC =90°,AB =4,BC =3,∴5==∵CD =12,AD =1322125169+=,213169=∴22212513+=∴222CD AC AD +=∴∠ACD =90° ∴14362ABC S ∆=⨯⨯=, 1125302ACD S ∆=⨯⨯= ∴6+30=36ABCD S =四边形【点睛】此题考查勾股定理及逆定理的应用,判断△ACD 是直角三角形是关键.16.见解析【解析】解:因为10=9+1,则首先作出以1和3为直角边的直角三角形,则其斜边的长即是如图所示,17.(1 (2)10-3 (3)54(4【解析】 (1)利用多项式乘多项式展开,然后合并即可;(2)先根据二次根式的乘法法则运算,然后化简后进行有理数的减法运算;(3)先把二次根式化为最简二次根式,然后合并即可;(4)先根据二次根式的除法法则运算,然后化简后合并即可.解:(1)原式=231-=;(2)原式=28102633=-=-;(3)原式=44=;(4)原式66==. 18.ab ;-1.【分析】 先按照整式混合运算的法则把原式进行化简,再把a 、b 的值代入进行计算即可.【详解】原式=22222223a ab b a ab b a +++---=ab ;当2a =+2b =时,原式=(22)+=1-. 19.96【分析】连接AC ,在Rt △ACD 中,AD =8,CD =6,根据勾股定理可求AC ;在△ABC 中,由勾股定理的逆定理可证△ABC 为直角三角形,利用两个直角三角形的面积差求图形的面积.【详解】解:连接AC ,在Rt △ACD 中,AD =8,CD =6,∴AC =10,在△ABC 中,∵AC 2+BC 2=102+242=262=AB 2,∴△ABC 为直角三角形;∴图形面积为:110124689622ABC ACD S S ⨯⨯-=-⨯⨯=.【点睛】本题考查了勾股定理及其逆定理的运用,三角形面积的求法,关键是得到△ABC 为直角三角形.20.(1)13;(2)网格中的△ABC 是直角三角形.【解析】(1)用长方形的面积减去三个小三角形的面积即可求出△ABC 的面积.(2)根据勾股定理求得△ABC 各边的长,再利用勾股定理的逆定理进行判定,从而不难得到其形状.解:(1)△ABC 的面积=4 ×8-1 ×8 ÷2-2 ×3 ÷2-6 ×4 ÷2=13故△ABC 的面积为13;(2)∵正方形小方格边长为1∴AC=√12+82=√65,AB =√32+22=√13,BC =√62+42=2√13∵在△ABC 中,AB 2+BC 2=13+52=65 ,AC 2=65,∴AB 2+BC 2=AC 2,∴网格中的△ABC 是直角三角形.“点睛”考查了三角形的面积,勾股定理和勾股定理的逆定理,解答此题要用到勾股定理的逆定理:已知三角形ABC 的三边满足a 2+b 2=c 2,则三角形ABC 是直角三角形.21.(1)画图见解析;点1B 坐标为:(﹣2,﹣1);(2)画图见解析;点2C 的坐标为:(1,1)【分析】(1)直接利用平移的性质得出平移后对应点位置进而得出答案;(2)利用轴对称图形的性质得出对应点位置进而得出答案.【详解】解:(1)如图所示:△111A B C ,即为所求;点1B 坐标为:(﹣2,﹣1);(2)如图所示:△222A B C ,即为所求,点2C 的坐标为:(1,1).考点:作图-轴对称变换;作图-平移变换。