二次函数的概念和意义
数学二次函数知识点总结
数学二次函数知识点总结数学二次函数知识点总结在平平淡淡的学习中,大家对知识点应该都不陌生吧?知识点也可以通俗的理解为重要的内容。
为了帮助大家更高效的学习,下面是店铺为大家收集的数学二次函数知识点总结,希望能够帮助到大家!数学二次函数知识点总结篇1二次函数(quadraticfunction)是指未知数的最高次数为二次的多项式函数。
二次函数可以表示为f(乘)=a乘^2b乘c(a不为0)。
其图像是一条主轴平行于y轴的抛物线。
一般的,自变量乘和因变量y之间存在如下关系:一般式y=a乘∧2;b乘c(a≠0,a、b、c为常数),顶点坐标为(-b/2a,-(4ac-b∧2)/4a);顶点式y=a(乘m)∧2k(a≠0,a、m、k为常数)或y=a(乘-h)∧2k (a≠0,a、h、k为常数),顶点坐标为(-m,k)对称轴为乘=-m,顶点的位置特征和图像的开口方向与函数y=a乘∧2的图像相同,有时题目会指出让你用配方法把一般式化成顶点式;交点式y=a(乘-乘1)(乘-乘2)[仅限于与乘轴有交点A(乘1,0)和B(乘2,0)的抛物线];重要概念:a,b,c为常数,a≠0,且a决定函数的开口方向,a>0时,开口方向向上,a<0时,开口方向向下。
a的绝对值还可以决定开口大小,a的绝对值越大开口就越小,a的绝对值越小开口就越大。
牛顿插值公式(已知三点求函数解析式)y=(y3(乘-乘1)(乘-乘2))/((乘3-乘1)(乘3-乘2)(y2(乘-乘1)(乘-乘3))/((乘2-乘1)(乘2-乘3)(y1(乘-乘2)(乘-乘3))/((乘1-乘2)(乘1-乘3)。
由此可引导出交点式的系数a=y1/(乘1乘乘2)(y1为截距)求根公式二次函数表达式的右边通常为二次三项式。
乘是自变量,y是乘的二次函数乘1,乘2=[-b±(√(b^2-4ac))]/2a(即一元二次方程求根公式)求根的方法还有因式分解法和配方法在平面直角坐标系中作出二次函数y=2乘的平方的图像,可以看出,二次函数的图像是一条永无止境的抛物线。
初中二次函数知识点总结(全面)
初中二次函数知识点总结(全面)初中二次函数知识点总结(全面)二次函数知识点(一)、二次函数概念:1.二次函数的概念:一般地,形如yax2bxc(a,b,c是常数,a0)的函数,叫做二次函数。
这里需要强调:和一元二次方程类似,二次项系数a0,而b,c 可以为零.二次函数的定义域是全体实数.2.二次函数yax2bxc的结构特征:⑴等号左边是函数,右边是关于自变量x的二次式,x的最高次数是2.⑵a,b,c是常数,a是二次项系数,b是一次项系数,c是常数项.(二)、二次函数yax2bxc的性质b4acb2b1.当a0时,抛物线开口向上,对称轴为x,顶点坐标为,.2a4a2a 当xbb时,y随x的增大而减小;当x时,y随x的增大而增大;当2a2a4acb2b.x 时,y有最小值4a2a2.当a0时,抛物线开口向下,对称轴为xb,顶点坐标为2ab4acb2bb 时,y随x的增大而增大;当x时,y随x的增,.当x4a2a2a2a4acb2b大而减小;当x时,y有最大值.4a2a(三)、二次函数解析式的表示方法1.一般式:yax2bxc(a,b,c为常数,a0);2.顶点式:ya(xh)2k(a,h,k为常数,a0);3.两根式:ya(xx1)(xx2)(a0,x1,x2是抛物线与x轴两交点的横坐标).注意:任何二次函数的解析式都可以化成一般式或顶点式,但并非所有的二次函数都可以写成交点式,只有抛物线与x轴有交点,即b24ac0时,抛物线的解析式才可以用交点式表示.二次函数解析式的这三种形式可以互化.练习1.下列关系式中,属于二次函数的是(x为自变量)()A.B.C.D.2.函数y=x2-2x+3的图象的顶点坐标是()A.(1,-4)B.(-1,2)C.(1,2)D.(0,3)3.抛物线y=2(x-3)2的顶点在()A.第一象限B.第二象限C.x轴上D.y轴上4.抛物线的对称轴是()A.x=-2B.x=2C.x=-4D.x=45.已知二次函数y=ax2+bx+c的图象如图所示,则下列结论中,正确的是()A.ab>0,c>0B.ab>0,c10.把抛物线的图象向左平移2个单位,再向上平移3个单位,所得的抛物线的函数关系式是()A.C.二、填空题1、下列函数中,哪些是二次函数?(1)yx20(3)yx2(2)y(x2)(x2)(x1)2B.D.1(4)yx22x3x2、二次函数y2(x3)25的图象开口方向,顶点坐标是,对称轴是;3、当k为何值时,函数y(k1)xk2k1为二次函数?画出其函数的图象.3、函数yx(23x),当x为时,函数的最大值是;14、二次函数yx22x,当x时,y0;且y随x的增大而减2小;5.二次函数y=x2-2x+1的对称轴方程是______________.6.若将二次函数y=x2-2x+3配方为y=(x-h)2+k的形式,则y=________.7.若抛物线y=x2-2x-3与x轴分别交于A、B两点,则AB的长为_________.8.抛物线y=x2+bx+c,经过A(-1,0),B(3,0)两点,则这条抛物线的解析式为_____________.9、二次函数yx2x的对称轴是.10二次函数y2x2x1的图象的顶点是,当x时,y随x的增大而减小.11抛物线yax4x6的顶点横坐标是-2,则a=.12、抛物线yax2xc的顶点是(,1),则a、c的值是多少?222213.已知抛物线y=125x-3x-22(1)写出抛物线的开口方向、对称轴和顶点坐标;(2)求抛物线与x轴、y轴的交点坐标;(3)画出草图(4)观察草图,指出x为何值时,y>0,y=0,y<0.14、(20xx年宁波市)如图,已知二次函数y12xbxc2的图象经过A(2,0)、B(0,-6)两点。
二次函数的意义
二次函数的意义二次函数是数学中的一个重要概念,是一种用于描述一些自然现象的数学模型。
在实际应用中,二次函数被广泛应用于物理、经济学、工程学等领域,具有重要的意义和作用。
本文将从二次函数的定义、图像和性质、应用等方面来探讨二次函数的意义。
一、二次函数的定义二次函数是指形如y=ax+bx+c的函数,其中a、b、c为常数,a ≠0。
二次函数的定义域为所有实数,值域为y≥c(当a>0)或y≤c (当a<0)。
二次函数的图像是一条开口朝上或朝下的抛物线。
当a>0时,抛物线开口朝上,此时二次函数的最小值为c;当a<0时,抛物线开口朝下,此时二次函数的最大值为c。
二次函数的图像关于直线x=-b/2a 对称。
二、二次函数的图像和性质二次函数的图像具有以下特点:1. 抛物线开口的方向由二次项系数a的正负决定。
2. 抛物线的顶点坐标为(-b/2a, c)。
3. 抛物线与x轴相交的点称为根,当抛物线与x轴相切时,根的重合点称为重根,当抛物线不与x轴相交时,称为无实根。
4. 当a>0时,二次函数的最小值为c;当a<0时,二次函数的最大值为c。
5. 二次函数的对称轴为直线x=-b/2a,对称中心为顶点。
6. 当a>0时,二次函数的值域为y≥c;当a<0时,二次函数的值域为y≤c。
三、二次函数的应用二次函数在实际应用中有着广泛的应用,具体包括以下几个方面: 1. 物理应用二次函数在物理学中有着重要的应用,如自由落体运动、抛体运动等。
自由落体运动可以用二次函数y=1/2gt来描述,其中g为重力加速度,t为时间。
抛体运动可以用二次函数y=-1/2gt+v0t+h来描述,其中v0为初速度,h为初高度。
2. 经济学应用二次函数在经济学中也有着广泛的应用。
例如,成本函数、收益函数等都可以用二次函数来描述。
成本函数可以用二次函数y=ax+bx+c来表示,其中a为边际成本,b为固定成本,c为总成本。
二次函数基础知识梳理
二次函数基础知识梳理一、二次函数概念:1.二次函数的概念:一般地,形如2y ax bx c=++(a b c,,是常数,0a≠)的函数,叫做二次函数。
这里需要强调:和一元二次方程类似,二次项系数0,可以为零.二次函数的定义域a≠,而b c是全体实数.2. 二次函数2=++的结构特征:y ax bx c⑴等号左边是函数,右边是关于自变量x的二次式,x的最高次数是2.⑵a b c,,是常数,a是二次项系数,b是一次项系数,c是常数项.二、二次函数的基本形式1. 二次函数基本形式:2y ax=的性质:a 的绝对值Array越大,抛物线的开口越小。
2. 2=+y ax c的性质:上加下减。
3. ()2y a x h =-的性质: 左加右减。
k +的三、二次函数图象的平移 1. 平移方法一:⑴ 将抛物线解析式转化成顶点式()2y a x h k =-+,确定其顶点坐标()h k ,; ⑵ 保持抛物线2y ax =的形状不变,将其顶点平移到()h k ,处,具体平移方法如下: 2. 平移规律在原有函数的基础上“h 值正右移,负左移;k 值正上移,负下移”. 概括成八个字“左加右减,上加下减”. 方法二:⑴c bx ax y ++=2沿y 轴平移:向上(下)平移m 个单位,c bx ax y ++=2变成m c bx ax y +++=2(或m c bx ax y -++=2)⑵c bx ax y ++=2沿x 轴平移:向左(右)平移m 个单位,c bx ax y ++=2变成c m x b m x a y ++++=)()(2(或c m x b m x a y +-+-=)()(2)四、二次函数()2y a x h k =-+与2y ax bx c =++的比较从解析式上看,()2y a x h k =-+与2y ax bx c =++是两种不同的表达形式,后者通过配方可以得到前者,即22424b ac b y a x a a -⎛⎫=++ ⎪⎝⎭,其中2424b ac b h k a a -=-=,. 五、二次函数2y ax bx c =++图象的画法五点绘图法:利用配方法将二次函数2y ax bx c =++化为顶点式2()y a x h k =-+,确定其开口方向、对称轴及顶点坐标,然后在对称轴两侧,左右对称地描点画图.一般我们选取的五点为:顶点、与y 轴的交点()0c ,、以及()0c ,关于对称轴对称的点()2h c ,、与x 轴的交点()10x ,,()20x ,(若与x 轴没有交点,则取两组关于对称轴对称的点).画草图时应抓住以下几点:开口方向,对称轴,顶点,与x 轴的交点,与y 轴的交点. 六、二次函数2y ax bx c =++的性质1. 当0a >时,抛物线开口向上,对称轴为2bx a =-,顶点坐标为2424b ac b a a ⎛⎫-- ⎪⎝⎭,. 当2b x a <-时,y 随x 的增大而减小;当2b x a >-时,y 随x 的增大而增大;当2bx a=-时,y 有最小值244ac b a-.2. 当0a <时,抛物线开口向下,对称轴为2b x a =-,顶点坐标为2424b ac b a a ⎛⎫-- ⎪⎝⎭,.当2bx a <-时,y 随x 的增大而增大;当2b x a >-时,y 随x 的增大而减小;当2bx a=-时,y 有最大值244ac b a -. 七、二次函数解析式的表示方法1. 一般式:2y ax bx c =++(a ,b ,c 为常数,0a ≠);2. 顶点式:2()y a x h k =-+(a ,h ,k 为常数,0a ≠);3. 两根式:12()()y a x x x x =--(0a ≠,1x ,2x 是抛物线与x 轴两交点的横坐标).注意:任何二次函数的解析式都可以化成一般式或顶点式,但并非所有的二次函数都可以写成交点式,只有抛物线与x 轴有交点,即240b ac -≥时,抛物线的解析式才可以用交点式表示.二次函数解析式的这三种形式可以互化. 八、二次函数的图象与各项系数之间的关系 九 二次函数解析式的确定:根据已知条件确定二次函数解析式,通常利用待定系数法.用待定系数法求二次函数的解析式必须根据题目的特点,选择适当的形式,才能使解题简便.一般来说,有如下几种情况:1. 已知抛物线上三点的坐标,一般选用一般式;2. 已知抛物线顶点或对称轴或最大(小)值,一般选用顶点式;3. 已知抛物线与x 轴的两个交点的横坐标,一般选用两根式;4. 已知抛物线上纵坐标相同的两点,常选用顶点式. 十、二次函数图象的对称十一、二次函数与一元二次方程:1. 二次函数与一元二次方程的关系(二次函数与x 轴交点情况):一元二次方程20ax bx c ++=是二次函数2y ax bx c =++当函数值0y =时的特殊情况. 图象与x 轴的交点个数:① 当240b ac ∆=->时,图象与x 轴交于两点()()1200A x B x ,,,12()x x ≠,其中的12x x ,是一元二次方程()200ax bx c a ++=≠的两根.这两点间的距离21AB x x =-.② 当0∆=时,图象与x 轴只有一个交点; ③ 当0∆<时,图象与x 轴没有交点.1' 当0a >时,图象落在x 轴的上方,无论x 为任何实数,都有0y >;2'当0a <时,图象落在x 轴的下方,无论x 为任何实数,都有0y <.2. 抛物线2y ax bx c =++的图象与y 轴一定相交,交点坐标为(0,)c ;3. 二次函数常用解题方法总结:⑴ 求二次函数的图象与x 轴的交点坐标,需转化为一元二次方程;⑵ 求二次函数的最大(小)值需要利用配方法将二次函数由一般式转化为顶点式;⑶ 根据图象的位置判断二次函数2y ax bx c =++中a ,b ,c 的符号,或由二次函数中a ,b ,c 的符号判断图象的位置,要数形结合;⑷ 二次函数的图象关于对称轴对称,可利用这一性质,求和已知一点对称的点坐标,或已知与x轴的一个交点坐标,可由对称性求出另一个交点坐标. 十二、二次函数的应用1.对于任意实数m ,下列函数一定是二次函数的是 ( )A .y=(m -1) 2x 2B .y=(m+1) 2x 2C .y=(m 2+1)x 2D .y=(m 2-1)x 2 2.已知二次函数y=(m+1)x 2有最大值,则m 的取值范围是_____.3.抛物线y=12-5x 2的对称轴为_______,顶点坐标为______.4.抛物线(1)(3)(0)y a x x a =+-≠的对称轴是直线( ) A .1x =B .1x =-C .3x =-D .3x =5.已知函数2)(22+-+=x m m mx y 的图象关于y 轴对称,则m =________;6.抛物线()2321--=x y +5,顶点坐标是 ,当x 时,y 随x 的增大而减小, 函数有最 值 .7.已知二次函数y=x 2-2x -3的函数值y<0,则x 的取值范围为______.8.已知二次函数y =a x 2+bx +c(a ≠0),其中a 、b 、c 满足a -b +c =0和9a +3b +c =0,则该二次函数的对称轴为直线_______.9.二次函数2365y x x =--+的图象的顶点坐标是( ) A .(18)-, B .(18),C .(12)-,D .(14)-,10.抛物线y=8x 2+2mx+m-2的顶点在x 轴上,则顶点坐标是( )A .(4,0)B . C. D .(0,)11. 不论x 取何值,二次函数y =-x 2+6x +c 的函数值总为负数,则c 的取值范围为 . 12.已知x 、y 都是正实数,且满足4x 2+4xy +y 2+2x +y -6=0,则x (1-y )的最小值为 . 13.若直线y =m (m 为常数)与函数y =⎩⎪⎨⎪⎧x 2(x ≤2)4x (x >2)的图像恒有三个不同的交点,则常数m 的取值范围是___________。
初中二次函数知识点
初中二次函数知识点二次函数是数学中非常重要的一种函数形式,也是初中数学学习的一个重要知识点。
本文将为大家详细介绍二次函数的相关概念、性质和应用。
一、二次函数的定义和一般形式二次函数是指形如 y=ax²+bx+c (其中a、b、c为常数,且a≠0)的函数。
其中x为自变量,y为因变量。
二次函数的一般形式表达了一个二次函数的特征:由一个二次幂项、一个一次项和一个常数项构成。
其中,二次幂项的系数a决定了函数的开口方向、形状和平移等属性;一次项的系数b决定了函数的位置和方向性;常数项c则决定了函数的纵向平移。
二、二次函数的图像特征1. 开口方向当二次函数的二次幂项系数a大于0时,函数的图像开口向上,形状类似于一个“U”字形,称为正向的。
当二次幂项系数a小于0时,函数的图像开口向下,形状类似于倒置的“U”字形,称为反向的。
2. 顶点二次函数的顶点是图像的最低或最高点,其横坐标为-b/2b。
顶点的纵坐标则根据二次函数的形状而定,当a>0时为最小值,当a<0时为最大值。
3. 对称轴二次函数的对称轴是垂直于x轴的一条直线,经过顶点。
对称轴的方程为x=-b/2a。
4. 零点二次函数的零点是函数图像与x轴的交点,即满足函数值为0的x值。
求解零点可以通过关于x的二次方程的解得到。
5. 范围和值域二次函数的范围取决于开口方向,当a>0时,范围是y≥最小值;当a<0时,范围是y≤最大值。
值域则为最小值到正无穷或最大值到负无穷的闭区间。
三、二次函数的常见变形1. 常数项的变形在二次函数的一般形式中,常数项c可以使函数图像上下平移,比如y=ax²+bx+c+3,就是原函数图像向上平移3个单位。
2. 一次项的变形一次项的系数b决定了函数图像的斜率和位置。
如果b>0,则图像向右倾斜;如果b<0,则图像向左倾斜。
3. 二次幂项的变形二次幂项的系数a决定了函数图像的开口方向和形状。
高考数学中的二次函数基本概念及相关性质
高考数学中的二次函数基本概念及相关性质高考数学中,二次函数是一个非常基础、重要的概念。
本文将从基本概念和相关性质两个方面,详细介绍二次函数的相关知识点。
一、基本概念二次函数,也叫做二次多项式函数,是指一个以x为自变量,x的二次多项式为函数值的函数,通常可以表示为y=ax²+bx+c。
其中,a、b、c分别是常数,a≠0。
1. 函数图像:二次函数的图像通常是一条开口朝上或开口朝下的抛物线。
如果a>0,则抛物线开口朝上;如果a<0,则抛物线开口朝下。
图像中的对称轴为x=-b/2a,抛物线的顶点坐标为(-b/2a, c-b²/4a)。
2. 零点:二次函数的零点是指函数图像与x轴的交点。
求二次函数的零点有两种方法:一种是利用求根公式,即x=[-b±√(b²-4ac)]/2a;另一种是将二次函数化为标准的完全平方公式,即y=a(x-h)²+k,其中(h, k)为抛物线的顶点坐标,直接利用完全平方公式求零点。
3. 对称性:二次函数具有轴对称性,即对于任意一点(x, y),点(-x, y)也在函数图像上。
二、相关性质除了基本概念外,二次函数还有一些重要的性质,这些性质通常在高考中频繁出现,需要认真掌握:1. 二次函数的最值:由于二次函数的函数图像是一条抛物线,因此其最值一定发生在抛物线的顶点处。
当a>0时,二次函数的最小值等于c-b²/4a,发生在点(-b/2a, c-b²/4a);当a<0时,二次函数的最大值等于c-b²/4a,发生在点(-b/2a, c-b²/4a)。
2. 二次函数的单调性:当a>0时,二次函数在其零点左右是单调递减和单调递增的;当a<0时,二次函数在其零点左右是单调递增和单调递减的。
3. 二次函数的导数:二次函数的导数f'(x)=2ax+b,是一个一次函数。
二次函数的概念和性质
二次函数的概念和性质二次函数是数学中常见的一种函数形式,它的一般形式为f(x) =ax^2 + bx + c,其中a、b、c为实数且a ≠ 0。
二次函数是由二次方程演变而来的,其图像呈现出特殊的形状,同时具有一些独特的性质。
本文将介绍二次函数的概念和性质,并分析其在数学和实际问题中的应用。
一、二次函数的概念二次函数是指函数表达式中的最高次项为二次的函数。
在二次函数的一般形式中,ax^2代表二次项,bx代表一次项,c代表常数项。
二次函数的变量x可以取任意实数值,并对应一个唯一的函数值f(x)。
当二次函数的系数a、b、c满足一定条件时,其图像呈现出不同的特征,如开口向上或向下、对称轴等。
二、二次函数的性质1. 平移性:二次函数的图像可以通过平移来变换位置。
当二次函数的表达式中添加或减去一个常数h时,图像向左或向右平移h个单位;当表达式中添加或减去一个常数k时,图像向上或向下平移k个单位。
2. 对称性:二次函数的图像关于对称轴对称。
对称轴是通过顶点的垂直线,其方程可以通过计算 x = -b/(2a) 得到。
3. 开口方向:二次函数的图像具有开口向上或向下的特征。
当a>0时,图像开口向上;当a<0时,图像开口向下。
a的绝对值决定了图像的开口程度。
4. 零点:二次函数的零点是函数图像与x轴的交点,即f(x) = 0的解。
零点可以通过解一元二次方程来求得,或者利用配方法化简二次函数的一般形式。
5. 最值:二次函数的最值即函数的最大值或最小值。
当二次函数的开口向上时,没有最小值;当二次函数的开口向下时,没有最大值。
最值的出现位置与顶点的坐标有关,顶点坐标可以通过计算 x = -b/(2a) 得到。
三、二次函数的应用二次函数在数学和实际问题中都具有广泛的应用。
在数学中,研究二次函数可以深入理解函数的性质、变化规律和图像特征。
在实际问题中,二次函数可以用来描述和解决与二次关系相关的各类问题,如自由落体运动、抛物线轨迹、经济增长模型等。
二次函数知识点总结
二次函数知识点一、二次函数概念:1.二次函数的概念:一般地,形如2y ax bx c =++(a b c ,,是常数,0a ≠)的函数,叫做二次函数。
这里需要强调:和一元二次方程类似,二次项系数0a ≠,而b c ,可以为零.二次函数的定义域是全体实数. 2. 二次函数2y ax bx c =++的结构特征:⑴ 等号左边是函数,右边是关于自变量x 的二次式,x 的最高次数是2. ⑵ a b c ,,是常数,a 是二次项系数,b 是一次项系数,c 是常数项. 二、二次函数的基本形式1. 二次函数基本形式:2y ax =的性质: a 的绝对值越大,抛物线的开口越小。
2. 2y ax c =+的性质: 上加下减。
3. ()2y a x h =-的性质:左加右减。
4.()2y a x h k =-+的性质:a 的符号开口方向 顶点坐标 对称轴 性质0a >向上()00, y 轴0x >时,y 随x 的增大而增大;0x <时,y 随x 的增大而减小;0x =时,y 有最小值0. 0a <向下()00,y 轴0x >时,y 随x 的增大而减小;0x <时,y 随x 的增大而增大;0x =时,y 有最大值0.a 的符号开口方向 顶点坐标 对称轴 性质0a >向上()0c , y 轴0x >时,y 随x 的增大而增大;0x <时,y 随x 的增大而减小;0x =时,y 有最小值c . 0a <向下()0c ,y 轴0x >时,y 随x 的增大而减小;0x <时,y 随x 的增大而增大;0x =时,y 有最大值c .a 的符号开口方向 顶点坐标 对称轴 性质0a >向上()0h , X=hx h >时,y 随x 的增大而增大;x h <时,y 随x 的增大而减小;x h =时,y 有最小值0. 0a <向下 ()0h ,X=hx h >时,y 随x 的增大而减小;x h <时,y 随x 的增大而增大;x h =时,y 有最大值0.a 的符号开口方向 顶点坐标对称轴 性质0a >向上()h k ,X=hx h >时,y 随x 的增大而增大;x h <时,y 随x 的增大而减小;x h =时,y 有最小值k .三、二次函数图象的平移 1. 平移步骤:方法一:⑴ 将抛物线解析式转化成顶点式()2y a x h k =-+,确定其顶点坐标()h k ,; ⑵ 保持抛物线2y ax =的形状不变,将其顶点平移到()h k ,处,具体平移方法如下: 向右(h >0)【或左(h <0)】平移 |k|个单位向上(k >0)【或下(k <0)】平移|k |个单位向右(h >0)【或左(h <0)】平移|k|个单位向右(h >0)【或左(h <0)】平移|k|个单位向上(k >0)【或下(k <0)】平移|k |个单位向上(k >0)【或向下(k <0)】平移|k |个单位y=a (x-h )2+ky=a (x-h )2y=ax 2+ky=ax 22. 平移规律在原有函数的基础上“h 值正右移,负左移;k 值正上移,负下移”. 概括成八个字“左加右减,上加下减”. 方法二: ⑴c bx ax y ++=2沿y 轴平移:向上(下)平移m 个单位,c bx ax y ++=2变成m c bx ax y +++=2(或m c bx ax y -++=2)⑵c bx ax y ++=2沿轴平移:向左(右)平移m 个单位,c bx ax y ++=2变成c m x b m x a y ++++=)()(2(或c m x b m x a y +-+-=)()(2)四、二次函数()2y a x h k =-+与2y ax bx c =++的比较从解析式上看,()2y a x h k =-+与2y ax bx c =++是两种不同的表达形式,后者通过配方可以得到前者,即22424b ac b y a x a a -⎛⎫=++⎪⎝⎭,其中2424b ac b h k a a -=-=,. 五、二次函数2y ax bx c =++图象的画法五点绘图法:利用配方法将二次函数2y ax bx c =++化为顶点式2()y a x h k =-+,确定其开口方向、对称轴及顶点坐标,然后在对称轴两侧,左右对称地描点画图.一般我们选取的五点为:顶点、与y 轴的交点()0c ,、以及()0c ,关于对称轴对称的点()2h c ,、与x 轴的交点()10x ,,()20x ,(若与x 轴没有交点,则取两组关于对称轴对称的点). 画草图时应抓住以下几点:开口方向,对称轴,顶点,与x 轴的交点,与y 轴的交点.六、二次函数2y ax bx c =++的性质1. 当0a >时,抛物线开口向上,对称轴为2bx a =-,顶点坐标为2424b ac b a a ⎛⎫-- ⎪⎝⎭,. 0a < 向下()h k ,X=hx h >时,y 随x 的增大而减小;x h <时,y 随x 的增大而增大;x h =时,y 有最大值k .当2b x a <-时,y 随x 的增大而减小;当2b x a >-时,y 随x 的增大而增大;当2bx a =-时,y 有最小值244ac b a -.2. 当0a <时,抛物线开口向下,对称轴为2b x a =-,顶点坐标为2424b ac b a a ⎛⎫-- ⎪⎝⎭,.当2bx a <-时,y 随x 的增大而增大;当2b x a >-时,y 随x 的增大而减小;当2bx a=-时,y 有最大值244ac b a -. 七、二次函数解析式的表示方法1. 一般式:2y ax bx c =++(a ,b ,c 为常数,0a ≠); 2. 顶点式:2()y a x h k =-+(a ,h ,k 为常数,0a ≠);3. 两根式:12()()y a x x x x =--(0a ≠,1x ,2x 是抛物线与x 轴两交点的横坐标).注意:任何二次函数的解析式都可以化成一般式或顶点式,但并非所有的二次函数都可以写成交点式,只有抛物线与x 轴有交点,即240b ac -≥时,抛物线的解析式才可以用交点式表示.二次函数解析式的这三种形式可以互化.八、二次函数的图象与各项系数之间的关系 1. 二次项系数a二次函数2y ax bx c =++中,a 作为二次项系数,显然0a ≠.⑴ 当0a >时,抛物线开口向上,a 的值越大,开口越小,反之a 的值越小,开口越大; ⑵ 当0a <时,抛物线开口向下,a 的值越小,开口越小,反之a 的值越大,开口越大.总结起来,a 决定了抛物线开口的大小和方向,a 的正负决定开口方向,a 的大小决定开口的大小. 2. 一次项系数b在二次项系数a 确定的前提下,b 决定了抛物线的对称轴. ⑴ 在0a >的前提下,当0b >时,02ba-<,即抛物线的对称轴在y 轴左侧; 当0b =时,02ba-=,即抛物线的对称轴就是y 轴; 当0b <时,02ba->,即抛物线对称轴在y 轴的右侧. ⑵ 在0a <的前提下,结论刚好与上述相反,即 当0b >时,02ba->,即抛物线的对称轴在y 轴右侧; 当0b =时,02ba-=,即抛物线的对称轴就是y 轴; 当0b <时,02ba-<,即抛物线对称轴在y 轴的左侧. 总结起来,在a 确定的前提下,b 决定了抛物线对称轴的位置.ab 的符号的判定:对称轴abx 2-=在y 轴左边则0>ab ,在y 轴的右侧则0<ab ,概括的说就是“左同右异” 总结: 3. 常数项c⑴ 当0c >时,抛物线与y 轴的交点在x 轴上方,即抛物线与y 轴交点的纵坐标为正;⑵ 当0c =时,抛物线与y 轴的交点为坐标原点,即抛物线与y 轴交点的纵坐标为0; ⑶ 当0c <时,抛物线与y 轴的交点在x 轴下方,即抛物线与y 轴交点的纵坐标为负. 总结起来,c 决定了抛物线与y 轴交点的位置. 总之,只要a b c ,,都确定,那么这条抛物线就是唯一确定的.二次函数解析式的确定:根据已知条件确定二次函数解析式,通常利用待定系数法.用待定系数法求二次函数的解析式必须根据题目的特点,选择适当的形式,才能使解题简便.一般来说,有如下几种情况:1. 已知抛物线上三点的坐标,一般选用一般式;2. 已知抛物线顶点或对称轴或最大(小)值,一般选用顶点式;3. 已知抛物线与x 轴的两个交点的横坐标,一般选用两根式;4. 已知抛物线上纵坐标相同的两点,常选用顶点式.九、二次函数图象的对称二次函数图象的对称一般有五种情况,可以用一般式或顶点式表达 1. 关于x 轴对称2y ax bx c =++关于x 轴对称后,得到的解析式是2y ax bx c =---;()2y a x h k =-+关于x 轴对称后,得到的解析式是()2y a x h k =---;2. 关于y 轴对称 2y ax bx c =++关于y 轴对称后,得到的解析式是2y ax bx c =-+;()2y a x h k =-+关于y 轴对称后,得到的解析式是()2y a x h k =++;3. 关于原点对称2y ax bx c =++关于原点对称后,得到的解析式是2y ax bx c =-+-; ()2y a x h k =-+关于原点对称后,得到的解析式是()2y a x h k =-+-; 4. 关于顶点对称(即:抛物线绕顶点旋转180°)2y ax bx c =++关于顶点对称后,得到的解析式是222b y ax bx c a=--+-;()2y a x h k =-+关于顶点对称后,得到的解析式是()2y a x h k =--+.5. 关于点()m n ,对称 ()2y a x h k =-+关于点()m n ,对称后,得到的解析式是()222y a x h m n k =-+-+-根据对称的性质,显然无论作何种对称变换,抛物线的形状一定不会发生变化,因此a 永远不变.求抛物线的对称抛物线的表达式时,可以依据题意或方便运算的原则,选择合适的形式,习惯上是先确定原抛物线(或表达式已知的抛物线)的顶点坐标及开口方向,再确定其对称抛物线的顶点坐标及开口方向,然后再写出其对称抛物线的表达式.十、二次函数与一元二次方程:1. 二次函数与一元二次方程的关系(二次函数与x 轴交点情况):一元二次方程20ax bx c ++=是二次函数2y ax bx c =++当函数值0y =时的特殊情况. 图象与x 轴的交点个数:① 当240b ac ∆=->时,图象与x 轴交于两点()()1200A x B x ,,,12()x x ≠,其中的12x x ,是一元二次方程()200ax bx c a ++=≠的两根.这两点间的距离2214b acAB x x a-=-=.② 当0∆=时,图象与x 轴只有一个交点; ③ 当0∆<时,图象与x 轴没有交点.1' 当0a >时,图象落在x 轴的上方,无论x 为任何实数,都有0y >;2' 当0a <时,图象落在x 轴的下方,无论x 为任何实数,都有0y <.2. 抛物线2y ax bx c =++的图象与y 轴一定相交,交点坐标为(0,)c ;3. 二次函数常用解题方法总结:⑴ 求二次函数的图象与x 轴的交点坐标,需转化为一元二次方程;⑵ 求二次函数的最大(小)值需要利用配方法将二次函数由一般式转化为顶点式;⑶ 根据图象的位置判断二次函数2y ax bx c =++中a ,b ,c 的符号,或由二次函数中a ,b ,c 的符号判断图象的位置,要数形结合;⑷ 二次函数的图象关于对称轴对称,可利用这一性质,求和已知一点对称的点坐标,或已知与x 轴的一个交点坐标,可由对称性求出另一个交点坐标.⑸ 与二次函数有关的还有二次三项式,二次三项式2(0)ax bx c a ++≠本身就是所含字母x 的二次函数;下面以0a >时为例,揭示二次函数、二次三项式和一元二次方程之间的内在联系:图像参考:y=x 22y=2x 2y=x 2y=-2x 2y= -x 2y= -x 220∆> 抛物线与x 轴有两个交点二次三项式的值可正、可零、可负一元二次方程有两个不相等实根∆=抛物线与x 轴只有一个交点二次三项式的值为非负一元二次方程有两个相等的实数根∆<抛物线与x 轴无交点二次三项式的值恒为正 一元二次方程无实数根.y=2x 2-4y=2x 2+2y=2x 2y=3(x+4)2y=3(x-2)2y=3x 2y=-2(x+3)2y=-2(x-3)2y=-2x 2十一、函数的应用二次函数应用⎧⎪⎨⎪⎩刹车距离何时获得最大利润最大面积是多少二次函数考查重点与常见题型1. 考查二次函数的定义、性质,有关试题常出现在选择题中,如: 已知以x 为自变量的二次函数2)2(22--+-=m m x m y 的图像经过原点, 则m 的值是2. 综合考查正比例、反比例、一次函数、二次函数的图像,习题的特点是在同一直角坐标系内考查两个函数的图像,试题类型为选择题,如:如图,如果函数b kx y +=的图像在第一、二、三象限内,那么函数12-+=bx kx y 的图像大致是( )y y y y1 10 x o-1 x 0 x 0 -1 x A B C D3. 考查用待定系数法求二次函数的解析式,有关习题出现的频率很高,习题类型有中档解答题和选拔性的综合题,如: 已知一条抛物线经过(0,3),(4,6)两点,对称轴为35=x,求这条抛物线的解析式。
二次函数的基本概念
二次函数的基本概念二次函数是一种重要的数学概念,广泛应用于数学、物理、经济等领域。
它的基本形式为 y = ax^2 + bx + c,其中 a、b、c 是实数且a ≠ 0。
本文将介绍二次函数的定义、图像特征以及常见的应用。
一、二次函数的定义二次函数是一个具有二次项的多项式,其中最高次数是 2。
它的标准形式为 y = ax^2 + bx + c,其中 a 是二次项的系数,b 是一次项的系数,c 是常数项。
二、二次函数的图像特征1. 开口方向二次函数图像的开口方向由二次项的系数 a 决定。
如果 a > 0,图像开口向上;如果 a < 0,图像开口向下。
2. 对称轴二次函数的图像是关于对称轴对称的,对称轴的方程为 x = -b/2a。
3. 顶点对于开口向上的二次函数,顶点是图像的最低点;对于开口向下的二次函数,顶点是图像的最高点。
顶点的 x 坐标为 -b/2a,y 坐标为代入 x 值所得到的 y 值。
4. 零点零点是二次函数图像与 x 轴交点的横坐标值,可以通过求解方程ax^2 + bx + c = 0 来确定。
三、二次函数的常见应用1. 抛物线二次函数的图像形状类似于一个U型的抛物线,因此在物理学中经常用于描述抛体运动的轨迹。
例如,从地面抛出的物体在忽略风阻等因素时,其运动轨迹可以使用二次函数来描述。
2. 经济学在经济学中,二次函数常常用于建模分析。
例如,成本函数、收益函数等均可使用二次函数来表达。
通过对二次函数的研究,可以分析经济决策的最优解以及变化的趋势。
3. 工程工程领域中,二次函数广泛应用于设计和优化问题。
例如,工程结构的抗弯强度、最优路径的寻找等问题都可以通过建立相应的二次函数模型来解决。
4. 自然科学自然科学中,二次函数可以用于描述和分析物理量之间的关系。
例如,光的折射、声音的传播等现象可以通过二次函数来描绘。
总结通过对二次函数的基本概念的介绍,我们了解了二次函数的定义、图像特征以及常见的应用。
二次函数百科
二次函数百科
摘要:
1.二次函数的定义与基本概念
2.二次函数的性质与图像
3.二次函数的应用领域
正文:
二次函数是指形如y=ax^2+bx+c(其中a≠0)的函数,其中a、b、c 为常数,x 为自变量,y 为因变量。
它是一种多项式函数,也是数学中最基本、最重要的函数类型之一。
二次函数在数学、物理、化学、工程等领域具有广泛的应用。
二次函数的性质与图像:
1.开口方向:当a>0 时,二次函数的图像开口向上,表示函数有最小值;当a<0 时,二次函数的图像开口向下,表示函数有最大值。
2.对称轴:二次函数的对称轴为x=-b/2a,即直线x=-b/2a。
3.顶点:二次函数的顶点为(-b/2a, c - b^2/4a),是函数的最值点。
二次函数的应用领域:
1.物理学:在物理学中,二次函数常常用于描述物体的位移、速度、加速度等运动规律。
2.工程学:在工程领域,二次函数被广泛应用于设计建筑物的拱形结构、机械设备的优化设计等。
3.经济学:在经济学中,二次函数可以用于描述生产成本、市场需求等经济指标的变化规律。
4.数学分析:在数学分析中,二次函数是微积分、概率论等高级数学分支的基础。
综上所述,二次函数作为一种基本的数学函数,具有重要的理论意义和广泛的应用价值。
二次函数知识点梳理
二次函数的基础一、考点、热点回顾二次函数知识点一、二次函数概念:1.二次函数的概念:一般地,形如(是常数,)的函数,叫做二次函数。
这里需要强调:和一元二次方程类似,二次项系数,而可以为零.二次函数的定义域是全体实数.2.二次函数的结构特征:⑴等号左边是函数,右边是关于自变量的二次式,的最高次数是2.⑵是常数,是二次项系数,是一次项系数,是常数项.二、二次函数的基本形式1.二次函数基本形式:的性质:a的绝对值越大,抛物线的开口越小。
2.的性质:上加下减。
3.的性质:左加右减。
的符号开口方向顶点坐标对称轴性质向上轴时,随的增大而增大;时,随的增大而减小;时,有最小值.向下轴时,随的增大而减小;时,随的增大而增大;时,有最大值.的符号开口方向顶点坐标对称轴性质向上轴时,随的增大而增大;时,随的增大而减小;时,有最小值.向下轴时,随的增大而减小;时,随的增大而增大;时,有最大值.的符号开口方向顶点坐标对称轴性质向上X =h时,随的增大而增大;时,随的增大而减小;时,有最小值.向下X =h时,随的增大而减小;时,随的增大而增大;时,有最大值.4.的性质:三、二次函数图象的平移在原有函数的基础上“值正右移,负左移;值正上移,负下移”.概括成八个字“左加右减,上加下减”.方法二:⑴沿轴平移:向上(下)平移个单位,变成(或)⑵沿轴平移:向左(右)平移个单位,变成(或)四、二次函数与的比较从解析式上看,与是两种不同的表达形式,后者通过配方可以得到前者,即,其中.五、二次函数图象的画法五点绘图法:利用配方法将二次函数化为顶点式,确定其开口方向、对称轴及顶点坐标,然后在对称轴两侧,左右对称地描点画图.一般我们选取的五点为:顶点、与轴的交点、以及关于对称轴对称的点、与轴的交点,(若与轴没有交点,则取两组关于对称轴对称的点).画草图时应抓住以下几点:开口方向,对称轴,顶点,与轴的交点,与轴的交点.六、二次函数的性质1.当时,抛物线开口向上,对称轴为,顶点坐标为.当时,随的增大而减小;当时,随的增大而增大;当时,有最小值.的符号开口方向顶点坐标对称轴性质向上X =h时,随的增大而增大;时,随的增大而减小;时,有最小值.向下X =h时,随的增大而减小;时,随的增大而增大;时,有最大值.2.当时,抛物线开口向下,对称轴为,顶点坐标为.当时,随的增大而增大;当时,随的增大而减小;当时,有最大值.七、二次函数解析式的表示方法1.一般式:(,,为常数,);2.顶点式:(,,为常数,);3.两根式:(,,是抛物线与轴两交点的横坐标).注意:任何二次函数的解析式都可以化成一般式或顶点式,但并非所有的二次函数都可以写成交点式,只有抛物线与轴有交点,即时,抛物线的解析式才可以用交点式表示.二次函数解析式的这三种形式可以互化.八、二次函数的图象与各项系数之间的关系1.二次项系数二次函数中,作为二次项系数,显然.⑴当时,抛物线开口向上,的值越大,开口越小,反之的值越小,开口越大;⑵当时,抛物线开口向下,的值越小,开口越小,反之的值越大,开口越大.总结起来,决定了抛物线开口的大小和方向,的正负决定开口方向,的大小决定开口的大小.2.一次项系数在二次项系数确定的前提下,决定了抛物线的对称轴.⑴在的前提下,当时,,即抛物线的对称轴在轴左侧;当时,,即抛物线的对称轴就是轴;当时,,即抛物线对称轴在轴的右侧.⑵在的前提下,结论刚好与上述相反,即当时,,即抛物线的对称轴在轴右侧;当时,,即抛物线的对称轴就是轴;当时,,即抛物线对称轴在轴的左侧.总结起来,在确定的前提下,决定了抛物线对称轴的位置.的符号的判定:对称轴在轴左边则,在轴的右侧则,概括的说就是“左同右异”总结:3.常数项⑴当时,抛物线与轴的交点在轴上方,即抛物线与轴交点的纵坐标为正;⑵当时,抛物线与轴的交点为坐标原点,即抛物线与轴交点的纵坐标为;⑶当时,抛物线与轴的交点在轴下方,即抛物线与轴交点的纵坐标为负.总结起来,决定了抛物线与轴交点的位置.总之,只要都确定,那么这条抛物线就是唯一确定的.二次函数解析式的确定:根据已知条件确定二次函数解析式,通常利用待定系数法.用待定系数法求二次函数的解析式必须根据题目的特点,选择适当的形式,才能使解题简便.一般来说,有如下几种情况:1.已知抛物线上三点的坐标,一般选用一般式;2.已知抛物线顶点或对称轴或最大(小)值,一般选用顶点式;3.已知抛物线与轴的两个交点的横坐标,一般选用两根式;4.已知抛物线上纵坐标相同的两点,常选用顶点式.九、二次函数图象的对称二次函数图象的对称一般有五种情况,可以用一般式或顶点式表达1.关于轴对称关于轴对称后,得到的解析式是;关于轴对称后,得到的解析式是;2.关于轴对称关于轴对称后,得到的解析式是;关于轴对称后,得到的解析式是;3.关于原点对称关于原点对称后,得到的解析式是;关于原点对称后,得到的解析式是;4.关于顶点对称(即:抛物线绕顶点旋转180°)关于顶点对称后,得到的解析式是;关于顶点对称后,得到的解析式是.5.关于点对称关于点对称后,得到的解析式是根据对称的性质,显然无论作何种对称变换,抛物线的形状一定不会发生变化,因此永远不变.求抛物线的对称抛物线的表达式时,可以依据题意或方便运算的原则,选择合适的形式,习惯上是先确定原抛物线(或表达式已知的抛物线)的顶点坐标及开口方向,再确定其对称抛物线的顶点坐标及开口方向,然后再写出其对称抛物线的表达式.十、二次函数与一元二次方程:1.二次函数与一元二次方程的关系(二次函数与轴交点情况):一元二次方程是二次函数当函数值时的特殊情况.图象与轴的交点个数:①当时,图象与轴交于两点,其中的是一元二次方程的两根.这两点间的距离.②当时,图象与轴只有一个交点;③当时,图象与轴没有交点.当时,图象落在轴的上方,无论为任何实数,都有;当时,图象落在轴的下方,无论为任何实数,都有.2.抛物线的图象与轴一定相交,交点坐标为,;3.二次函数常用解题方法总结:⑴求二次函数的图象与轴的交点坐标,需转化为一元二次方程;⑵求二次函数的最大(小)值需要利用配方法将二次函数由一般式转化为顶点式;⑶根据图象的位置判断二次函数中,,的符号,或由二次函数中,,的符号判断图象的位置,要数形结合;⑷二次函数的图象关于对称轴对称,可利用这一性质,求和已知一点对称的点坐标,或已知与轴的一个交点坐标,可由对称性求出另一个交点坐标.⑸与二次函数有关的还有二次三项式,二次三项式本身就是所含字母的二次函数;下面以时为例,揭示二次函数、二次三项式和一元二次方程之间的内在联系:十一、函数的应用二次函数应用抛物线与轴有两个交点二次三项式的值可正、可零、可负一元二次方程有两个不相等实根抛物线与轴只有一个交点二次三项式的值为非负一元二次方程有两个相等的实数根抛物线与轴无交点二次三项式的值恒为正一元二次方程无实数根.。
二次函数知识点总结[1]
二次函数知识点一、二次函数概念:1.二次函数的概念:一般地,形如2y ax bx c =++(a b c ,,是常数,0a ≠)的函数,叫做二次函数。
这里需要强调:和一元二次方程类似,二次项系数0a ≠,而b c ,可以为零.二次函数的定义域是全体实数.2. 二次函数2y ax bx c =++的结构特征:⑴ 等号左边是函数,右边是关于自变量x 的二次式,x 的最高次数是2. ⑵ a b c ,,是常数,a 是二次项系数,b 是一次项系数,c 是常数项.二、二次函数的基本形式1. 二次函数基本形式:2y ax =的性质: a 的绝对值越大,抛物线的开口越小。
2. 2y ax c =+的性质: 上加下减。
3. ()2y a x h =-的性质:左加右减。
4. ()2y a x h k =-+的性质:1. 平移步骤:方法一:⑴ 将抛物线解析式转化成顶点式()2y a x h k =-+,确定其顶点坐标()h k ,; ⑵ 保持抛物线2y ax =的形状不变,将其顶点平移到()h k ,处,具体平移方法如下: 【或左(h <0)】向右(h >0)【或左(h 平移|k|个单位2. 平移规律在原有函数的基础上“h 值正右移,负左移;k 值正上移,负下移”. 概括成八个字“左加右减,上加下减”. 方法二:⑴c bx ax y ++=2沿y 轴平移:向上(下)平移m 个单位,c bx ax y ++=2变成m c bx ax y +++=2(或m c bx ax y -++=2)⑵c bx ax y ++=2沿轴平移:向左(右)平移m 个单位,c bx ax y ++=2变成c m x b m x a y ++++=)()(2(或c m x b m x a y +-+-=)()(2)四、二次函数()2y a x h k =-+与2y ax bx c =++的比较从解析式上看,()2y a x h k =-+与2y ax bx c =++是两种不同的表达形式,后者通过配方可以得到前者,即22424b ac b y a x a a -⎛⎫=++ ⎪⎝⎭,其中2424b ac b h k a a -=-=,. 五、二次函数2y ax bx c =++图象的画法五点绘图法:利用配方法将二次函数2y ax bx c =++化为顶点式2()y a x h k =-+,确定其开口方向、对称轴及顶点坐标,然后在对称轴两侧,左右对称地描点画图.一般我们选取的五点为:顶点、与y 轴的交点()0c ,、以及()0c ,关于对称轴对称的点()2h c ,、与x 轴的交点()10x ,,()20x ,(若与x 轴没有交点,则取两组关于对称轴对称的点).画草图时应抓住以下几点:开口方向,对称轴,顶点,与x 轴的交点,与y 轴的交点.六、二次函数2y ax bx c =++的性质1. 当0a >时,抛物线开口向上,对称轴为2bx a =-,顶点坐标为2424b ac b a a ⎛⎫-- ⎪⎝⎭,.当2b x a <-时,y 随x 的增大而减小;当2b x a >-时,y 随x 的增大而增大;当2bx a=-时,y 有最小值244ac b a-.2. 当0a <时,抛物线开口向下,对称轴为2b x a =-,顶点坐标为2424b ac b a a ⎛⎫-- ⎪⎝⎭,.当2bx a <-时,y 随x 的增大而增大;当2b x a >-时,y 随x 的增大而减小;当2bx a=-时,y 有最大值244ac b a -.七、二次函数解析式的表示方法1. 一般式:2y ax bx c =++(a ,b ,c 为常数,0a ≠);2. 顶点式:2()y a x h k =-+(a ,h ,k 为常数,0a ≠);3. 两根式:12()()y a x x x x =--(0a ≠,1x ,2x 是抛物线与x 轴两交点的横坐标).注意:任何二次函数的解析式都可以化成一般式或顶点式,但并非所有的二次函数都可以写成交点式,只有抛物线与x 轴有交点,即240b ac -≥时,抛物线的解析式才可以用交点式表示.二次函数解析式的这三种形式可以互化.八、二次函数的图象与各项系数之间的关系1. 二次项系数a二次函数2y ax bx c =++中,a 作为二次项系数,显然0a ≠.⑴ 当0a >时,抛物线开口向上,a 的值越大,开口越小,反之a 的值越小,开口越大; ⑵ 当0a <时,抛物线开口向下,a 的值越小,开口越小,反之a 的值越大,开口越大.总结起来,a 决定了抛物线开口的大小和方向,a 的正负决定开口方向,a 的大小决定开口的大小. 2. 一次项系数b在二次项系数a 确定的前提下,b 决定了抛物线的对称轴. ⑴ 在0a >的前提下,当0b >时,02ba-<,即抛物线的对称轴在y 轴左侧; 当0b =时,02ba-=,即抛物线的对称轴就是y 轴; 当0b <时,02ba->,即抛物线对称轴在y 轴的右侧. ⑵ 在0a <的前提下,结论刚好与上述相反,即当0b >时,02ba->,即抛物线的对称轴在y 轴右侧; 当0b =时,02ba-=,即抛物线的对称轴就是y 轴; 当0b <时,02ba-<,即抛物线对称轴在y 轴的左侧. 总结起来,在a 确定的前提下,b 决定了抛物线对称轴的位置.ab 的符号的判定:对称轴abx 2-=在y 轴左边则0>ab ,在y 轴的右侧则0<ab ,概括的说就是“左同右异” 总结:3. 常数项c⑴ 当0c >时,抛物线与y 轴的交点在x 轴上方,即抛物线与y 轴交点的纵坐标为正; ⑵ 当0c =时,抛物线与y 轴的交点为坐标原点,即抛物线与y 轴交点的纵坐标为0; ⑶ 当0c <时,抛物线与y 轴的交点在x 轴下方,即抛物线与y 轴交点的纵坐标为负. 总结起来,c 决定了抛物线与y 轴交点的位置. 总之,只要a b c ,,都确定,那么这条抛物线就是唯一确定的.二次函数解析式的确定:根据已知条件确定二次函数解析式,通常利用待定系数法.用待定系数法求二次函数的解析式必须根据题目的特点,选择适当的形式,才能使解题简便.一般来说,有如下几种情况:1. 已知抛物线上三点的坐标,一般选用一般式;2. 已知抛物线顶点或对称轴或最大(小)值,一般选用顶点式;3. 已知抛物线与x 轴的两个交点的横坐标,一般选用两根式;4. 已知抛物线上纵坐标相同的两点,常选用顶点式.九、二次函数图象的对称二次函数图象的对称一般有五种情况,可以用一般式或顶点式表达 1. 关于x 轴对称2y ax bx c =++关于x 轴对称后,得到的解析式是2y ax bx c =---;()2y a x h k =-+关于x 轴对称后,得到的解析式是()2y a x h k =---;2. 关于y 轴对称2y ax bx c =++关于y 轴对称后,得到的解析式是2y ax bx c =-+;()2y a x h k =-+关于y 轴对称后,得到的解析式是()2y a x h k =++;3. 关于原点对称2y ax bx c =++关于原点对称后,得到的解析式是2y ax bx c =-+-; ()2y a x h k =-+关于原点对称后,得到的解析式是()2y a x h k =-+-; 4. 关于顶点对称(即:抛物线绕顶点旋转180°)2y ax bx c =++关于顶点对称后,得到的解析式是222b y ax bx c a=--+-;()2y a x h k =-+关于顶点对称后,得到的解析式是()2y a x h k =--+.5. 关于点()m n ,对称 ()2y a x h k =-+关于点()m n ,对称后,得到的解析式是()222y a x h m n k =-+-+-根据对称的性质,显然无论作何种对称变换,抛物线的形状一定不会发生变化,因此a 永远不变.求抛物线的对称抛物线的表达式时,可以依据题意或方便运算的原则,选择合适的形式,习惯上是先确定原抛物线(或表达式已知的抛物线)的顶点坐标及开口方向,再确定其对称抛物线的顶点坐标及开口方向,然后再写出其对称抛物线的表达式.十、二次函数与一元二次方程:1. 二次函数与一元二次方程的关系(二次函数与x 轴交点情况):一元二次方程20ax bx c ++=是二次函数2y ax bx c =++当函数值0y =时的特殊情况. 图象与x 轴的交点个数:① 当240b ac ∆=->时,图象与x 轴交于两点()()1200A x B x ,,,12()x x ≠,其中的12x x ,是一元二次方程()200ax bx c a ++=≠的两根.这两点间的距离21AB x x =-.② 当0∆=时,图象与x 轴只有一个交点;③ 当0∆<时,图象与x 轴没有交点.1' 当0a >时,图象落在x 轴的上方,无论x 为任何实数,都有0y >; 2' 当0a <时,图象落在x 轴的下方,无论x 为任何实数,都有0y <. 2. 抛物线2y ax bx c =++的图象与y 轴一定相交,交点坐标为(0,)c ;3. 二次函数常用解题方法总结:⑴ 求二次函数的图象与x 轴的交点坐标,需转化为一元二次方程;⑵ 求二次函数的最大(小)值需要利用配方法将二次函数由一般式转化为顶点式;⑶ 根据图象的位置判断二次函数2y ax bx c =++中a ,b ,c 的符号,或由二次函数中a ,b ,c 的符号判断图象的位置,要数形结合;⑷ 二次函数的图象关于对称轴对称,可利用这一性质,求和已知一点对称的点坐标,或已知与x 轴的一个交点坐标,可由对称性求出另一个交点坐标. ⑸ 与二次函数有关的还有二次三项式,二次三项式2(0)ax bx c a ++≠本身就是所含字母x 的二次函数;下面以0a >时为例,揭示二次函数、二次三项式和一元二次方程之间的内在联系:图像参考:y=-2x22y=3(x+4)22y=3x2y=-2(x-3)22-32十一、函数的应用二次函数应用⎧⎪⎨⎪⎩刹车距离何时获得最大利润最大面积是多少二次函数考查重点与常见题型1. 考查二次函数的定义、性质,有关试题常出现在选择题中,如:已知以x 为自变量的二次函数2)2(22--+-=m m x m y 的图像经过原点, 则m 的值是2. 综合考查正比例、反比例、一次函数、二次函数的图像,习题的特点是在同一直角坐标系内考查两个函数的图像,试题类型为选择题,如: 如图,如果函数b kx y +=的图像在第一、二、三象限内,那么函数12-+=bx kx y 的图像大致是( )3. 考查用待定系数法求二次函数的解析式,有关习题出现的频率很高,习题类型有中档解答题和选拔性的综合题,如: 已知一条抛物线经过(0,3),(4,6)两点,对称轴为35=x ,求这条抛物线的解析式。
二次函数知识点总结
二次函数知识点一、二次函数概念:1.二次函数的概念:一般地,形如2y ax bx c =++(a b c ,,是常数,0a ≠)的函数,叫做二次函数。
这里需要强调:和一元二次方程类似,二次项系数0a ≠,而b c ,可以为零.二次函数的定义域是全体实数. 2. 二次函数2y ax bx c =++的结构特征:⑴ 等号左边是函数,右边是关于自变量x 的二次式,x 的最高次数是2. ⑵ a b c ,,是常数,a 是二次项系数,b 是一次项系数,c 是常数项. 二、二次函数的基本形式1. 二次函数基本形式:2y ax =的性质: a 的绝对值越大,抛物线的开口越小。
2. 2y ax c =+的性质: 上加下减。
3. ()2y a x h =-的性质:左加右减。
4.()2y a x h k=-+的性质:三、二次函数图象的平移1. 平移步骤:方法一:⑴ 将抛物线解析式转化成顶点式()2y a x h k =-+,确定其顶点坐标()h k ,; ⑵ 保持抛物线2y ax =的形状不变,将其顶点平移到()h k ,处,具体平移方法如下:2. 平移规律在原有函数的基础上“h 值正右移,负左移;k 值正上移,负下移”. 概括成八个字“左加右减,上加下减”. 方法二:⑴c bx ax y ++=2沿y 轴平移:向上(下)平移m 个单位,c bx ax y ++=2变成m c bx axy +++=2(或m c bx axy -++=2)⑵c bx ax y ++=2沿轴平移:向左(右)平移m 个单位,c bx ax y ++=2变成c m x b m x a y ++++=)()(2(或c m x b m x a y +-+-=)()(2)四、二次函数()2y a x h k =-+与2y ax bx c =++的比较从解析式上看,()2y a x h k =-+与2y ax bx c =++是两种不同的表达形式,后者通过配方可以得到前者,即22424b ac b y a x a a -⎛⎫=++⎪⎝⎭,其中2424b ac b h k a a -=-=,. 五、二次函数2y ax bx c =++图象的画法五点绘图法:利用配方法将二次函数2y ax bx c =++化为顶点式2()y a x h k =-+,确定其开口方向、对称轴及顶点坐标,然后在对称轴两侧,左右对称地描点画图.一般我们选取的五点为:顶点、与y 轴的交点()0c ,、以及()0c ,关于对称轴对称的点()2h c ,、与x 轴的交点()10x ,,()20x ,(若与x 轴没有交点,则取两组关于对称轴对称的点). 画草图时应抓住以下几点:开口方向,对称轴,顶点,与x 轴的交点,与y 轴的交点.【或左(h <0)】向右(h >0)【或左(h 平移|k|个单位六、二次函数2y ax bx c =++的性质1. 当0a >时,抛物线开口向上,对称轴为2bx a =-,顶点坐标为2424b ac b a a ⎛⎫-- ⎪⎝⎭,.当2b x a<-时,y 随x 的增大而减小;当2b x a >-时,y 随x 的增大而增大;当2b x a=-时,y 有最小值244ac b a-.2. 当0a <时,抛物线开口向下,对称轴为2bx a =-,顶点坐标为2424b ac b a a ⎛⎫-- ⎪⎝⎭,.当2bx a <-时,y 随x 的增大而增大;当2b x a>-时,y 随x 的增大而减小;当2b x a=-时,y 有最大值244ac b a-.七、二次函数解析式的表示方法1. 一般式:2y ax bx c =++(a ,b ,c 为常数,0a ≠);2. 顶点式:2()y a x h k =-+(a ,h ,k 为常数,0a ≠);3. 两根式:12()()y a x x x x =--(0a ≠,1x ,2x 是抛物线与x 轴两交点的横坐标). 注意:任何二次函数的解析式都可以化成一般式或顶点式,但并非所有的二次函数都可以写成交点式,只有抛物线与x轴有交点,即240b ac -≥时,抛物线的解析式才可以用交点式表示.二次函数解析式的这三种形式可以互化. 八、二次函数的图象与各项系数之间的关系 1. 二次项系数a二次函数2y ax bx c =++中,a 作为二次项系数,显然0a ≠.⑴ 当0a >时,抛物线开口向上,a 的值越大,开口越小,反之a 的值越小,开口越大; ⑵ 当0a <时,抛物线开口向下,a 的值越小,开口越小,反之a 的值越大,开口越大.总结起来,a 决定了抛物线开口的大小和方向,a 的正负决定开口方向,a 的大小决定开口的大小. 2. 一次项系数b在二次项系数a 确定的前提下,b 决定了抛物线的对称轴. ⑴ 在0a >的前提下,当0b >时,02b a -<,即抛物线的对称轴在y 轴左侧; 当0b =时,02b a -=,即抛物线的对称轴就是y 轴; 当0b <时,02b a->,即抛物线对称轴在y 轴的右侧.⑵ 在0a <的前提下,结论刚好与上述相反,即 当0b >时,02b a ->,即抛物线的对称轴在y 轴右侧; 当0b =时,02b a -=,即抛物线的对称轴就是y 轴; 当0b <时,02b a-<,即抛物线对称轴在y 轴的左侧.总结起来,在a 确定的前提下,b 决定了抛物线对称轴的位置.ab 的符号的判定:对称轴ab x 2-=在y 轴左边则0>ab ,在y 轴的右侧则0<ab ,概括的说就是“左同右异”总结:3. 常数项c⑴ 当0c >时,抛物线与y 轴的交点在x 轴上方,即抛物线与y 轴交点的纵坐标为正; ⑵ 当0c =时,抛物线与y 轴的交点为坐标原点,即抛物线与y 轴交点的纵坐标为0;⑶ 当0c <时,抛物线与y 轴的交点在x 轴下方,即抛物线与y 轴交点的纵坐标为负. 总结起来,c 决定了抛物线与y 轴交点的位置.总之,只要a b c ,,都确定,那么这条抛物线就是唯一确定的. 二次函数解析式的确定:根据已知条件确定二次函数解析式,通常利用待定系数法.用待定系数法求二次函数的解析式必须根据题目的特点,选择适当的形式,才能使解题简便.一般来说,有如下几种情况:1. 已知抛物线上三点的坐标,一般选用一般式;2. 已知抛物线顶点或对称轴或最大(小)值,一般选用顶点式;3. 已知抛物线与x 轴的两个交点的横坐标,一般选用两根式;4. 已知抛物线上纵坐标相同的两点,常选用顶点式.九、二次函数图象的对称二次函数图象的对称一般有五种情况,可以用一般式或顶点式表达 1. 关于x 轴对称2y ax bx c =++关于x 轴对称后,得到的解析式是2y ax bx c =---;()2y a x h k=-+关于x 轴对称后,得到的解析式是()2y a x h k =---;2. 关于y 轴对称2y ax bx c =++关于y 轴对称后,得到的解析式是2y ax bx c =-+;()2y a x h k=-+关于y 轴对称后,得到的解析式是()2y a x h k =++;3. 关于原点对称2y ax bx c =++关于原点对称后,得到的解析式是2y ax bx c =-+-; ()2y a x h k =-+关于原点对称后,得到的解析式是()2y a x h k =-+-; 4. 关于顶点对称(即:抛物线绕顶点旋转180°)2y ax bx c =++关于顶点对称后,得到的解析式是222by ax bx c a=--+-;()2y a x h k=-+关于顶点对称后,得到的解析式是()2y a x h k =--+.5. 关于点()m n ,对称()2y a x h k=-+关于点()m n ,对称后,得到的解析式是()222y a x h m n k =-+-+-根据对称的性质,显然无论作何种对称变换,抛物线的形状一定不会发生变化,因此a 永远不变.求抛物线的对称抛物线的表达式时,可以依据题意或方便运算的原则,选择合适的形式,习惯上是先确定原抛物线(或表达式已知的抛物线)的顶点坐标及开口方向,再确定其对称抛物线的顶点坐标及开口方向,然后再写出其对称抛物线的表达式.十、二次函数与一元二次方程:1. 二次函数与一元二次方程的关系(二次函数与x 轴交点情况):一元二次方程20ax bx c ++=是二次函数2y ax bx c =++当函数值0y =时的特殊情况. 图象与x 轴的交点个数:① 当240b ac ∆=->时,图象与x 轴交于两点()()1200A x B x ,,,12()x x ≠,其中的12x x ,是一元二次方程()200ax bx c a ++=≠的两根.这两点间的距离21AB x x =-=② 当0∆=时,图象与x 轴只有一个交点; ③ 当0∆<时,图象与x 轴没有交点.1' 当0a >时,图象落在x 轴的上方,无论x 为任何实数,都有0y >; 2'当0a <时,图象落在x 轴的下方,无论x 为任何实数,都有0y <. 2. 抛物线2y ax bx c =++的图象与y 轴一定相交,交点坐标为(0,)c ; 3. 二次函数常用解题方法总结:⑴ 求二次函数的图象与x 轴的交点坐标,需转化为一元二次方程;⑵ 求二次函数的最大(小)值需要利用配方法将二次函数由一般式转化为顶点式;⑶ 根据图象的位置判断二次函数2y ax bx c =++中a ,b ,c 的符号,或由二次函数中a ,b ,c 的符号判断图象的位置,要数形结合;⑷ 二次函数的图象关于对称轴对称,可利用这一性质,求和已知一点对称的点坐标,或已知与x 轴的一个交点坐标,可由对称性求出另一个交点坐标. ⑸ 与二次函数有关的还有二次三项式,二次三项式2(0)ax bx c a ++≠本身就是所含字母x 的二次函数;下面以0a >时为例,揭示二次函数、二次三项式和一元二次方程之间的内在联系:图像参考:y=-2x 2十一、函数的应用二次函数应用⎧⎪⎨⎪⎩刹车距离何时获得最大利润最大面积是多少二次函数考查重点与常见题型1. 考查二次函数的定义、性质,有关试题常出现在选择题中,如:已知以x 为自变量的二次函数2)2(22--+-=m m x m y 的图像经过原点, 则m 的值是2. 综合考查正比例、反比例、一次函数、二次函数的图像,习题的特点是在同一直角坐标系内考查两个函数的图像,试题类型为选择题,如: 如图,如果函数b kx y +=的图像在第一、二、三象限内,那么函数12-+=bx kx y 的图像大致是( )3. 考查用待定系数法求二次函数的解析式,有关习题出现的频率很高,习题类型有中档解答题和选拔性的综合题,如:已知一条抛物线经过(0,3),(4,6)两点,对称轴为35=x ,求这条抛物线的解析式。
二次函数的图像和性质
初三数学:二次函数的图像和性质【基础知识】一、二次函数的概念和图像 1.二次函数的概念一般地,如果)0,,(2≠++=a c b a c bx ax y 是常数,,那么y 叫做x 的二次函数。
)0,,(2≠++=a c b a c bx ax y 是常数,叫做二次函数的一般式。
2.二次函数的图像二次函数的图像是一条关于abx 2-=对称的曲线,这条曲线叫抛物线。
抛物线的主要特征: ①开口方向;②对称轴;③顶点。
二、二次函数的性质2、二次函数)0,,(2≠++=a c b a c bx ax y 是常数,中,c b 、、a 的含义:a 表示开口方向:a >0时,抛物线开口向上a <0时,抛物线开口向下yO1c+-1 b 与对称轴的位置有关(左同右异):对称轴为x=ab2- c 看抛物线与y 轴的交点坐标: 三、二次函数图象的平移2. 平移规律“左加右减,上加下减”. 【典型例题】如图,矩形ABCD 的两边长AB =18cm ,AD =4cm ,点P 、Q 分别从A 、B 同时出发,P 在边AB 上沿AB 方向以每秒2cm 的速度匀速运动,Q 在边BC 上沿BC 方向以每秒1cm 的速度匀速运动.设运动时间为x 秒,△PBQ 的面积为y (cm 2). (1)求y 关于x 的函数关系式,并写出x 的取值范围; (2)求△PBQ 的面积的最大值.对应练习:1. 二次函数2y ax bx c =++的图象如图所示,则反比例函数ay x=与一次函数y bx c =+在同一坐标系中的大致图象是( ).2. 如图,已知二次函数c bx x y ++=2的图象经过点(-1,0), (1,-2),当y 随x 的增大而增大时,x 的取值范围是 . 3. 已知二次函数c bx ax y ++=2的图像如图,其对称轴1-=x ,给出 下列结果①ac b 42>②0>abc ③02=+b a ④0>++c b a ⑤0<+-c b a , 则正确的结论是( )A ①②③④B ②④⑤C ②③④D ①④⑤ 【课堂检测】 22.(2013哈尔滨)把抛物线y=(x+1)2向下平移2个单位,再向右平移1个单位,所得到的抛物线是( ).(A)y=(x+2)2+2 (B)y=(x+2)2-2 (C)y=x 2+2 (D)y=x 2-24.(2011重庆)已知抛物线()20y ax bx c a =++≠在平面直角坐标系中的位置如图所示,则下列结论中,正确的是( ) A 、a >0 B 、b <0 C 、c <0 D 、a +b +c >05.(2011浙江)已知二次函数的图象(0≤x ≤3)如图所示,关于该函数在所给自变量取值范围内,下列说法正确的是( )A 、有最小值0,有最大值3B 、有最小值﹣1,有最大值0C 、有最小值﹣1,有最大值3D 、有最小值﹣1,无最大值 6.(2013•广安)已知二次函数y=ax 2+bx+c 的图象如图所示,对称轴是直线x=1.下列结论:①abc >O ,②2a+b=O ,③b 2﹣4ac <O ,④4a+2b+c >O7.(2012重庆)已知二次函数)0(2≠++=a c bx ax y 的图象如图所示对称轴为21-=x 。
初中数学二次函数知识点总结
初中数学二次函数知识点总结(实用版)编制人:__________________审核人:__________________审批人:__________________编制单位:__________________编制时间:____年____月____日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。
文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的实用范文,如工作计划、工作总结、演讲稿、合同范本、心得体会、条据文书、应急预案、教学资料、作文大全、其他范文等等,想了解不同范文格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!Moreover, our store provides various types of practical sample essays for everyone, such as work plans, work summaries, speech drafts, contract templates, personal experiences, policy documents, emergency plans, teaching materials, complete essays, and other sample essays. If you want to learn about different formats and writing methods of sample essays, please stay tuned!初中数学二次函数知识点总结初中数学二次函数知识点总结(精选30篇)初中数学二次函数知识点总结篇11、定义与定义表达式一般地,自变量X和因变量y之间存在如下关系:y=aX^2+bX+c (a,b,c为常数,a≠0,且a决定函数的开口方向,a>0时,开口方向向上,a 二次函数表达式的右边通常为二次三项式。
二次函数知识点
a >0 ⇔x无论取何值,y总是大于零 无论取何值,y ,y总是大于零 Δ <0
x
0
a <0 ⇔x无论取何值,y总是小于零 无论取何值,y ,y总是小于零 Δ <0
二、二次函数的解析式 +bx+c(一般式 一般式) y=ax2+bx+c(一般式) y=a(x- +k(顶点式 顶点式) y=a(x-h)2+k(顶点式)
在对称轴的左侧,y随着x的增大而减小. 在对称轴的左侧,y随着x的增大而增大. ,y随着 在对称轴的左侧,y随着x的增大而减小. 在对称轴的左侧,y随着x的增大而增大. ,y随着 在对称轴的右侧,y随着x的增大而增大. 在对称轴的右侧,y随着x的增大而减小. ,y随着 ,y随着 在对称轴的右侧,y随着x的增大而增大. 在对称轴的右侧,y随着x的增大而减小.
y=ax2
(0,0)
上下左右平移
y=a(xy=a(x-h)2+k
(h,k)
y=a(xy=a(x-h)2
(h,0) (2)翻折对称 旋转变化:关于x 翻折对称、 原点对称( (2)翻折对称、旋转变化:关于x轴、y轴、原点对称(关 于谁谁不变,关于原点都改变),绕顶点旋转180 ),绕顶点旋转 于谁谁不变,关于原点都改变),绕顶点旋转1800
(4)抛物线与x轴的交点情况 (4)抛物线与x 抛物线与
二次函数y=ax 二次函数y=ax2+bx+c 的图象和x 的图象和x轴交点 一元二次方程ax 一元二次方程ax2+bx+c=0 根的判别式Δ=b 根的判别式Δ=b2-4ac
有两个交点 有一个交点 顶点 没有交点
y
△= b2-4ac > 0 △= b2-4ac = 0 △= b2-4ac < 0
二次函数知识点归纳
二次函数知识点归纳二次函数知识点总结:1.二次函数的概念:一般地,形如 y = ax^2 + bx + c(a,b,c 是常数,a ≠ 0)的函数,叫做二次函数。
需要强调的是,和一元二次方程类似,二次项系数a ≠ 0,而 b,c 可以为零。
二次函数的定义域是全体实数。
2.二次函数 y = ax^2 + bx + c 的结构特征:⑴等号左边是函数,右边是关于自变量 x 的二次式,x 的最高次数是 2.⑵ a,b,c 是常数,a 是二次项系数,b 是一次项系数,c 是常数项。
二次函数基本形式:1.二次函数基本形式:y = ax^2 的性质:结论:a 的绝对值越大,抛物线的开口越小。
总结:a 的符号开口方向顶点坐标对称轴向上 a。
0 (0.0) y 轴x。
0 时,y 随 x 的增大而增大;x < 0 时,y 随 x 的增大而减小;x = 0 时,y 有最小值。
向下 a < 0 (0.0) y 轴x。
0 时,y 随 x 的增大而减小;x < 0 时,y 随 x 的增大而增大;x = 0 时,y 有最大值。
2.y = ax^2 + c 的性质:结论:上加下减。
总结:a 的符号开口方向顶点坐标对称轴向上 a。
0 (0.c) y 轴x。
0 时,y 随 x 的增大而增大;x < 0 时,y 随 x 的增大而减小;x = 0 时,y 有最小值 c。
向下 a < 0 (0.c) y 轴x。
0 时,y 随 x 的增大而减小;x < 0 时,y 随 x 的增大而增大;x = 0 时,y 有最大值 c。
3.y = a(x - h)^2 的性质:结论:左加右减。
总结:a 的符号开口方向顶点坐标对称轴向上 a。
0 (h。
0) x = hx。
h 时,y 随 x 的增大而增大;x < h 时,y 随 x 的增大而减小;x = h 时,y 有最小值。
向下 a < 0 (h。
0) x = hx。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
二次函数1
一、二次函数的概念
1.二次函数的一般形式是:__________________ ,其中a 、b 、c 是____数,___ ≠0.
2.二次函数还有三个特殊形式,分别是______________,________________,_______________.
3.一般情况下,二次函数自变量的取值范围是__________________
例1 已知关于x 的函数x m x m y m
m )1()
1(2-++=-.
(1) 当m 为何值时,此函数是二次函数?(2)当m 为何值时,此函数是一次函数?
练11.下列函数中,哪些是二次函数? ________________________________ (1)y=5x +1 (2)y=4x 2-1 (3)y=2x(x 2-3x) (4)c bx ax y ++=2(5)y=2x -
21
x
+1 2.若222)1()32(m x m x m m y +-+--=是关于x 的二次函数,则m 应满足条件______________. 3.若x x m m y m m 2)(2
2-+=-是关于x 的二次函数,求关于x 的不等式(m-4)x >m+2的最大整数值.
二、根据实际问题列二次函数的解析式
例2如图,学校要修建草坪,形状是直角梯形,其中有两条边的夹角是135°的两面墙,另外两条边是总长为30米的栅栏。
求梯形面积y 与高x 的函数关系式,并写出x 的取值范围。
一个长为4cm,宽为3cm 的矩形,如果长和宽都增加xcm ,那么它的面积就会增加y 2cm . y 与x 的函数关系式是__________________,自变量x 的取值范围是_______________。
2.用长为8m 的铝合金条做成如图形状的一个矩形窗框,设宽为xm,窗户的透光面积为y 2m ,那么这个窗户的透光面积与宽的关系式是____________,自变量x 的取值范围是_______________。
3.如图,四边形ABCD 中,∠BAD=∠BCA=90°,AB=AD,AC=4BC,设CD 的长为x ,四边形ABCD 的面积为y,求y 与x 的函数关系式。
三、二次函数2ax y =的图像和性质
1.抛物线y =ax 2的性质
2.抛物线y =x 2与y =-x 2关于________对称,因此,抛物线y =ax 2与y =-ax 2关于_______ 对称, 开口大小_______________.
3.当a >0时,a 越大,抛物线的开口越_____; 当a <0时,|a | 越大,抛物线的开口越___; 因此,|a | 越大,抛物线的开口越________,反之,|a | 越小,抛物线的开口越______. 例3函数2ax y =(a ≠0)的图象与直线y=x-2交于点(1,b ).(1)若A(-3,y 1)、B(-2,y 2)在2ax y =的图象上,请判断y 1与y 2的大小;(2)求抛物线与直线y=-3的两交点及顶点所构成的三角形面积。
练31.若a=-1,点(a -1,y 1),(a ,y 2),(a+5,y3)都在2ax y =的图象上,则( ) A .y 1<y 2<y 3 B .y 1<y 3<y 2 C .y 3<y 1<y 2 D .y 2<y 1<y 3 2.如图,① y =ax 2 ② y =bx 2 ③ y =cx 2 ④ y =dx 2,比较a 、b 、c 、d 的大小, 用“>”连接:_______________________
3.函数y=ax 2 (a ≠0)与y=-ax+b 在同一坐标系的图象可能是图中的( )
4.已知抛物线y=ax 2 经过点A(2,1)。
(1)写出抛物线上点A 关于y 轴的对称点B 点的坐标。
(2)抛物线上是否存在点C ,使△ABC 的面积等于△AOB 面积的一半,若存在,求出C 点的坐标;若不存在,请说明理由。
图象 (草图) 开口方向 顶点 对称轴 有最高 (低)点
最值 增减性
a >0 当x =____时,y 有最_______值,是______.
a <0 当x =____时,y 有最_______值,是______.
o
y
x
o
y
o
y
o
y
x
x
x
x。