2021年高考数学二轮复习第10讲:数列求和与综合问题

合集下载

最新-2021届高考数学文二轮复习课件:2.4.2 数列求和及综合应用 精品

最新-2021届高考数学文二轮复习课件:2.4.2 数列求和及综合应用 精品
答案:9
3.已知各项均是正数的等比数列{an}中,a2,12a3,a1 成等差数列,
则aa43++aa54的值为(
)
5-1 A. 2
5+1 B. 2
C.-
5-1 2
D.
52-1或
5+1 2
解析:设{an}的公比为 q(q>0),由 a3=a2+a1,得 q2-q-1=0,
解得 q=1+2
5.从而aa43+ +aa54=q=1+2
5.nn+11n+2=12nn1+1-n+11n+2
6.
1 n+
n+1=
n+1-
n
7.
1 n+
n+k=1k(
n+k-
n)
8.n·n!=(n+1)!-n!
[专题回访]
1.若数列{an}是等差数列,且 a1+a8+a15=π,则 tan(a4+a12)= ()
A. 3
B.- 3
3 C. 3
D.-
3 3
答案:an=21n4+,5n,=n1≥2
2.(热点一)在数列{an}中,a1=2,an+1=an+lg1+1n,则 an=(
)
A.2+lgn
B.2+(n-1)lgn
C.2+nlgn
D.1+n+lgn
解析:由 an+1=an+lg1+1n得 an+1-an=lg1+1n=lgn+n 1,那么
an

a1
答案:B
6.(热点三)已知函数 f(x)=cos4x·cos2π-4x·cosπ-2x,将函数 f(x) 在(0,+∞)上的所有极值点从小到大排成一数列,记为{an},则数列 {an}的通项公式为________.
解析:由 f(x)=cos4xsin4x·-cos2x=-14sinx,得 f′(x)=-14cosx, 由 cosx=0,得 x=kπ+π2(k∈Z),所以函数 f(x)在(0,+∞)上的所有极 值点为π2,32π,52π,…,2n-2 1π,…,所以数列{an}的通项公式为 an =2n-2 1π.

高考解答题突破(二)数列的综合应用2021届高考数学大二轮复习ppt完美课件(30页)

高考解答题突破(二)数列的综合应用2021届高考数学大二轮复习ppt完美课件(30页)


高考题型分层突破拿高分

第1页
高考解答题突破(二) 数列的综合应用
第2页
突破“两归”——化归、归纳
第3页高 考 解 答 题 突破二 )数列 的综合 应用20 21届高 考数学 大二轮 复习pp t完美课 件(3 0页)( 精品系 列PPT )
1.由于数列是一个特殊的函数,也可根据题目特点,将其化归为函数问题,或通 过对式子的改造,使其化归为可运用数列问题的基本方法.
第6页
高 考 解 答 题 突破(二 )数列 的综合 应用20 21届高 考数学 大二轮 复习pp t完美课 件(3 0页)( 精品系 列PPT )
高 考 解 答 题 突破(二 )数列 的综合 应用20 21届高 考数学 大二轮 复习课pp 件t完(美共 课 件30(张P3 P0T页))( 精品系 列PPT )
[解题指导] (1)2Sn=(n+1)2an-n2an+1 及 an 与 Sn 的关系式→转化递推关系式 ―――等―差――中―项―法――→证{an}为等差数列→求{an}通项公式
(2) 由 an 得 bn 关 系 式 → 两 式 相 除 得 {bn} 的 递 推 关 系 式 确定适合等比数列{bn}的λ
(2)由题意知,bnbn+1=λ·2an=λ·22n, bn+1bn+2=λ·2an+1=λ·22(n+1), 两式相除,可得 bn+2=4bn,即{b2n}和{b2n-1}都是以 4 为公比的等比数列. ∵b1b2=λ·2a1=4λ,b1=1,∴b2=4λ,b3=4b1=4, 要使数列{bn}是等比数列,则 b22=b1b3,可得 4λ2=1, 又 λ>0,∴λ=12. ∴b2n=2·4n-1=22n-1,b2n-1=22n-2,即 bn=2n-1,则 bn+1=2bn, 因此存在 λ=12,使得数列{bn}是等比数列.

高考数学二轮复习数列求和及其综合应用

高考数学二轮复习数列求和及其综合应用

(2)在各项均为正数的数列{an}中,a1=1,a2n+1-2an+1an-3a2n=0,Sn 是数列 {an}的前 n 项和,若对 n∈N*,不等式 an(λ-2Sn)≤27 恒成立,则实数 λ 的 取值范围为_(-__∞__,__1_7_]_.
∵a2n+1-2an+1an-3a2n=0, ∴(an+1+an)(an+1-3an)=0, ∵an>0,∴an+1=3an,又a1=1, ∴数列{an}是首项为1,公比为3的等比数列, ∴an=3n-1, Sn=11--33n=32n-12, ∴不等式 an(λ-2Sn)≤27 即 λ≤2Sn+2a7n=3n+32n-71-1 对 n∈N*恒成立,
所以 2an1
2an
=4,
所以an+1-an=2,
所以数列{an}是公差为2的等差数列,
因为a2,a4,a7成等比数列,
所以 a24=a2a7,
所以(a1+6)2=(a1+2)(a1+12), 解得a1=6,
所以an=6+2(n-1)=2n+4, 因为Sn为数列{bn}的前n项和,且bn是1和Sn的等差中项, 所以Sn+1=2bn, 当n≥2时,有Sn-1+1=2bn-1, 两式相减得bn=2bn-2bn-1,即bn=2bn-1, 当n=1时,有S1+1=b1+1=2b1, 所以b1=1, 所以数列{bn}是首项为1,公比为2的等比数列,所以bn=2n-1,
考向3 错位相减法
例3 (2022·上饶模拟)从①b5-b4=18b2,②S5=b4-2,③log3bn+1-1= log3bn这三个条件中任选一个,补充在下面问题中,并解答. 已知数列{an}的前n项和为Sn,数列{bn}是正项等比数列,且2an=an+1+ an-1(n≥2),S3=b3=9,b4=a14,________. (1)求数列{an}和{bn}的通项公式; 注:如果选择多个条件分别解答,按第一个解答计分.

专题2 数列求和及其综合应用-2021届高三高考数学二轮复习PPT全文课件

专题2 数列求和及其综合应用-2021届高三高考数学二轮复习PPT全文课件
(3)(2020·湖南师大附中第二次月考)在公差大于0的等差数列{an} 中,2a7-a13=1,且a1,a3-1,a6+5成等比数列,则数列{(-1)n-1an} 的前21项和为__2_1__.
【解析】 (1)设等差数列{an}的公差为d, ∵a9=12a12+6,a2=4,∴12=a1+5d,又a1+d=4, 解得a1=d=2,∴Sn=2n+nn- 2 1×2=n(n+1). ∴S1n=nn1+1=1n-n+1 1. 则数列S1n的前10项和=1-12+12-13+…+110-111=1-111=1110.
分值 17 12 10
专题2 数列求和及其综合应用-2021届高三高 考数学 二轮复 习PPT 全文课 件
年份 卷别 Ⅰ卷
2018 Ⅱ卷 Ⅲ卷
题号 17 17 17
考查角度
分值
数列的递推公式以及等差数列通项公 12
式求和
等差数列前n项和与通项公式及最值问

12
数列的递推公式及通项公式、裂项相 10
● 应用错位相减法求和的关注点

( 1 ) 错 位 相 减 法 适 用 于 求 数 列 { a n ·b n } 的 前 n 项 和 , 其 中 { a n } 为 等 差 数 列 , { b n } 为 等 比 数 列 .

(2)在写“Sn”与“qSn”的表达式时,应特别注意将两式“错项对齐”,以便下一步准确地写出
【解析】 (1)由题意,设an=a1qn-1(q>0),
则a1=12

21-a1q2=2a1+3a1q
解得q=12或q=-2(舍),
∴an=12×12n-1=12n,即an=21n.
(2)由(1)知an=21n,∴Sn=12×11--1212n=1-12n. ∵bn=8n,∴Tn=4n2+4n, ∴T1n=4n2+1 4n=141n-n+1 1, ∴T11+T12+…+T1n=141-12+21-31+…+1n-n+1 1=141-n+1 1<14,

(完整)高考数学二轮复习名师知识点总结:数列求和及数列的综合应用,推荐文档

(完整)高考数学二轮复习名师知识点总结:数列求和及数列的综合应用,推荐文档

1 1 1 1 1数列求和及数列的综合应用【高考考情解读】 高考对本节知识主要以解答题的形式考查以下两个问题:1.以递推公式或图、表形式给出条件, 求通项公式,考查学生用等差、等比数列知识分析问题和探究创新的能力,属中档题.2.通过分组、错位相减等转化为等差或等比数列的求和问题,考查等差、等比数列求和公式及转化与化归思想的应用,属中档题.1. 数列求和的方法技巧(1) 分组转化法有些数列,既不是等差数列,也不是等比数列,若将数列通项拆开或变形,可转化为几个等差、等比数列或常见的数列,即先分别求和,然后再合并.(2) 错位相减法这是在推导等比数列的前 n 项和公式时所用的方法,这种方法主要用于求数列{a n ·b n }的前 n 项和,其中{a n },{b n }分别是等差数列和等比数列.(3) 倒序相加法这是在推导等差数列前 n 项和公式时所用的方法,也就是将一个数列倒过来排列(反序),当它与原数列相加时若有公式可提,并且剩余项的和易于求得,则这样的数列可用倒序相加法求和.(4) 裂项相消法利用通项变形,将通项分裂成两项或 n 项的差,通过相加过程中的相互抵消,最后只剩下有限项的和.这种方法,anan +1anan +1 d (a n - )适用于求通项为 常见的拆项公式: 1 1 1①n (n +1)=n -n +1;1 1 1 1的数列的前 n 项和,其中{a n }若为等差数列,则 = an +1 .②n (n +k )=k (n -n +k );1 1 1 1③(2n -1)(2n +1)=2(2n -1-2n +1);1 1④ n + n +k =k ( n +k - n ). 2. 数列应用题的模型(1) 等差模型:如果增加(或减少)的量是一个固定量时,该模型是等差模型,增加(或减少)的量就是公差. (2) 等比模型:如果后一个量与前一个量的比是一个固定的数时,该模型是等比模型,这个固定的数就是公比. (3) 混合模型:在一个问题中同时涉及等差数列和等比数列的模型.(4) 生长模型:如果某一个量,每一期以一个固定的百分数增加(或减少),同时又以一个固定的具体量增加(或减少)时,我们称该模型为生长模型.如分期付款问题,树木的生长与砍伐问题等.(5) 递推模型:如果容易找到该数列任意一项 a n 与它的前一项 a n -1(或前 n 项)间的递推关系式,我们可以用递推数列的知识来解决问题.π1 π考点一 分组转化求和法例 1 等比数列{a n }中,a 1,a 2,a 3 分别是下表第一、二、三行中的某一个数,且 a 1,a 2,a 3 中的任何两个数不在下表的同一列.第一列第二列 第三列 第一行 3 2 10 第二行 6 4 14 第三行9818(1) 求数列{a n }的通项公式;(2) 若数列{b n }满足:b n =a n +(-1)n ln a n ,求数列{b n }的前 n 项和 S n .解 (1)当 a 1=3 时,不合题意;当 a 1=2 时,当且仅当 a 2=6,a 3=18 时,符合题意; 当 a 1=10 时,不合题意.因此 a 1=2,a 2=6,a 3=18.所以公比 q =3. 故 a n =2·3n -1 (n ∈N *). (2)因为 b n =a n +(-1)n ln a n =2·3n -1+(-1)n ln(2·3n -1)=2·3n -1+(-1)n [ln 2+(n -1)ln 3] =2·3n -1+(-1)n (ln 2-ln 3)+(-1)n n ln 3,所以 S n =2(1+3+…+3n -1)+[-1+1-1+…+(-1)n ]·(ln 2-ln 3)+[-1+2-3+…+(-1)n n ]ln 3. 1-3n n n当 n 为偶数时,S n =2× 1-3 +2ln 3=3n +2ln 3-1;1-3n n -1 n -1(-n)当 n 为奇数时,S n =2× 1-3 -(ln 2-ln 3)+ 2 ln 3=3n - 2 ln 3-ln 2-1.综上所述,S n =Error!在处理一般数列求和时,一定要注意使用转化思想.把一般的数列求和转化为等差数列或等比数列进行求和,在求和时要分析清楚哪些项构成等差数列,哪些项构成等比数列,清晰正确地求解.在利用分组求和法求和时,由于数列的各项是正负交替的,所以一般需要对项数 n 进行讨论,最后再验证是否可以合并为一个公式.(2013·安徽)设数列{a n }满足 a 1=2,a 2+a 4=8,且对任意 n ∈N *,函数 f (x )=(a n -a n +1+a n +2)x +a n +1cos x -a n +2sin x 满足 f ′(2)=0. (1)求数列{a n }的通项公式;(an +)(2)若 b n =2 2an ,求数列{b n }的前 n 项和 S n .解 (1)由题设可得 f ′(x )=(a n -a n +1+a n +2)-a n +1sin x -a n +2cos x ,又 f ′(2)=0,则 a n +a n +2-2a n +1=0,即 2a n +1=a n +a n +2,因此数列{a n }为等差数列,设等差数列{a n }的公差为 d , 由已知条件Error!,解得 Error!a n =a 1+(n -1)d =n +1.( 1 ) 1n+1+(2)b n=2 2n+1 =2(n+1)+2n,1 1S n=b1+b2+…+b n=(n+3)n+1-2n=n2+3n+1-2n.考点二错位相减求和法例2 (2013·山东)设等差数列{a n}的前n 项和为S n,且S4=4S2,a2n=2a n+1.(1)求数列{a n}的通项公式;b1 b2 bn 1(2)若数列{b n}满足a1+a2+…+an=1-2n,n∈N*,求{b n}的前n 项和T n.解(1)设等差数列{a n}的首项为a1,公差为d,由Error!得a1=1,d=2,所以a n=2n-1(n∈N*).b1 b2 bn 1(2)由已知a1+a2+…+an=1-2n,n∈N*,①b1 b2 bn-1 1当n≥2 时,a1+a2+…+an-1=1-2n-1,②bn 1 b1 1①-②得:an=2n,又当n=1 时,a1=2也符合上式,bn 1 2n-1所以an=2n(n∈N*),所以b n=2n (n∈N*).1 3 5 2n-1所以T n=b1+b2+b3+…+b n=2+22+23+…+2n .1 1 3 2n-3 2n-12T n=22+23+…+2n +2n+1.1 1 (2 2 2 )2n-13 1 2n-1 2n+3++…+两式相减得:2T n=2+22 23 2n -2n+1=2-2n-1-2n+1. 所以T=3-2n .n错位相减法求数列的前n 项和是一类重要方法.在应用这种方法时,一定要抓住数列的特征,即数列的项可以看作是由一个等差数列和一个等比数列对应项相乘所得数列的求和问题.设数列{a n}满足a1=2,a n+1-a n=3·22n-1.(1)求数列{a n}的通项公式;(2)令b n=na n,求数列{b n}的前n 项和S n.解(1) 由已知,得当n≥1 时,a n+1=[(a n+1-a n)+(a n-a n-1)+…+(a2-a1)]+a1=3(22n-1+22n-3+…+2)+2=22(n+1)-1. 而a1=2,符合上式,所以数列{a n}的通项公式为a n=22n-1.(2)由b n=na n=n·22n-1 知S n=1·2+2·23+3·25+…+n·22n-1. ①f (x )+ - - (f (x )从而 22·S n =1·23+2·25+3·27+…+n ·22n +1.②①-②得(1-22)S n =2+23+25+…+22n -1-n ·22n +1, 1即 S n =9[(3n -1)22n +1+2]. 考点三 裂项相消求和法例 3 (2013·广东)设各项均为正数的数列{a n }的前 n 项和为 S n ,满足 4S n =a n +2 1-4n -1,n ∈N *, 且 a 2,a 5,a 14 构成等比数列.(1) 证明:a 2= 4a 1+5; (2) 求数列{a n }的通项公式;1111(3) 证明:对一切正整数 n ,有a 1a 2+a 2a 3+…+anan +1<2.(1)证明 当 n =1 时,4a 1=a 2-5,a 2=4a 1+5,又 a n >0,∴a 2= (2) 解 当 n ≥2 时 ,4S n -1=a n -4(n -1)-1,4a 1+5.∴4a n =4S n -4S n -1=a n +2 1-a 2-4,即 a n +2 1=a n +4a n +4=(a n +2)2,又 a n >0,∴a n +1=a n +2, ∴当 n ≥2 时,{a n }是公差为 2 的等差数列.又 a 2,a 5,a 14 成等比数列.∴a 2=a 2·a 14,即(a 2+6)2=a 2·(a 2+24),解得 a 2=3.由(1)知 a 1=1.又 a 2-a 1=3-1=2,∴数列{a n }是首项 a 1=1,公差 d =2 的等差数列.∴a n =2n -1. 1 1 1 1 1 11 (3)证明 a 1a 2+a 2a 3+…+anan +1=1 × 3+3 × 5+5 × 7+…+(2n -1)(2n +1) 1[( 1) (1 1) 1 1)] 1(1 )1 =23 3 5 2n -1 2n +1 =2 2n +1 <2. 数列求和的方法:(1)一般地,数列求和应从通项入手,若无通项,就先求通项,然后通过对通项变形,转化为与特殊数列有关或具备适用某种特殊方法的形式,从而选择合适的方法求和得解.(2)已知数列前 n 项和 S n 或者前 n 项和 S n 与通项公式 a n 的关系式,求通项通常利用 a n =Error!.已知数列递推式求通项,主要掌握“先猜后证法”“化归法”“累加(乘)法”等.(2013·西安模拟)已知x , 2 , 3(x ≥0)成等差数列.又数列{a n }(a n >0)中,a 1=3,此数列的前 n 项和为 S n ,对于所有大于 1 的正整数 n 都有 S n =f (S n -1).(1) 求数列{a n }的第 n +1 项;1 1(2) 若 bn 是an +1,an 的等比中项,且 T n 为{b n }的前 n 项和,求 T n .解 (1)因为 x , 2 , 3(x ≥0)成等差数列,所 以 2× 2 = x + 3,整理,得 f (x )=( x + 3)2.因为 S n =f (S n -1)(n ≥2),所以 S n =( Sn -1+ 3)2,f (x )1- +…+ 1-()1 1 1 1 (3 3 3n( )( ) - - + )] 18 + 18n +9 1 3因为 a 1=3,所以 S 1=a 1=3,所以 Sn = S 1+(n -1) 3= 3+ 3n - 3= 3n . 所以 S n =3n 2(n ∈N *). 所以 a n +1=S n +1-S n =3(n +1)2-3n 2=6n +3. 1 1 1 1(2)因为 bn 是an +1与an 的等比中项, 所以( bn )2=an +1·an , 1111 1 - 1 所 以 b n =an +1·an =3(2n +1) × 3(2n -1)=18× 2n -1 2n +1 , [(1- )+( ) (- 1 1 (1- 1 )n T n =b 1+b 2+…+b n = 考点四 数列的实际应用3 3 5 2n 1 2n 1 = 2n 1 = .例 4 (2012·湖南)某公司一下属企业从事某种高科技产品的生产.该企业第一年年初有资金 2 000 万元,将其投入生产,到当年年底资金增长了 50%,预计以后每年资金年增长率与第一年的相同.公司要求企业从第一年开始,每年年底上缴资金 d 万元,并将剩余资金全部投入下一年生产.设第 n 年年底企业上缴资金后的剩余资金为 a n 万元.(1) 用 d 表示 a 1,a 2,并写出 a n +1 与 a n 的关系式;(2) 若公司希望经过 m (m ≥3)年使企业的剩余资金为 4 000 万元,试确定企业每年上缴资金 d 的值(用 m 表示).(1) 由第 n 年和第(n +1)年的资金变化情况得出 a n 与 a n +1 的递推关系;(2) 由 a n +1 与 a n 之间的关系,可求通项公式,问题便可求解.3 5解 (1)由题意得 a 1=2 000(1+50%)-d =3 000-d ,a 2=a 1(1+50%)-d =2a 1-d =4 500-2d . 3a n +1=a n (1+50%)-d =2a n -d .3 3 3) ( ) (3)[ ( )( ) ]2 (2)由(1)得 a = an -2-d -d =2 2 -d = 22a 2 2 n -1 1+ + - d -d =…= a -d 2 2 2+…+ 2 n -2 . n a n -1 n -2 13 3 3整理得 a =(2)n -1(3 000-d )-2d[(2)n -1-1]=(2)n -1(3 000-3d )+2d .3由题意,知 a m =4 000,即 2 m -1(3 000-3d )+2d =4 000, 3[(2)m -2] × 1 000 3 m -1 1 000(3m -2m +1)解得 d = 2 = 3m -2m .1 000(3m -2m +1)故该企业每年上缴资金 d 的值为3m -2m时,经过 m (m ≥3)年企业的剩余资金为 4 000 万元.用数列知识解相关的实际问题,关键是合理建立数学模型——数列模型,弄清所构造的数列的首项是什么,项数是多少,然后转化为解数列问题.求解时,要明确目标,即搞清是求和,还是求通项,还是解递推关所 以 Sn = Sn -1+ 3, 即 Sn - Sn -1= 3,所以{ Sn }是以 3为公差的等差数列.18+…+ 3系问题,所求结论对应的是解方程问题,还是解不等式问题,还是最值问题,然后进行合理推算,得出实际问题 的结果.某产品在不做广告宣传且每千克获利 a 元的前提下,可卖出 b 千克.若做广告宣传,广告费为b n (n ∈N *)千元时比广告费为(n -1)千元时多卖出2n 千克.(1) 当广告费分别为 1 千元和 2 千元时,用 b 表示销售量 S ; (2) 试写出销售量 S 与 n 的函数关系式;(3) 当 a =50,b =200 时,要使厂家获利最大,销售量 S 和广告费 n 分别应为多少?b 3b b b 7b解 (1)当广告费为 1 千元时,销售量 S =b +2= 2 .当广告费为 2 千元时,销售量 S =b +2+22= 4 . b(2)设 S n (n ∈N )表示广告费为 n 千元时的销售量,由题意得 S 1-S 0=2,bS 2-S 1=22, …… bS n -S n -1=2n .b b b b以上 n 个等式相加得,S n -S 0=2+22+23+…+2n ,1b [1-( )n +1]2b b b b 1 1即 S =S n =b +2+22+23+…+2n = 1-2 =b (2-2n ).1 10(3)当 a =50,b =200 时,设获利为 T n ,则有 T n =Sa -1 000n =10 000×(2-2n )-1 000n =1 000×(20-2n -n ),1010105设 b n =20-2n -n ,则 b n +1-b n =20-2n +1-n -1-20+2n +n =2n -1, 当 n ≤2 时,b n +1-b n >0;当 n ≥3 时,b n +1-b n <0.所以当 n =3 时,b n 取得最大值,即 T n 取得最大值,此时 S =375, 即该厂家获利最大时,销售量和广告费分别为 375 千克和 3 千元.1. 数列综合问题一般先求数列的通项公式,这是做好该类题的关键.若是等差数列或等比数列,则直接运用公式求解,否则常用下列方法求解:(1) a n =Error!.(2) 递推关系形如 a n +1-a n =f (n ),常用累加法求通项.an+1(3)递推关系形如an =f(n),常用累乘法求通项.(4)递推关系形如“a n+1=pa n+q(p、q 是常数,且p≠1,q≠0)”的数列求通项,此类通项问题,常用待定系数法.可设a n+1+λ=p(a n+λ),经过比较,求得λ,则数列{a n+λ}是一个等比数列.(5)递推关系形如“a n+1=pa n+q n(q,p 为常数,且p≠1,q≠0)”的数列求通项,此类型可以将关系式两边同除以q n 转化为类型(4),或同除以p n+1 转为用迭加法求解.2.数列求和中应用转化与化归思想的常见类型:(1)错位相减法求和时将问题转化为等比数列的求和问题求解.(2)并项求和时,将问题转化为等差数列求和.(3)分组求和时,将问题转化为能用公式法或错位相减法或裂项相消法或并项法求和的几个数列的和求解.提醒:运用错位相减法求和时,相减后,要注意右边的n+1 项中的前n 项,哪些项构成等比数列,以及两边需除以代数式时注意要讨论代数式是否为零.3.数列应用题主要考查应用所学知识分析和解析问题的能力.其中,建立数列模型是解决这类问题的核心,在试题中主要有:一是,构造等差数列或等比数列模型,然后用相应的通项公式与求和公式求解;二是,通过归纳得到结论,再用数列知识求解.( )( ) 1-1. 在一个数列中, 如果∀n ∈N *,都有 a n a n +1a n +2=k (k 为常数),那么称这个数列为等积数列,称 k 为这个数列的公积.已知数列{a n }是等积数列,且 a 1=1,a 2=2,公积为 8,则 a 1+a 2+a 3+…+a 12= .答 案 28解析 依题意得数列{a n }是周期为 3 的数列,且 a 1=1,a 2=2,a 3=4, 因此 a 1+a 2+a 3+…+a 12=4(a 1+a 2+a 3)=4×(1+2+4)=28.2. 秋末冬初,流感盛行,特别是甲型 H1N1 流感.某医院近 30 天每天入院治疗甲流的人数依次构成数列{a n },已知a 1=1,a 2=2,且 a n +2-a n =1+(-1)n (n ∈N *),则该医院 30 天入院治疗甲流的人数共有 .答案 255 解析 由于 a n +2-a n =1+(-1)n ,所以 a 1=a 3=…=a 29=1,15 × 14a 2,a 4,…,a 30 构成公差为 2 的等差数列,所以 a 1+a 2+…+a 29+a 30=15+15×2+ 23. 已知公差大于零的等差数列{a n }的前 n 项和 S n ,且满足:a 2·a 4=65,a 1+a 5=18.(1)若 1<i <21,a 1,a i ,a 21 是某等比数列的连续三项,求 i 的值;n×2=255.(2)设 b n =(2n +1)Sn ,是否存在一个最小的常数 m 使得 b 1+b 2+…+b n <m 对于任意的正整数 n 均成立,若存在, 求出常数 m ;若不存在,请说明理由.解 (1){a n }为等差数列,∵a 1+a 5=a 2+a 4=18,又 a 2·a 4=65,∴a 2,a 4 是方程 x 2-18x +65=0 的两个根, 又公差 d >0,∴a 2<a 4,∴a 2=5,a 4=13. ∴Error!∴a 1=1,d =4.∴a n =4n -3.由于 1<i <21,a 1,a i ,a 21 是某等比数列的连续三项,∴a 1·a 21=a 2i ,即 1·81=(4i -3)2,解得 i =3. n (n -1) 1 1(1 -1)(2)由(1)知,S n =n ·1+ 2 ·4=2n 2-n ,所以 b n =(2n -1)(2n +1)=2 2n -1 2n +1 ,1 1 1 1 1 1 n 1- + - +…+ - b 1+b 2+…+b n =23 3 5 2n -1 2n +1 =2n +1, n 1 1 1 1因为2n +1=2-2(2n +1)<2,所以存在 m =2使 b 1+b 2+…+b n <m 对于任意的正整数 n 均成立.(推荐时间:60 分钟)一、选择题1 1 1 11. 已知数列 12,34,58,716,…,则其前 n 项和 S n 为()1A .n 2+1-2n1B .n 2+2-2n1C .n 2+1-2n -11- 1 ·1 2n 21D .n 2+2-2n -11 1+2n -11 1 答案 A 解析 因为 a n =2n -1+2n ,则 S n =2n +2 =n 2+1-2n .S12 S102.在等差数列{a n}中,a1=-2 013,其前n 项和为S n,若12 -10 =2,则S2013的值等于( ) A.-2 011 B.-2 012 C.-2 010 D.-2 013答案DSn S1 解析根据等差数列的性质,得数列{ n }也是等差数列,根据已知可得这个数列的首项1 =a1=-2 013,S2 013公差d=1,故2 013 =-2 013+(2 013-1)×1=-1,所以S2013=-2 013.3.对于数列{a n},a1=4,a n+1=f(a n),n=1,2,…,则a2013等于( )A.2 B.3 C.4答案C解析由表格可得a1=4,a2=f(a1)=f(4)=1,a3=f(a2)=f(1)=5,a4=f(a3)=2,a5=f(2)=4,可知其周期为4,∴a2013=a1=4.S1 S2 S154.在等差数列{a n}中,其前n 项和是S n,若S15>0,S16<0,则在a1,a2,…,a15中最大的是( )S1 S8 S9 S15A.a1答案BB.a8C.a9D.a1515(a1+a15)16(a1+a16)解析由于S15= 2 =15a8>0,S16= 2 =8(a8+a9)<0,可得a8>0,a9<0.S1 S2 S8 S9 S10 S15这样a1>0,a2>0,…,a8>0,a9<0,a10<0,…,a15<0,而S1<S2<…<S8,a1>a2>…>a8,S1 S2 S15 S8所以在a1,a2,…,a15中最大的是a8.故选B.1 1 1 15.数列{a n}满足a1=1,且对任意的m,n∈N*都有a m+n=a m+a n+mn,则a1+a2+a3+…+a2 012等于( )4 024A.2 013 答案A4 018B.2 0122 010C.2 0112 009D.2 010解析令m=1 得a n+1=a n+n+1,即a n+1-a n=n+1,于是a2-a1=2,a3-a2=3,…,a n-a n-1=n,上述n-1 个式子相加得a n-a1=2+3+…+n,n(n+1) 1 2 1-1 )所以a n=1+2+3+…+n= 2 ,因此an=n(n+1)=2 n n+1 ,() ()(1 1 1 11 1 1 1 11 4 0241- + - +…+- 1-所以a 1+a 2+a 3+…+a 2 012=22 23 2 012 2 013=22 013 =2 013.6. 已知函数 f (n )=Error!且 a n =f (n )+f (n +1),则 a 1+a 2+a 3+…+a 2 012 等于()A .-2 012B .-2 011C .2 012D .2 011答 案 C解析 当 n 为奇数时,a n =f (n )+f (n +1)=n 2-(n +1)2=-(2n +1); 当 n 为偶数时,a n =f (n )+f (n +1)=-n 2+(n +1)2=2n +1.所以 a 1+a 2+a 3+…+a 2 012=2(-1+2-3+4+…-2 011+2 012)=2 012. 二、填空题7. 数列{a n }中,已知对任意 n ∈N *,a 1+a 2+a 3+…+a n =3n -1,则 a 2+a 2+a 3+…+a n =.1答 案 2(9n -1)解析 ∵a 1+a 2+a 3+…+a n =3n -1,∴a 1+a 2+a 3+…+a n -1=3n -1-1(n ≥2). 则 n ≥2 时,两式相减得,a n =2·3n -1. 当 n =1 时,a 1=3-1=2,适合上式,∴a n =2·3n -1(n ∈N *).∴a n =4·9n -1,4(1-9n ) 1则数列{a 2}是首项为 4,公比为 9 的等比数列.∴a 2+a 2+a 2+…+a n = 1-9 =2(9n -1).8. 设数列{a n }的前 n 项和为 S n ,且 a n 为复数 isin 答 案 1n π2 +cos n π2 (n ∈N *)的虚部,则 S 2 013=.解析 由已知得:a n =sin n π2 (n ∈N *),∴a 1=1,a 2=0,a 3=-1,a 4=0, 故{a n }是以 4 为周期的周期数列,∴S 2 013=S 503×4+1=S 1=a 1=1.19.已知数列{a n }满足 3a n +1+a n =4(n ≥1)且 a 1=9,其前 n 项之和为 S n ,则满足不等式|S n -n -6|<125的最小整数 n 是 .答 案 71解析 由递推式变形得 3(a n +1-1)=-(a n -1),∴{a n -1}是公比为-3的等比数列. 11则 a n -1=8·(-3)n -1,即 a n =8·(-3)n -1+1.18[1-(- )n ]3 1 1 1 1-(- )于是 S n = 3 +n =6[1-(-3)n ]+n =6-6·(-3)n +n1 1 1因此|S n-n-6|=|6×(-3)n|=6×(3)n<125,3n-1>250,∴满足条件的最小n=7.10.气象学院用3.2 万元买了一台天文观测仪,已知这台观测仪从启用的第一天起连续使用,第n 天的维修保养费为n+4910 (n∈N*)元,使用它直至报废最合算(所谓报废最合算是指使用这台仪器的平均耗资最少),一共使用了天.答案8001解析由题意得,每天的维修保养费是以5 为首项,10为公差的等差数列.设一共使用了n 天,则使用n 天的平(5+n+49)n 103.2 ×104+ 2 n 99993.2 × 104均耗资为n3.2 × 104 n=n +20+20≥20,当且仅当n =20时取得最小值,此时n=800.三、解答题11.已知等差数列{a n}满足:a5=9,a2+a6=14.(1)求数列{a n}的通项公式;(2)若b n=a n+qa n(q>0),求数列{b n}的前n 项和S n.解(1)设数列{a n}的公差为d,则由a5=9,a2+a6=14,得Error!,解得Error!.所以数列{a n}的通项公式为a n=2n-1.(2)由a n=2n-1 得b n=2n-1+q2n-1.当q>0 且q≠1 时,S n=[1+3+5+…+(2n-1)]+(q1+q3+q5+…+q2n-1)=n2+当q=1 时,b n=2n,则S n=n(n+1).所以数列{b n}的前n 项和S n=Error!. q(1-q2n) 1-q2 ;12.将函数f(x)=sin(n∈N*).14x·sin14(x+2π)·sin12(x+3π)在区间(0,+∞)内的全部极值点按从小到大的顺序排成数列{an}(1)求数列{a n}的通项公式;(2)设b n=2n a n,数列{b n}的前n 项和为T n,求T n的表达式.1 1 1 1 π解(1)化简f(x)=sin 4x·sin 4(x+2π)·sin 2(x+3π)=-4sin x,其极值点为x=kπ+2(k∈Z),πππ它在(0,+∞)内的全部极值点构成以2为首项,π为公差的等差数列,故a n=2+(n-1)π=nπ-2.π(2)b n=2n a n=2(2n-1)·2n,π∴T n=2[1·2+3·22+…+(2n-3)·2n-1+(2n-1)·2n],π则2T n=2[1·22+3·23+…+(2n-3)·2n+(2n-1)·2n+1]两式相减,得π∴-T n=2[1·2+2·22+2·23+…+2·2n-(2n-1)·2n+1],∴T n=π[(2n-3)·2n+3].1 113.在等比数列{a n}中,a2=4,a3·a6=512.设b n=log2a22·log2a n+2 12,T n为数列{b n}的前n 项和.(1)求a n和T n;(2)若对任意的n∈N*,不等式λT n<n-2(-1)n 恒成立,求实数λ的取值范围.1 1 1解(1)设{a n}的公比为q,由a3a6=a2·q5=16q5=512得q=2,1∴a n=a2·q n-2=(2)n.1 1 1 1 1 1b n=log2a n2·log2a n+2 12=log(2)2n-12·log(2)2n+12=(2n-1)(2n+1)=2(2n-1-2n+1),1 1 1 1 1 1 1 1 n∴T n=2(1-3+3-5+…+2n-1-2n+1)=2(1-2n+1)=2n+1.(n-2)(2n+1) 2 2(2)①当n 为偶数时,由λT n<n-2 恒成立得,λ< n2 2=2n-n-3 恒成立,即λ<(2n-n-3)min,而2n-n-3 随n 的增大而增大,∴n=2 时(2n-n-3)min=0,∴λ<0.(n+2)(2n+1) 2②当n 为奇数时,由λT n<n+2 恒成立得,λ< n =2n+n+5 恒成立,2 2即λ<(2n+n+5)min而2n+n+5≥25=9,当且仅当2n=n,即n=1 时等号成立,∴λ<9.综上,实数λ 的取值范围为(-∞,0).“”“”At the end, Xiao Bian gives you a passage. Minand once said, "people who learn to learn are very happy people.". In every wonderful life, learning is an eternal theme. As a professional clerical and teaching position, I understand the importance of continuous learning, "life is diligent, nothing can be gained", only continuous learning can achieve better self. Only by constantly learning and mastering the latest relevant knowledge, can employees from all walks of life keep up with the pace of enterprise development and innovate to meet the needs of the market. This document is also edited by my studio professionals, there may be errors in the document, if there are errors, please correct, thank you!。

2021高考数学二轮专题复习3.2等差数列等比数列的综合运算与数列求和ppt课件

2021高考数学二轮专题复习3.2等差数列等比数列的综合运算与数列求和ppt课件

若 Sm,Sm+1,Sm+2 构成等差数列,则 2(2m+1-1)=(2m-1)+(2m +2-1),
整理得 2m=0,由于 m∈N*,所以无解, 故不存在正整数 m,使得 Sm,Sm+1,Sm+2 构成等差数列. 若选择条件②,即 Sn=kan-12,由于 a1=1,所以 1=k-12,则
k=32,于是 Sn=32an-12. 当 n≥2 时,Sn-1=32an-1-12,两式相减得 an=32an-32an-1,于
故不存在正整数 m,使得 Sm,Sm+1,Sm+2 构成等差数列.
考点 2 裂项相消法求和
『考点整合』
裂项相消法是指把数列和式中的各项分别裂开后,某些项可以 相互抵消从而求和的方法,主要适用于ana1n+1或ana1n+2(其中{an} 为等差数列)等形式的数列求和.
『考南质量评估]数学家也有一些美丽的错误, 如法国数学家费马于 1640 年提出了以下猜想:Fn=22n+1(n∈N) 是质数.1732 年,瑞士数学家欧拉算出 F5=641×6 700 417,该数不 是质数.已知 Sn 为数列{an}的前 n 项和,且 Sn=log2(Fn-1)-1(n∈N
方案三:选条件③.
设{bn}的公比为 q,则 q3=bb25=-27,即 q=-3, 又 b2=3,得 b1=-1, 所以 bn=-(-3)n-1. 从而 a5=b1=-1,由{an}是等差数列得 S5=5a12+a5, 由 S5=-25 得 a1=-9,所以 an=2n-11. 因为 Sk>Sk+1 且 Sk+1<Sk+2 等价于 ak+1<0 且 ak+2>0,
所以满足题意的 k 存在当且仅当33kk+ +12- -1166<>00, , 即 k=4.

高考数学二轮强化突破:专题10《数列求和及综合应用》ppt课件

高考数学二轮强化突破:专题10《数列求和及综合应用》ppt课件
12
数列.
• 故an=2n.
11
(2)由(1)得a1n=21n. 所以 Tn=12+212+213+…+21n=1211--1212n=1-21n. 由|Tn-1|<1 0100,得|1-21n-1|<1 0100,即 2n>1 000. 因为 29=512<1 000<1 024=210, 所以 n≥10. 于是,使|Tn-1|<1 0100成立的 n 的最小值为 10.
{an}满足a1+a2=10,a4-a3=2. • (1)求{an}的通项公式; • (2)设等比数列{bn}满足b2=a3,b3=a7.问:
b6与数列{an}的第几项相等? • [立意与点拨] 本题主要考查等差数列、等比
数列的通项公式等基础知识,考查学生的分
析问题解决问题的能力、转化能力、计算能 力.第(1)问直接利用通项公式列方程组求解; 第(2)问先由条件求bn,然后令b6=an解方程 求得n值.
走向高考 ·数学
高考二轮总复习
路漫漫其修远兮 吾将上下而求索
1
第一部分
微专题强化练
2
第一部分 一 考点强化练
10 数列求和及综合应用
3
1 考向分析 2 考题引路 3 强化训练
4
考向分析
5
• 近几年三角函数与平面向量的综合题,三角 函数与解三角形的综合题及数列综合应用的 题目交替命题.命题角度为:
• 1.等差数列与等比数列的综合,考查通项公 式及前n项和公式等基础知识的掌握和综合应 用数列知识解决问题的能力.
• 2.数列与函数、方程、不等式、三角、解析 几何等知识的综合.
• 3.增长率、分期付款、利润成本效益的增减 等实际应用问题.

2021高三数学北师大版(文):数列求和含解析

2021高三数学北师大版(文):数列求和含解析
当n为奇数时、Tn=(21+22+…+2n)+[-1+2-3+4-…-(n-2)+(n-1)-n]
=2n+1-2+ -n=2n+1- - .
所以Tn=
通项公式中出现(-1)n、在求数列的前n项和Sn时、要分n为偶数和n为奇数两种情况讨论.
1.若数列{an}的通项公式为an=2n+2n-1、则数列{an}的前n项和为()
本例中通项公式的裂项使用了分母有理化.
1.已知数列{an}的通项公式为an=lg 、若数列{an}的前n项和Sn=3、则项数n=()
A.99B.101C.999D.1001
C[an=lg =lg =lg(n+1)-lgn、
∴Sn=a1+a2+a3+…+an=(lg 2-lg 1)+(lg 3-lg 2)+(lg 4-lg 3)+…+[lg(n+1)-lgn]=lg(n+1)、
=3n2+6(1×31+2×32+…+n×3n).
记Tn=1×31+2×32+…+n×3n、①
则3Tn=1×32+2×33+…+n×3n+1、②
②-①得、2Tn=-3-32-33-…-3n+n×3n+1
=- +n×3n+1= .
所以、a1c1+a2c2+…+a2nc2n=3n2+6Tn=3n2+3×
a1也满足an=n、故数列{an}的通项公式为an=n.
(2)由(1)知an=n、故bn=2n+(-1)nn.
记数列{bn}的前2n项和为T2n、则T2n=(21+22+…+22n)+(-1+2-3+4-…+2n).
记A=21+22+…+22n、B=-1+2-3+4-…+2n、则A= =22n+1-2、
故选C.]
2.已知数列{an}中、a1=a2=1、an+2= 则数列{an}的前20项和为()

2021年高考数学二轮复习 数列求和及其综合应用

2021年高考数学二轮复习 数列求和及其综合应用

2021年高考数学二轮复习 数列求和及其综合应用1.(xx·全国新课标Ⅱ高考)等差数列{a n }的公差为2,若a 2,a 4,a 8成等比数列,则{a n }的前n 项和S n =( )A .n (n +1)B .n (n -1)C.n n +12D.n n -12【解析】 因为a 2,a 4,a 8成等比数列,所以a 24=a 2·a 8,所以(a 1+6)2=(a 1+2)·(a 1+14),解得a 1=2.所以S n =na 1+n n -12d =n (n +1).故选A.【答案】 A2.(xx·全国新课标Ⅰ高考)设等差数列{a n }的前n 项和为S n ,若S m -1=-2,S m =0,S m +1=3,则m =( )A .3B .4C .5D .6【解析】 可以先求出首项和公差,再利用等差数列的求和公式和通项公式求解.∵{a n }是等差数列,S m -1=-2,S m =0, ∴a m =S m -S m -1=2.∵S m +1=3,∴a m +1=S m +1-S m =3, ∴d =a m +1-a m =1.又S m =m a 1+a m 2=m a 1+22=0,∴a 1=-2,∴a m =-2+(m -1)·1=2,∴m =5. 【答案】 C3.(xx·江西高考)某住宅小区计划植树不少于100棵,若第一天植2棵,以后每天植树的棵数是前一天的2倍,则需要的最少天数n (n ∈N *)等于________.【解析】 每天植树的棵数构成以2为首项,2为公比的等比数列,其前n 项和S n =a 11-q n 1-q =21-2n1-2=2n +1-2.由2n +1-2≥100,得2n +1≥102.由于26=64,27=128,则n+1≥7,即n ≥6.【答案】 64.(xx·全国大纲高考)等差数列{a n }的前n 项和为S n .已知a 1=10,a 2为整数,且S n ≤S 4. (1)求{a n }的通项公式;(2)设b n =1a n a n +1,求数列{b n }的前n 项和T n .【解】 (1)由a 1=10,a 2为整数,知等差数列{a n }的公差d 为整数. 又S n ≤S 4,故a 4≥0,a 5≤0, 于是10+3d ≥0,10+4d ≤0.解得-103≤d ≤-52.因此d =-3.数列{a n }的通项公式为a n =13-3n .(2)b n =113-3n 10-3n =13⎝ ⎛⎭⎪⎫110-3n -113-3n .于是T n =b 1+b 2+…+b n =13⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫17-110+⎝ ⎛⎭⎪⎫14-17+…+⎝ ⎛⎭⎪⎫110-3n -113-3n =13⎝ ⎛⎭⎪⎫110-3n -110=n1010-3n.从近三年高考来看,该部分高考命题的热点考向为: 1.数列求和①该考向主要涉及数列的通项与求和.数列的通项与求和是历年高考考查的重点内容之一,试题一般设置两个问题,其中第一问考查数列的基础,确定条件数列,为第二问准备条件,属于保分题;第二问的区分度较大,一般与数列的求和有关,方法较灵活,主要是错位相减、裂项相消等方法.与不等式、函数等知识交汇是命题的重点方向,要注意这方面的训练.②试题多以解答题的形式出现,属于中、高档题目. 2.数列的综合应用(1)数列的综合应用主要体现如下两点:①以等差、等比数列的知识为纽带,在数列与函数、方程、不等式的交汇处命题,主要考查利用函数观点解决数列问题以及用不等式的方法研究数列的性质;②数列与解析几何交汇的命题,往往会遇到递推数列,通常以解析几何作为试题的背景,从解析几何的内容入手,导出相关的数列关系,再进一步地解答相关的问题.(2)试题难度大都在中等偏上,有时会以压轴题的形式出现.数列求和【例1】 (xx·全国新课标Ⅰ高考)已知{a n }是递增的等差数列,a 2,a 4是方程x 2-5x +6=0的根.(1)求{a n }的通项公式;(2)求数列{a n2n }的前n 项和.【解】 (1)解方程x 2-5x +6=0的两根为2,3,由题意得a 2=2,a 4=3.设数列{a n }的公差为d ,则a 4-a 2=2d ,故d =12,从而a 1=32.所以{a n }的通项公式为a n =12n +1.(2) 设{a n 2n }的前n 项和为S n ,由(1)知a n 2n =n +22n +1,则S n =322+423+…+n +12n +n +22n +1,12S n =323+424+…+n +12n +1+n +22n +2. 两式相减得12S n =34+(123+…+12n +1)-n +22n +2=34+14(1-12n -1)-n +22n +2.所以S n =2-n +42n +1.【例2】 (xx·江西高考)已知首项都是1的两个数列{a n },{b n }(b n ≠0,n ∈N *)满足a n b n+1-a n +1b n +2b n +1b n =0.(1)令c n =a n b n,求数列{c n }的通项公式;(2)若b n =3n -1,求数列{a n }的前n 项和S n .【解】 (1)因为a n b n +1-a n +1b n +2b n +1b n =0,b n ≠0(n ∈N *),所以a n +1b n +1-a nb n=2,即c n +1-c n =2. 所以数列{c n }是以首项c 1=1,公差d =2的等差数列,故c n =2n -1.(2)由b n =3n -1知a n =c n b n =(2n -1)3n -1,于是数列{a n }前n 项和S n =1·30+3·31+5·32+…+(2n -1)·3n -1,3S n =1·31+3·32+…+(2n -3)·3n -1+(2n -1)·3n,相减得-2S n =1+2·(31+32+…+3n -1)-(2n -1)·3n =-2-(2n -2)3n,所以S n =(n -1)3n+1.【规律感悟】 数列求和的常见类型及方法:(1)通项公式形如a n =kn +b 或a n =p ·q kn +b(其中k ,b ,p ,q 为常数),用公式法求和. (2)通项公式形如a n =(k 1n +b 1)qk 2n +b 2(其中k 1,b 1,k 2,b 2,q 为常数),用错位相减法. (3)通项公式形如a n =can +b 1an +b 2(其中a ,b 1,b 2,c 为常数)用裂项相消法.(4)通项公式形如a n =(-1)n ·n 或a n =a ·(-1)n (其中a 为常数,n ∈N *)等正负交叉项的求和一般用并项法.并项时应注意分n 为奇数、偶数两种情况讨论.(5)若数列的通项公式为以上四种中的某几个构成的,则可用分组法(拆项法)求和. 特别提醒:(1)运用公式法求和时注意公式成立的条件.(2)运用错位相减法求和时,相减后,要注意右边的n +1项中的前n 项,哪些项构成等比数列,以及两边需除以代数式时注意要讨论代数式是否为零.[创新预测]1.(xx·山东高考)已知等差数列{a n }的公差为2,前n 项和为S n ,且S 1,S 2,S 4成等比数列.(1)求数列{a n }的通项公式;(2)令b n =(-1)n -14n a n a n +1,求数列{b n }的前n 项和T n .【解】 (1)因为S 1=a 1,S 2=2a 1+2×12×2=2a 1+2,S 4=4a 1+4×32×2=4a 1+12,由题意得(2a 1+2)2=a 1(4a 1+12), 解得a 1=1, 所以a n =2n -1.(2)b n =(-1)n -14n a n a n +1=(-1)n -14n 2n -12n +1=(-1)n -1⎝ ⎛⎭⎪⎫12n -1+12n +1. 当n 为偶数时, T n =⎝ ⎛⎭⎪⎫1+13-⎝ ⎛⎭⎪⎫13+15+…+⎝ ⎛⎭⎪⎫12n -3+12n -1-⎝ ⎛⎭⎪⎫12n -1+12n +1=1-12n +1=2n 2n +1. 当n 为奇数时,T n =⎝ ⎛⎭⎪⎫1+13-⎝ ⎛⎭⎪⎫13+15+…-⎝ ⎛⎭⎪⎫12n -3+12n -1+⎝ ⎛⎭⎪⎫12n -1+12n +1=1+12n +1=2n +22n +1. 所以T n=⎩⎪⎨⎪⎧2n +22n +1,n 为奇数,2n2n +1,n 为偶数.(或T n =2n +1+-1n -12n +1)数列的综合应用【例3】 (xx·四川高考)设等差数列{a n }的公差为d ,点(a n ,b n )在函数f (x )=2x的图象上(n ∈N *).(1)若a 1=-2,点(a 8,4b 7)在函数f (x )的图象上,求数列{a n }的前n 项和S n ;(2)若a 1=1,函数f (x )的图象在点(a 2,b 2)处的切线在x 轴上的截距为2-1ln 2,求数列⎩⎨⎧⎭⎬⎫a nb n 的前n 项和T n . 【解】 (1)由已知,b 1=2a 1,b 8=2a 8=4b 7, 有2a 8=4×7a 7=aa 7+2,解得d =a 8-a 7=2.所以,S n =na 1+n n -12d =-2n +n (n -1)=n 2-3n .(2)函数f (x )=2x在(a 2,b 2)处的切线方程为y -2a 2=(2a 2ln 2)(x -a 2),它在x 轴上的截距为a 2-1ln 2.由题意,a 2-1ln 2=2-1ln 2,解得a 2=2.所以,d =a 2-a 1=1.从而a n =n ,b n =2n,所以T n =12+222+323+…+n -12n -1+n2n ,2T n =11+22+322+…+n 2n -1.因此,2T n -T n =1+12+122+…+12n -1-n 2n =2-12n -1-n 2n =2n +1-n -22n. 所以,T n =2n +1-n -22n. 【规律感悟】 1.数列与函数交汇问题的常见类型及解法:(1)已知函数条件,解决数列问题,此类问题一般利用函数的性质、图象研究数列问题. (2)已知数列条件,解决函数问题,解决此类问题一般要充分利用数列的范围、分式、求和方法对式子化简变形.另外,解题时要注意数列与函数的内在联系,灵活运用函数的思想方法求解.2.对于数列与几何图形相结合的问题,通常利用几何知识,结合图形,得出关于数列相邻项a n 与a n +1之间的关系.根据这个关系和所求内容变形,得出通项公式或其他所求结论.[创新预测]2.(xx·合肥第一次质量检测)已知函数f (x )=x +1x(x >0),以点(n ,f (n ))为切点作函数图象的切线l n (n ∈N *),直线x =n +1与函数y =f (x )图象及切线l n 分别相交于A n ,B n ,记a n =|A n B n |.(1)求切线l n 的方程及数列{a n }的通项;(2)设数列{na n }的前n 项和为S n ,求证:S n <1.【解】 (1)对f (x )=x +1x (x >0)求导,得f ′(x )=1-1x 2,则切线l n 的方程为:y -(n +1n)=(1-1n 2)(x -n ),即y =(1-1n2)x +2n.易知A n (n +1,n +1+1n +1),B n (n +1,n +1+n -1n 2), 由a n =|A n B n |知a n =|1n +1-n -1n 2|=1n 2n +1.(2)∵na n =1n n +1=1n -1n +1,∴S n =a 1+2a 2+…+na n =1-12+12-13+…+1n -1n +1=1-1n +1<1.[总结提升] 通过本节课的学习,需掌握如下三点: 失分盲点(1)裂项相消求和时易忽视常数:裂项过程中容易忽视常数,如1n n +2容易分裂为1n -1n +2,漏掉前面的系数12.(2)错位相减法求和易忽视项及符号: ①作差时,最后一项符号易错;②求和时,成等比数列的部分的项数易错; ③两边同除以(1-q )时,右边符号易错. 答题指导正确掌握数列求和的各种方法及使用条件,在分析通项的基础上,判断求和的类型,寻找求和的方法.等差数列、等比数列的定义、公式等要应用准确.方法规律1.裂项求和的常见技巧(1)1n n +1=1n -1n +1. (2)1n +n +k =1k ⎝ ⎛⎭⎪⎫1n -1n +k (3)1n 2-1=12⎝ ⎛⎭⎪⎫1n -1-1n +1(4)14n 2-1=12⎝ ⎛⎭⎪⎫12n -1-12n +12.数列中不等式的放缩技巧(1)1K 2<1K 2-1=12⎝ ⎛⎭⎪⎫1K -1-1K +1(2)1K -1K +1<1K 2<1K -1-1K. (3)2(n +1-n )<1n<2(n -n-1).数列证明问题中的运算1.在数学证明中,证明过程往往是以计算为主的,即通过计算的结果达到证明的目的,这说明运算求解能力在数学证明中具有重要地位.典型的是函数导数试题中不等式的证明、数列问题中不等式的证明.2.数列中的证明问题有等式的证明、不等式的证明、数列性质的证明等,在数列的证明问题中计算是完成证明的关键,运算求解能力是数列证明的核心.【典例】(xx·江西高考)正项数列{a n}的前n项和S n满足:S2n-(n2+n-1)S n-(n2+n)=0.(1)求数列{a n}的通项公式a n;(2)令b n=n+1n+22a2n,数列{b n}的前n项和为T n,证明:对于任意的n∈N*,都有T n<564.【解】(1)由S2n-(n2+n-1)S n-(n2+n)=0,得[S n-(n2+n)](S n+1)=0.由于{a n}是正项数列,所以S n>0,S n=n2+n.于是a1=S1=2,n≥2时,a n=S n-S n-1=n2+n-(n-1)2-(n-1)=2n.综上,数列{a n}的通项为a n=2n.(2)证明:由于a n=2n,b n=n+1n+22a2n,则b n=n+14n2n+22=116⎣⎢⎡⎦⎥⎤1n2-1n+22.T n=116⎣⎢⎢⎡⎦⎥⎥⎤1-132+122-142+132-152+…+1n-12-1n-12+1n2-1n+22=116×⎣⎢⎡⎦⎥⎤1+122-1n+12-1n+22 <116⎝⎛⎭⎪⎫1+122=564.【规律感悟】本题第二问裂项的依据是(n+2)2-n2=4(n+1),能快速找到这个方法,需要考生熟练掌握数学运算.在数列前n项和的不等式证明中有两个基本思路:一是先求和再放缩,其前提是数列求和能够完成;二是有的数列的前n项和很难求,甚至无法求,这时需要先对通项进行放缩(放缩后便于求和),再求和,再放缩,达到证明的目的.建议用时实际用时错题档案45分钟一、选择题1.(预测题)已知等差数列{a n}的前n项和为S n,a5=5,S5=15,则数列{1a n a n+1}的前100项和为( )A.100101B.99101C.99100D.101100【解析】利用裂项相消法求和.设等差数列{a n}的首项为a1,公差为d.∵a5=5,S5=15,∴⎩⎪⎨⎪⎧a 1+4d =5,5a 1+5×5-12d =15,∴⎩⎪⎨⎪⎧a 1=1,d =1,∴a n =a 1+(n -1)d =n .∴1a n a n +1=1n n +1=1n -1n +1,∴数列{1a n a n +1}的前100项和为1-12+12-13+…+1100-1101=1-1101=100101. 【答案】 A2.(xx·山东日照一模)已知数列{a n }的前n 项和S n =n 2-6n ,则{|a n |}的前n 项和T n =( )A .6n -n 2B .n 2-6n +18C.⎩⎪⎨⎪⎧6n -n 21≤n ≤3n 2-6n +18 n >3D.⎩⎪⎨⎪⎧6n -n 2 1≤n ≤3n 2-6n n >3【解析】 由S n =n 2-6n 得{a n }是等差数列,且首项为-5,公差为2. ∴a n =-5+(n -1)×2=2n -7, ∴n ≤3时,a n <0;n >3时,a n >0,∴T n =⎩⎪⎨⎪⎧6n -n 21≤n ≤3,n 2-6n +18 n >3. 【答案】 C3.(预测题)已知数列{a n }满足a n +1=12+a n -a 2n ,且a 1=12,则该数列的前2 015项的和等于( )A.3 0232B .3 023C .1 512D .3 024【解析】 因为a 1=12,又a n +1=12+a n -a 2n ,所以a 2=1,从而a 3=12,a 4=1,即得a n =⎩⎪⎨⎪⎧12,n =2k -1k ∈N *,1,n =2k k ∈N *,故数列的前2 015项的和等于S 2 015=1 007×(1+12)+1=3 0212+1=3 0232.【答案】 A4.(xx·山西大学附中4月模拟)已知函数f (x )是定义在R 上的单调增函数且为奇函数,数列{a n }是等差数列,a 1 008>0,则f (a 1)+f (a 2)+f (a 3)+…+f (a 2 014)+f (a 2 015)的值( )A .恒为正数B .恒为负数C .恒为0D .可正可负【解析】 ∵{a n }是等差数列,∴a 1+a 2 015=a 2+a 2 014=…=2a 1 008>0, 得a 1>-a 2 015,a 2>-a 2 014,…,又f (x )是定义在R 上的单调增函数, 且f (-x )=-f (x ),∴f (a 1)>-f (a 2 015),即f (a 1)+f (a 2 015)>0, 同理,f (a 2)+f (a 2 014)>0,…,∴f (a 1)+f (a 2)+…+f (a 2 014)+f (a 2 015)的值恒为正数,故选A. 【答案】 A5.(xx·郑州第一次质量预测)已知数列{a n }的通项公式为a n =1n +1n +n n +1(n∈N *),其前n 项和为S n ,则在数列S 1,S 2,…,S 2 014中,有理数项的项数为( )A .42B .43C .44D .45【解析】 a n =1n +1n +n n +1=n +1n -n n +1[n +1n +n n +1][n +1n -n n +1]=1n -1n +1,∴S n =(1-12)+(12-13)+(13-14)+…+(1n -1n +1)=1-1n +1,要使S n 是有理项,只需n +1是有理数(n=1,2,…,2 014),因此共有43项.【答案】 B 二、填空题6.(xx·福建厦门质检)已知数列{a n }中,a n +1=2a n ,a 3=8,则数列{log 2a n }的前n 项和等于________.【解析】 ∵a n +1a n=2,a 3=8,∴a 2=4,a 1=2,∴数列{a n }是以2为首项,2为公比的等比数列,∴a n =2n,∴log 2a n =n ,∴数列{log 2a n }的前n 项和等于n n +12.【答案】n n +127.(xx·广东广州综合测试)在数列{a n }中,已知a 1=1,a n +1=-1a n +1,记S n 为数列{a n }的前n 项和,则S 2 014=________.【解析】 a 1=1,a 2=-11+1=1-2,a 3=-1-12+1=-2,a 4=-1-2+1=1,…,数列{a n }是周期为3的周期数列,∴S 2 014=S 2 013+a 2 014=671×(-12-2+1)+1=-2 0112.【答案】 -2 01128.(xx·东北三校联考)已知数列{a n }的通项公式为a n =1n +1,前n 项和为S n .若对于任意正整数n ,不等式S 2n -S n >m16恒成立,则常数m 所能取得的最大整数为________.【解析】 由题知S 2n -S n =a n +1+a n +2+a n +3+…+a 2n =1n +2+1n +3+…+12n +1,令f (n )=1n +2+1n +3+…+12n +1,n ∈N *,f (n +1)=1n +3+1n +4+…+12n +1+12n +2+12n +3,又f (n +1)-f (n )=12n +2+12n +3-1n +2=3n +42n +22n +3n +2>0,∴函数f (n )单调递增,f (n )min =f (1)=13,依题意m 16<13,得m <163.故m 所能取得的最大整数是5.【答案】 5三、解答题9.(xx·全国新课标Ⅱ高考)已知数列{a n }满足a 1=1,a n +1=3a n +1.(1)证明{a n +12}是等比数列,并求{a n }的通项公式;(2)证明1a 1+1a 2+…+1a n <32.【证明】 (1)由a n +1=3a n +1得a n +1+12=3⎝⎛⎭⎪⎫a n +12. 又a 1+12=32,所以{a n +12}是首项为32,公比为3的等比数列.所以a n +12=3n2,因此{a n }的通项公式为a n =3n-12.(2)由(1)知1a n =23n -1.因为当n ≥1时,3n -1≥2×3n -1,所以13n -1≤12×3n -1.于是1a 1+1a 2+…+1a n ≤1+13+…+13n -1=32⎝ ⎛⎭⎪⎫1-13n <32.所以1a 1+1a 2+…+1a n <32.10.(xx·湖南高考)已知数列{a n }的前n 项和S n =n 2+n 2,n ∈N *.(1)求数列{a n }的通项公式;(2)设b n =2a n +(-1)na n ,求数列{b n }的前2n 项和. 【解】 (1)当n =1时,a 1=S 1=1;当n ≥2时,a n =S n -S n -1=n 2+n 2-n -12+n -12=n .故数列{a n }的通项公式为a n =n .(2)与(1)知,b n =2n +(-1)n n .记数列{b n }的前2n 项和为T 2n ,则T 2n =(21+22+ (22))+(-1+2-3+4-…+2n ).记A =21+22+ (22),B =-1+2-3+4-…+2n ,则A =21-22n1-2=22n +1-2,B =(-1+2)+(-3+4)+…+[-(2n -1)+2n ]=n .故数列{b n }的前2n 项和T 2n =A +B =22n +1+n -2.29119 71BF 熿q j20189 4EDD 仝36541 8EBD 躽36094 8CFE 賾26525 679D 枝T286737001 瀁34839 8817 蠗 @U。

2021年浙江高考数学复习课件:6.4 数列求和、数列的综合应用

2021年浙江高考数学复习课件:6.4 数列求和、数列的综合应用
na1.
例1 (2019浙江高考数学仿真卷,20)已知数列{an}为等差数列,且a2=3,a5=9, 数列{bn}满足Sn+bn=1,其中Sn为数列{bn}的前n项和,n∈N*. (1)求数列{an},{bn}的通项公式,并求数列{anbn}的前n项和Tn; (2)令cn=(a1+a2+…+an)×bn,设数列{cn}的前n项和为Rn,求证:Rn<6.
1 < 1 = n - n-1(n≥1).
2 n n n-1
考点三 数学归纳法
考向基础 1.由一系列有限的特殊事例得出一般结论的推理方法叫归纳法.根据 推理过程中考察的对象是涉及事物的全体或部分可分为完全归纳法和不 完全归纳法. 2.数学归纳法证题的步骤 (1)(归纳奠基)证明当n取第一个值n=n0(n0∈N*)时,命题成立. (2)(归纳递推)假设n=k(k≥n0,k∈N*)时,命题成立,证明当n=k+1时命题也成 立. 只要完成这两个步骤,就可以断定命题对从n0开始的所有正整数n都成立.
2n 2n
3
=3-
n2
4n 2n1
6
,
所以Rn=6-
n2
4n 2n
6
<6,故命题得证.
(15分)
方法2 裂项相消法求和
1.对于裂项后明显有能够相消的项的一类数列,在求和时常用“裂项法”, 分式数列的求和多用此法. 2.利用裂项相消法求和时,应注意抵消后并不一定只剩下第一项和最后一 项,也有可能前面剩两项,后面也剩两项.将通项裂项后,有时需要调整前面 的系数,使裂开的两项之差和系数之积与原通项相等.
+2
1 22
1 23

1 2n
=
1 2
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2.(2015·全国卷Ⅱ)设Sn是数列{an}的前n项和,且a1=-1,an+1=SnSn+1,则Sn=________.
- [∵an+1=Sn+1-Sn,an+1=SnSn+1,
∴Sn+1-Sn=SnSn+1.
∵Sn≠0,∴ - =1,即 - =-1.
又 =-1,∴ 是首项为-1,公差为-1的等差数列.
765[由a1=-60,an+1=an+3可得an=3n-63,则a21=0,|a1|+|a2|+…+|a30|=-(a1+a2+…+a20)+(a21+…+a30)=S30-2S20=765.]
■扣要点·查缺补漏·
1.分组求和:形如{an±bn}的数列求和,如T1.
2.并项求和:形如an=(-1)nf(n)的数列求和,如T2.
3.裂项相消求和:
形如 ,其中{an}是等差数列的求和.如T3.
4.错位相减法求和:
形如{an·bn}的数列求和,其中{an},{bn}分别为等差和等比两个不同的数列,如T4.
5.含绝对值的数列求和:先去绝对值,再求和,如T6.
6.数列的通项的求法
(1)利用an= 求通项时,要注意检验n=1的情况.如T5.
1.(2018·全国卷Ⅰ)记Sn为数列{an}的前n项和.若Sn=2an+1,则S6=________.
-63[因为Sn=2an+1,所以当n=1时,a1=2a1+1,解得a1=-1,
当n≥2时,an=Sn-Sn-1=2an+1-(2an-1+1),所以an=2an-1,所以数列{an}是以-1为首项,2为公比的等比数列,所以an=-2n-1,所以S6= =-63.]
5.已知Sn是数列{an}的前n项和,且有Sn=n2+1,则数列{an}的通项公式an=________.
[当n=1时,a1=S1=1+1=2,当n≥2时,an=Sn-Sn-1=(n2+1)-[(n-1)2+1]=2n-1.此时对于n=1不成立,故an= ]
6.数列{a|+…+|a30|=________.
A.15B.12
C.-12D.-15
A[∵an=(-1)n(3n-2),∴a1+a2+…+a10=-1+4-7+10-…-25+28=(-1+4)+(-7+10)+…+(-25+28)=3×5=15.]
3.若数列 的前n项和为 ,则n的值为()
A.9B.10
C.11D.12
B[∵ = = - ,
∴Sn= + +…+ =1- = ,
∴ =-1+(n-1)×(-1)=-n,∴Sn=- .]
3.(2013·全国卷Ⅰ)若数列{an}的前n项和Sn= an+ ,则{an}的通项公式是an=________.
(-2)n-1[当n=1时,S1= a1+ ,∴a1=1.
当n≥2时,an=Sn-Sn-1= an+ - = (an-an-1),
∴Sn+1=2Sn+3n,
∴ = · + ,
∴ -1= ,
又 -1= -1=- ,
∴数列 是首项为- ,公比为 的等比数列,
∴ -1=- × n-1=- n,
∴Sn=3n-2n.]
3.(活用前n项和的定义求通项)数列{an}满足 a1+ a2+ a3+…+ an=2n+1,则数列{an}的通项公式为________.
an= [因为 a1+ a2+ a3+…+ an=2n+1,
所以 a1+ a2+ a3+…+ an-1=2(n-1)+1,
两式相减得 an=2,
即an=2n+1,n≥2.
又 a1=3,
所以a1=6,
因此an= ]
考点2求数列{an}的前n项和
■高考串讲·找规律·
[高考解读·教师授课资源]试题常以递推关系为载体,通过构造或借助等差比数列的基本运算,运用方程思想求得an或Sn,再借助裂项法或分组求和法等求数列的前n项和,试题难易适中,面向全体,注重双基.预测2020年高考命题风格不变.
又当n≥2时,
an=Sn-Sn-1= an- an-1,
即an= an-1.
∴an= · · ·…· ·a1
= · · ·…· × ×1= .]
2.(用构造法求通项)数列{an}中,a1=1,an+1=Sn+3n(n∈N*,n≥1),则数列{Sn}的通项公式为________.
Sn=3n-2n[∵an+1=Sn+3n=Sn+1-Sn,
提醒:在利用an=Sn-Sn-1(n≥2)求通项公式时,务必验证n=1时的情形,看其是否可以与n≥2的表达式合并.
■考题变迁·提素养·
1.(用累加或累乘法求通项)已知数列{an}中,a1=1,前n项和Sn= an,则an=________.
[∵Sn= an,且a1=1,
∴当n=2时,a1+a2= a2,即a2=3a1=3.
2021年高考数学二轮复习第10讲:数列求和与综合问题
■做小题·激活思维·
1.若数列{an}的通项公式为an=2n+2n-1,则数列{an}的前n项和为()
A.2n+n2-1B.2n+1+n2-1
C.2n+1+n2-2D.2n+n-2
C[Sn= + =2n+1-2+n2.]
2.已知数列{an}的通项公式是an=(-1)n·(3n-2),则a1+a2+…+a10等于()
由 = 可知n=10.故选B.]
4.[一题多解] + + +…+ 等于()
A. B.
C. D.
B[法一:(错位相减法)令Sn= + + +…+ ,①
则 Sn= + +…+ + ,②
①-②,得 Sn= + + +…+ - = - .
∴Sn= .故选B.
法二:(验证法)取n=1时, = ,代入各选项验证可知选B.]
(2)根据数列的递推关系求通项的常用方法
①累加法:适用于形如an+1=an+f(n)的数列;
②累乘法:适用于形如 =f(n)的数列;
③构造法:形如an+1= ,可转化为 - = ,构造等差数列 ;
形如
考点1数列中的an与Sn的关系
■高考串讲·找规律·
[高考解读·教师授课资源]高考对本点的考查常以an=Sn-Sn-1n≥2为切入点,结合等差比数列的相关知识求an或Sn.预测2020年会以数列an与Sn的递推关系为载体,加强转化构造能力的考查.
∴an=-2an-1,即 =-2,
∴{an}是以1为首项的等比数列,其公比为-2,
∴an=1×(-2)n-1,即an=(-2)n-1.]
由Sn与an的关系求an的思路
利用Sn-Sn-1=an(n≥2)转化为an的递推关系,再求其通项公式;或者转化为Sn的递推关系,先求出Sn与n之间的关系,再求an.
相关文档
最新文档