反函数的求导法则辨析
合集下载
相关主题
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
昨天的文章中提到过反函数的求导法则。反函数的求导法则是:反函数的导数是原函数导数的倒数。这话听起来很简单,不过很多人因此犯了迷糊:
y=x3的导数是y'=3x2,其反函数是y=x1/3,其导数为y'=1/3x-2/3.这两个压根就不是互为倒数嘛!
出现这样的疑问,其实是对反函数的概念未能充分理解,反函数是说,将f(x)的自变量当成因变量,因变量当成自变量,得到的新函数x=f(y)就是原函数的反函数。所以y=x3的反函数严格来说应该是x=1/3y-2/3,只不过为了符合习惯,经常将x写成y,y写成x而已,这一点,因为在中学的时候没怎么强调,所以到了大学就有些不适应。因此:
y=x1/3的导函数应该这样求y‘=1/(y3)'=1/(3y2) (因为y的反函数是x=y3),
=1/(3x2/3)=1/3x-2/3.(将y=x1/3带入即可) 实际上反函数求导法则是根据下面的原则
所以反函数求导法则的意思是说,反函数的导数,等于x对y求导的倒数。我们再以反三角函数来作为例子,希望学到这点的朋友能够真正理解他。
例题:求y=arcsinx的导函数。首先,函数y=arcsinx的反函数为x=siny,所以:y‘=1/sin’y=1/cosy
因为x=siny,所以cosy=√1-x2;(那个啥,这个符号输入有点蛋疼,不过各位应该能看懂) 所以y‘=1/√1-x2。
同理大家可以求其他几个反三角函数的导数。所以以后在求涉及到反函数的导数时,先将反函数求出来,只是这里的反函数是以x为因变量,y为自变量,这个要和我们平时的区分开。最后将y想法设法换成x即可。
相信大家对这一点应该有所明白的吧!大家可以试着求y=arctanx的导函数,然后与结果进行对照。