第4章电位器式传感器
第四章传感器原理习题
第四章 传感器原理习题4-1以阻值R =120Ω,灵敏系数K =2.0的电阻应变片与阻值120Ω的固定电阻组成电桥,供桥电压为3V ,并假定负载电压为无穷大,当应变片的应变为2με和2000με时,分别求出单臂、双臂差动电桥的输出电压,并比较两种情况下的灵敏度。
4-2 在材料为钢的实心圆柱试件上,沿轴线和圆周方向各贴一片电阻为Ω120的金属应变片R 1和R 2,把这两片应变片接入差动电桥(题图4-2)。
若钢的泊松比μ=0.285,应变片的灵敏系数K =2,电桥的电源电压U i=2V ,当试件受轴向拉伸时,测得应变片R 1的电阻变化值∆R =0.48Ω,试求电桥的输出电压U 0;若柱体直径d =10mm ,材料的弹性模量211N/m 102E ⨯=,求其所受拉力大小。
题图4-2 差动电桥电路4-3 一台采用等强度的梁的电子称,在梁的上下两面各贴有两片电阻应变片,做成称重量的传感器,如习题图4-3所示。
已知l =10mm ,b 0=11mm ,h =3mm , 24N/mm 102.1E ⨯=,K =2,接入直流四臂差动电桥,供桥电压6V ,求其电压灵敏度(K u=U 0/F)。
当称重0.5kg 时,电桥的输出电压U 0为多大?题图4-3悬臂梁式力传感器4-4 有四个性能完全相同的应变片(K =2.0),将其贴在习题图4-4所示的压力传感器圆板形感压膜片上。
已知膜片的半径R =20mm ,厚度 h =0.3mm ,材料的泊松比μ=0.285,弹性模量211N/m 102E ⨯=。
现将四个应变片组成全桥测量电路,供桥电压U i=6V 。
求:(1)确定应变片在感压膜片上的位置,并画出位置示意图;(2)画出相应的全桥测量电路图;(3)当被测压力为0.1MPa 时,求各应变片的应变值及测量桥路输出电压U 0;(4)该压力传感器是否具有温度补偿作用?为什么?(5)桥路输出电压与被测压力按是否存在线性关系?题图4-4 膜片式压力传感器4-5一测量线位移的电位器式传感器,测量范围为0~10mm ,分辨力为0.05mm ,灵敏度为2.7V/mm ,电位器绕线骨架外径d =0.5mm ,电阻丝材料为铂铱合金,其电阻率为mm Ω103.25ρ4⋅⨯=-。
电位器式传感器原理
电位器式传感器原理
电位器式传感器是一种常见的传感器技术,其原理基于电位器的工作原理。
电位器是由一个可调节的电阻器组成的,通过调节电位器的移动部分,可以改变电阻器的阻值。
当外部引入变量作用于电位器上时,移动部分的位置将发生改变,从而改变电阻器的阻值。
在电位器式传感器中,外部引入的变量可以是温度、压力、光强等物理量。
以温度传感器为例,传感器中的电阻器受到温度的影响,电阻值随着温度的变化而发生变化。
为了测量电位器的阻值变化,通常会将一个电压加到电位器的两端,并使用一个电压分压电路来测量电位器上的电压。
电压分压电路可以将电位器上的电压转换为与电位器阻值成比例的电压输出。
通过测量电位器上的电压输出,可以推导出外部引入变量的数值。
例如,在温度传感器中,通过校准和电阻值-温度曲线的
关系,可以得出温度的数值。
总结来说,电位器式传感器的原理是基于电位器的电阻值随外部引入变量的改变而变化,通过测量电位器上的电压输出来推导出外部变量的数值。
这种传感器原理广泛应用于测量和控制领域。
电位器式传感器
x后,A点到电刷间的阻值为:
x Rx xmax Rmax
(2-1)
若把它当作分压器使用,假定加在电位器A、B之间的电压为
Umax,则空载输出电压为:
x U x xmax U max
(2-2)
图2.2所示为电位器式角度传感器。其中 1为电阻丝;2为滑臂;3为骨架。作变阻 器使用时,电阻Rα与角度α的关系为:
2(b h)
At
KU
U max xmax
I
2(b h)
At
(2.5) (2.6)
式中,KR、KU分别为电阻灵敏度、电压灵敏度;ρ为导线 电阻率;A为导线横截面积;n为线绕电位器绕线总匝数。
由此看出:线性线绕电位器的电阻灵敏度和电压灵敏 度除与电阻率ρ有关外,还与骨架尺寸h和b、导线横截面 积A(导线直径d)、绕线节距t等结构参数有关;电压灵 敏度还与通过电位器的电流I的大小有关。
总阻值的变化就使得在每个电压阶跃中还产生一小阶跃。
这个小电压阶跃亦即次要分辨脉冲为
11
Un
Umax
(
n
1
) n
j
(2-8)
式中:U max
n
j 为电刷短接第
1
j
和
j+1
匝时的输出电压;
U max
j n
为电刷仅接触第 j 匝时的输出电压。
因此,在大的阶跃中还有小的阶跃。这种小的阶跃应
有(n-2)次,这是因为在绕线始端和终端的两次短路中,将
传感器技术及应用
电位器式传感器
电位器作为传感器,可将机械位移或其他能转换为位 移的非电量转换为与其有一定函数关系的电阻值的变化。 常用来测量位移、压力、加速度等物理量。由于结构简单、 尺寸小、重量轻、价格便宜、精度较高、性能稳定、输出 信号大、受环境(如温度、湿度、电磁场干扰等)影响较 小,且可实现线性的或任意函数的变换,因而在自动检测 和自动控制中有着广泛的用途。
传感器技术及应用 教学大纲
传感器技术及应用——教学大纲一、课程基本信息课程编号:17z8315课程名称:传感器技术及应用Sensor Technology and Application学分/学时:3/42先修课程:主要有:物理、材料力学(工程力学)、电工基础、电子技术基础、自动控制元件、自动控制理论。
二、课程教学目的本课程是仪器科学与光电工程学院测控技术与仪器专业本科生的专业课。
其目标是:提供了解、使用、分析和初步设计常用传感器的敏感元件及系统的理论与实践基础,为后续其他专业课打下较坚实的基础。
三、课程教学任务通过本课程的学习,让学生了解传感器技术的发展现状、特点,在信息技术中的重要地位、作用;掌握信息获取范畴的广义理解;掌握常用传感器的基本工作原理,实现方式与结构;了解传感器技术在国防工业和一般工业领域中的典型应用;同时使学生能够在自动化系统、智能化系统中正确应用常用的传感器技术。
四、教学内容及基本要求本课程理论与实践紧密结合。
主要讲授传感器的性能评估,目前在工业领域中常用的几种典型的、有代表性的传感器的敏感元件的物理效应、变换原理、工作特性、主要结构、信号转换电路、误差及其补偿、合理应用等。
同时本课程也重视对新型传感器技术及应用的介绍。
传感器结构设计、工艺及所用材料只作一般介绍。
本课程主要内容可以分为三部分。
第一部分是关于传感器技术的基础理论与知识,共15个学时;第二部分是关于典型传感器的讨论,这是课程的重点,共21个学时;第三部分是关于近年来出现的新型传感器、应用示例的讨论,共6个学时。
教学的基本知识模块顺序及对应的单元教学任务。
五、教学安排及方式第1章绪论(6学时,基本掌握,讲授为主)1.1 传感器的作用与功能1.2 传感器的分类1.3 传感器技术的特点1.4 传感器技术的发展1.5 与传感器技术相关的一些基本概念1.6 本教材的特点及主要内容第2章传感器的特性(5学时,掌握,讲授为主,讨论为辅)2.1 传感器静态特性的一般描述2.2 传感器的静态标定2.3 传感器的主要静态性能指标及其计算第3章基本弹性敏感元件的力学特性(4学时,掌握,讲授为主)3.1 概述3.2 弹性敏感元件的基本特性3.3 基本弹性敏感元件的力学特性3.4 弹性敏感元件的材料第4章电位器式传感器(1学时,掌握,讨论为主,讲授为辅)4.1 概述4.2 线绕式电位器的特性4.3 非线性电位器4.4 电位器的负载特性及负载误差4.5 非线绕式电位器4.6 典型的电位器式传感器第5章应变式传感器(5学时,掌握,讲授为主,讨论为辅)5.1 应变式变换原理5.2 金属应变片5.3 应变片的动态响应特性5.4 应变片的温度误差及其补偿5.5 电桥原理5.6 典型的应变式传感器第6章压阻式传感器(2.5学时,掌握,讲授为主)6.1 压阻式变换原理6.2 典型的压阻式传感器第7章热电式传感器(2.5学时,掌握,讲授为主,讨论为辅) 7.1 概述7.2 热电阻测温传感器7.3 热电偶测温7.4 半导体P-N结测温传感器7.5 其他测温系统第8章电容式传感器(1学时,掌握,讲授为主,讨论为辅)8.1 基本电容式敏感元件8.2 电容式敏感元件的主要特性8.3 电容式变换元件的信号转换电路8.4 典型的电容式传感器8.5 电容式传感器的结构及抗干扰问题第9章变磁路式传感器(2学时,掌握,讨论为主,讲授为辅)9.1 电感式变换原理9.2 差动变压器式变换元件9.3 电涡流式变换原理9.4 霍尔效应及元件9.5 典型的变磁路式传感器第10章压电式传感器(1学时,基本掌握,讲授为主)10.1 石英晶体10.2 压电陶瓷10.3 聚偏二氟乙烯10.4 压电换能元件的等效电路10.5 压电换能元件的信号转换电路10.6 压电式传感器的抗干扰问题10.7 典型的压电式传感器第11章谐振式传感器(6学时,基本掌握,讲授为主)11.1 谐振状态及其评估11.2 闭环自激系统的实现11.3 振动筒压力传感器11.4 谐振膜式压力传感器11.5 石英谐振梁式压力传感器11.6 谐振式科里奥利直接质量流量传感器第12章微机械与智能化传感器技术(5时,基本掌握,讲授为主,讨论为辅)12.1 概述12.2 几种典型的微硅机械传感器12.3 几种典型的智能化传感器12.4 若干新型传感器应用实例分析课程总结(1学时,讲授为主,讨论为辅)六、教学的基本思路“传感器技术及应用”教学以“一条主线、二个基础、三个重点、多个独立模块”的基本原则来进行。
传感器第4次课--能量控制型传感器
应变片单臂电桥测量电路
KU
Uo R4
E
(1
n n)
2
R1
R2 化简公式 R4
E
V
R4 R3
根据P27的推算得到电桥电压灵敏度(输出电压与电阻变化率的比)KU的公 式,公式表明:KU与桥臂比n有关,与E成正比 当n=1(R1=R3)时,KU=E/4,比如E=4V时,应变片每变化1%,电压变化
温度稳定性差:可以从两方面理解 1.半导体器件的温度一般不能超过焊接温度很多 2.之前讲过的二极管正向电压随温度变化,LM35 温度集成电路,以及后续半导体热敏电阻
问题:下表中,哪几个型号是半导 体应变片,依据是什么?
应变片的主要参数
1)几何参数:表距L和丝栅宽度b,制造厂常用 b×L表示。 2)电阻值:应变计的原始电阻值
半导体应变片是直接用单晶锗或单 晶硅等半导体材料进行切割、研磨、切 条、焊引线、粘贴一系列工艺制作过程 完成的。
半导体式电阻应变片 • 优点:灵敏度大(比金属式大100倍);体积小; • 缺点:温度稳定性和可重复性不如金属应变片。
灵敏度大:从半导体三极管的放大作用理解半导 体的电阻很容易发生很大的变化
• 一、变隙式 • 结构:如图所示,由线圈、铁芯、衔铁等组成。
3.电感式传感器
变隙式传感器
工作原理:传感器工 作时,衔铁与被测体 连接。当被测体产生 ±δ 的 位 移 时 , 衔 铁 与其同步移动,引起 磁路中气隙的磁阻发 生相应的变化。从而 导致线圈电感的变化。 只要测出这种电感量 的变化,就能确定衔 铁(被测体)位移量 的大小和方向。
传感器及基本特性(第四章 )解读
描述传感器输入一输出关系的方法有两种:一是传 感器的数学模型;二是传感器的各种基本特性指标。两 者都可用于描述传感器的输入、输出关系及其特性。
14
一、传感器静态特性一般知识
传感器的静态特性是指传感器在静态工作
状态下的输入输出特性。所谓静态工作状态是
指传感器的输入量恒定或缓慢变化而输出量也
达到相应的稳定值时的工作状态。这时输出量
13
第二节 传感器的静态特性
传感器所测量的量(物理量、化学量及生物量等)经 常会发生各种各样的变化。例如,在测量某一液压系统 的压力时,压力值在一段时间内可能很稳定,而在另一 段时间内则可能有缓慢起伏,或者呈周期性的脉动变化, 甚至出现突变的尖峰压力。传感器主要通过其两个基本 特性—静态特性和动态特性,来反映被测量的这种变动 性。
4
举例:测量压力的电位器式压力传感器
1-弹簧管 2-电位器
5
弹性敏感元件(弹簧管)
敏感元件在传感器中直接感受被测量, 并转换成与被测量有确定关系、更易于转换 的非电量。
6
弹性敏感元件(弹簧管)
在下图中,弹簧管将压力转换为角位移α
7
弹簧管放大图
当被测压力p增大时,弹簧管撑直,通过齿 条带动齿轮转动,从而带动电位器的电刷产生 角位移。
接地
11
测量转换电路的作用是将传感元件输出 的电参量转换成易于处理的电压、电流或频 率量。 在左图中,当电 位器的两端加上电源 后,电位器就组成分 压比电路,它的输出 量是与压力成一定关 系的电压Uo 。
12
二、传感器分类
传感器的种类名目繁多,分类不尽相 同。常用的分类方法有: 1)按被测参数分类:可分为位移、力、 力矩、转速、振动、加速度、温度、压力、 流量、流速等传感器。 2)按测量原理分类:可分为电阻、电容、 电感、光栅、热电耦、超声波、激光、红 外、光导纤维等传感器。
3 第四章 :阻抗型传感器
图4-3-1 单一式自感传感器 1-线圈,2-铁心,3-衔铁
N 2 0 A N 2 0 A L0 L 2( 0 ) 2 (1 ) 1 0
0
0
图4-3-2 差动式自感传感器 (a)变隙型;(b)变截面型;(c)螺管型
L2 L1 L1 L2 0
L2 L1 a L1 L2 a0
rc 2 x ( r 1)( ) L2 L1 r l x L1 L2 1 ( 1)( rc ) 2 x0 x0 r r l
C1 C2 C1 C2 0
C AC0 CBC0
l r C0 0 Rr
图4-2-4 线位移式变介质型差动结构
C1 C2 1 r 2l C1 C2 1 r l
4.2.3 等效电路分析
图 4-2-5 电容传感器的等效电路
C C (1 2 LC ) Ce C
NTC型热敏电阻输入输出特性
R R0e
1 1 B( ) T T0
4.1.4 气 敏 电 阻
图4-1-11
半导体气敏电阻元件的结构
(a)烧结型元件;(b)薄膜型元件;(c)厚膜元件
图4-1-12 N型半导体气敏电阻的阻值变化
4.1.5 湿 敏 电 阻
图4-1-13
烧结型湿敏电阻结构
4.1.6 电阻传感器接口电路
第四章 阻抗型传感器
4.1 电阻式传感器
4.1.1 电位器式传感器
图 4-1-1 电位器式传感器工作原理
R R
x
AB
RAC f (x)
U U
x
AC
U
R
AB
U f ( x) f ( x) R
第4章 电感式传感器
3
(d) 五节式
图4.12 差动变压器线圈各种排列形式 1 一次线圈;2 二次线圈;3 衔铁
三节式的零点电位较小,二节式比三节式灵敏度高、线性范 围大,四节式和五节式改善了传感器线性度。
2.2 工作原理
以三节式差动变压器为例,将两个匝数相等的次级绕组的 同名端反向串联,当初级绕组W1加以激磁电压时,根据变压器 的作用原理在两个次级绕组W2a和W2b中就会产生感应电势,如 果工艺上保证变压器结构完全对称,则当活动衔铁处于初始平 衡位置时,输出电压为零。
U1 U 2 j ( M 1 M 2 ) R1 jL1 其有效值为: (M1 M 2 )U1 U2 R12 (L1 ) 2
.
E 21 jM 1 I.1 . E 22 jM 2 I1
.
.
R1
M1
.
. U1 ~ M2
L21 L22 R22
U2
. ~ E22
(c)、(d) 螺线管式差动变压器
(e)、(f) 变面积式差动变压器
二次绕组
二次绕组 衔铁
一次绕组
图4.11 螺线管式差动变压器的结构示意图
螺管型差动变压器根据初、次级排列不同有二节式、三节 式、四节式和五节式等形式。 1 1 1 1 2 1 2 1 2 1 2
2
(a) 二节式
3
(b) 三节式
2
II. 变面积型灵敏度较小,但线性较好,量程较大; III.螺管型灵敏度较低,但量程大且结构简单。
1.4 差动式自感传感器
由于线圈中通有交流励磁电流,因而衔铁始终承受电 池吸力,会引起振动和附加误差,而且非线性误差较大。 外界的干扰、电源电压频率的变化、温度的变化都会 使输出产生误差。
传感器原理及工程应用第4章
Z2 Z4 U0 U AC U AC Z1 Z 2 Z3 Z 4
因
Z3 Z 4 R0
Z2 1 U0 U AC U AC Z1 Z 2 2 Z 2 Z1 U AC Z1 Z 2 2
所以:
第4章 电感式传感器
传感器原理及应用
4.1变磁阻式传感器(自感式) 4.1.3 测量电路(转换电路) (1)交流电桥式
U
Ui
(a)残余电压的波形
1
UZ t
UZ
2
3
4 5 t
(b)波形分析
1 基波正交分量 2 基波同相分量 3 二次谐波 4 三次谐波5 电磁干扰
零点残余电压产生原因: ①基波分量 由于差动变压器两个次级绕组不可能完 全一致,因此它的等效电路参数(互感M、 自感L及损耗电阻R)不可能相同,从而使两 个次级绕组的感应电动势数值不等。又因初 级线圈中铜损电阻及导磁材料的铁损和材质 的不均匀,线圈匝间电容的存在等因素,使 激励电流与所产生的磁通相位不同。
衔铁气隙增大Δσ时,电感的相对减小量为
L 2 2 3 [1 ( ) ] ( ) ( ) L0 0 0 0 0 0 0
第4章 电感式传感器
传感器原理及应用
4.1变磁阻式传感器(自感式) 4.1.2 输出特性 对上式作线性处理忽略高次项时
L1 L2 2 K0 L0 0
第4章 电感式传感器
传感器原理及应用
4.1变磁阻式传感器(自感式) 4.1.2 输出特性 讨论: • 比较单线圈,差动式的灵敏度提高了一倍; • 差动式非线性项比单线圈多乘了(Δσ/σ)因子; • 不存在偶次项,因Δσ/σ<<1,线性度得到改善。 • 差动式的两个电感结构,可抵消温度、噪声干扰 的影响。
《工业机器人技术基础》(第4章)
重复性是指传感器在其输入信号按同一方式进行全量程连续多次测量 时,相应测量结果的变化程度。对于多数传感器来说,重复性指标优于精 度指标。这些传感器的精度指标不一定很高,但只要它的温度、湿度、受 力条件和其他参数不变,传感器的测量结果也没有较大的变化。同样,传 感器重复性也应考虑使用条件和测量方法的问题。
图4-4 直线型电位器式位移传感器
图4-5 直线型电位器式位移传感器工作原理图
如图 4-5 所示为直线型电位器式位移传感器的工作原理,触头滑动距离 x 可由电压值求得,即 x Vo L Vr
式中, L 为触头最大滑动距离;Vr 为输入电压;Vo 为输出电压。
2)旋转型电位器式位移传感器
旋转型电位器式位移传感器分为单圈电位器和多圈电位器两种,前者的测量范围小于 360°, 对分辨率也有限制;后者有更大的工作范围及更高的分辨率。
对被测量物定向、定位; 目标分类与识别; 控制操作; 抓取物体; 检查产品质量; 适应环境变化; 修改程序
4.1.2 传感器的性能指标
1.灵敏度
灵敏度是指传感器的输出信号达到稳定时,输出信号变化 y 与输入信号变化 x 的比值。假如 传感器的输出和输入呈线性关系,其灵敏度可表示为
S y x
6.分辨率
分辨率是指传感器在整个测量范围内所能 辨别的被测量的最小变化量,或者所能辨别 的不同被测量的个数。工业机器人大多对传 感器的分辨率有一定的要求。传感器的分辨 率直接影响机器人的可控程度和控制品质。 传感器分辨率的最低限度要求一般根据机器 人的工作任务确定。
7.响应时间
响应时间是传感器的动态特性指标,是指传感器的输入信号变化后,其输出信 号变化至一个稳定值所需要的时间。在一些传感器中,输出信号在达到某一稳定值 以前会发生短时间地振荡。
2.1电位器全解
视在分辨脉冲
U =U m +U n
局部剖面和阶梯特性
j j+1
电压分辨率:电位器输出电压阶梯的 最大值与最大输出电压之比
eba
U max / n 1 100% % U max n
行程分辨率:电刷行程内,有使电位 器产生一个可测变化的电刷最小行程 值与整个工作行程的百分数
xmax / n 1 eby 100% % xmax n
RX x r X Rmax L
令
在未接入负载时, 当RL为∞, 电位器的输出电压U0为 U0=rUin
m↓, 负载特性曲线与理性空载特性曲线越接近.
当RL不是无穷大,负载与空载输出之间产生偏差,负载误差为:
UO U L 1 L 100% [1 ]% UO 1 mr (1 r ) mr (1 r ) = 100% 1+mr (1 r )
各段并联电阻的大小,可由下式求出:
r1 // R1 R1 R2 r2 // R2 R3 r3 // R3
(1)
两种方法求r1、r2、r3: 1、知各段电压变化 ΔU1 、 ΔU2 和ΔU3, 根据允许通过的电流确 定ΔR1、ΔR2和ΔR3; 2、让最大斜率段电阻为ΔR3(无并联电阻时)压降为ΔU3,则
骨架长一定,导线直径减小;导线直径 一定,则增加骨架长度。
二、线绕式电位器的特性
2 阶梯误差
理想阶梯特性曲线
理想阶梯曲线
在理想情况下,特性曲 线每个阶梯的大小完全 相同,则通过每个阶梯中 点的直线即是理论特性 曲线,阶梯曲线围绕它上 下跳动,从而带来一定误 差,即阶梯误差。
j
( 1 U max ) 2 n 1 100% U max 2n
《现代检测技术及仪表》孙传友高教出版社电子教案新部编本第4章
教师学科教案[ 20 – 20 学年度第__学期]任教学科:_____________任教年级:_____________任教老师:_____________xx市实验学校第四章 阻抗型传感器4.1 电阻式传感器 4.1.1 电位器式传感器一、组成原理二、输入—输出特性1.线性特性——线性电位器x L R R x ⋅=x LUR R U U x x ⋅=⋅=式中L ——触点行程x ——触点位移⎩⎨⎧角位移线位移2.非线性特性——非线性电位器 )(x f R x = 非线性函数 )(x f RUU x ⋅= 三、结构形式2.非接触式――光电电位器 图4-1-2(c )五、用途:①测量位移;②测量可转化为位移的其他非电量4.1.2 电阻式应变传感器和固态压阻式传感器一、电阻式应变传感器(一)电阻应变效应——应变使电阻变化 1.应变:图4-1-3 纵向线应变l dl /=ε横向线应为με-=r dr / ldr rdr //-=μ泊松比 面应变 με22/-==r drA dA 体应变 εμ)21(/-=+=AdAL dl V dV2.导体电阻及其变化 AL R ⋅=ρρρεμd A dA L dL R dR ++=-=)21( 金属材料εμρρ)21(-==c vdvcd 半导体材料επρρE d = π——压阻系数 E ——弹性模量 3.应变效应表达式:ε00K R R=∆ ε0/R R K ∆=(应变材料的灵敏系数):金属材料 μμμ21)21()21(0+≈-++=c K 约1.0~2 半导体材料 E E K ππμ≈++=)21(0 约50~100(二)电阻应变片1、组成结构——图4-1-43、安装——粘贴在试件表面(应使应变片轴向与所测应变方向一致)4、应变片灵敏系数――应变片电阻相对变化与粘贴处试件表面应变之比εRR K /∆=y y x x k k RRεε+=∆x x H k εα)1(+=x k ε= x ε——试件表面纵向线应变 y ε——试件表面横向线应变)0(<-==αμεεαxyx k ——纵向灵敏系数,y k ——横向灵敏系数x y k k H /=——横向效应系数应变片灵敏系数小于应变电阻材料灵敏系数0)1(k k H k k x x <<+=α5、温度误差的产生及危害 1)温度误差产生原因 ①应变电阻随温度变化)1(0t R R t ∆+=ααt R R t ∆=∆αα0 t KK R R t ∆⋅=∆=αεαα0/ ②试件材料与应变法的线膨胀系数不一致)1(0t l L s st ∆+=β )1(0t l L g gt ∆+=β t l l l l s g st gt ∆-=-=∆)(0ββt l ls g ∆-=∆=)(0ββεβ 2)温度误差的危害――产生应变测量误差即“虚假视应变”温度变化产生的应变片电阻的相对变化可折算成的“虚假视应变”为t t ks g t ∆⋅-+∆⋅=+=)(ββαεεεβαt ks g ∆⋅-+=)(ββα二、固态压阻式传感器(一)半导体压阻效应——应力σ使半导体电阻率变化πσρρ=d(二)固态电阻式传感器特点:在半导体硅材料基底上制成扩散电阻,作为测量传感元件, 优点:无须粘贴,便于传感器的集成化 缺点:易受温度影响。
工业机器人技术基础第4章
然而时间太短,编码器通过的脉冲数太少,会导致所得到的速度分辨率下降。
图4-15 时间增量测量电路
4.2.3 力觉传感器
力觉传感器又称力或力矩传感器,是用来检测工业机器人的臂部和腕部所产生的 力或其所受反力的传感器。
第4章 工业机器人传感器
目录
CONTENT
4.1 工业机器人传感器概述 4.2工业机器人内部传感器 4.3 工业机器人外部传感器
学习 目标
1 掌握工业机器人传感器的种类、性 能指标及其使用要求。
2 熟悉工业机器人内、外部传感器的 功能和应用。
4.1 工业机器人传感器概述
4.1.1 工业机器人传感器的类型
如图 4-6 所示,单圈旋转型电位器的电阻元件为圆弧状,滑动触头在电阻元件上做圆周运
动。当滑动触头旋转 角时,触头与滑线电阻端的电阻值和输出电压值也会发生变化。
(a)外形
(b)工作原理
图4-6 单圈旋转型电位器
2.光电编码器
光电编码器是一种通过光电转换将输出轴上的直线位移或角度变化转换成脉冲或 数字量的传感器,属于非接触式传感器,它主要由码盘、机械部件、检测光栅和光 电检测装置(光源、光敏器件、信号转换电路)等组成,如图4-7所示。
传感器是一种以一定精度将被测量转换为与之有确定对应关系、易于精确处 理和测量的某种物理量的测量部件或装置。完整的传感器应包括敏感元件、转 化元件、基本转化电路三个基本部分。
工业机器人传感器按用途的不同,可分为内部传感器和外部传感器。
表4-1 工业机器人传感器的分类、功能和应用
分类
内部 传感器
视觉
外部 传感器
电位器式传感器名词解释(一)
电位器式传感器名词解释(一)电位器式传感器1. 什么是电位器式传感器电位器式传感器是一种基于电位器原理的传感器,通过测量电阻器的阻值变化来实现对外界环境的感知和测量。
其工作原理是通过改变电位器的滑动位置或长度,从而改变电阻值,进而反映出被测量物理量的变化。
2. 常见的电位器式传感器类型•线性电位器式传感器:线性电位器式传感器是一种能够产生连续线性变化输出的传感器。
常见的应用包括机械位移测量、角度测量等。
例如,大多数旋钮都采用线性电位器式传感器来实现对音量、亮度等的控制。
•旋转电位器式传感器:旋转电位器式传感器是一种能够通过旋转动作改变电位器滑动位置或长度的传感器。
常见的应用包括电子设备中的旋钮、电流调节器等。
例如,电子琴的音量调节旋钮就是一种旋转电位器式传感器。
•位移电位器式传感器:位移电位器式传感器是一种能够通过测量物体位移或位置变化来改变电位器滑动位置或长度的传感器。
常见的应用包括汽车的油门位置传感器、工业机械的位置控制等。
例如,汽车上的油门踏板会通过位移电位器式传感器来将踏板位置转换为汽车的加速度。
3. 电位器式传感器的优势和局限性•优势:–简单可靠:电位器式传感器结构简单,工作原理清晰,可靠性高。
–高精度:电位器式传感器可以实现较高的测量精度。
–低成本:与其他类型的传感器相比,电位器式传感器具有较低的成本。
•局限性:–有限的寿命:电位器式传感器因为滑动摩擦等原因,会存在一定的寿命限制。
–分辨率有限:电位器式传感器的分辨率相对于其他类型的传感器可能较低。
–受环境干扰:电位器式传感器容易受到环境因素的影响,例如温度、湿度等。
4. 总结电位器式传感器是一种基于电位器原理的传感器,常见的类型包括线性电位器式传感器、旋转电位器式传感器和位移电位器式传感器。
它具有简单可靠、高精度和低成本的优势,但也存在寿命有限、分辨率有限和受环境干扰等局限性。
在不同的应用场景下,可以根据需求选择适合的电位器式传感器类型。
传感器-第4章(电阻式)
第2章
电阻式传感器 3
3、半导体和金属的电阻率与温度关系的区别? 金属是由金属原子组成的晶格和自由电子组成的, 实际参与导电的是自由电子。晶格是一直振动的, 和分子的热运动相关。金属之所以有电阻是由于 晶格对自由电子的定向移动的阻碍。而且由于温 度越高,晶格震动越强烈,所以它的阻碍效应就 越明显,这是金属电阻随温度升高而变大的原因。 对于半导体,它的电子基本都被束缚在原子核上。 所以它需要一定的温度或者光来激发,是它的电 子获得足够的能量,摆脱原子核的束缚,从而成 为能够参与导电的粒子。所以温度升高,能够参 与导电的粒子就越多,电阻就越小。
第2章
电阻式传感器 1
压阻式传感器应变片工作原理:压阻式传感器是 利用半导体的压阻效应制成的。半导体材料受到 应力作用时,其电阻率会发生变化,这种现象称 为压阻效应。其灵敏系数为
R R K πL E ε
压阻式传感器的优点是:灵敏度高,测量元件尺 寸小,频率响应高,横向效应小。但它的温度稳 定性差,在较大的应变下,灵敏度的非线性误差 大。所以用压阻式传感器进行测量的时候,必须 要采取温度补偿,以消除温度对测量结果的影响。
电阻式传感器 4
4、请分析右图中的台式称重传感器的应变片该怎
么粘贴?并分析其变形情况。
第2章
电阻式传感器 5
5、请分析右图中的应变式荷重传感器的应变片该
怎么粘贴?并分析其变形情况。
F
R1 R 2
R4
第2章
电阻式传感器 5
荷重传 感器上的应 变片在重力 作用下产生 变形。轴向 变短,径向 变长。
荷重传感器原理演示
(4)焊接:将引线和端子用 烙铁焊接起来,注意不要把 端子扯断。
第2章
电阻式传感器 1
第四章 常用传感器原理及应用
Ca
Cc
R0
★ 由于后继电路的输入阻抗不可能为无穷大,而且压 电元件本身也存在漏电阻,极板上的电荷由于放电而无 法保持不变,从而造成测量误差。因此,不宜利用压电 式传感器测量静态或准静态信号,而适宜做动态测量。
★ 压电晶片有方形、圆形、圆环形等各种,而且往往 是两片或多片进行串联或并联。
+
并联:适于测缓变信号和以电荷为 输出量的场合
3、介电常数变化型 此类传感器可用来测量液体的液位和材料的厚度等。
两圆筒间的电容为:空气的介
21 L C ln(R r )
外电极 内半径
电常数
电极 长度
内电极 内半径
如果电极的一部分被非导电性液 体所浸没时,则会有电容量的增 量∆C产生:
2 ( 2 1 )l C ln(R r )
线圈
铁芯
衔铁
由于 δ 很小,可认为气隙磁场是均匀的 ,若忽略磁路的铁损,则总磁阻为:
线圈 铁芯
衔铁
l 2 Rm A 0 A0
由于铁心磁阻与气隙相比要小得多,可以忽略
2 Rm 0 A0
N 0 A0 L 2
传感器灵敏度: K
2
dL
N 2 0 A0 2
2
d
N 2 0 A0 2 2
这种传感器适用于较小位移 的测量,测量范围约在 0.001~1mm左右。
2、变面积式 原理:气隙长度不变,铁心与衔铁之间相 对而言覆盖面积随被测量的变化而改,导致 线圈的电感量发生变化。 特点:灵敏度比变气隙型的低,但其灵敏 度为一常数,因而线性度较好,量程范围可 取大些,自由行程可按需要安排,制造装配 也较方便,因而应用较为广泛。 3、螺管式 原理:衔铁随被测对象移动,线圈 磁力线路径上的磁阻发生变化,线圈 电感量也因此而变化。 特点:灵敏度更低,但测量范围大 ,线性也较好,同时自由行程可任意 安排,制造装配方便,应用较广泛。
第四章 位移传感器
第一节 电容式传感器 (capacitive sensors) 特点:结构简单、灵敏度高、动态响应好、可实现非接触 测量、具有平均效应,能在高温、辐射等恶劣条件工作。 应用:可用来检测位移 、压力等参量。 一、工作原理 从结构上来分有:平板式、园柱式电容器。以平板式电容 器为例:平板电容器的容量
C r 0
螺管式 L=KX 几十毫米 线性灵敏度小
二、互感式传感器(差动变压器) (LVDT) 1.原理: 衔铁位移x变化=>互感(M1,M2)变化,如图所示。
I 1 + U 1 L1
x
R1
M1 L21 + U - 21 + U o L22 M2 + U 22 -
说明: (1)与变压器的区别:变压器:闭合磁路,M 为常数; M f ( x) 。 差动变压器:开磁路, (2)输出端采用“反向串联”:其输出为电压,和差动电 桥方式相比,后者灵敏度低一倍: 反向串联与交流电桥的比较如图所示。
(2)相敏检波电路 交流电桥输出的相量可反映被测量的大小和方向,但用一般 的指示仪表却丢失了方向信号。 当衔铁居中时,Z1=Z2。当Z1↑,Z2↓时:
正半周 Ua正,Ub负 VD1、VD4导通 Ua负,Ub正 VD2、VD3导通
AECB支路: Uc↓ AFDB支路: Ud↑ BCFA支路: ↓ BDEA支路: ↑
E Z1 A +
Z2 U
u0 负 u0
u0 负
负半周
负
同理,当Z1↓,Z2↑时, UO 为正。故UO不仅反映线 圈阻抗变化大小,还能反映 变化方向。
VD1 VD2
C Z3 + B U o Z4 D -
A VD3 F VD4
电位器式传感器
15
图2-6 变骨架式电位器
16
电位器的结构与材料
由于测量领域的不同,电位器结构及材料选择有所不同。 但是其基本结构是相近的。电位器通常都是由骨架、电阻元件 及活动电刷组成。常用的线绕式电位器的电阻元件由金属电阻 丝绕成。 1、电阻丝:
(3-31)
(3-32)
9
图3-38 线性线绕电位器示意图
10
•
式中 ,kR 、 ku 分别为电阻灵敏度、 电压灵敏度 ;ρ 为导线电阻率 ;A 为导线横 截面积;n为线绕电位器绕电位 器的电阻灵敏度和电压灵敏度除与电阻 率 ρ 有关外 , 还与骨架尺寸 h 和 b 、导线横 截面积 A( 导线直径 d )、绕线节距 t 等结 构参数有关;电压灵敏度还与通过电位器 的电流I的大小有关。
x xmax
Rx
Rmax
(3-27)
5
图3-36 电位器式位移传感器原理图
6
•
若把它作为分压器使用 ,且假定加在电位器 A、B之间的电压为Umax,则输出电压为
Ux
x xmax
U max
(3-28)
图3-37所示为电位器式角度传感器。作变阻器使用,
则电阻与角度的关系为
Ra
作为分压器使用,则有
a amax
x xmax
Rmax
(3-29)
Ua
U max
(3-30)
7
图3-37 电位器式角度传感器
8
•
线性线绕电位器理想的输出、输入关系遵 循上述四个公式。因此对如图3-38 所示的位移 传感器来说,因为
Rmax xmax
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第4章电位器式传感器
基本题:
4.1电位器的主要用途是什么?
4.2电位器的特点是什么?
4.3什么是电位器的阶梯特性?在实际使用时,它会给电位器带来什么问题?
4.4研究非线性电位器的出发点是什么?如何实现非线性电位器?
4.5什么是电位器的负载特性和负载误差?如何减小电位器的负载误差?
4.6证明图4.4.5指出的“所设计的非线性特性3为原线性电位器负载特性2关于线性特性1的镜像”。
4.7一骨架截面为圆形的电位器,半径为a 。
现用直径为d 、电阻率为ρ的导线绕制,共紧密地绕了W 匝。
试导出该线绕式电位器的灵敏度表达式(注意:导线直径d 不可忽略)。
4.8试设计一电位器的电阻特性。
它能在带负载情况下给出X Y =的线性特性,如图
4.1所示。
给定电位器的总电阻Ω=1000R ,负载电阻f R 分别为Ω50和Ω500。
计算时取X 的间距为0.1。
X 和Y 分别为相对输入和相对输出。
图4.1带负载的电位器
4.9试设计一分流电阻式非线性电位器的电路及其参数。
要求特性如图4.2所示,所用线性电位器的总电阻为1000Ω,输出为空载。
图4.2非线性电位器的输出特性
4.10图 4.3为一带负载的线性电位器。
试用解析和数值方法(可把整个行程分成10段),求(a),(b)两种电路情况下的端基线性度。
图4.3带负载的电位器
4.11有一非线性电位器R x (),x 为行程,其范围为L x ≥≥0,且x L =时阻值为R 0。
当负载电阻为R f 时,其电压的输出特性为行程x 的线性函数。
试设计R x ()。
若R x ()是骨架截面积为圆形的线绕式电位器,试讨论其实现的可能方式,并用简图示意出最佳方案。
4.12图4.4给出了某位移传感器的检测电路。
in U =12V ,k Ω100=R ,AB 为线性电位器,总长度为150mm ,总电阻为30Ωk ,C 点为电刷位置。
问
(1)输出电压out U =0V 时,位移x =?
(2)当位移x 的变化范围为10~140mm 时,输出电压out U 的范围为多少?
图4.4电位器式位移传感器检测电路
4.13某线绕式电位器的骨架直径0D =10mm ,总长0L =100mm ,导线直径d =0.1mm ,电阻率6106.0-⨯=ρm ⋅Ω,总匝数W=1000。
试计算该电位器的空载电阻灵敏度
4.14某线绕式非线性电位器的骨架宽度b =8mm ,高度x x h 02.010)(+=mm ,x 为电位器的工作位移,导线的截面积S=0.032mm ,电阻率m 1072.06⋅Ω⨯=-ρ,绕线节距1.0=t mm ,当该电位器工作位移范围为0~100mm 时,试计算出其电阻灵敏度的范围。
4.15给出一种电位器式压力传感器的结构原理图,并说明其工作过程与特点。
提高题:
4.16针对图4.7.1所示的电位器式加速度传感器的结构示意图,试建立描述其动态测量过程的输入/输出关系(可用传递函数描述)。
4.17基于电位器的工作机理,设计一角位移传感器的基本原理结构,并讨论其可能的测量误差以及改善措施。
R,总工作行4.18某位移测量装置采用了两个相同的线性电位器。
电位器的总电阻为
0 L。
当被测位移变化时,带动这两个电位器一起滑动(如图4.5所示,虚线表示电程为
U。
刷的机械臂)。
如果采用电桥检测方式,电桥的激励电压为
in
(1)设计电桥的连接方式;
L时,电桥的输出电压范围是多少?
(2)被测位移的测量范围为0~
图4.5电位器式位移传感器结构图
注:题中的图形和公式见教材《传感器技术及应用》(樊尚春编著,北京航空航天大学出版社,2004)。