(完整版)人教版高二数学必修5知识点归纳(最完整版)
人教版数学必修5知识点的总结.doc
高中数学 必修 5 知识点第一章 解三角形 (一)解三角形:1、正弦定理:在C 中 , a 、 b 、 c 分 别 为 角、、C 的对边,,则有a bc 2Rsin sinsin C( R 为C 的外接圆的半径 )2、正弦定理的变形公式:①a 2Rsin ,b 2Rsin ,c 2Rsin C ;② sina , sinb ,sin Cc ;③ a : b : c sin :sin :sin C ;2R2R2 R3、三角形面积公式:S1bc sin 1 1ac sin .Cab sin C2224、余弦定理:在2222bc cosb 2c 2 a 2C 中,有 a bc,推论: cos2bc第二章数列1、数列中 a n 与 S n 之间的关系:a nS 1 , (n 1)注意通项能否合并。
S n S n 1,( n2).2、等差数列:⑴定义:如果一个数列从第 2 项起,每一项与它的前一项的差等于同一个常数,即 a - ann 1=d ,(n ≥ 2, n ∈N ), 那么这个数列就叫做等差数列。
⑵等差中项:若三数a 、 A 、b 成等差数列 A ab2⑶通项公式: a na 1 ( n 1)d a m (n m) d或 a npn q ( p 、q 是常数) .⑷前 n 项和公式:S n na 1 n n 1 dn a 1 a n22⑸常用性质:①若 mnp q m,n, p, q N ,则 a m a na p a q ;②下标为等差数列的项 a k ,a k m , a k 2m,,仍组成等差数列;③数列a nb ( ,b 为常数)仍为等差数列;④若 { a n } 、 { b n } 是等差数列,则 { ka n } 、 { ka n pb n } ( k 、 p 是非零常数 ) 、{ a p nq }( p, q N * )、, 也成等差数列。
⑤单调性: a n 的公差为 d ,则:ⅰ) ⅱ) ⅲ) d 0 a n 为递增数列;d0 a n 为递减数列;da n 为常数列;⑥数列 { a n } 为等差数列a npn q ( p,q 是常数)⑦若等差数列a n的前 n 项和 S ,则 S 、S 2 k S k 、S 3k S 2k 是等差数列。
高二数学必修五知识点归纳大全
高二数学必修五知识点归纳大全高二数学必修五知识点总结11.等差数列通项公式an=a1+(n-1)dn=1时a1=S1n≥2时an=Sn-Sn-1an=kn+b(k,b为常数)推导过程:an=dn+a1-d令d=k,a1-d=b 则得到an=kn+b2.等差中项由三个数a,A,b组成的等差数列可以堪称最简单的等差数列。
这时,A叫做a与b的等差中项(arithmeticmean)。
有关系:A=(a+b)÷23.前n项和倒序相加法推导前n项和公式:Sn=a1+a2+a3+·····+an=a1+(a1+d)+(a1+2d)+······+[a1+(n-1)d]①Sn=an+an-1+an-2+······+a1=an+(an-d)+(an-2d)+······+[an-(n-1)d]②由①+②得2Sn=(a1+an)+(a1+an)+······+(a1+an)(n 个)=n(a1+an)∴Sn=n(a1+an)÷2等差数列的前n项和等于首末两项的和与项数乘积的一半:Sn=n(a1+an)÷2=na1+n(n-1)d÷2Sn=dn2÷2+n(a1-d÷2)亦可得a1=2s n÷n-an=[sn-n(n-1)d÷2]÷nan=2sn÷n-a1有趣的是S2n-1=(2n-1)an,S2n+1=(2n+1)an+14.等差数列性质一、任意两项am,an的关系为:an=am+(n-m)d它可以看作等差数列广义的通项公式。
二、从等差数列的定义、通项公式,前n项和公式还可推出:a1+an=a2+an-1=a3+an-2=…=ak+an-k+1,k∈N_、若m,n,p,q∈N_且m+n=p+q,则有am+an=ap+aq四、对任意的k∈N_有Sk,S2k-Sk,S3k-S2k,…,Snk-S(n-1)k…成等差数列。
人教版高二数学必修5知识点
第一章 解三角形§1.1.1正弦定理如图1.1-2,在Rt ∆ABC 中,设BC=a,AC=b,AB=c, 根据锐角三角函数中正弦函数的定义,有sin a A c =,sin b B c =,又sin 1cC c ==, 则sin sin sin a b c c A B C=== b c 从而在直角三角形ABC 中,sin sin sin a b cA B C==C a B(图1.1-2)可分为锐角三角形和钝角三角形两种情况:如图1.1-3,当∆ABC 是锐角三角形时,设边AB 上的高是CD ,根据任意角三角函数的定义,有CD=sin sin a B b A =,则sin sin abAB=, C同理可得sin sin cbC B =, b a从而sin sin a b A B =sin cC=A c B(图1.1-3)(证法二):过点A 作j AC ⊥u r u u u r, C由向量的加法可得 AB AC CB =+u u ru u u r u u r则 ()j AB j AC CB ⋅=⋅+u r u u r u r u u u r u u rA B∴j AB j AC j CB ⋅=⋅+⋅u r u u r u r u u u r u r u u rj u r()()00cos 900cos 90-=+-r u u u r r u u u r j AB A j CB C∴sin sin =c A a C ,即sin sin =a c A C同理,过点C 作⊥r u u u r j BC ,可得 sin sin =b cB C从而sin sin abA B =sin cC=类似可推出,当∆ABC 是钝角三角形时,以上关系式仍然成立。
正弦定理:在一个三角形中,各边和它所对角的正弦的比相等,即sin sin abAB=sin cC=[理解定理](1)正弦定理说明同一三角形中,边与其对角的正弦成正比,且比例系数为同一正数,即存在正数k 使sin a k A =,sin b k B =,sin c k C =; (2)sin sin abA B =sin cC=等价于sin sin abAB=,sin sin cbCB=,sin aA=sin cC从而知正弦定理的基本作用为:①已知三角形的任意两角及其一边可以求其他边,如sin sin b Aa B=; ②已知三角形的任意两边与其中一边的对角可以求其他角的正弦值,如sin sin a A B b=。
高二年级数学必修五知识点
高二年级数学必修五知识点(实用版)编制人:__________________审核人:__________________审批人:__________________编制单位:__________________编制时间:____年____月____日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。
文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的实用资料,如教案大全、书信范文、述职报告、合同范本、工作总结、演讲稿、心得体会、作文大全、工作计划、其他资料等等,想了解不同资料格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor.I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!Moreover, our store provides various types of practical materials for everyone, such as lesson plans, letter templates, job reports, contract templates, work summaries, speeches, reflections, essay summaries, work plans, and other materials. If you want to learn about different data formats and writing methods, please stay tuned!高二年级数学必修五知识点函数y=f(x)的图象与x轴有交点函数y=f(x)有零点。
(完整word版)人教版数学必修五知识点总结
第一章 解三角形1、内角和定理:(1)三角形三角和为π,任意两角和与第三个角总互补,任意两半角和与第三个角的半角总互余.(2)锐角三角形⇔三内角都是锐角⇔三内角的余弦值为正值⇔任两角和都是钝角⇔任意两边的平方和大于第三边的平方.2、正弦定理:2sin sin sin a b c R A B C===(R 为三角形外接圆的半径). C R c B R b A R a C B A c b a sin 2,sin 2,sin 2)2(;sin :sin :sin ::)1(==== )(3解三角形:已知三角形的几个元素求另外几个元素的过程。
⎩⎨⎧,可求其它元素已知两边和一边的对角可求其它边和角已知两角和任意一边, 注意:已知两边一对角,求解三角形,若用正弦定理,则务必注意可能有两解.3、余弦定理:⎪⎩⎪⎨⎧-+=-+=-+=C ab b a c B ac c a b A bc c b a cos 2cos 2cos 2222222222(求边) 或 (求角)⎪⎪⎪⎩⎪⎪⎪⎨⎧-+=-+=-+=ab cb a C ac b c a B bc a c b A 2cos 2cos 2cos 222222222 ⎪⎩⎪⎨⎧求其它已知两边和一边对角,已知三边求所有三个角已知两边一角求第三边(注:常用余弦定理鉴定三角形的类型). 4、三角形面积公式:R abc B ac A bc Cab ah S a 4sin 21sin 21sin 2121=⎪⎪⎪⎩⎪⎪⎪⎨⎧==. 5、解三角形应用(1)在视线和水平线所成的角中,视线在水平线上方的角叫仰角;视线在水平线下方的角叫俯角。
(2)从正北方向顺时针转到目标方向的水平角叫方位角。
(3)坡面与水平面所成的二面角度数的正切值叫做坡度。
(4)解斜三角形应用题的一般步骤:分析→建模→求解→检验第二章 数 列1.数列的通项、数列的项数,递推公式与递推数列,数列的通项与数列的前n 项和公式的关系:{11,(1),(2)n n n S n a S S n -==-≥(必要时请分类讨论).注意:112211()()()n n n n n a a a a a a a a ---=-+-++-+;121121n n n n n a a a a a a a a ---=⋅⋅⋅⋅. 2.等差数列{}n a 中: (1)等差数列公差的取值与等差数列的单调性..000R d d d d d ∈⎪⎩⎪⎨⎧→<→=→>的取值为,可知数列单调递减数列为常数列数列单调递增 (2)1(1)n a a n d =+-()m a n m d =+-;p q m n p q m n a a a a +=+⇒+=+.(3){}n n b a 21λλ+、{}n ka 也成等差数列.(4)在等差数列{}n a 中,若.0),(,=≠==+n m n m a n m m a n a 则(5)1211,,m k k k m a a a a a a ++-++++++仍成等差数列. (6)1()2n n n a a S +=,1(1)2n n n S na d -=+,21()22n d d S n a n =+-,2121n n S a n -=-,。
高中数学必修5知识点总结归纳(人教版最全)
高中数学必修五知识点汇总第一章 解三角形 一、知识点总结 正弦定理:1.正弦定理:2sin sin sin a b cR A B C=== (R 为三角形外接圆的半径).步骤1.证明:在锐角△ABC 中,设BC=a,AC=b,AB=c 。
作CH ⊥AB 垂足为点H CH=a ·sinB CH=b ·sinA ∴a ·sinB=b ·sinA得到b ba a sin sin =同理,在△ABC 中, bbc c sin sin =步骤2.证明:2sin sin sin a b cR A B C===如图,任意三角形ABC,作ABC 的外接圆O. 作直径BD 交⊙O 于D. 连接DA.因为直径所对的圆周角是直角,所以∠DAB=90°因为同弧所对的圆周角相等,所以∠D 等于∠C.所以C RcD sin 2sin ==故2sin sin sin a b c R A B C ===2.正弦定理的一些变式:()sin sin sin i a b c A B C ::=::;()sin ,sin ,sin 22a bii A B C R R==2c R =;()2sin ,2sin ,2sin iii a R A b R B b R C ===;(4)R CB A cb a 2sin sin sin =++++ 3.两类正弦定理解三角形的问题:(1)已知两角和任意一边,求其他的两边及一角.(2)已知两边和其中一边的对角,求其他边角.(可能有一解,两解,无解) 4.在ABC ∆中,已知a,b 及A 时,解得情况: 解法一:利用正弦定理计算解法二:分析三角形解的情况,可用余弦定理做,已知a,b 和角A ,则由余弦定理得 即可得出关于c 的方程:0cos 2222=-+-a b Ac b c 分析该方程的解的情况即三角形解的情况 ①△=0,则三角形有一解 ②△>0则三角形有两解 ③△<0则三角形无解 余弦定理:1.余弦定理: 2222222222cos 2cos 2cos a b c bc A b a c ac B c b a ba C ⎧=+-⎪=+-⎨⎪=+-⎩2.推论: 222222222cos 2cos 2cos 2b c a A bc a c b B ac b a c C ab ⎧+-=⎪⎪+-⎪=⎨⎪⎪+-=⎪⎩.设a 、b 、c 是C ∆AB 的角A 、B 、C 的对边,则: ①若222a b c +=,则90C =; ②若222a b c +>,则90C <; ③若222a b c +<,则90C >.3.两类余弦定理解三角形的问题:(1)已知三边求三角.(2)已知两边和他们的夹角,求第三边和其他两角. 面积公式:已知三角形的三边为a,b,c,1.111sin ()222a S ah ab C r a b c ===++(其中r 为三角形内切圆半径)2.设)(21c b a p ++=,))()((c p b p a p p S ---=(海伦公式)例:已知三角形的三边为,、、c b a 设)(21c b a p ++=,求证:(1)三角形的面积))()((c p b p a p p S ---=; (2)r 为三角形的内切圆半径,则pc p b p a p r ))()((---=(3)把边BC 、CA 、AB 上的高分别记为,、、c b h h a h 则))()((2c p b p a p p ah a ---=))()((2c p b p a p p b h b ---=))()((2c p b p a p p ch c ---=证明:(1)根据余弦定理的推论:222cos 2a b c C ab+-=由同角三角函数之间的关系,sin C ==代入1sin 2S ab C =,得12S ====记1()2p a b c =++,则可得到1()2b c a p a +-=-,1()2c a b p b +-=-,1()2a b c p c +-=-代入可证得公式(2)三角形的面积S 与三角形内切圆半径r 之间有关系式122S p r pr =⨯⨯=其中1()2p a b c =++,所以S r p == 注:连接圆心和三角形三个顶点,构成三个小三角形,则大三角形的面积就是三个小三角形面积的和 故得:pr cr br ar S =++=212121(3)根据三角形面积公式12a S a h =⨯⨯所以,2a S h a =a h =同理b h c h 【三角形中的常见结论】(1)π=++C B A (2) sin()sin ,A B C +=cos()cos ,A B C +=-tan()tan ,A B C +=-2cos 2sinC B A =+,2sin 2cos CB A =+;A A A cos sin 22sin ⋅=, (3)若⇒>>C B A c b a >>⇒C B A sin sin sin >> 若C B A sin sin sin >>⇒c b a >>⇒C B A >> (大边对大角,小边对小角)(4)三角形中两边之和大于第三边,两边之差小于第三边 (5)三角形中最大角大于等于 60,最小角小于等于 60(6) 锐角三角形⇔三内角都是锐角⇔三内角的余弦值为正值⇔任两角和都是钝角⇔任意两边的平方和大于第三边的平方.钝角三角形⇔最大角是钝角⇔最大角的余弦值为负值 (7)ABC ∆中,A,B,C 成等差数列的充要条件是 60=B .(8) ABC ∆为正三角形的充要条件是A,B,C 成等差数列,且a,b,c 成等比数列. 二、题型汇总:题型1:判定三角形形状判断三角形的类型(1)利用三角形的边角关系判断三角形的形状:判定三角形形状时,可利用正余弦定理实现边角转化,统一成边的形式或角的形式.(2)在ABC ∆中,由余弦定理可知:222222222是直角ABC 是直角三角形是钝角ABC 是钝角三角形是锐角a b c A a b c A a b c A =+⇔⇔∆>+⇔⇔∆<+⇔⇔ABC 是锐角三角形∆(注意:是锐角A ⇔ABC 是锐角三角形∆) (3) 若B A 2sin 2sin =,则A=B 或2π=+B A .例1.在ABC ∆中,A b c cos 2=,且ab c b a c b a 3))((=-+++,试判断ABC ∆形状.题型2:解三角形及求面积一般地,把三角形的三个角A,B,C 和它们的对边a,b,c 叫做三角形的元素.已知三角形的几个元素求其他元素的过程叫做解三角形.例2.在ABC ∆中,1=a ,3=b ,030=∠A ,求的值例3.在ABC ∆中,内角C B A ,,对边的边长分别是c b a ,,,已知2=c ,3π=C .(Ⅰ)若ABC ∆的面积等于3,求a ,b(Ⅱ)若A A B C 2sin 2)(sin sin =-+,求ABC ∆的面积.题型3:证明等式成立证明等式成立的方法:(1)左⇒右,(2)右⇒左,(3)左右互相推.例4.已知ABC ∆中,角C B A ,,的对边分别为c b a ,,,求证:B c C b a cos cos +=.题型4:解三角形在实际中的应用考察:(仰角、俯角、方向角、方位角、视角)例5.如图所示,货轮在海上以40km/h 的速度沿着方位角(从指北方向顺时针转到目标方向线的水平转角)为140°的方向航行,为了确定船位,船在B 点观测灯塔A 的方位角为110°,航行半小时到达C 点观测灯塔A 的方位角是65°,则货轮到达C 点时,与灯塔A 的距离是多少?三、解三角形的应用 1.坡角和坡度:坡面与水平面的锐二面角叫做坡角,坡面的垂直高度h 和水平宽度l 的比叫做坡度,用i 表示,根据定义可知:坡度是坡角的正切,即tan i α=.lhα2.俯角和仰角:如图所示,在同一铅垂面内,在目标视线与水平线所成的夹角中,目标视线在水平视线的上方时叫做仰角,目标视线在水平视线的下方时叫做俯角.3. 方位角从指北方向顺时针转到目标方向线的水平角,如B点的方位角为 .注:仰角、俯角、方位角的区别是:三者的参照不同。
(完整版)人教版高二数学必修5知识点归纳(最完整版).doc
现在的努力就是为了实现小时候吹下的牛逼——标必修五数学知识点归纳资料第一章 解三角形1、三角形的性质:①.A+B+C=,sin( A B) sin C , cos( A B) cosCA B2C sinA2 B cosC222②.在 ABC 中 , a b >c , a b < c ; A > Bsin A > sin B ,A > BcosA < cosB, a >bA >B ③.若 ABC 为锐角,则 A B > ,B+C >,A+C > ;222a 2b 2 >c 2 , b 2 c 2 > a 2 , a 2 + c 2 > b 22、正弦定理与余弦定理:①.正弦定理:abc 2R (2R 为 ABC 外接圆的直径 )sin Bsin Asin Ca 2R sin A 、b 2Rsin B 、c 2R sin C(边化角)sin Aa 、 sin Bb 、 sin Cc(角化边)2R2R 2R面积公式: S ABC1ab sin C1bc sin A1ac sin B222②. 余 弦 定 理 : a 2b 2c 2 2bc cos A、 b 2 a 2 c 22ac cos B 、c 2a 2b 22ab cosCcos A b 2 c 2 a 2 、 cos B a 2 c 2 b 2 、 cosCa 2b 2c 2 (角化边)2bc 2ac2ab补充:两角和与差的正弦、余弦和正切公式:⑴ coscos cos sin sin ;⑵ coscos cos sin sin ; ⑶ sinsin cos cos sin ;⑷ sinsin coscos sin ;⑸ tantan tan( tantantan1 tan tan);1 tantan现在的努力就是为了实现小时候吹下的牛逼——标⑹ tantan tan( tantantan1 tan tan).1 tan tan二倍角的正弦、余弦和正切公式:⑴ sin 2 2sin cos . 1 sin 2sin 2cos 22 sincos(sincos )2⑵ cos2cos 2sin 22cos 2 1 1 2sin 2升幂公式 1 cos2 cos 2 ,1 cos2 sin 222降幂公式 cos2cos2 1, sin 21 cos2 .223、常见的解题方法:(边化角或者角化边)第二章 数列1、数列的定义及数列的通项公式:①.a n( ) ,数列是定义域为 N 的函数 f (n) ,当 n 依次取 , , 时的一列函f n1 2 数值②. a n 的求法:i. 归纳法ii.a nS 1 , n 10 ,则 a n 不分段;若 S 00 ,则 a n 分段S n S n若 S 01, n 2iii. 若 a n 1pa nq ,则可设 a n 1 m p(a n m) 解得 m,得等比数列 a n miv.若 S nf (a n ) ,先求 a 1 ,再构造方程组 : S n f (a n )得到关于 a n 1 和 a n 的递推S n 1 f (a n 1 )关系式例如:2 a n 1S n 2a n 12a n 1 2a nS n 先求 a 1 ,再构造方程组:(下减上) a n 1Sn 12a n 1 12. 等差数列:① 定义: a n 1 a n = d (常数) , 证明数列是等差数列的重要工具。
人教版高中数学必修五知识点汇总
人教版高中数学必修5知识点第一章:解三角形一、知识点总结正弦定理:1.正弦定理:2sin sin sin a b cR A B C===(R 为三角形外接圆的半径).步骤1:证明:在锐角△ABC 中,设BC=a ,AC=b ,AB=c 。
作CH ⊥AB 垂足为点H CH=a·sinB CH=b·sinA ∴a·sinB=b·sinA得到b b a a sin sin =同理,在△ABC 中,b bc c sin sin =步骤2:证明:2sin sin sin a b cR A B C===如图,任意三角形ABC ,作ABC 的外接圆O.作直径BD 交⊙O 于D.连接DA.因为直径所对的圆周角是直角,所以∠DAB=90°因为同弧所对的圆周角相等,所以∠D 等于∠C.所以C RcD sin 2sin ==故2sin sin sin a b cR A B C===2.正弦定理的一些变式:()sin sin sin i a b c A B C ::=::;()sin ,sin ,sin 22a b ii A B C R R ==2c R=;()2sin ,2sin ,2sin iii a R A b R B b R C ===;(iv )RCB A cb a 2sin sin sin =++++3.两类正弦定理解三角形的问题:(1)已知两角和任意一边,求其他的两边及一角.(2)已知两边和其中一边的对角,求其他边角.(可能有一解,两解,无解)4.在ABC ∆中,已知a ,b 及A 时,解得情况:解法一:利用正弦定理计算解法二:分析三角形解的情况,可用余弦定理做,已知a ,b 和角A ,则由余弦定理得即可得出关于c 的方程:0cos 2222=-+-a b Ac b c 分析该方程的解的情况即三角形解的情况①△=0,则三角形有一解②△>0则三角形有两解③△<0则三角形无解余弦定理:1.余弦定理:2222222222cos 2cos 2cos a b c bc A b a c ac Bc b a ba C ⎧=+-⎪=+-⎨⎪=+-⎩2.推论:222222222cos 2cos 2cos 2b c a A bc a c b B ac b a c C ab ⎧+-=⎪⎪+-⎪=⎨⎪⎪+-=⎪⎩.设a 、b 、c 是C ∆AB 的角A 、B 、C 的对边,则:①若222a b c +=,则90C = ;②若222a b c +>,则90C < ;③若222a b c +<,则90C > .3.两类余弦定理解三角形的问题:(1)已知三边求三角;(2)已知两边和他们的夹角,求第三边和其他两角.面积公式:已知三角形的三边为a ,b ,c ,1.111sin ()222a S ah ab C r a b c ===++(其中r 为三角形内切圆半径)2.设)(21c b a p ++=,))()((c p b p a p p S ---=(海伦公式)例:已知三角形的三边为,、、c b a 设)(21c b a p ++=,求证:(1)三角形的面积))()((c p b p a p p S ---=;(2)r 为三角形的内切圆半径,则pc p b p a p r ))()((---=(3)把边BC 、CA 、AB 上的高分别记为,、、c b h h a h 则))()((2c p b p a p p ah a ---=))()((2c p b p a p p bh b ---=))()((2c p b p a p p ch c ---=证明:(1)根据余弦定理的推论:222cos 2a b c C ab+-=由同角三角函数之间的关系,sin C =代入1sin 2S ab C =,得12S ====记1()2p a b c =++,则可得到1()2b c a p a +-=-,1()2c a b p b +-=-,1()2a b c p c +-=-代入可证得公式(2)三角形的面积S 与三角形内切圆半径r 之间有关系式122S p r pr =⨯⨯=其中1()2p a b c =++,所以S r p==注:连接圆心和三角形三个顶点,构成三个小三角形,则大三角形的面积就是三个小三角形面积的和故得:pr cr br ar S =++=212121(3)根据三角形面积公式12aS a h =⨯⨯所以,2a S h a ==a h =同理b h =c h =【三角形中的常见结论】(1)π=++C B A (2)sin()sin ,A B C +=cos()cos ,A B C +=-tan()tan ,A B C +=-2cos 2sinC B A =+,2sin 2cos C B A =+;A A A cos sin 22sin ⋅=,(3)若⇒>>C B A c b a >>⇒C B A sin sin sin >>若C B A sin sin sin >>⇒c b a >>⇒C B A >>(大边对大角,小边对小角)(4)三角形中两边之和大于第三边,两边之差小于第三边(5)三角形中最大角大于等于 60,最小角小于等于60(6)锐角三角形⇔三内角都是锐角⇔三内角的余弦值为正值⇔任两角和都是钝角⇔任意两边的平方和大于第三边的平方.钝角三角形⇔最大角是钝角⇔最大角的余弦值为负值(7)ABC ∆中,A ,B ,C 成等差数列的充要条件是 60=B .(8)ABC ∆为正三角形的充要条件是A ,B ,C 成等差数列,且a ,b ,c 成等比数列.二、题型汇总:题型1:判定三角形形状判断三角形的类型(1)利用三角形的边角关系判断三角形的形状:判定三角形形状时,可利用正余弦定理实现边角转化,统一成边的形式或角的形式。
高二数学必修五知识点总结
必修五知识点总结解三角形一、正弦定理和余弦定理1、正弦定理及其变式(1)正弦定理:___________________________(2)变式:=C B A sin :sin :sin _____________________ 2、余弦定理及其推论: (1)余弦定理:2222cos a b c bc A =+-;=2b ___________________;=2c ______________________(2)推论:bca cb A 2cos 222-+=;=B cos _____________;=C cos ____________________3、三角形的面积公式:____________________sin 21===C ab S 二、正弦定理和余弦定理应用 1、解斜三角形的常见类型及解法在三角形的6个元素中要已知三个(除三角外)才能求解,常见类型及其解法如表所示.2平线_______的角叫俯角3、方位角:从正北方向_____________旋转的水平角叫方位角4、方向角:相对于某一正方向的水平角。
数列一、数列的概念及其表示法1.数列的定义按照____________排列着的一列数称为数列,数列中的每一个数叫做这个数列的______.数列有三种表示法,它们分别是__________、__________和__________. 4.数列的通项公式如果数列{a n }的第n 项与________之间的关系可以用一个公式a n =f (n )来表示,那么这个公式叫做这个数列的通项公式.5.已知S n ,则a n =⎩⎪⎨⎪⎧(n =1)(n ≥2)二、等差数列及前n 项和1.等差数列的定义如果一个数列______________________________________,那么这个数列就叫做等差数列,这个常数叫做等差数列的________,通常用字母______表示. 2.等差数列的通项公式如果等差数列{a n }的首项为a 1,公差为d ,那么它的通项公式是________________. 3.等差中项如果________,那么A 叫做a 与b 的等差中项. 4.等差数列的常用性质(1)通项公式的推广:a n =a m +________,(n ,m ∈N *).(2)若{a n }为等差数列,且k +l =m +n ,(k ,l ,m ,n ∈N *),则__________________. (3)若{a n }是等差数列,公差为d ,则{a 2n }也是等差数列,公差为________. (4)若{a n },{b n }是等差数列,则{pa n +qb n }也是等差数列.(5)若{a n }是等差数列,公差为d ,则a k ,a k +m ,a k +2m ,…(k ,m ∈N *)是公差为________的等差数列.(6)若公差 ,则{a n }是递增等差数列;若公差 ,则{a n }是递减等差数列; 若 ,则{a n }是常数列。
(完整)人教版高二数学必修5知识点归纳(最完整版),推荐文档
必修五数学知识点归纳资料.A BCsincos —22b >c , a b v c ; A > B si nA > sin B ,A >B cosA v cosB, ab 22、正弦定理与余弦定理:2b 2abcosC第一章解三角形1三角形的性质: ③.若 ABC 为锐角’则AB >2,B +C>-,A+C2①.A+B+C= ②.在ABC①.正弦定理:(2R 为 ABC 外接圆的直径)a 2Rs inA 、b 2Rsin B 、c 2Rs inC(边化角) sin A —2Rsin B 面积公式:ABC b2R 、 1 absin C 2 sin C —2R1bcs inA 2acsin B 余弦定理b 2 2bc cos Ab 22accosB.2 2 “ b c cosA2bccosBa 2 c 2b 2ac2-、cosCa 2b 2 2abc 2补充:两角和与差的正弦、余弦和正切公式:⑴co s coscos sin sin;(2) cos cos cos sin sin⑶sinsin cos cos sin;(4) sin sin cos cos sin⑸ta n tantan tan tantan1tan tan77);3、常见的解题方法:| (边化角或者角化边) 第二章数列1、数列的定义及数列的通项公式: ①.a n f(n),数列是定义域为N 的函数f(n),当n 依次取1, 2, 时的一列函 数值 ②.a n 的求法:i. 归纳法 S ,n 1 ii. a nSi S n 1, n 2iv.若S n f (a n ),先求a 1,再I 构造方程组I :'"" 得到关于a n 1和a n 的递推 S n 1 f(a n 1) 关系式S 2a 1例如:& 2an 1先求a1,再构造方程组:Si2n a1(下减上)an12a n1 2a n2. 等差数列:① 定义:a n1 a n =d (常数),证明数列是等差数列的重要工具。
高二数学必修五全套知识点
高二数学必修五全套知识点一、函数的概念函数是用来描述两个集合之间的依赖关系的一种关系。
通常表示为f(x),其中x是自变量,f(x)是因变量,表示x与f(x)之间的对应关系。
二、二次函数与一元二次方程二次函数的标准形式为f(x) = ax^2 + bx + c,其中a、b、c为常数,a≠0。
二次函数的图像为抛物线。
一元二次方程的标准形式为ax^2 + bx + c = 0,其中a、b、c为常数,a≠0。
解一元二次方程可以使用因式分解、配方法、求根公式等方法。
三、三角函数与图像变换三角函数包括正弦函数、余弦函数和正切函数。
它们与角度的关系是:sinθ = 对边/斜边,cosθ = 邻边/斜边,tanθ = 对边/邻边。
图像变换可以通过平移、伸缩、翻转等操作改变函数图像的位置、形状和方向。
四、数列和数学归纳法数列是按照一定规律排列的一组数的序列。
常见的数列有等差数列和等比数列。
数学归纳法是一种用来证明数学命题的方法。
它包括基本步骤和归纳假设两部分。
五、概率与统计概率是研究随机事件发生可能性大小的数学工具,用来描述事件发生的可能性。
常见的概率计算方法有频率法、古典概型、条件概率等。
统计学是研究收集、整理、分析和解释数据的科学。
主要包括描述统计和推断统计两个方面。
六、解析几何解析几何是将几何问题转化为代数问题来研究的一门学科。
主要包括点、直线、平面的坐标表示以及距离、中点等重要概念的相关性质和定理。
解析几何的常见应用包括直线的相交、圆的切线方程、圆与直线的位置关系等。
七、导数与微分导数是描述函数变化率的重要工具。
导数的定义是函数f(x)在某一点x处的极限值,记为f'(x)或dy/dx。
微分是指函数在某一点的局部线性近似。
微分的定义是函数f(x)在某一点x处的导数与自变量增量的乘积,记为df(x)或dy。
八、积分与不定积分积分是求解曲线下面的面积、曲线长度、体积等问题的数学工具。
积分的定义是无穷小量的累加过程。
人教版高二数学必修五知识点总结归纳
以下是为⼤家整理的关于《⼈教版⾼⼆数学必修五知识点总结归纳》的⽂章,供⼤家学习参考!84、数列前项和与通项公式的关系:
( 数列的前n项的和为 ).
85、等差、等⽐数列公式对⽐
等差数列等⽐数列
定义式
( )
通项公式及推⼴公式
中项公式若成等差,则
若成等⽐,则
运算性质若,则
若,则
前项和公式
⼀个性质成等差数列
成等⽐数列
86、解不等式
(1)、含有绝对值的不等式
当a > 0时,有 . [⼩于取中间]
或 .[⼤于取两边]
(2)、解⼀元⼆次不等式的步骤:
①求判别式
②求⼀元⼆次⽅程的解:两相异实根⼀个实根没有实根
③画⼆次函数的图象
④结合图象写出解集
解集 R
解集
注:解集为R 对恒成⽴
(3)⾼次不等式:数轴标根法(奇穿偶回,⼤于取上,⼩于取下)
(4)分式不等式:先移项通分,化⼀边为0,再将除变乘,化为整式不等式,求解。
如解分式不等式:先移项通分
再除变乘,解出。
87、线性规划:
(1)⼀条直线将平⾯分为三部分(如图):
(2)不等式表⽰直线
某⼀侧的平⾯区域,验证⽅法:取原点(0,0)代⼊不
等式,若不等式成⽴,则平⾯区域在原点所在的⼀侧。
假如
直线恰好经过原点,则取其它点来验证,例如取点(1,0)。
(3)线性规划求最值问题:⼀般情况可以求出平⾯区域各个顶点的坐标,代⼊⽬标函数,的为值。
(完整版)高中数学必修五知识点总结【经典】
《必修五知识点总结》第一章:解三角形知识重点一、正弦定理和余弦定理1C中,a b c、、C的对边,,则有a b c2R、正弦定理:在、、分别为角sin sin sin C ( R为 C 的外接圆的半径)正弦定理的变形公式:① a2Rsin, b2R sin , c2Rsin C ;② sin a, sin b, sin Cc;2 R2R 2 R③a : b : c sin :sin :sin C ;2、余弦定理:在 C 中,有a2b2c22bc cos,推论:cos Ab2a2c22ac cos B ,推论:cos Bc2a2b22ab cosC ,推论: cosC3、三角形面积公式:S C 1bc sin1ab sin C1ac sin222b2c2a22bca 2c2b22aca2b2c22ab.二、解三角形办理三角形问题,一定联合三角形全等的判断定理理解斜三角形的四类基本可解型,特别要多角度(几何作图,三角函数定义,正、余弦定理,勾股定理等角度)去理解“边边角”型问题可能有两解、一解、无解的三种状况,依据已知条件判断解的状况,并能正确求解1、三角形中的边角关系(1)三角形内角和等于 180°;(2)三角形中随意两边之和大于第三边,随意两边之差小于第三边;(3)三角形中大边对大角,小边对小角;- 1 -( 4)正弦定理中, a=2 R·sinA,b=2R·sinB,c=2R·sinC,此中 R 是△ ABC 外接圆半径 .(5)在余弦定理中 :2bccosA= b 2 c2 a2 .( 6)三角形的面积公式有 :S= 1ah,S=1absinC=1bcsinA=1acsinB ,S= P( P a) (P b)( P c)其2222中, h 是 BC 边上高, P 是半周长 .2、利用正、余弦定理及三角形面积公式等解随意三角形( 1)已知两角及一边,求其余边角,常采纳正弦定理 .( 2)已知两边及此中一边的对角,求另一边的对角,常采纳正弦定理.( 3)已知三边,求三个角,常采纳余弦定理.( 4)已知两边和它们的夹角,求第三边和其余两个角,常采纳( 5)已知两边和此中一边的对角,求第三边和其余两个角,常采纳余弦定理.正弦定理.3、利用正、余弦定理判断三角形的形状常用方法是:①化边为角;②化角为边.4、三角形中的三角变换( 1)角的变换由于在△ABC 中,A+B+C=π,因此sin(A+B)=sinC ;cos(A+B)= -cosC;tan(A+B)= -tanC。
高中数学必修五知识点总结整理【经典最全版】.docx
《必修五知识点整理》第一章解三角形1.1正弦定理和余弦定理1.1.1正弦定理1、正眩定理:在一个三角形屮,各边和它所对角的正眩的比相等,即一纟一=-^一=亠- sin A sin B sinC 正弦定理推论:①~^— = ~^— = ~^ = 2Rsin A sin B sin C®a = 2Rsm A, b = 2Rsin B, c = 2/?sinC @a:b:c = sinA:sinB: sin C ⑤ -------------------sin A sin B sin C sin A + sin B + sinC2、解三角形的概念:一般地,我们把三角形的各个角即他们所对的边叫做三角形的元素。
任何一个三角形都有六个元素:三条边(a,b,c )和三个内角(A,B,C ).在三角形中,己知三 角形的几个元素求其他元素的过程叫做解三角形。
3、正眩泄理确定三角形解的情况(/?为三角形外接圆的半径)a sin A h sin B a sin A®~ =-—,-=-—,-=-—b sin Bc sin C c sinC b c a+b+c4. 任意三角形而积公式为:=—he sin A = — acsin B = —ah sinC =2 2 21.1.2余弦定理5、余弦定理:三角形屮任何一边的平方等于其他两边的平方的和减去这两边与它们的夹角 的余弦的积的两倍,即a 2 =b 2 +c 2 - 2bccos A , b 2 = a 2 + c 2 一 2ca cos B, c 2 = a 2 +b 2- lab cos C .6、不常用的三角函数值15° 75° 105° 165°sin erV6-V2 V6+V2 V6 + V2V6 — V24 4 4 4 COS (7V6 + V2V6-V2 —V6 + V2V6+V2 4 4 4 4 tana2-V32 + V3-2-V3-2 + V31.2应用举例(浏览即可)1、 方位角:如图1,从正北方向顺时针转到目标方向线的水平角。
高二年级数学必修五知识点归纳
高二年级数学必修五知识点归纳(实用版)编制人:__________________审核人:__________________审批人:__________________编制单位:__________________编制时间:____年____月____日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。
文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的实用资料,如教案大全、书信范文、述职报告、合同范本、工作总结、演讲稿、心得体会、作文大全、工作计划、其他资料等等,想了解不同资料格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor.I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!Moreover, our store provides various types of practical materials for everyone, such as lesson plans, letter templates, job reports, contract templates, work summaries, speeches, reflections, essay summaries, work plans, and other materials. If you want to learn about different data formats and writing methods, please stay tuned!高二年级数学必修五知识点归纳本店铺整理的《高二年级数学必修五知识点归纳》,希望对大家有所帮助!1.高二年级数学必修五知识点归纳篇一已知函数有零点(方程有根)求参数取值常用的方法1、直接法:直接根据题设条件构建关于参数的不等式,再通过解不等式确定参数范围。
高二数学上学期基础要点归纳人教版必修五
(必修五)第一章、解三角形一、本章知识结构:二、基础要点归纳1、三角形的性质: ①.A+B+C=π,222A B Cπ+=- ⇒sin()sin A B C +=, cos()cos A B C +=-,sincos 22A B C+= ②.在ABC ∆中, a b +>c , a b -<c ; A >B ⇔sin A >sin B ,A >B ⇔cosA <cosB, a >b ⇔ A >B③.若ABC ∆为锐角∆,则A B +>2π,B+C >2π,A+C >2π; 22a b +>2c ,22b c +>2a ,2a +2c >2b 2、正弦定理与余弦定理:①.正弦定理:2sin sin sin a b cR A B C=== (2R 为ABC ∆外接圆的直径) 111sin sin sin 222ABC S ab C bc A ac B ∆===②.余弦定理:2222cos a b c bc A =+- 222cos 2b c a A bc+-=2222cos b a c ac B =+- 222cos 2a c b B ac+-=2222cos c a b ab C =+- 222cos 2a b c C ab+-=(必修五)第二章、数列一、本章知识结构:二、本章要点归纳:1、数列的定义及数列的通项公式:①. ()n a f n =,数列是定义域为N 的函数()f n ,当n 依次取1,2,⋅⋅⋅时的一列函数值。
②. n a 的求法:i.归纳法。
ii. 11,1,2n nn S n a S S n -=⎧=⎨-≥⎩ 若00S =,则n a 不分段;若00S ≠,则n a 分段。
iii. 若1n n a pa q +=+,则可设1()n n a m p a m ++=+解得m,得等比数列{}n a m +。
iv. 若()n n S f a =,则先求1a ,再构造方程组:11()()n n n n S f a S f a ++=⎧⎨=⎩得到关于1n a +和n a 的递推关系式.2.等差数列:① 定义:1n n a a +-=d (常数),证明数列是等差数列的重要工具。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
必修五数学知识点归纳资料第一章 解三角形1、三角形的性质:①.A+B+C=π,⇒ 222A B C π+=-⇒sin cos 22A B C+= ②.在ABC ∆中, a b +>c , a b -<c ; A >B ⇔sin A >sin B , A >B ⇔cosA <cosB, a >b ⇔ A >B③.若ABC ∆为锐角∆,则A B +>2π,B+C >2π,A+C >2π;22a b +>2c ,22b c +>2a ,2a +2c >2b 2、正弦定理与余弦定理:①.(2R 为ABC ∆外接圆的直径)2sin a R A =、2sin b R B =、2sin c R C =sin 2a A R =、 sin 2b B R =、 sin 2c C R= 面积公式:111sin sin sin 222ABC S ab C bc A ac B ∆===②.余弦定理:2222cos a b c bc A =+-、2222cos b a c ac B=+-、2222cos c a b ab C =+-222cos 2b c a A bc +-=、222cos 2a c b B ac +-=、222cos 2a b c C ab+-= 补充:两角和与差的正弦、余弦和正切公式:⑴()cos cos cos sin sin αβαβαβ-=+;⑵()cos cos cos sin sin αβαβαβ+=-; ⑶()sin sin cos cos sin αβαβαβ-=-;⑷()sin sin cos cos sin αβαβαβ+=+; ⑸()tan tan tan 1tan tan αβαβαβ--=+ ⇒ (()()tan tan tan 1tan tan αβαβαβ-=-+);⑹()tan tan tan 1tan tan αβαβαβ++=- ⇒ (()()tan tan tan 1tan tan αβαβαβ+=+-).二倍角的正弦、余弦和正切公式:⑴sin 22sin cos ααα=.222)cos (sin cos sin 2cos sin 2sin 1ααααααα±=±+=±⇒ ⑵2222cos2cos sin 2cos 112sin ααααα=-=-=-⇒升幂公式2sin 2cos 1,2cos 2cos 122αααα=-=+⇒降幂公式2cos 21cos 2αα+=,21cos 2sin 2αα-=. 3第二章 数列1、数列的定义及数列的通项公式:①. ()n a f n =,数列是定义域为N 的函数()f n ,当n 依次取1,2,⋅⋅⋅时的一列函数值②i.归纳法若00S =,则n a 不分段;若00S ≠,则n a 分段iii. 若1n n a pa q +=+,则可设1()n n a m p a m ++=+解得m,得等比数列{}n a m +iv. 若()n nS f a =,先求1a ,11()()n n n n S f a S f a ++=⎧⎨=⎩得到关于1n a +和n a 的递推关系式例如:21n n S a =+先求1a ,再构造方程组:112121n n n n S a S a ++=+⎧⎨=+⎩⇒(下减上)1122n n n a a a ++=- 2.等差数列:① 定义:1n n a a +-=d (常数),证明数列是等差数列的重要工具。
② 通项0d ≠时,n a 为关于n 的一次函数;d >0时,n a 为单调递增数列;d <0时,n a 为单调递减数列。
③ 前n1(1)2n n na d -=+, 0d ≠时,n S 是关于n 的不含常数项的一元二次函数,反之也成立。
④ 性质: ii. 若{}n a 为等差数列,则m a ,m k a +,2m k a +,…仍为等差数列。
iii. 若{}n a 为等差数列,则n S ,2n n S S -,32n n S S -,…仍为等差数列。
iv 若A 为a,b 的等差中项,则有2a bA +=。
3.等比数列: ① 定义:1n na q a +=(常数),是证明数列是等比数列的重要工具。
② 通项时为常数列)。
③.前n 项和需特别注意,公比为字母时要讨论.④.性质:ii.{}仍为等比数列则为等比数列K ,,,,2k m k m m n a a a a ++,公比为k q 。
iii. {}232,,,,n n n n n n a S S S S --K 为等比数列则S 仍为等比数列,公比为n q 。
iv.G 为a,b 的等比中项,ab G ±= 4.数列求和的常用方法:①.公式法:如13,32+=+=n n n a n a②.分组求和法:如52231-++=+n a n n n ,可分别求出{}3n ,{}12n +和{}25n -的和,然后把三部分加起来即可。
③如()nn n a ⎪⎭⎫⎝⎛⨯+=2123,()23111111579(31)3222222n nn S n n -⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫=+++⋅⋅⋅+-++ ⎪ ⎪ ⎪ ⎪⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭12n S =234111579222⎛⎫⎛⎫⎛⎫+++ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭…+()()111313222nn n n +⎛⎫⎛⎫-++ ⎪ ⎪⎝⎭⎝⎭两式相减得:()231111111522232222222nn n S n +⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫=+++⋅⋅⋅+-+ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭,以下略。
④如()n n nn a n n n n a n n -+=++=+-=+=111;11111,()()1111212122121n a n n n n ⎛⎫==- ⎪-+-+⎝⎭等。
⑤.倒序相加法.例:在1与2之间插入n 个数12,3,,,n a a a a ⋅⋅⋅,使这n+2个数成等差数列,求:12n n S a a a =++⋅⋅⋅+,(答案:32n S n =) 第三章 不等式1.不等式的性质:① c a c b b a >⇒>>,② ,,c b c a R c b a +>+⇒∈>推论:d b c a d c b a +>+⇒⎭⎬⎫>>③ 000;0;0>>⇒⎭⎬⎫>>>><⇒⎭⎬⎫<>>⇒⎭⎬⎫>>bd ac d c b a bc ac c b a bc ac c b a④ 00;00>>⇒>>>>⇒>>n n n n b a b a b a b a 2.一元二次不等式及其解法:①.()c bx ax x f c bx ax c bx ax ++==++>++222,0,0注重三者之间的密切联系。
如:2ax bx c ++>0的解为:α<x <β, 则2ax bx c ++=0的解为12,x x αβ==; 函数()2f x ax bx c =++的图像开口向下,且与x 轴交于点(),0α,(),0β。
对于函数()c bx ax x f ++=2,一看开口方向,二看对称轴,从而确定其单调区间等。
②.注意二次函数根的分布及其应用.如:若方程2280x ax -+=的一个根在(0,1)上,另一个根在(4,5)上,则有(0)f >0且(1)f <0且(4)f <0且(5)f >03.不等式的应用: ①基本不等式:当a >0,b >0且ab 是定值时,a+b 有最小值; 当a >0,b >0且a+b 为定值时,ab 有最大值。
②简单的线性规划:()00>>++A C By Ax 表示直线0=++C By Ax 的右方区域. ()00><++A C By Ax 表示直线0=++C By Ax 的左方区域①.找出所有的线性约束条件。
②.确立目标函数。
③.画可行域,找最优点,得最优解。
需要注意的是,在目标函数中,x 的系数的符号,当A >0时,越向右移,函数值越大,当A <0时,越向左移,函数值越大。
⑷常见的目标函数的类型: ①“截距”型:;z Ax By =+②“斜率”型:y z x =或;y bz x a-=-③“距离”型:22z x y =+或z =22()()z x a y b =-+-或z =画——移——定——求:第一步,在平面直角坐标系中画出可行域;第二步,作直线0:0l Ax By += ,平移直线0l (据可行域,将直线0l 平行移动)确定最优解;第三步,求出最优解(,)x y ;第四步,将最优解(,)x y 代入目标函数z Ax By =+即可求出最大值或最小值 . 第二步中最优解的确定方法:利用z 的几何意义:A z y x B B =-+,zB为直线的纵截距. ①若0,B >则使目标函数z Ax By =+所表示直线的纵截距最大的角点处,z 取得最大值,使直线的纵截距最小的角点处,z 取得最小值;②若0,B <则使目标函数z Ax By =+所表示直线的纵截距最大的角点处,z 取得最小值,使直线的纵截距最小的角点处,z 取得最大值.。