边界层理论(Boundary layer theory)--西安交大

合集下载

边界层理论

边界层理论

1.边界层理论概述 (1)1.1 边界层理论的形成与发展 (1)1.1.1 边界层理论的提出 (1)1.1边界层理论存在的问题 (2)1.2 边界层理论的发展 (2)2边界层理论的引入 (3)3 边界层基础理论 (4)3.1 边界层理论的概念 (4)3.2 边界层的主要特征 (6)3.3边界层分离 (7)3.4 层流边界层和紊流边界层 (9)3.5 边界层厚度 (10)3.5.1 排挤厚度 (11)3.5.2 动量损失厚度 (11)3.5.2 能量损失厚度 (12)4 边界层理论的应用 (14)4.1 边界层理论在低比转速离心泵叶片设计中的应用 (14)4.2 边界层理论在高超声速飞行器气动热工程算法中的应用 (14)4.3 基于边界层理论的叶轮的仿真 (15)参考文献 (17)1.边界层理论概述1.1 边界层理论的形成与发展1.1.1 边界层理论的提出经典的流体力学是在水利建设、造船、外弹道等技术的推动下发展起来的,它的中心问题是要阐明物体在流体中运动时所受的阻力。

虽然很早人们就知道,当粘性小的流体(像水、空气等)在运动,特别是速度较高时,粘性直接对阻力的贡献是不大的。

但是,以无粘性假设为基础的经典流体力学,在阐述这个问题时,却得出了与事实不符的“D'Alembert之谜”。

在19世纪末叶,从不连续的运动出发,Kirchhoff,Helmholtz,Rayleigh等人的尝试也都失败了。

经典流体力学在阻力问题上失败的原因,在于忽视了流体的粘性这一重要因素。

诚然,在速度较高、粘性小的情况下,对一般物体来说,粘性阻力仅占一小部分;然而阻力存在的根源却是粘性。

一般,根据来源的不同,阻力可分为两类:粘性阻力和压差阻力。

粘性阻力是由于作用在表面切向的应力而形成的,它的大小取决于粘性系数和表面积;压差阻力是由于物体前后的压差而引起的,它的大小则取决于物体的截面积和压力的损耗。

当理想流体流过物体时,它能沿物体表面滑过(物体是平滑的);这样,压力从前缘驻点的极大值,沿物体表面连续变化,到了尾部驻点便又恢复到原来的数值。

第四章 边界层理论

第四章  边界层理论
描述不可压缩流体在边界 层中作稳态二维流动的微 分方程
普兰德首先发现,当Re较 大时,边界层的厚度<<x。 可以通过比较数量级简化 方程。
普兰德边界层方程
通过数量级比较得到的简化方程:
普兰德边 界层方程
u x u x 1 dP 2u x ux uy x y dx y 2 u x u y 0 x y
【例】沿平壁层流边界层的计算
温度为20℃的空气在常压下以5m/s的速度流过一块宽1 m的平板壁 面。试计算距平板前缘0.5m处的边界层厚度及进入边界层内的质量 流率,并计算这一段平板壁面的曳力系数与承受的摩擦曳力。假设 临界雷诺数Rexc=5×105。 解:
(1)判断边界层流型:20oC空气, 1.81105 Pa.s 1.205kg / m3 Re0.5 1.664 105 5 1050.5处的边界层为层流边界层
4.2曳力系数和范宁摩擦因数
圆柱体在流体中的运动:
Fd ' CD
u0
2
2
D
Fd’-流体对圆柱体所施加的总曳力(drag force) u0-圆柱体的运动速度 CD-曳力系数(drag coefficient) D-圆柱体的直径 球体或其他形状的物体在流体中的运动 u0 2 2 Fd Fd CD A CD 2 u0 2 A A-物体在垂直于它的运动方向的平面上的投影面积 流体在圆管中流动所受到的摩擦阻力,习惯上采用范宁摩擦因数: τs-流体流过管壁的剪应力 2 s f= f-Fanning friction factor ub2 ub-流体的主体流速
递过程和质量传递过程有着密切的关系。
边界层概念
Prandtl(1904)提出边界层概念,把统一 的流场,划分成两个区域,边界层和外 流区;其流体流动(沿流动方向和沿与 流动方向垂直的方向)有不同的特点。 边界层:流体速度分布明显受到固体壁 面影响的区域。 边界层的形成: 壁面处流体的“不滑脱”no-slip 流体的“内摩擦”作用 边界层厚度δ U=00.99 U0

流体力学中英文词

流体力学中英文词

流体力学中英文词http://219.232.54.3/cgi-bin/LB5000/topic.cgi?forum=18&amp;topic=409&amp;show=0求解器——差分方程的求解。

主要软件:Fluent:不可压流动的优秀求解器,可压流动求解稍差,市场做得好,用的人多。

非结构网格求解器。

它不是最好的,但是是最通用的,具体还是要看你的问题。

帮助文档我已经全部翻译了。

CFX5.x:相当于Fluent的分离求解器,Ma&lt;2有效。

基于非结构网格。

没啥好说的,优点找不到,缺点也没什幺。

CFX4.x:化学反应和多项流结构网格求解器,不了解,大家可以补充Star-CD:源于英国,日本也搞,我不喜欢有日本人的气味!西交大用得比较多。

Phoenics:英国佬的,由于决策上的失误(网格处理方面的决策),目前仍在低谷,功能强大,但使用不方便,前处理太差。

CFDRC:我最喜欢的求解器,功能比前面所有加起来的都多,解决问题极其广泛,缺点是接口较差,帮助文档有些做得较为马虎,错别字,错误的公式较多,要看懂它需要一定的基础。

Cosmos Floworks:Solidworks的一个插件,真是委屈它了,这世道美女都找有钱的主,它找的是Solidworks,和其它求解器相比,它是花瓶。

CFDesign:Cosmos Floworks的金兰姐妹,下嫁Pro/E,与Cosmos相比,各有千秋。

Numeca:针对涡轮机械的,好东西,市场没搞好,目前不得志。

Ansys Flotran:垃圾一个。

别的不说,边界条件它就根本没做好!其它还有很多,有空再写。

流体动力学fluid dynamics连续介质力学mechanics of continuous media介质medium流体质点fluid particle无粘性流体nonviscous fluid, inviscid fluid连续介质假设continuous medium hypothesis流体运动学fluid kinematics水静力学hydrostatics液体静力学hydrostatics支配方程governing equation伯努利方程Bernoulli equation伯努利定理Bernonlli theorem毕奥-萨伐尔定律Biot-Savart law欧拉方程Euler equation亥姆霍兹定理Helmholtz theorem开尔文定理Kelvin theorem涡片vortex sheet库塔-茹可夫斯基条件Kutta-Zhoukowski condition 布拉休斯解Blasius solution达朗贝尔佯廖d&#39;Alembert paradox雷诺数Reynolds number施特鲁哈尔数Strouhal number随体导数material derivative不可压缩流体incompressible fluid质量守恒conservation of mass动量守恒conservation of momentum能量守恒conservation of energy动量方程momentum equation能量方程energy equation控制体积control volume液体静压hydrostatic pressure涡量拟能enstrophy压差differential pressure流[动] flow流线stream line流面stream surface流管stream tube迹线path, path line流场flow field流态flow regime流动参量flow parameter流量flow rate, flow discharge涡旋vortex涡量vorticity涡丝vortex filament涡线vortex line涡面vortex surface涡层vortex layer涡环vortex ring涡对vortex pair涡管vortex tube涡街vortex street卡门涡街Karman vortex street马蹄涡horseshoe vortex对流涡胞convective cell卷筒涡胞roll cell涡eddy涡粘性eddy viscosity环流circulation环量circulation速度环量velocity circulation偶极子doublet, dipole驻点stagnation point总压[力] total pressure总压头total head静压头static head总焓total enthalpy能量输运energy transport速度剖面velocity profile库埃特流Couette flow单相流single phase flow单组份流single-component flow均匀流uniform flow非均匀流nonuniform flow二维流two-dimensional flow三维流three-dimensional flow准定常流quasi-steady flow非定常流unsteady flow, non-steady flow 暂态流transient flow周期流periodic flow振荡流oscillatory flow分层流stratified flow无旋流irrotational flow有旋流rotational flow轴对称流axisymmetric flow不可压缩性incompressibility不可压缩流[动] incompressible flow浮体floating body定倾中心metacenter阻力drag, resistance减阻drag reduction表面力surface force表面张力surface tension毛细[管]作用capillarity来流incoming flow自由流free stream自由流线free stream line外流external flow进口entrance, inlet出口exit, outlet扰动disturbance, perturbation分布distribution传播propagation色散dispersion弥散dispersion附加质量added mass ,associated mass收缩contraction镜象法image method无量纲参数dimensionless parameter几何相似geometric similarity运动相似kinematic similarity动力相似[性] dynamic similarity平面流plane flow势potential势流potential flow速度势velocity potential复势complex potential复速度complex velocity流函数stream function源source汇sink速度[水]头velocity head拐角流corner flow空泡流cavity flow超空泡supercavity超空泡流supercavity flow空气动力学aerodynamics低速空气动力学low-speed aerodynamics 高速空气动力学high-speed aerodynamics 气动热力学aerothermodynamics亚声速流[动] subsonic flow跨声速流[动] transonic flow超声速流[动] supersonic flow锥形流conical flow楔流wedge flow叶栅流cascade flow非平衡流[动] non-equilibrium flow细长体slender body细长度slenderness钝头体bluff body 钝体blunt body翼型airfoil翼弦chord薄翼理论thin-airfoil theory构型 configuration后缘trailing edge迎角angle of attack失速stall脱体激波detached shock wave波阻wave drag诱导阻力induced drag诱导速度induced velocity临界雷诺数critical Reynolds number前缘涡leading edge vortex附着涡bound vortex约束涡confined vortex气动中心aerodynamic center气动力aerodynamic force气动噪声aerodynamic noise气动加热aerodynamic heating离解dissociation地面效应ground effect气体动力学gas dynamics稀疏波rarefaction wave热状态方程thermal equation of state喷管Nozzle普朗特-迈耶流Prandtl-Meyer flow瑞利流Rayleigh flow可压缩流[动] compressible flow可压缩流体compressible fluid绝热流adiabatic flow非绝热流diabatic flow未扰动流undisturbed flow等熵流isentropic flow匀熵流homoentropic flow兰金-于戈尼奥条件Rankine-Hugoniot condition状态方程equation of state量热状态方程caloric equation of state完全气体perfect gas拉瓦尔喷管Laval nozzle马赫角Mach angle马赫锥Mach cone马赫线Mach line马赫数Mach number马赫波Mach wave当地马赫数local Mach number冲击波shock wave激波shock wave正激波normal shock wave斜激波oblique shock wave头波bow wave附体激波attached shock wave激波阵面shock front激波层shock layer压缩波compression wave反射reflection折射refraction散射scattering衍射diffraction绕射diffraction出口压力exit pressure超压[强] over pressure反压back pressure爆炸explosion爆轰detonation缓燃deflagration水动力学hydrodynamics液体动力学hydrodynamics泰勒不稳定性Taylor instability盖斯特纳波Gerstner wave斯托克斯波Stokes wave瑞利数Rayleigh number自由面free surface波速wave speed, wave velocity波高wave height波列wave train波群wave group波能wave energy表面波surface wave表面张力波capillary wave规则波regular wave不规则波irregular wave浅水波shallow water wave深水波deep water wave重力波gravity wave椭圆余弦波cnoidal wave潮波tidal wave涌波surge wave破碎波breaking wave船波ship wave非线性波nonlinear wave孤立子soliton水动[力]噪声hydrodynamic noise水击water hammer空化cavitation空化数cavitation number空蚀cavitation damage超空化流supercavitating flow水翼hydrofoil水力学hydraulics洪水波flood wave涟漪ripple消能energy dissipation海洋水动力学marine hydrodynamics 谢齐公式Chezy formula欧拉数Euler number弗劳德数Froude number水力半径hydraulic radius水力坡度hvdraulicslope高度水头elevating head水头损失head loss水位water level水跃hydraulic jump含水层aquifer排水drainage排放量discharge壅水曲线back water curve压[强水]头pressure head过水断面flow cross-section明槽流open channel flow孔流orifice flow无压流free surface flow有压流pressure flow缓流subcritical flow急流supercritical flow渐变流gradually varied flow急变流rapidly varied flow临界流critical flow异重流density current, gravity flow堰流weir flow掺气流aerated flow含沙流sediment-laden stream降水曲线dropdown curve沉积物sediment, deposit沉[降堆]积sedimentation, deposition沉降速度settling velocity流动稳定性flow stability不稳定性instability奥尔-索末菲方程Orr-Sommerfeld equation涡量方程vorticity equation泊肃叶流Poiseuille flow奥辛流Oseen flow剪切流shear flow粘性流[动] viscous flow层流laminar flow分离流separated flow二次流secondary flow近场流near field flow远场流far field flow滞止流stagnation flow尾流wake [flow]回流back flow反流reverse flow射流jet自由射流free jet管流pipe flow, tube flow内流internal flow拟序结构coherent structure猝发过程bursting process表观粘度apparent viscosity运动粘性kinematic viscosity动力粘性dynamic viscosity泊poise厘泊centipoise厘沱centistoke剪切层shear layer次层sublayer流动分离flow separation层流分离laminar separation湍流分离turbulent separation分离点separation point附着点attachment point再附reattachment再层流化relaminarization起动涡starting vortex驻涡standing vortex涡旋破碎vortex breakdown涡旋脱落vortex shedding压[力]降pressure drop压差阻力pressure drag压力能pressure energy型阻profile drag滑移速度slip velocity无滑移条件non-slip condition壁剪应力skin friction, frictional drag壁剪切速度friction velocity磨擦损失friction loss磨擦因子friction factor耗散dissipation滞后lag相似性解similar solution局域相似local similarity气体润滑gas lubrication液体动力润滑hydrodynamic lubrication浆体slurry泰勒数Taylor number纳维-斯托克斯方程Navier-Stokes equation牛顿流体Newtonian fluid边界层理论boundary later theory边界层方程boundary layer equation边界层boundary layer附面层boundary layer层流边界层laminar boundary layer 湍流边界层turbulent boundary layer温度边界层thermal boundary layer边界层转捩boundary layer transition边界层分离boundary layer separation边界层厚度boundary layer thickness位移厚度displacement thickness动量厚度momentum thickness能量厚度energy thickness焓厚度enthalpy thickness注入injection吸出suction泰勒涡Taylor vortex速度亏损律velocity defect law形状因子shape factor测速法anemometry粘度测定法visco[si] metry流动显示flow visualization油烟显示oil smoke visualization孔板流量计orifice meter频率响应frequency response油膜显示oil film visualization阴影法shadow method纹影法schlieren method烟丝法smoke wire method丝线法tuft method氢泡法nydrogen bubble method相似理论similarity theory相似律similarity law部分相似partial similarity定理pi theorem, Buckingham theorem静[态]校准static calibration动态校准dynamic calibration风洞wind tunnel激波管shock tube激波管风洞shock tube wind tunnel水洞water tunnel拖曳水池towing tank旋臂水池rotating arm basin扩散段diffuser测压孔pressure tap皮托管pitot tube普雷斯顿管preston tube斯坦顿管Stanton tube文丘里管Venturi tubeU形管U-tube压强计manometer微压计micromanometer多管压强计multiple manometer静压管static [pressure]tube流速计anemometer风速管Pitot- static tube激光多普勒测速计laser Doppler anemometer, laser Doppler velocimeter热线流速计hot-wire anemometer热膜流速计hot- film anemometer流量计flow meter粘度计visco[si] meter涡量计vorticity meter传感器transducer, sensor压强传感器pressure transducer热敏电阻thermistor示踪物tracer时间线time line脉线streak line尺度效应scale effect壁效应wall effect堵塞blockage堵寒效应blockage effect动态响应dynamic response响应频率response frequency底压base pressure菲克定律Fick law巴塞特力Basset force埃克特数Eckert number格拉斯霍夫数Grashof number努塞特数Nusselt number普朗特数prandtl number雷诺比拟Reynolds analogy施密特数schmidt number斯坦顿数Stanton number对流convection自由对流natural convection, free convec-tion 强迫对流forced convection热对流heat convection质量传递mass transfer传质系数mass transfer coefficient热量传递heat transfer传热系数heat transfer coefficient对流传热convective heat transfer辐射传热radiative heat transfer动量交换momentum transfer能量传递energy transfer传导conduction热传导conductive heat transfer热交换heat exchange临界热通量critical heat flux浓度concentration扩散diffusion扩散性diffusivity扩散率diffusivity扩散速度diffusion velocity分子扩散molecular diffusion沸腾boiling蒸发evaporation气化gasification凝结condensation成核nucleation计算流体力学computational fluid mechanics 多重尺度问题multiple scale problem伯格斯方程Burgers equation对流扩散方程convection diffusion equation KDU方程KDV equation修正微分方程modified differential equation 拉克斯等价定理Lax equivalence theorem数值模拟numerical simulation大涡模拟large eddy simulation数值粘性numerical viscosity非线性不稳定性nonlinear instability希尔特稳定性分析Hirt stability analysis相容条件consistency conditionCFL条件Courant- Friedrichs- Lewy condition ,CFL condition 狄里克雷边界条件Dirichlet boundarycondition熵条件entropy condition远场边界条件far field boundary condition流入边界条件inflow boundary condition无反射边界条件nonreflecting boundary condition数值边界条件numerical boundary condition流出边界条件outflow boundary condition冯.诺伊曼条件von Neumann condition近似因子分解法approximate factorization method人工压缩artificial compression人工粘性artificial viscosity边界元法boundary element method配置方法collocation method能量法energy method有限体积法finite volume method流体网格法fluid in cell method, FLIC method通量校正传输法flux-corrected transport method通量矢量分解法flux vector splitting method伽辽金法Galerkin method积分方法integral method标记网格法marker and cell method, MAC method特征线法method of characteristics直线法method of lines矩量法moment method多重网格法multi- grid method板块法panel method质点网格法particle in cell method, PIC method质点法particle method预估校正法predictor-corrector method投影法projection method准谱法pseudo-spectral method随机选取法random choice method激波捕捉法shock-capturing method激波拟合法shock-fitting method谱方法spectral method稀疏矩阵分解法split coefficient matrix method不定常法time-dependent method时间分步法time splitting method变分法variational method涡方法vortex method隐格式implicit scheme显格式explicit scheme交替方向隐格式alternating direction implicit scheme, ADI scheme 反扩散差分格式anti-diffusion difference scheme紧差分格式compact difference scheme守恒差分格式conservation difference scheme克兰克-尼科尔森格式Crank-Nicolson scheme杜福特-弗兰克尔格式Dufort-Frankel scheme指数格式exponential scheme戈本诺夫格式Godunov scheme高分辨率格式high resolution scheme拉克斯-温德罗夫格式Lax-Wendroff scheme蛙跳格式leap-frog scheme单调差分格式monotone difference scheme保单调差分格式monotonicity preserving diffe-rence scheme 穆曼-科尔格式Murman-Cole scheme半隐格式semi-implicit scheme斜迎风格式skew-upstream scheme全变差下降格式total variation decreasing scheme TVD scheme 迎风格式upstream scheme , upwind scheme计算区域computational domain物理区域physical domain影响域domain of influence依赖域domain of dependence区域分解domain decomposition维数分解dimensional split物理解physical solution弱解weak solution黎曼解算子Riemann solver守恒型conservation form弱守恒型weak conservation form强守恒型strong conservation form散度型divergence form贴体曲线坐标body- fitted curvilinear coordi-nates [自]适应网格[self-] adaptive mesh适应网格生成adaptive grid generation自动网格生成automatic grid generation数值网格生成numerical grid generation交错网格staggered mesh网格雷诺数cell Reynolds number数植扩散numerical diffusion数值耗散numerical dissipation数值色散numerical dispersion数值通量numerical flux放大因子amplification factor放大矩阵amplification matrix阻尼误差damping error离散涡discrete vortex熵通量entropy flux熵函数entropy function分步法fractional step method。

第24讲边界层理论1

第24讲边界层理论1
不可压粘性流体平面定常流 动的微分方程为:
y
U0 Ue
0.99U e
Ue
∂u ∂v =0 + ∂x ∂y
(连续方程)
δ (x)
u ( x, y )
o
x
L
⎛ ∂ 2u ∂ 2u ⎞⎫ ∂u ∂u 1 ∂p =− + ν ⎜ 2 + 2 ⎟⎪ u +v ∂x ∂y ρ ∂x ⎜ ∂x ∂y ⎟⎪ ⎝ ⎠ ⎬ 2 2 ⎛∂ v ∂ v⎞⎪ ∂v ∂v 1 ∂p +ν ⎜ 2 + 2 ⎟ ⎪ u +v = − ∂x ∂y ρ ∂y ⎜ ∂x ∂y ⎟ ⎭ ⎝ ⎠
δ
x
~
ν 1 = U0x Re x
x νx = U0 Rex
或:
δ~
名义厚度缺乏明确的物理意义,在实际测量和理论计算当中也存在着 明显的误差。为准确起见,实验或理论中使用排挤厚度和动量损失厚度。
(3)边界层排挤厚度和动量损失厚度
① 排挤厚度 边界层的排挤厚度定义为:
C
y
Ue
D
δ
C′
*
D′
0.99U e
3 平板层流边界层的卜拉休斯解
边界层方程简化后仍然是非线性的,很难求出解析解。1908年Blasius 推倒了方程的解析解,称为相似性解,也称为卜拉休斯解。 设半无限长平板置于均匀来流U中,平板很薄,压力梯度dpe/dx=0, 即零压梯度层流边界层。这是平板边界层的方程为:
∂u ∂v ⎫ =0 + ⎪ ∂x ∂y ⎪ ∂u ∂u ∂ 2u ⎬ =ν 2 ⎪ u +v ∂x ∂y ∂y ⎪ ⎭
② 动量损失厚度 边界层的动量损失厚度定义为:θ =
∞ (δ )

边界层理论

边界层理论



0
eue dy eue
其中, ue 为边界层外缘速 度。由于粘性的存在,实 际流体通过的质量流量为


0
u dy
此处 u 是边界层中距物面为 y 处的流速。上述两部 份流量之差是


0
( eu e u)dy
EXIT
5.1、边界层近似及其特征
这就是设想各点皆以外流速度流动时比实际流量多
位流区
边界层
流动分为三个区域:1. 边界层:N-S化简为边界层方程 2. 尾迹区:N-S方程 3. 位流区:理想流方程
EXIT
5.2、平面不可压缩流体层流边界层方程 2. 平壁面上边界层方程 根据Prandtl边界层概念,通过量级比较,可对N-S方程 组进行简化,得到边界层近似方程。对于二维不可压缩流动 ,连续方程和N-S方程为:
个典型的例子。 那么,如何考虑流体的粘性,怎样解决扰流物
体的阻力问题,这在当时确实是一个阻碍流体力学 发展的难题。
EXIT
5.1、边界层近似及其特征 直到1904年流体力学大师德国学者 L.Prandtl 通
过大量实验发现,虽然整体流动的Re数很大,但在
靠近物面的薄层流体内,流场的特征与理想流动相 差甚远,沿着法向存在很大的速度梯度,粘性力无 法忽略。 Prandtl 把这一物面近区粘性力起重要作用的薄 层称为边界层(Boundary layer)。
第5章下
边界层理论及其近似
5.1、边界层近似及其特征 5.2、平面不可压缩流体层流边界层方程 5.3、平板层流边界层的相似解 5.4、边界层动量积分方程 5.5、边界层的分离现象
EXIT
5.1、边界层近似及其特征
1、边界层概念的提出 我们已知道,流动Re数(O.Reynolds,1883年,英国流体 力学家)是用以表征流体质点的惯性力与粘性力对比关系 的。根据量级分析,作用于流体上的惯性力和粘性力可表 示为: 惯性力:

第五章边界层理论

第五章边界层理论
2v y 2v y 1 p vx vy 2 2 x y y x y v y v y
Y方向
按边界层概念: 边界层以外势流区的速度u∞不变,所以也不存在压力梯度 进一步简化:
H.布拉修斯对上述方程组进行了解析,引入流函数ψ(x,y),将 偏微分方程组化为可以解的常微分方程:
通常规定:u=0.99 u∞的位置为边界层的外边界线
5.2 平面层流边界层微分方程
以不可压稳态层流边界层为例: 1.微分方程建立与简化:
控制方程(二维,不可压,稳态,层流,不考虑质量力)
v x vy 0 x y
连续性方程
N-S方程
2v x 2v x v x v x 1 p vx vy 2 2 X方向 x y x x y
1.328 C f 1.328 0 L Re L
x 4.64 Re x
其中:Re L
不可压层流平板绕流摩擦阻力系数:
0 L
v
其总阻力:S
Cf 2
2 0 LB 其中L为平板长度,B为平
板宽度。
1. 平板紊(湍)流中速度分布与边界层厚度关系:
x y 17 ( ) 0
将流函数带入上面的方程组 并认为层流边界层内沿x轴各截面的速度分布图象相似 vx y F( ) v 又依

x

1 Re

x Re
y


y x Re
5.3 不同条件下边界层厚度与摩擦阻力系数
1. 平板层流中速度分布与边界层厚度关系:
x 3 y 1 y 3 ( ) ( ) 0 2 2
第五章 边界层理论
王连登 liandeng@ 13506970553

边界层理论PPT精选文档

边界层理论PPT精选文档
EXIT
5.1、边界层近似及其特征
普朗特重视观察和分析力学现象,养成了非凡的直观洞察能力,善 于抓住物理本质,概括出数学方程。他曾说:“我只是在相信自己对物 理本质已经有深入了解以后,才想到数学方程。方程的用处是说出量的 大小,这是直观得不到的,同时它也证明结论是否正确。” 普朗特 指导过81名博士生,著名学者Blasius、Von Karman是其学生之一。我 国著名的空气动力学专家、北航流体力学教授陆士嘉先生(女,1911– 1986)是普朗特正式接受的唯一中国学生,唯一的女学生。
粘性流体流经任一物体(例如机翼与机身)的问题,归结 为在相应的边界条件下解N—S方程的问题。由于N—S方程太复 杂,在很多实际问题中,不能不作一些近似假设使其简化,以 求问题得以近似地解决。简化时,必须符合物理事实,因此首 先看看空气流过静止物体(例如翼型)的物理图画:
位流区
边界层
流动分为三个区域:1. 边界层:N-S化简为边界层方程 2. 尾迹区:N-S方程 3. 位流区:理想流方程
EXIT
5.1、边界层近似及其特征
2、边界层的特征
(1)边界层定义 严格而言,边界层区与主流区之间无明显界线,通常
以速度达到主流区速度的0.99倍作为边界层的外缘。由边 界层外缘到物面的垂直距离称为边界层名义厚度,用δ表 示。
(2)边界层的有涡性 粘性流体运动总伴随涡量的产生、扩散、衰减。边界
层就是涡层,当流体绕过物面时,无滑移边界条件相当于 使物面成为具有一定强度的连续分布的涡源。
对于曲率不大的弯曲物面,上述边界层方程也近似成立。 只是要将x和y按上述曲线坐标处理即可。当然如果曲率过大, 则沿法向压强保持不变的条件就很难满足了。
EXIT
5.2、平面不可压缩流体层流边界层方程

边界层理论及边界层分离现象

边界层理论及边界层分离现象

边界层理论及边界层分离现象一.边界层理论1.问题的提出在流体力学中,雷诺数Re∝惯性力/粘性力,当Re<1时,惯性力<<粘性力,可以略去惯性力项,用N-S方程解决一些实际问题(如沉降、润滑、渗流等),并可以获得比较满意的结果。

但对于工程流动问题,绝大多数的Re很大。

这时就不可以完全略去粘性力,略去粘性力的结果与实际情况相差很大。

突出的一例即“达朗倍尔佯谬——在流体中作等速运动的物体不受阻力。

”究竟应当怎样才能正确地处理大Re数的流动呢?这个矛盾一直到1904年,德国流体力学家普朗特提出了著名的边界层理论,即大Re数的流动中,大部分区域的惯性力>>粘性力,但在紧靠固壁的极薄流层中,惯性力≈粘性力,这才令人满意地解决了大Re数的流动的阻力问题。

2.边界层的划分Ⅰ流动边界层(速度边界层)以平板流动为例,x方向一维稳态流动,在垂直壁面的y方向上,流动可划分为性质不同的两个区域:(1)y<δ(边界层):受壁面影响,法向速度变化急剧,du/dy很大,粘性力大(与惯性同阶),不能忽略。

(2)y>δ(层外主流层):壁面影响很弱,法向速度基本不变,du/dy≈0。

所以可忽略粘性力(即忽略法向动量传递)。

可按理想流体处理,Euler方程适用。

这两个区域在边界层的外缘衔接起来,由于层内的流动趋近于外流是渐进的,不是突变的,因此,通常约定:在流动边界层的外缘处(即y=δ处),ux=0.99u∞,δ为流动边界层厚度,且δ=δ(x)。

Ⅱ传热边界层(温度边界层)当流体流经与其温度不相等的固体壁面时,在壁面上形成流动边界层,同时,还会由于传热而形成温度分布,可分成两个区域:(1)y<δt(传热边界层):受壁面影响,法向温度梯度dt/dy很大,不可忽略,即不能忽略法向热传导。

(2) y>δt(层外区域):法向温度梯度dt/dy≈0,可忽略法向热传导。

通常约定:在传热边界层的外缘处(即y=δt处),ts-t=0.99(ts-t0) ≈ ts-t0,δt 为温度边界层厚度,且δt=f(x);ts为壁面温度;t0为热边界层外(主流体)区域的温度。

边界层理论Ch05-Boundary-Layer-Theory

边界层理论Ch05-Boundary-Layer-Theory
BUCT BSc 2011 23 BUCT BSc 2011 24
4
Boundary layer equations
Applying our analysis to the momentum equations gives (x direction) :
μ ⎛ ∂ 2u x ∂ 2u x ⎞ 1 ∂p ∂u ∂u + = ux x + u y x ⎜ ⎟− ρ ⎝ ∂x 2 ∂y 2 ⎠ ρ ∂x ∂x ∂y
y ≈ dy ≈ u y ≈ du y ≈ O(δ h )
BUCT
BSc 2011
19
BUCT
BSc 2011
20
Boundary layer equations
2. The velocity in the x direction (along the plate) is much greater than the velocity in the y direction (perpendicular to the plate)
N-S Equations at x direction:
μ⎜
⎛ ∂ u x ∂ u x ∂ u x ⎞ ∂pd + 2 + 2 ⎟− 2 ∂y ∂z ⎠ ∂x ⎝ ∂x
2 2 2
Boundary layer equations x direction
Stationary flow:
∂u x =0 ∂t
u x ≈ du x ≈ x ≈ dx ≈ p ≈ O (1)
BUCT
BSc 2011
21
BUCT
BSc 2011
22
Boundary layer equations

流体力学第六章边界层理论(附面层理论)

流体力学第六章边界层理论(附面层理论)
减阻和节能
通过减小边界层的阻力,降低流体机械的能耗,提高运行效率。
流动分离控制
控制边界层的流动分离,防止流体机械中的流动失稳和振动,提 高设备稳定性。
流体动力学中的边界层效应
流动特性的影响
边界层内的流动特性对整体流动行为产生重要影响,如湍流、分离 流等。
流动阻力
边界层内的流动阻力决定了流体动力学的性能,如流体阻力、升力 等。
在推导过程中,需要考虑流体与固体表面之间的相互作用力,如粘性力和压力梯 度等,以及流体内部的动量传递和能量传递过程。
边界层方程的求解方法
边界层方程是一个复杂的偏微分方程,求解难度较大。常用的求解方法包括分离变量法、积分变换法、有限差分法和有限元 法等。
分离变量法是将多维问题简化为多个一维问题,通过求解一维问题得到原问题的解。积分变换法是通过积分变换将偏微分方 程转化为常微分方程,从而简化求解过程。有限差分法和有限元法则是将偏微分方程离散化,通过求解离散化的方程组得到 原问题的近似解。
边界层内的流动可以从层流转变为湍流,或从湍 流转为层流。
边界层内的流动状态
层流边界层
流速在物体表面附近呈现平滑变化的流动状态。
湍流边界层
流速在物体表面附近呈现不规则变化的流动状态。
混合流动状态
边界层内的流动状态可以是层流和湍流的混合状态。
03
边界层方程与求解方法
边界层方程的推导
边界层方程是流体力学中的重要方程,用于描述流体在固体表面附近的流动行为 。其推导基于Navier-Stokes方程,通过引入边界层假设,即认为在靠近固体表 面的薄层内,流体的速度梯度变化剧烈,而远离固体表面的流体则可以视为均匀 流动。
展望
随着科技的不断进步和研究的深入,边界层理论在未来 有望取得以下突破。首先,随着计算能力的提升,更加 精确和可靠的数值模拟方法将得到发展,这有助于更好 地理解和预测复杂流动现象。其次,随着实验技术的进 步,将能够获得更高精度的实验数据,为理论模型的发 展提供有力支持。最后,随着多学科交叉研究的深入, 将能够从不同角度全面揭示流体流动的内在机制,推动 流体力学理论的进一步发展。

第四章 边界层理论(1)

第四章 边界层理论(1)

可以简化为
u x u x 2u x ux uy ( 2 ) x y y 连续性方程仍为
u x u y 0 x y
24
用类似的方法可以获得能量(温度)边界层方程
t t 2t ux uy ( 2 ) x y y
和浓度边界层方程:
c A c A 2c A ux uy D AB ( 2 ) x y y
7Байду номын сангаас
4 . 2. 边界层分离
在某些情况下,边界层内的流体会产生倒流,并引起 边界层与固体壁面之间的分离现象,同时产生旋涡,造成 能量损失。这种现象称为边界层分离。
8
(a)流线形物体;(b)非流线形物体 曲面边界层分离现象示意图
9
流体横流过圆柱体是的压强变化情况
(1) 从D到E流动加速,为顺压 梯度区;流体静压能向动能 转变,不发生边界层分离 (2) 从E到F流动减速, 为逆压 梯度区;E到F段动能只存在 损耗,速度减小很快 (3) 在S点处出现粘滞 ,由于 压力的升高产生回流导致边 界层分离,并形成尾涡
21
通过上述分析,可以看出,y方向的奈维-斯托克斯 方程与x方向相比,整个方程可以略去。同时由于pd/y = 0,最后可以将奈维-斯托克斯方程组简化为一个方程, 称为普兰特边界层方程:
u x u x 2u x 1 pd ux uy ( 2 ) x y x y
25
(2) 卡门边界层方程
卡门根据边界层概念,直接对边界层进行动量,热量 及质量衡算,导出了边界层动量,热量及质量方程。 此种方法要比由N-S方程求解简单的多。
26
边界层动量方程的推导:
设流体呈一维流动,即流动仅沿x方向进行,边界层 外主体流速为u, 边界层厚度为, 微元体边长: y X方向为dx u Y方向为l (l>) Z方向为1个长度单位

边界层理论

边界层理论
19世纪中,随着航海、水利工程等的迅速发展,流体力学的另一个重要分支,研究不可压缩粘性流体流动的 水力学得到很大的发展。它是建立在大量实验测量的基础上。当时如哈根、泊肃叶、雷诺等用实验研究水和其他 粘性流体在管道和槽渠中流动时的阻力和压强损失问题、得到的有关粘性流体的实验研究成果,有助于解决某些 工程实际问题。但由于水力学在理论指导上的不足,由实验成果得出的经验公式和半经验理论公式有一定的局限 性。于是在19世纪中叶产生了粘性流体运动的理论,1827年,纳维尔在欧拉运动微分方程中加上粘性项,第一个 得到粘性流体运动微分方程。1846年,斯托克斯严格地导出了这个方程,称为纳维尔-斯托克斯方程,简称N-S方 程。虽然N-S方程对粘性流体流动问题的研究分析有所帮助,但对这个方程数学上的求解是十分复杂和困难的。 1851年,斯托克斯对N-S方程作了某些简化,略去方程中的惯性项,也就是在非常缓慢的流体流动条件下,计算 出球体在流动的粘性流体中所受到的阻力。
边界层方程组
边界层方程组
不可压缩流体在大雷诺数的层流情况下绕过平滑壁面的情况。在此考虑二维定常不可压缩流动。规定沿物体 壁面的方向为x轴,垂直于壁面的方向为y轴。由于边界层厚度δ比物面特征尺寸L小得多,因此对二维的忽略重 力的纳维-斯托克斯方程逐项进行数量级分析,在忽略数量级小的各项后,可近似认为边界层垂直方向的压力不 变,从而得到层流边界层方程组为:
发展
1907年,布拉修斯成功地应用边界层理论计算在流体中运动物体的摩擦阻力。1921年,卡门和波耳豪森提 出了边界层动能积分方程,以计算边界层问题,这个方程经霍尔斯坦-博伦(1940)和瓦茨进行简化和改进,到 现在还被广泛应用。另外边界层动能积分方程和热能积分方程分别由莱本森和弗兰克尔提出。这三个边界层的近 似计算方法使边界层理论在工程界中很快地推广开来。1925年,普朗特提出的混合长度理论和1930年卡门提出的 相似性理论,将边界层理论推广到紊流边界层、射流和物体后的尾迹流中去。从层流向紊流的转捩现象是流体动 力学中的基本现象。早在19世纪末,雷诺就首先对转捩现象进行了研究。1914年,普朗特做了著名的圆球实验, 正确地指出:边界层中的流动可以是层流的,也可以是紊流的,还指出边界层分离的问题,因此计算阻力的问题 是受这种转捩支配的。从层流向紊流的转捩过程的理论研究,是以雷诺的假设为基础的,即承认紊流是由于层流 边界层产生不稳定性的结果。1921年,普朗特开始进行转捩的理论研究,1929年获得成功。当时托尔明从理论上 算出零冲角平板转捩的临界雷诺数,后被别人所进行非常仔细的实验所证实。稳定性理论能够考虑到对转捩有影 响的压强梯度、抽吸、马赫数和传热等许多因素。这个理论已得到很多重要的应用,如设计阻力非常小的层流翼 型。

第七章 边界层理论

第七章 边界层理论

其中 Re = ρV∞ L μ
因为δ * = δ L ~ 1
Re ,所以当Re很大时, ∗ δ
<< 1
根据这点,来估计N-S方程中的各项量级大 * x * ~ O (1), Vx ~ O (1),这样 ∂Vx* ∂x* ~ O (1, ) 小。首先假设 又因为 y* ~ O (δ * ),所以按照连续方程,可得

δ
0
ρu (U − u )dy
不可压流
=

δ
0
u U
u⎞ ⎛ ⎜1 − ⎟ ⎝ U⎠
◎能量损失厚度 能量损失为
1 δ (ρ0 uU 2 − ρu 3 )dy 2 ∫0
主流在单位时间内通过某个厚度δ 3 的能量为
1 2 ρ 0U 3δ 3 因此能量(损失)厚度为
不可压流 δ u 1 δ δ3 = ρu (U 2 − u 2 )dy = ∫ 0 U ρ 0U 3 ∫0
关于湍流边界层中的速度分布,形式和经 验公式都很多。 有时,着眼于边界层内的流速与外部主流 流速的差额,因此可采用所谓的亏损律分布形 式。所谓亏损,是主流流速减去边界层内的流 速,而亏损律是把这个差值通过摩擦速度和无 量纲离壁距离表示的函数。 对于湍流边界层的外层,因为湍流是间歇 性的,所以采用另一个分布函数形式,称为尾 迹律。 请参见Schlishting的《边界层理论》。
[5]边界层的厚度 ◎位移厚度——由于边界层的存在,实际流过 边界层内的流体质量比理想情况时的减小,其 δ 减小量为
∫ (ρ U − ρu )dy
0 0
设这个减小量与主流流过的厚度为δ 1 的流层内 的流量 ρ 0Uδ 1 相等,则
1 δ1 = ρ0U
∫ (ρ U − ρu )dy

边界层理论

边界层理论

边界层(Boundary Layer)是高雷诺数绕流中紧贴物面的粘性力不可忽略的流动薄层,又称流动边界层、附面层。

这个概念由近代流体力学的奠基人,德国人Ludwig Prandtl(普朗特)于1904年首先提出。

从那时起,边界层研究就成为流体力学中的一个重要课题和领域。

在边界层内,紧贴物面的流体由于分子引力的作用,完全粘附于物面上,与物体的相对速度为零。

边界层又称附面层,它是指流体流经固体表面时,靠近表面总会形成那么一个薄层,在此薄层中紧贴表面的流体流速为零,但在垂直固体表面的方向(法向)上速度增加的很快,即具有很大的速度梯度,甚至对粘性很小的流体,也不能忽略它表现出来的粘性力。

而在此边界层外,流体的速度梯度很小,甚至对粘度很大的流体而言,其粘性力的影响也可以忽略,流体的流速与绕流固体表面前的流速V0一样。

这样就可把边界层外流动的流体运动视为理想流体运动,不考虑粘性力的影响。

边界层内、外区域间没有明显的分界面,而把边界层边缘上的流体流速V x视为V x=0.99 V0,因此从固体表面至V x=0.99 V0处的垂直距离视为边界层的厚度δ。

这样大雷诺数下绕过固体的流动便简化为研究边界层中的流动问题。

边界层内的流动可以是层流,也可以是带有层流底层的紊流,还可以是层流、紊流混合的过渡流。

图1 边界层结构综上所述,边界层的特征可归结为:(1)与固体长度相比,边界层厚度很小;(2)边界层内沿边界层厚度方向上的速度梯度很大;(3)边界层沿流动方向逐渐增厚;(4)由于边界层很薄,故可近似地认为,边界层截面上的压力等于同一截面上边界层外边界上的压力;(5)边界层内粘性力和惯性力士同一数量级的;(6)如在整个长度上边界层内都是层流,称层流边界层;仅在起始长度上的是层流,而在其他部分为紊流的称混合边界层。

以上定义的边界层为速度边界层,另外在其他学科领域中对于边界层的应用还是十分广泛的,主要有温度边界层和浓度边界层。

边界层理论的理解

边界层理论的理解

浅谈对边界层理论的理解Introduction to the Understanding of Boundary Layer Theory学院:市政与环境工程班级:环工1302班姓名:王晓慧学号:1303841316摘要摘要:边界层理论在流体力学的研究应用方面具有重要的作用。

边界层理论以在流体中运动物体的表面附近的流体为研究对象,将流体力学和计算力学有机地结合起来以处理相应的问题。

它主要解决物体所受摩擦力,分离点位置以及其他相关的流体动力学参数预报问题。

主要阐述了边界层理论的基本原理。

基本假设以及研究方法,包括边界层原理,边界层方程的推导。

前提是在笔者所了解的范围内,加深对边界层理论的认识。

关键词:边界层边界层理论边界层方程Introduction to the Understanding of Boundary Layer TheoryABSTRACTBoundary layer theory has an important role in the study of the application of fluid mechanics.Boundary layer theory of moving objects near the surface of the fluid in the fluid as the research object,the fluid dynamics and computational mechanics organically combine to deal with the issue accordingly.It is mainly to solve the friction force acting on the object,the separation point location and other parameters related to fluid dynamics prediction problems.Mainly on the basic principles of boundary layer theory.The basic assumptions and research methods.Including the derivation of the boundary layer theory,the boundary layer equations.Premise is understood within the scope of the author.Deepen the understanding of the boundary layer theory.Key Words:Boundary Layer;Boundary Layer Theory;Boundary Layer Equations前言流体是气体和液体的总称。

西安交大高等传热学热对流第三章

西安交大高等传热学热对流第三章

y 0 : u 0, v 0, T Tw x 0 : u u x , T T
y (d ) : u u x , T T
高等传热学 Advanced Heat Tr2
存在相似解
u , T
高等传热学 Advanced Heat Transfer
Chap. 3 Laminar external boundary layers
高等传热学 Advanced Heat Transfer
§3-1 laminar forced convection over a flat plate 1.The Governing Eqs & BCs
du 0, 外掠平板流动 dx
高等传热学 Advanced Heat Transfer
2.Flow solutions
m 1 u ( x) y 2 x f u 1 1 u u y u y


m 1 2
m 1 2
2 m 1 cx f m 1 2 m 1 f ' m 1 2

m 1 f 2
高等传热学 Advanced Heat Transfer
代入动量方程
f ''' ff '' 1 f '2 0
Falkner-Skan Eq. 三阶非线性常微分方程
BC : 0 : f 0(由v 0), f ' 0(由u 0) : f ' 1
0
f ''' ff '' 0 1 f ''' ff '' 0? 2

附面层理论

附面层理论

一、曲面边界层分离现象
1.沿曲面压力变化对边界层内流动的影响
同一法线上边界层内各点的压力相同,即
p y
0
y物面法线

翼面上最凸点 x
从O到C: 外部势流加速,压力递减
压力梯度 p <0,称为顺压梯度 x
边界层内部流体减压加速。部分压力能转变为动 能,顺压梯度对流动起助推作用。
假定C点: 势流速度为Umax,压力降到pmin
p 0 y
p0 p1
p1= p2 = p3 = p0
p2
p3
Prandtl边界层方程的求解
了解
Blasius解----顺流放置无限长平板上的层流 边界层流动。
均匀来流平行于平板,x轴平行于板面, 原点在平板前缘,
平板极薄且无曲度, 边界层外缘处速度
为来流速度U。沿
边界层外缘上各点 上压力相同,即 dp 0
第10章 边界层理论
(Boundary Layer Theory)
§10.1 边界层的概念
1904年,Prandtl指出,对于粘性很小的流体(如空 气、水),粘性对流动的影响仅限于贴近固体表面的 一个薄层内。这一薄层以外,粘性完全可以忽略。
边界层
边界层: 在固体壁面附近,显著地受到粘性 影响的这一薄层。
边界层分离:间断面的不稳定引起波动,发展并 破裂成明显的大旋涡,象楔子一样 将边界层和物体表面分开。
边界层分离的两个条件:
1.壁面通过粘性对于流动的阻粘作用 2.逆压梯度的存在
二者缺一不可。但也必须指出,这两个条件 是产生分离的必要条件而非充分条件。 绕物体的流动不一定都发生分离 绕流线型体的流动不一定都不发生分离 流线型体:小攻角下无分离,大攻角下会分离

第十一章-边界层理论

第十一章-边界层理论
2
-------(11-4)
p =0 y
边界条件为
1 2
几点结论:
u x 0 , u y 0 y : ux U 0 y 0:
-------(11-5)
(1)压强沿物体界面外法线方向的梯度,较沿物体界面切线方向的梯度低一个量级。
p 0 y
上式说明边界层内的压强沿物面外法线方向是不变的,并等于边界层外边界上的压强。
u∞
u∞
δ
形成过程流体Βιβλιοθήκη 经固体表面;Ax0
层流内层
平板上的流动边界层
由于粘性,接触固体表面流体的流速为零

附着在固体表面的流体对相邻流层流动起阻碍作用,使其流
速下降;
对相邻流层的影响,在离开壁的方向上传递,并逐渐减小。
最终影响减小至零,当流速接近或达到主流的流速时,速
度梯度减少至零。
一、边界层的提出 2、流场的求解可分为两个区进行:
将上述的量纲一的量代人式(10-1)中的各项中,则得
0 0 0 2 0 2 0 1 p u u u ux x x x 0 0 ux 0 uy 0 02 02 x x 0 Re y y x 0 0 0 2 0 2 0 1 p u u uy u y y y 0 0 ux 0 uy 0 0 02 02 x Re y y y x 0 u 0 u y x 0 0 0 x y
2 u ,得 u 由 L 2
1 uL L 2 Re 2 ~ O 0 2
0 u0 u y x 0 0 0 x y
0 0 0 2 0 2 0 1 p u u u ux x x x 0 0 ux 0 uy 0 0 02 02 x x Re x y y 0 1 02 1 2 1 1 1 0 1 0 0 0 0 2 0 2 0 1 p u u uy u y y y 0 0 02 ux 0 uy 0 0 02 x y y Re x y 1 0 02 0 1 0 0 0 1 1

边界层理论及边界层分离现象

边界层理论及边界层分离现象

边界层理论及边界层分离现象一.边界层理论1.问题的提出在流体力学中,雷诺数Re∝惯性力/粘性力,当Re<1时,惯性力<<粘性力,可以略去惯性力项,用N-S方程解决一些实际问题(如沉降、润滑、渗流等),并可以获得比较满意的结果。

但对于工程流动问题,绝大多数的Re很大。

这时就不可以完全略去粘性力,略去粘性力的结果与实际情况相差很大。

突出的一例即“达朗倍尔佯谬——在流体中作等速运动的物体不受阻力。

”究竟应当怎样才能正确地处理大Re数的流动呢?这个矛盾一直到1904年,德国流体力学家普朗特提出了著名的边界层理论,即大Re数的流动中,大部分区域的惯性力>>粘性力,但在紧靠固壁的极薄流层中,惯性力≈粘性力,这才令人满意地解决了大Re数的流动的阻力问题。

2.边界层的划分Ⅰ流动边界层(速度边界层)以平板流动为例,x方向一维稳态流动,在垂直壁面的y方向上,流动可划分为性质不同的两个区域:(1)y<δ(边界层):受壁面影响,法向速度变化急剧,du/dy很大,粘性力大(与惯性同阶),不能忽略。

(2)y>δ(层外主流层):壁面影响很弱,法向速度基本不变,du/dy≈0。

所以可忽略粘性力(即忽略法向动量传递)。

可按理想流体处理,Euler方程适用。

这两个区域在边界层的外缘衔接起来,由于层内的流动趋近于外流是渐进的,不是突变的,因此,通常约定:在流动边界层的外缘处(即y=δ处),ux=0.99u∞,δ为流动边界层厚度,且δ=δ(x)。

Ⅱ传热边界层(温度边界层)当流体流经与其温度不相等的固体壁面时,在壁面上形成流动边界层,同时,还会由于传热而形成温度分布,可分成两个区域:(1)y<δt(传热边界层):受壁面影响,法向温度梯度dt/dy很大,不可忽略,即不能忽略法向热传导。

(2) y>δt(层外区域):法向温度梯度dt/dy≈0,可忽略法向热传导。

通常约定:在传热边界层的外缘处(即y=δt处),ts-t=0.99(ts -t0) ≈ ts-t0,δt为温度边界层厚度,且δt=f(x);ts为壁面温度;t0为热边界层外(主流体)区域的温度。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

)之外的流体速度就形成:润湿→附着→内摩擦力→减速→梯度
边界层内:沿板面法向的速度梯度很边界层外:不存在速度梯度或速度梯度
流体在平板上流动时的边界层:
流动边界层:存在着较大速度梯度的流体层区域,即流速降为主体流速的99%以内的区域。

边界层厚度:边界层外缘与壁面间的垂直距离。

层流边界层:在平板的前段,边界层内的流型为层流。

湍流边界层:离平板前沿一段距离后,边界层内的流
直管内:流体须经一定的距离才能形成稳定的边界层。

由于总流量不变,中心流速增加。

边界层占据整个管截面。

与物体的长度相比,边界层的厚度很小;边界层内沿边界层厚度的速度变化非常急边界层沿着流体流动的方向逐渐增厚;
边界层中各截面上的压强等于同一截面上在边界层内粘滞力和惯性力是同一数量级边界层内流体的流动存在层流和紊流两种
圆柱后部:猫眼
扩张管(上壁有抽吸)
B
S′
A
涡,这种旋涡具有一定的脱落频率,称为卡门涡街.
湍流产生的原因:
湍动强度
在模型实验中,模拟湍流,要求雷诺数和湍动强边界层的转变、分离以及热量和质量传递系数等
依微分方程的个数:零方程模型、一方
FLUENT软件在化学处理领域主要可应用 于:
燃烧 干燥 过滤 传热和传质 材料处理 混合 反应 分离 蒸馏 喷射控制 成型 焚化 测量/控制 聚合 沉淀 通风



















相关文档
最新文档