AD转换器主要技术指标
AD转换器的主要技术指标
A/D转换器的主要技术指标作者:测量测试…文章来源:EEFOCUS 点击数:111 更新时间:2007-8-26A/D转换器的主要技术指标有转换精度、转换速度等。
选择A/D转换器时,除考虑这两项技术指标外,还应注意满足其输入电压的范围、输出数字的编码、工作温度范围和电压稳定度等方面的要求。
1. 转换精度单片集成A/D转换器的转换精度是用分辨率和转换误差来描述的。
(1) 分辨率A/D转换器的分辨率以输出二进制(或十进制)数的位数来表示。
它说明A/D转换器对输入信号的分辨能力。
从理论上讲,n位输出的A/D转换器能区分2n个不同等级的输入模拟电压,能区分输入电压的最小值为满量程输入的1/2n。
在最大输入电压一定时,输出位数愈多,分辨率愈高。
例如A/D转换器输出为8位二进制数,输入信号最大值为5V,那么这个转换器应能区分出输入信号的最小电压为9.53mV。
(2) 转换误差转换误差通常是以输出误差的最大值形式给出。
它表示A/D转换器实际输出的数字量和理论上的输出数字量之间的差别。
常用最低有效位的倍数表示。
例如给出相对误差≤±LSB/2,这就表明实际输出的数字量和理论上应得到的输出数字量之间的误差小于最低位的半个字。
2.转换时间转换时间是指A/D转换器从转换控制信号到来开始,到输出端得到稳定的数字信号所经过的时间。
A/D转换器的转换时间与转换电路的类型有关。
不同类型的转换器转换速度相差甚远。
其中并行比较A/D转换器的转换速度最高,8位二进制输出的单片集成A/D转换器转换时间可达到50ns以内,逐次比较型A/D转换器次之,它们多数转换时间在10~50μs以内,间接A/D转换器的速度最慢,如双积分A/D转换器的转换时间大都在几十毫秒至几百毫秒之间。
在实际应用中,应从系统数据总的位数、精度要求、输入模拟信号的范围以及输入信号极性等方面综合考虑A/D转换器的选用。
3.例题某信号采集系统要求用一片A/D转换集成芯片在1s(秒)内对16个热电偶的输出电压分时进行A/D转换。
转换器的原理及主要技术指标
I0
2R
2R
2R
2R
2R
2R
2R
2R
2R
0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 Rfb
IO1
-
IO2
+
VO
D7
D6
D5
D4
D3
D2
D1
D0
3
输出电压 的大小与数字量具有对应的关系。
4
二、D/A转换器的主要性能指标
1、分辨率
分辨率是指输入数字量的最低有效位(LSB)发生变化时, 所对应的输出模拟量(常为电压)的变化量。它反映了输 出模拟量的最小变化值。
结果存储到片内RAM以DATA为起始地址的连续单 元中。
MAIN:MOV R1,#DATA ;置数据区首地址
MOV DPTR,#7FF8H ;指向0通道
MOV R7,#08H
;置通道数
LOOP:MOVX @DPTR,A ;启动A/D转换
HER:JB P3.3,HER
;查询A/D转换结束
MOVX A,@DPTR
转换器的原理及主要技术指标
1
D/A & A/D转换器及其与单片机接口
2
9.1 D/A转换器及其与单片机接口
9.1.1 D/A转换器的原理及主要技术指标
一、D/A转换器的基本原理及分类
T型电阻网络D/A转换器 :
I I7
I6
I5
I4
I3
I2
I1
I0
VREF
R
R
R
R
R
R
R
I7
I6
I5
I4
I3
I2
I1
线性度(也称非线性误差)是实际转换特性曲线与理想
AD转换器的主要技术指标
AD转换器的主要技术指标AD转换器(Analog-to-Digital Converter)是将模拟信号转换成数字信号的电子器件,广泛应用于测量、通信、控制和信号处理等领域。
主要技术指标是指影响AD转换器性能的关键参数。
下面将介绍AD转换器的主要技术指标。
1. 位数(Resolution):位数是指转换结果的二进制位数,也可理解为ADC的精度。
位数越高,转换结果的精度越高。
常见的位数有8位、10位、12位、16位等。
常见的高精度应用需要12位以上的位数。
2. 采样率(Sampling Rate):采样率是指ADC在单位时间内完成采样的次数,常用单位为千赫兹(kHz)或兆赫兹(MHz)。
采样率决定了ADC对信号的处理能力,即ADC能够处理多快的信号。
高速应用需要高采样率的ADC。
3. 信噪比(Signal-to-Noise Ratio, SNR):信噪比表示转换后的数字信号与输入模拟信号之间的噪声水平差异。
信噪比越高,ADC的抗干扰能力越强,输出结果越准确。
4. 有效比特数(Effective Number of Bits, ENOB):有效比特数表示ADC输出二进制数据的有效位数,与信噪比有关。
一般来说,ENOB比位数小,这是由于ADC的非线性误差、噪声和失配等因素导致的。
5. 误差(Error):误差是指ADC转换结果与输入信号之间的差异。
常见的误差包括非线性误差、积分非线性误差、增益误差、失配误差等。
误差越小,ADC的准确度越高。
6. 电源电压(Supply Voltage):ADC的电源电压指使用电路所需的电源电压。
一般来说,工作电压越低,功耗越小,对系统电源需求越低。
7. 噪声(Noise):噪声是指ADC输出结果中包含的非期望信号。
噪声可由转换器内部电路、供电电压和输入信号引起。
噪声影响了ADC对小信号的测量准确性,因此较低的噪声水平对高精度测量至关重要。
8. 温度效应(Temperature Coefficient):温度效应衡量ADC对温度变化的敏感程度。
AD转换
模拟电压输入 1LSB
模拟电压输入 1/2LSB
5
3、偏移误差
偏移误差是指输入信号为零时,输出信号不为零的 值,所以有时又称为零值误差。假定ADC没有非线 性误差,则其转换特性曲线各阶梯中点的连线必定 是直线,这条直线与横轴相交点所对应的输入电压 值就是偏移误差。
积分器输出
VIN
时钟
T1 T T2
t
3
三、A/D转换器的主要技术指标 1、分辨率 ADC的分辨率是指使输出数字量变化一个 相邻数码所需输入模拟电压的变化量。常用 二进制的位数表示。例如12位ADC的分辨率 就是12位,或者说分辨率为满刻度FS的 1/2 1 2 。一个10V满刻度的12位ADC能分辨输 入电压变化最小值是10V×1/ 2 1 2 =2.4mV。
ADC_CONTR寄存器
ADC_RES、 ADC_RESL寄存器
ADC中断控制寄存器
ADC典型应用电路
电压基准源
ADC实现按键输入功能
10VIN 20VIN AG
CE STS
-5V~+5V -10V~+10V
23
采用双极性输入方式,可对±5V或±10V的模拟信号
进行转换。当AD574A与80C31单片机配置时,由于 AD574A输出12位数据,所以当单片机读取转换结果 时,应分两次进行:当A0=0时,读取高8位;当A 0=1时,读取低4位。
需三组电源:+5V、VCC(+12V~+15V)、
VEE(-12V~-15V)。由于转换精度高,所 提供电源必须有良好的稳定性,并进行充分滤波, 以防止高频噪声的干扰。 低功耗:典型功耗为390mW。
AD
2、量化误差 、
•ADC把模拟量变为数字量,用数字量近似表示模拟量,这个 把模拟量变为数字量,用数字量近似表示模拟量, 把模拟量变为数字量 过程称为量化。量化误差是ADC的有限位数对模拟量进行量 过程称为量化。量化误差是 的有限位数对模拟量进行量 化而引起的误差。实际上,要准确表示模拟量, 化而引起的误差。实际上,要准确表示模拟量,ADC的位数 的位数 需很大甚至无穷大。一个分辨率有限的ADC的阶梯状转换特 需很大甚至无穷大。一个分辨率有限的 的阶梯状转换特 性曲线与具有无限分辨率的ADC转换特性曲线(直线)之间 转换特性曲线( 性曲线与具有无限分辨率的 转换特性曲线 直线) 的最大偏差即是量化误差。 的最大偏差即是量化误差。
式中VIN为输入模拟量(V), 为输入模拟量( ), ),VFS是满量程,如 是满量程, 式中 为输入模拟量 是满量程 果从10VIN引脚输入,VFS =10V,1LSB=10/4096=24 引脚输入, 果从 引脚输入 , 引脚输入, (mV);若信号从 ;若信号从20VIN 引脚输入,VFS =20V, , 1LSB=20/4096=49(mV)。 ( 。
一、ADC0809的内部结构及引脚功能 的内部结构及引脚功能
1、IN0~IN7,8路模拟量输入端。 IN0~IN7, 路模拟量输入端。 D7~D0, 位数字量输出端。 2、D7~D0,8位数字量输出端。 ALE, 地址锁存允许信号输入端。 3、ALE, 地址锁存允许信号输入端。通常向此引脚输入一个正 脉冲时,可将三位地址选择信号A 脉冲时,可将三位地址选择信号A、B、C锁存于地址寄存器内并 进行译码,选通相应的模拟输入通道。 进行译码,选通相应的模拟输入通道。 START,启动A/D转换控制信号输入端。 A/D转换控制信号输入端 4、START,启动A/D转换控制信号输入端。一般向此引脚输入一 个正脉冲,上升沿复位内部逐次逼近寄存器,下降沿后开始A/D 个正脉冲,上升沿复位内部逐次逼近寄存器,下降沿后开始A/D 转换。 转换。 5、CLK,时钟信号输入端。 CLK,时钟信号输入端。 EOC,转换结束信号输出端。A/D转换期间EOC为低电平 转换期间EOC为低电平, 6、EOC,转换结束信号输出端。A/D转换期间EOC为低电平,A/D 转换结束后EOC为高电平。 EOC为高电平 转换结束后EOC为高电平。 OE,输出允许控制端,控制输出锁存器的三态门。 OE为高 7、OE,输出允许控制端,控制输出锁存器的三态门。当OE为高 电平时,转换结果数据出现在D7 D0引脚 D7~ 引脚。 OE为低电平时 为低电平时, 电平时,转换结果数据出现在D7~D0引脚。当OE为低电平时, D7~D0引脚对外呈高阻状态 引脚对外呈高阻状态。 D7~D0引脚对外呈高阻状态。 路模拟开关的地址选通信号输入端, 8、C、B、A,8路模拟开关的地址选通信号输入端,3个输入端 的信号为000 111时 接通IN0 IN7对应通道 000~ IN0~ 对应通道。 的信号为000~111时,接通IN0~IN7对应通道。 VR(+)、VR(-):分别为基准电源的正、负输入端。 (+)、VR(-):分别为基准电源的正 9、VR(+)、VR(-):分别为基准电源的正、负输入端。
11.12AD转换器的主要技术指标(精)
11.12 A/D转换器的主要技术指标A/D转换器的主要技术指标有转换精度、转换速度等。
选择A/D转换器时,除考虑这两项技术指标外,还应注意满足其输入电压的范围、输出数字的编码、工作温度范围和电压稳定度等方面的要求。
1. 转换精度单片集成A/D转换器的转换精度是用分辨率和转换误差来描述的。
(1) 分辨率A/D转换器的分辨率以输出二进制(或十进制)数的位数来表示。
它说明A/D转换器对输入信号的分辨能力。
从理论上讲,n位输出的A/D转换器能区分2n个不同等级的输入模拟电压,能区分输入电压的最小值为满量程输入的1/2n。
在最大输入电压一定时,输出位数愈多,分辨率愈高。
例如A/D转换器输出为8位二进制数,输入信号最大值为5V,那么这个转换器应能区分出输入信号的最小电压为9.53mV。
(2) 转换误差转换误差通常是以输出误差的最大值形式给出。
它表示A/D转换器实际输出的数字量和理论上的输出数字量之间的差别。
常用最低有效位的倍数表示。
例如给出相对误差≤±LSB/2,这就表明实际输出的数字量和理论上应得到的输出数字量之间的误差小于最低位的半个字。
2.转换时间转换时间是指A/D转换器从转换控制信号到来开始,到输出端得到稳定的数字信号所经过的时间。
A/D转换器的转换时间与转换电路的类型有关。
不同类型的转换器转换速度相差甚远。
其中并行比较A/D转换器的转换速度最高,8位二进制输出的单片集成A/D转换器转换时间可达到50ns以内,逐次比较型A/D转换器次之,它们多数转换时间在10~50μs以内,间接A/D转换器的速度最慢,如双积分A/D转换器的转换时间大都在几十毫秒至几百毫秒之间。
在实际应用中,应从系统数据总的位数、精度要求、输入模拟信号的范围以及输入信号极性等方面综合考虑A/D转换器的选用。
3.例题某信号采集系统要求用一片A/D转换集成芯片在1s(秒)内对16个热电偶的输出电压分时进行A/D转换。
已知热电偶输出电压范围为0~0.025V(对应于0~450o C温度范围),需要分辨的温度为0.1o C,试问应选择多少位的A/D转换器,其转换时间是多少?解:对于0~450o C温度范围,信号电压为0~0.025V,分辨温度为0.1o C,这相当于的分辨率。
AD转换器的技术指标
A/D转换器的主要技术指标A/D转换器的主要技术指标有转换精度、转换速度等。
选择A/D转换器时,除考虑这两项技术指标外,还应注意满足其输入电压的范围、输出数字的编码、工作温度范围和电压稳定度等方面的要求。
1. 转换精度单片集成A/D转换器的转换精度是用分辨率和转换误差来描述的。
(1)分辨率A/D转换器的分辨率以输出二进制(或十进制)数的位数来表示。
它说明A/D转换器对输入信号的分辨能力。
从理论上讲,n位输出的A/D 转换器能区分2个不同等级的输入模拟电压,能区分输入电压的最小值为满量程输入的1/2n。
在最大输入电压一定时,输出位数愈多,分辨率愈高。
例如A/D转换器输出为8位二进制数,输入信号最大值为5V,那么这个转换器应能区分出输入信号的最小电压为9.53mV。
(2)转换误差转换误差通常是以输出误差的最大值形式给出。
它表示A/D转换器实际输出的数字量和理论上的输出数字量之间的差别。
常用最低有效位的倍数表示。
例如给出相对误差≤±LSB/2,这就表明实际输出的数字量和理论上应得到的输出数字量之间的误差小于最低位的半个字。
2. 转换时间转换时间是指A/D转换器从转换控制信号到来开始,到输出端得到稳定的数字信号所经过的时间。
A/D转换器的转换时间与转换电路的类型有关。
不同类型的转换器转换速度相差甚远。
其中并行比较A/D转换器的转换速度最高,8位二进制输出的单片集成A/D转换器转换时间可达到50ns以内,逐次比较型A/D转换器次之,它们多数转换时间在10~50s以内,间接A/D转换器的速度最慢,如双积分A/D转换器的转换时间大都在几十毫秒至几百毫秒之间。
在实际应用中,应从系统数据总的位数、精度要求、输入模拟信号的范围以及输入信号极性等方面综合考虑A/D转换器的选用。
3. 例题某信号采集系统要求用一片A/D转换集成芯片在1s(秒)内对16个热电偶的输出电压分时进行A/D转换。
已知热电偶输出电压范围为0~0.025V(对应于0~450oC温度范围),需要分辨的温度为0.1oC,试问应选择多少位的A/D转换器,其转换时间是多少?解:对于0~450oC温度范围,信号电压为0~0.025V,分辨温度为0.1oC,这相当于的分辨率。
AD和DA转换器的分类及其主要技术指标
AD和DA转换器的分类及其主要技术指标AD和DA转换器(Analog-to-Digital and Digital-to-Analog converters)是电子设备中常用的模数转换器和数模转换器。
AD转换器将连续的模拟信号转换成对应的离散数字信号,而DA转换器则将离散的数字信号转换成相应的连续模拟信号。
本篇文章将介绍AD和DA转换器的分类以及它们的主要技术指标。
一、AD转换器分类AD转换器主要分为以下几个类型:1.逐次逼近型AD转换器(Successive Approximation ADC)逐次逼近型AD转换器是一种常见且常用的AD转换器。
它采用逐渐逼近的方法逐位进行转换。
其基本原理是将模拟输入信号与一个参考电压进行比较,不断调整比较电压的大小,确保比较结果与模拟输入信号的差别小于一个允许误差。
逐次逼近型AD转换器的转换速度相对较快,精度较高。
2.模数积分型AD转换器(Sigma-Delta ADC)模数积分型AD转换器是一种利用高速和低精度的ADC与一个可编程数字滤波器相结合的技术。
它通过对输入信号进行高速取样并进行每个采样周期的累积和平均,降低了后续操作所需的带宽。
模数积分型AD转换器具有较高的分辨率和较好的线性度,适用于高精度应用。
3.并行型AD转换器(Parallel ADC)并行型AD转换器是一种通过多个比较器并行操作的AD转换器。
它的转换速度较快,但其实现成本相对较高。
并行型AD转换器适用于高速数据采集和信号处理。
4.逐渐逼近型AD转换器(Ramp ADC)逐渐逼近型AD转换器是一种通过线性递增电压与输入信号进行比较的转换器。
它利用逐渐逼近的方法寻找与输入信号最接近的电压值,然后以此电压值对应的时间来估计输入信号的值。
逐渐逼近型AD转换器转换速度较慢,但精度较高。
5.其他类型AD转换器除了上述几种常见的AD转换器类型外,还有其他一些特殊的AD转换器类型,如比例调制型AD转换器、索耳转换器等。
AD转换器介绍(推荐文档)
D/A 转换器是将输入的二进制数字量转换成模拟量,以电压或电流的形式输出。
D/A 转换器实质上是一个译码器(解码器)。
一般常用的线性D/A 转换器,其输出模拟电压uO 和输入数字量Dn 之间成正比关系。
UREF为参考电压。
uO =DnUREF将输入的每一位二进制代码按其权值大小转换成相应的模拟量,然后将代表各位的模拟量相加,则所得的总模拟量就与数字量成正比,这样便实现了从数字量到模拟量的转换。
D/A 转换器一般由数码缓冲寄存器、模拟电子开关、参考电压、解码网络和求和电路等组成。
数字量以串行或并行方式输入,并存储在数码缓冲寄存器中;寄存器输出的每位数码驱动对应数位上的电子开关,将在解码网络中获得的相应数位权值送入求和电路;求和电路将各位权值相加,便得到与数字量对应的模拟量。
开关Si 的位置受数据锁存器输出的数码di 控制:当di=1时,Si 将对应的权电阻接到参考电压UREF 上;当di=0时,Si 将对应的权电阻接地。
权电阻网络D/A 转换器的特点①优点:结构简单,电阻元件数较少;②缺点:阻值相差较大,制造工艺复杂。
2. 倒T 型电阻网络D/A 转换器3. 电阻解码网络中,电阻只有R 和2R 两种,并构成倒T 型电阻网络。
当di=1时,相应的开关Si 接到求和点;当di=0时,相应的开关Si 接地。
但由于虚短,求和点和地相连,所以不论开关如何转向,电阻2R 总是与地相连。
这样,倒T 型网络的各节点向上看和向右看的等效电阻都是2R ,整个网络的等效输入电阻为R 。
倒T 型电阻网络D/A 转换器的特点:①优点:电阻种类少,只有R 和2R ,提高了制造精度;而且支路电流流入求和点不存在时间差,提高了转换速度。
②应用:它是目前集成D/A 转换器中转换速度较高且使用较多的一种,如8位D/A 转换器DAC0832,就是采用倒T 型电阻网络。
三、D/A 转换器的主要技术指标1. 分辨率分辨率用于表征D/A 转换器对输入微小量变化的敏感程度。
AD转换器(8)
A/D转换器一.主要技术指标1.分辨率能分辨出的最小模拟输入量的能力。
即输出变化一个LSB所对应的模拟输入电压的变化量。
例:8位数据输出,满度5V的A/D转换器,其分辨率是:5/255=19.5mv更多是直接采用数据位数来表示A/D分辨率。
例如8位、10位、12位等。
也有采用10进制位来表示分辨率。
例如3位半(0000—1999),4位半(00000-19999)等。
2.精度A/D转换后所得结果相对实际值的准确程度。
由于量化效应,设模拟量在一个Δ范围内只对应一个数字量输出。
这个Δ理论上应等于分辨率(一个LSB)。
但实际上,由于误差的存在,这个范围一般大于分辨率Δ(一个LSB)。
超出一个LSB部分即为精度的大小。
3.转换时间.完成一次A/D转换所需要的时间.快的:几个ns—几百个ns慢的:几个ms—几百个ms4. 温度系数和增益系数5.对电源电压变化的抑制比常见A/D转换器见表10-3二.A/D转换器的工作原理1.A/D转换的4个步骤采样—保持—量化—编码a.采样是将时间上连续的模拟量,以一定的时间间隔取其值,使其变为时间上离散,但大小仍然连续的模拟量.实际采样保持过程分析采样原理框图及实际采样电路图.b.保持即将采样得到的模拟信号保持下来。
即使在S(t)=0时,输出不变为0,而是保持采样瞬间的最后值。
分析保持电路原理。
实际上,采样过程与保持过程一样均需一定时间。
见上图。
c.量化和编码量化即用基本的量化电平个数来表示采—保所得的模拟电压。
(见上4图中的量化、编码图)由于模拟量的值不可能刚好为0q、1q、2q、……等,在量化时会产生误差—量化误差。
编码就是把已经量化的模拟值,用二进制、BCD码等来表示三.常见A/D转换方法速度最快的是直接比较法,常见AD转换有逐次逼近、双积分、计数法及电压-频率转换法等。
1.逐次逼近三部分:1。
比较器 2。
控制输出 3。
D/A转换分析逐次逼近AD原理,这种方法A/D转换时间是固定的,与输入电压无关。
AD_DA原理及主要技术指标
AD_DA原理及主要技术指标AD-DA(模拟-数字/数字-模拟)转换是现代电子设备中常见的基本电路和技术。
它负责将模拟信号转换为数字信号或将数字信号转换为模拟信号。
AD-DA转换在诸如音频处理、图像采集、仪器仪表等领域都有广泛应用。
AD转换即模拟到数字转换,它将连续的模拟信号转换为离散的数字信号。
AD转换通常涉及样本化、量化和编码三个步骤。
样本化是指将连续的模拟信号离散化为一系列时序的采样值。
在样本化过程中,模拟信号将被周期性地采样,并将每个采样点的幅值记录下来。
量化是指将每个采样点的幅值映射到一组离散的量化级别。
通过将连续的幅值区间映射为有限的离散级别,量化将模拟信号的无限细节化为数字形式。
编码是指将每个量化级别映射到二进制代码。
编码将每个量化级别分配一个特定的二进制代码,使得每个样本点都能准确地表示为二进制形式的数字。
DA转换即数字到模拟转换,它将离散的数字信号转换为连续的模拟信号。
DA转换通常涉及解码和重构两个步骤。
解码是指将数字代码转换为对应的模拟量化级别。
解码使用逆编码来将二进制代码映射回量化级别。
重构是指使用一定的插值或滤波技术来重建连续的模拟信号。
由于数字信号是离散的,重构步骤有助于消除数字信号中的采样误差,并使其逼近原始模拟信号。
在AD-DA转换中,有几个重要的技术指标需要考虑:1. 分辨率:分辨率是指数字信号中能够表示的最小变化量。
它通常以比特(bit)来表示。
分辨率越高,表示数字信号可以更准确地表示模拟信号。
2.采样率:采样率是指单位时间内进行采样的次数。
它通常以赫兹(Hz)来表示。
采样率的选择要根据所采集信号的频率范围进行,以避免采样失真。
3.带宽:带宽是指AD-DA转换器能够有效处理的频带范围。
带宽通常以赫兹(Hz)表示。
带宽决定了AD-DA转换器的频率响应范围。
4.信噪比:信噪比是指信号的强度与背景噪声的强度之比。
它通常以分贝(dB)表示。
信噪比越高,表示信号与噪声的区别越大,传输的信号质量也就越好。
AD转换器的主要技术指标
工程师在进行电路设计时,面对林林总总的AD/DA芯片,如何选择你所需要的器件呢?这要综合设计的诸项因素,系统技术指标、成本、功耗、安装等,最主要的依据还是速度和精度。
精度 与系统中所测量控制的信号范围有关,但估算时要考虑到其他因素,转换器位数应该比总精度要求的最低分辩率高一位。常见的AD/DA器件有8位,10位,12位,solution) 指数字量变化一个最小量时模拟信号的变化量,定义为满刻度与2n的比值。分辩率又称精度,通常以数字信号的位数来表示。
2) 转换速率(Conversion Rate)是指完成一次从模拟转换到数字的AD转换所需的时间的倒数。积分型AD的转换时间是毫秒级属低速AD,逐次比较型AD是微秒级属中速AD,全并行/串并行型AD可达到纳秒级。采样时间则是另外一个概念,是指两次转换的间隔。为了保证转换的正确完成,采样速率(Sample Rate)必须小于或等于转换速率。因此有人习惯上将转换速率在数值上等同于采样速率也是可以接受的。常用单位是ksps和Msps,表示每秒采样千/百万次(kilo / Million Samples per Second)。
R x Ib < 1LSB。
有的片内AD还有集成输入Buffer,有助与抑制您的噪声,一般是分两当,看输入信号范围和满量程之间的关系。
AD分为很多中,SAR,FLASH,并行比较型,逐次逼近型,Delta sigma型,一般是速度越高,精度越高越贵,所以ADI之类的公司一直那么富裕,赚黑钱......
5)满刻度误差(Full Scale Error) 满度输出时对应的输入信号与理想输入信号值之差。
6)线性度(Linearity) 实际转换器的转移函数与理想直线的最大偏移,不包括以上三种误差。
AD_DA原理及主要技术指标
AD_DA原理及主要技术指标AD(模数转换器)与DA(数模转换器)是数字信号处理中常用的模拟转换器。
AD将模拟信号转换为数字信号,而DA则将数字信号转换为模拟信号。
两者在数字系统与模拟系统之间起着重要的桥梁作用。
本文将介绍AD_DA的原理及主要技术指标。
AD原理:AD原理基于采样定理,即将连续时间的模拟信号转换为离散时间的数字信号。
在AD转换过程中,首先通过取样器获取模拟信号的离散样点,然后由量化器将取样点量化为离散的数字信号。
主要技术指标:1.量化精度:量化精度决定了AD转换器的分辨率,以位数表示,常见的有8位、10位、12位、16位等。
位数越大,分辨率越高,对信号的重建越精准。
2.采样率:采样率指的是AD转换器每秒采样的次数,常用单位为Hz。
采样率要满足采样频率大于信号频率两倍以上的采样定理,否则会产生混叠效应。
3.带宽:AD转换器的带宽是指转换器能够正确采样和重建信号的频率范围。
带宽越大,能够处理的信号频率范围越宽。
4.功耗:功耗是指AD转换器在工作过程中消耗的电能。
低功耗的AD转换器具有节能环保的特点。
5.采样保持电路:采样保持电路对模拟信号进行采样并保持,以确保量化器能够准确对信号进行量化,有利于提高AD转换器的性能。
DA原理:DA原理是将数字信号转换为模拟信号的过程。
在DA转换过程中,首先通过数值控制器获得数字信号,然后由DA转换器将数字信号转换为模拟信号输出。
主要技术指标:1.分辨率:分辨率是指DA转换器的数字输入可以表示的最小幅度变化。
分辨率越高,输出模拟信号的精度越高。
2.采样率:采样率指的是DA转换器每秒从数字输入读取的次数,常用单位为Hz。
采样率决定了DA转换器能够输出多少个模拟信号样本。
3.输出精度:输出精度指的是DA转换器输出模拟信号与所期望模拟信号之间的偏差。
输出精度越高,输出模拟信号的准确性越高。
4.失真度:失真度是指DA转换器输出的模拟信号与原始模拟信号之间的差异。
ADC和DAC主要技术指标简介
2、AD转换器的主要技术指标1)分辨率(Resolution)指数字量变化一个最小量时模拟信号的变化量,定义为满刻度与2的比值。
分辩率又称精度,通常以数字信号的位数来表示。
2)转换速率(Conversion Rate)是指完成一次从模拟转换到数字的AD转换所需要的时间的倒数。
积分型AD的转换时间是毫秒级属低速AD,逐次比较型AD是微秒级属中速AD,全并行/串并行型AD可达到纳秒级。
采样时间则是另外一个概念,是指两次转换的间隔。
为了保证转换的正确完成,采样速率(Sample Rate)必须小于或等于转换速率。
因此有人习惯上将转换速率在数值上等同于采样速率也是可以接受的。
常用单位是Ksps和Msps,表示每秒采样千/百万次(kilo/Million Samples per Second)3)量化误差(Quantizing Error)由于AD的有限分辩率而引起的误差,即有限分辩率AD的阶梯状转移特性曲线与无限分辩率AD(理想AD)的转移特性曲线(直线)之间的最大偏差。
通常是1个或半个最小数字量的模拟变化量,表示为1LSB、1/2LSB。
4)偏移误差(Offset Error)输入信号为零时输出信号不为零的值,可外接电位器调至最小。
5)满刻度误差(Full Scale Error)满度输出时对应的输入信号与理想输入信号值之差。
6)线性度(Linearity)实际转换器的转移函数与理想直线的最大偏移,不包括以上三种误差。
其它指标有:绝对精度(Absolute Accuracy),相对精度(Relative Accuracy),微分非线性,单调性和无错码,总谐波失真(Total Harmonic Distortion缩写THD)和积分非线性。
3、DA转换器DA转换器的内部电路构成无太大差异,一般按输出是电流还是电压、能否作乘法运算等进行分类。
大多数DA转换器由电阻阵列和N个电流开关(或电压开关)构成。
按数字输入值切换开关,产生比例于输入的电流(或电压)。
AD转换器主要技术指标
AD转换器主要技术指标AD转换器(Analog-to-Digital Converter)是将模拟信号转换为数字信号的电子器件,广泛应用于各种领域,如通信、测量、工业控制等。
主要技术指标是指影响AD转换器性能和功能的重要参数和特性,下面详细介绍。
1. 分辨率(Resolution):指AD转换器数字输出的位数,也就是用来表示输入模拟信号的二进制位数。
常见的分辨率有8位、10位、12位、16位等,位数越高,分辨率越高,可以表示的信号细节越丰富,但同时也会增加功耗和成本。
2. 采样率(Sampling Rate):是指AD转换器每秒采集模拟信号的次数。
采样率与采样定理相关,根据奈奎斯特采样定理,采样频率应该高于信号频率的两倍。
通常采样率以每秒采样点数(Samples per Second,SPS)或赫兹(Hz)表示。
3. INL(Integral Nonlinearity):是指AD转换器输出码字与理想线性转换直线之间的差异。
INL描述了AD转换器的非线性误差,一般用最大偏差、最大偏差值和最大偏差百分比等来表示。
4. DNL(Differential Nonlinearity):是指AD转换器输出码字间的间隔和理想值之间的差异。
DNL描述了AD转换器的量化误差,一般用最大偏差、最大偏差值和最大偏差百分比等来表示。
5. 增益误差(Gain Error):是指AD转换器输出码字与输入信号的理想转换比之间的差异。
增益误差描述了AD转换器的放大精度,一般以百分比或最大偏差表示。
6. 位移误差(Offset Error):是指AD转换器输出码字与输入信号的理想转换位置之间的差异。
位移误差描述了AD转换器的偏移精度,一般以最大偏差或最大偏差百分比表示。
7. 信噪比(Signal-to-Noise Ratio,SNR):是指AD转换器输出信号与转换器内部噪声之间的比值。
信噪比表示了AD转换器的动态范围和干扰抑制能力,一般以分贝(dB)表示。
AD转换器
A/D转换器的量化误差 转换器的量化误差
二、A/D转换器的技术指标
1. 分辨率与量化误差
分辨率是衡量A/D转换器分辨输入模拟量最小变化程度的 转换器分辨输入模拟量最小变化程度的 分辨率是衡量 技术指标。 转换器的分辨率取决于A/D转换器的位数,所 转换器的位数, 技术指标。A/D转换器的分辨率取决于 转换器的分辨率取决于 转换器的位数 以习惯上以输出二进制数或BCD 码数的位数来表示。 码数的位数来表示。 以习惯上以输出二进制数或
A/D转换器概述 / 转换器概述
一、A/D转换器的定义 / 转换器的定义 A/D转换器是将模拟量转换为数字量的器件,这 / 转换器是将模拟量转换为数字量的器件, 转换器是将模拟量转换为数字量的器件 个模拟量泛指电压、电阻、电流、时间等参量, 个模拟量泛指电压、电阻、电流、时间等参量,但在 一般情况下,模拟量是指电压而言的。 一般情况下,模拟量是指电压而言的。 二、A/D转换器的技术指标 / 转换器的技术指标 1. 分辨率与量化误差 2. 转换精度 3. 转换速率 4. 满刻度范围
二、A/D转换器的技术指标
3、转换速率 、
转换速率是指A/ 转换器在每秒钟内所能完成的转换次数 转换器在每秒钟内所能完成的转换次数。 转换速率是指 /D转换器在每秒钟内所能完成的转换次数。 转换速率也可表述为转换时间,即A/D转换从启动到结束 转换速率也可表述为转换时间, / 转换从启动到结束 所需的时间,转换速率与转换时间互为倒数。 所需的时间,转换速率与转换时间互为倒数。 例如, 转换器的转换速率为5MHz,则பைடு நூலகம்转换时间 例如,某A/D转换器的转换速率为 / 转换器的转换速率为 , 是200ns。 。
三、A/D转换器的分类
逐次比较式A/ 转换器 转换时间一般在µs级 转换器: ① 逐次比较式 /D转换器:转换时间一般在 级,转换精 度一般在0.1%上下,适用于一般场合。 度一般在 %上下,适用于一般场合。 积分式A/ 转换器 其核心部件是积分器, 转换器: ② 积分式 /D转换器:其核心部件是积分器,因此转换时 间一般在ms级或更长 但抗干扰性能强,转换精度可达0.01% 级或更长, 间一般在 级或更长,但抗干扰性能强,转换精度可达 % 或更高。适于数字电压表类仪器采用。 或更高。适于数字电压表类仪器采用。 并行比较式又称闪烁式:采用并行比较, ③ 并行比较式又称闪烁式:采用并行比较,其转换时间可 达ns级,但抗干扰性能较差,由于工艺限制,其分辨率一般不高 级 但抗干扰性能较差,由于工艺限制, 于8位。可用于数字示波器等要求转换速度较快的仪器中。 位 可用于数字示波器等要求转换速度较快的仪器中。 改进型是在上述某种形式A/ 转换器的基础上 转换器的基础上, ④ 改进型是在上述某种形式 /D转换器的基础上,为满足 某项高性能指标而改进或复合而成的。 某项高性能指标而改进或复合而成的。例如余数比较式即是在逐 次比较式的基础上加以改进, 次比较式的基础上加以改进,使其在保持原有较高转换速率的前 提下精度可达0.01%以上。 提下精度可达 %以上。
AD转换器的技术指标
A /D 转换器的技术指标D A 转换器的转换精度与转换速度一、 A /D 转换器的转换精度在单片集成的D A 转换器中也采用分辨率(又称分解度)和转换误差来描述转换精度。
分辨率以输出二进制数或十进制数的位数表示,它说明D A 转换器对输入信号的分辨能力。
从理论上讲,n 位二进制数字输出的D A 转换器应能区分输入模拟电压的n 2个不同等级大小,能区分输入电压的最小差异为n 21FSR (满量程输入的n 21)。
例如D A 转换器的输出为10位二进制数,最大输入信号为5V ,那么这个转换器的输出应能区分出输入信号的最小差异为1025v =4.88mV .转换误差通常以输出误差最大值的形式给出,它表示实际输出的数字量和理论上应有的输出数字量之间的差别,一般多以最低有效位的倍数给出。
例如给出转换误差<±21LSB,这就表明实际输出的数字量和理论上应得到的输出数字量 之际的误差小于最低有效位的半个字。
有时也用满量程输出的百分数给出转换误差。
例如D A 转换器的输出为十进制的321位(即所谓的三位半),转换误差为±0.005%FSR ,则满量程输出为1999,最大输出误差小于最低位的1。
通常单片集成D A 转换器的转换误差已经综合的反映了电路内部各个元、器件及单元电路偏差对转换精度的影响,所以无须再分别讨论这些因素各自对转换精度的影响了。
还应指出,手册上给出的转换精度都是在一定的电源电压和环境温度下得到的数据。
如果这些条件改变了,将引起附加的转换误差。
例如10位二进制输出的D A 转换器AD571在室温(+25℃)和标准电源电压(+V =+5V 、+V =-15V )下转换误差21±≤LSB ,而当环境温度从0℃变到70℃时,可能产生±1LSB 的附加误差。
如果正电源电压在+4.5V~+5.5V 范围内变化,或者负电源电压在-16V~-13.5V 范围内变化时,最大的转换误差可达到±2LSB 。
AD应用
单片机最小系统
判断接口是否正确
ADC0809与8031的接口连接图
12位A/D转换器AD574A-内部结构图
AD574内部结构图
AD574A引脚功能
AD574
VL 12/ 8 CS A0 R/ C CE Vcc REFOUT AGND REFIN VEE BIPOFF 10VIN 20VIN
A/D主要技术指标
电源灵敏度
电源电压的变化,相当于A/D输入量的变化,从而 产生误差。例如:电源灵敏度为(0.05%)/(%△Us), 含义:电源电压变化为电源电压Us的1%时,相当 于引入0.05%的模拟输入值的变化。
对基准电源的要求
基准电源的精度影响这个系统的精度,故 要考虑是否外加精密参考电源。
1 2 3 4 5 6 7 8 9 10 11 12 13 14
28 27 26 25 24 23 22 21 20 19 18 17 16 15
DB0~DB11:12位数据输 出分3组,均带三台输出 表3. 6 AD574A控制信号状态表 CE :使能信号,高电平有效。 12/8 :数据格式选择端。当 缓冲器。 C 12 A R/ 操作 :片选信号。 CE 、 CS 必须同 12/8=1 时,双字节输出,即 12 位 STS C E CS / 8 A0 :转换和读字节选择信号。 0 CS DB11MSB 数据同时有效输出,可用于 时有效AD574才工作,否则处 12位 0 在转换之前,若 X X X A0=1 X ,按8位 禁止 DB10 于禁止状态。 或16 位计算机。当 12/8=0 时,单 A/D 转换,若 A0=0 ,按 12位 DB9 X 1 X X X 禁止 字节输出,可与 8 位总线接口。此 DB8 转换。在读周期中, STSA/D :转换状态信号。 STS=1, 时若 A0=0 ,高 8位数据有效,若 DB7 A0=0 高 8 位数据有效, A0=1 , 转换开始; STS=0 1 0 0 X ,转换结 0 启动12 位转换 DB6 A0=1 ,则输出低 4位数据。 低 4 位数据有效。 束。 DB5 1 0 0 0 1 启动8位转换 DB4 一次读取12位输 DB3 1 0 1 1 X 出数据 DB2 输出高8位输出数 DB1 10VIN 1 :模拟信号输入,单极 0 1 0 0 据 DB0LSB 性0~10V,双极性± 5V。 输出低4位输出数 DGND 1 0 1 0 1 20VIN:模拟信号输入,单极 据尾随4个0 性0~20V,双极性± 10V。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
AD转换器的主要技术指标
1)分辩率(Resolution) 指数字量变化一个最小量时模拟信号的变化量,定义为满刻度与2n的比值。
分辩率又称精度,通常以数字信号的位数来表示。
2)转换速率(Conversion Rate)是指完成一次从模拟转换到数字的AD转换所需的时间的倒数。
积分型AD的转换时间是毫秒级属低速AD,逐次比较型AD是微秒级属中速AD,全并行/串并行型AD可达到纳秒级。
采样时间则是另外一个概念,是指两次转换的间隔。
为了保证转换的正确完成,采样速率(Sample Rate)必须小于或等于转换速率。
因此有人习惯上将转换速率在数值上等同于采样速率也是可以接受的。
常用单位是ksps和Msps,表示每秒采样千/百万次(kilo / Million Samples per Second)。
3)量化误差(Quantizing Error) 由于AD的有限分辩率而引起的误差,即有限分辩率AD的阶梯状转移特性曲线与无限分辩率AD(理想AD)的转移特性曲线(直线)之间的最大偏差。
通常是1个或半个最小数字量的模拟变化量,表示为1LSB、1/2LSB。
4)偏移误差(Offset Error) 输入信号为零时输出信号不为零的值,可外接电位器调至最小。
5)满刻度误差(Full Scale Error) 满度输出时对应的输入信号与理想输入信号值之差。
6)线性度(Linearity) 实际转换器的转移函数与理想直线的最大偏移,不包括以上三种误差。
其他指标还有:绝对精度(Absolute Accuracy) ,相对精度(Re lative Accuracy),微分非线性,单调性和无错码,总谐波失真(T otal Harmonic Distotortion缩写THD)和积分非线性。
AD的选择,首先看精度和速度,然后看是几路的,什么输出的比如SPI或者并行的,差分还是单端输入的,输入范围是多少,这些都是选AD需要考虑的。
DA呢,主要是精度和输出,比如是电压输出啊,4-20mA电流输出啊,等等。
DSP呢,用来计算嘛,所以主要是看运算能力了,当然,外围的接口也是需要考虑的。
个人看法,TI的单DSP处理能力还可以,ADI的多DSP联合使用的优点特别突出,当然了,不同档次的DSP的运算能力和速度都是有很大差别的。
工程师在进行电路设计时,面对林林总总的AD/DA芯片,如何选择你所需要的器件呢?这要综合设计的诸项因素,系统技术指标、成本、功耗、安装等,最主要的依据还是速度和精度。
精度 与系统中所测量控制的信号范围有关,但估算时要考虑到其他因素,转换器位数应该比总精度要求的最低分辩率高一位。
常见的AD/DA器件有8位,10位,12位,14位,16位等。
速度 应根据输入信号的最高频率来确定,保证转换器的转换速率要高于系统要求的采样频率。
通道 有的单芯片内部含有多个AD/DA模块,可同时实现多路信
号的转换;常见的多路AD器件只有一个公共的AD模块,由一个多路转换开关实现分时转换。
数字接口方式 接口有并行/串行之分,串行又有SPI、I2C、SM 等多种不同标准。
数值编码通常是二进制,也有BCD(二~十进制)、双极性的补码、偏移码等。
模拟信号类型通常AD器件的模拟输入信号都是电压信号,而DA 器件输出的模拟信号有电压和电流两种。
同时根据信号是否过零,还分成单极性(Unipolar)和双极性(B ipolar)。
电源电压有单电源,双电源和不同电压范围之分,早期的AD/DA 器件要有+15V/-15V,如果选用单+5V电源的芯片则可以使用单片机系统电源。
基准电压有内、外基准和单、双基准之分。
功耗 一般CMOS工艺的芯片功耗较低,对于电池供电的手持系统对功耗要求比较高的场合一定要注意功耗指标。
封装 常见的封装是DIP,现在表面安装工艺的发展使得表贴型S O封装的应用越来越多。
跟踪/保持(Track/Hold缩写T/H)原则上直流和变化非常缓慢的信号可不用采样保持,其他情况都应加采样保持。
满幅度输出(Rail-to Rail) 新近业界出现的新概念,最先应用于运算放大器领域,指输出电压的幅度可达输入电压范围。
在DA中一般是指输出信号范围可达到电源电压范围。
(国内的翻译并不统一,
如“轨-轨”、“满摆幅”)
主要针对高精度测量类的AD.
1:参考电压需要足够精确,推荐使用外部高精准参考电压。
2:如果PGA可调,增益系数一般是越小噪声越低。
3:一般最好用到满量程,此时AD精度不浪费。
4:如果有偏置,需要进行自校。
5:请注意在使用DEMO板调试时,会由调试口导入PC噪声,由信号连接线导入外部噪声,因此建议使用屏蔽电缆传输信号。
6:板上注意模拟电源和数字电源,以及模拟地和数字地要分开,减少耦合噪声路径。
7:使用差分输入可以减少共模噪声,但是差模噪声会增大。
8:如果是片内集成AD的MCU,支持高速时钟,如果不影响性能,内部工作时钟越低,对您的AD采样引起的干扰越小,如果是板上就需要注意走线和分区。
9:信号输入前级接滤波电路,一般一阶RC电路较多,注意Fc=1/1000~ 1/100 采样频率,电阻和电容的参数注意选取.信号接入后级接滤波电路最好采用sinc滤波方式.注意输入偏置电流会限制您外部的滤波电阻阻值的大小。
R x Ib < 1LSB。
有的片内AD还有集成输入Buffer,有助与抑制您的噪声,一般是分两当,看输入信号范围和满量程之间的关系。
AD分为很多中,SAR,FLASH,并行比较型,逐次逼近型,Delta sigma 型,一般是速度越高,精度越高越贵,所以ADI之类的公司一直那么富裕,赚黑钱......
针对不同场合不同成本不同要求分别选用。
还得注意是您的Layout。