2018年上海市高考数学试题有答案【精选文档版】
(完整版)【解析版】2018年高考上海卷数学试题
2018年普通高等学校招生全国统一考试(上海卷)数学注意事项:1 •答题前,先将自己的姓名、准考证号填写在试题卷和答题卡上,并将准考证号条形码粘贴在答题卡上的指定位置。
2 •选择题的作答:每小题选出答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑,写在试题卷、草稿纸和答题卡上的非答题区域均无效。
3 •非选择题的作答:用签字笔直接答在答题卡上对应的答题区域内。
写在试题卷、草稿纸和答题卡上的非答题区域均无效。
4 •考试结束后,请将本试题卷和答题卡一并上交。
一、填空题(本大题共有12题,满分54分第1-6题每题4分,第7-12题每题5分)4 11. 行列式'门的值为___________________________X22~~ y ■ == 12. 双曲线4 ■的渐近线方程为________3. •的二项展开式中-的系数为____________________ (结果用数值表示)4. 设常数,■',函数汀-竺二泊吻【X *茂.:,若虑的反函数的图像经过点,则5. 已知复数H满足11 + i) ' = 1 _丄是虚数单位),则国=________________________________6. 记等差数列'的前••项和为「,若I ' _ 1 ,则Sj =(认+x )上递减,则c 二8.在平面直角坐标系中,已知点■ '' ■ !' ■'是■轴上的两个动点,且9.有编号互不相同的五个砝码 ,期中5克,3克,1克砝码各两个,从中随机挑选三个,则这三个砝码的总质量为9克的概率为 ______________ (结果用最简分数表示)考生应在答题纸的相应位置,将代表正确选项的小方格涂黑a E7.已知丨.若函数=書"为奇函数,且在,则.-.最小值为10.设等比数列■;的通项公式为'~ '(” €),前口项和为孔,若lim —1-,则'f (J :)= -----11.已知常数筮紳那,函数… ;‘十心-的图像经过点若’''■12.已知实数 X 1, X 2, y 1, y 2 满足:X 12y 121,血22 . 1 M .7211X 1X 271722,则二、选择题(本大题共有 4题,满分20分,每题5分)每题有且只有一个正确选项2 213.设p 是椭圆—"^―531上的动点 p 到该椭圆的两个焦点的距离之和为 ()A. 2.2B. 2 一3 D. 4.214.已知a R ,则“ a11 ”是“-aB.必要非充分条件 D.既非充分又非必要条件15•《九章算术》中,称底面为矩形而有一侧棱垂直于底面的四棱锥为阳马。
2018年上海高考数学真题和答案
2018 年上海市高考数学试卷参照答案与试题分析一、填空题(本大题共有 12 题,满分 54 分,第 1~6 题每题 4 分,第 7~12 题每题5 分)考生应在答题纸的相应地点直接填写结果 .1.(4 分)(2018 上海)队列式的值为18.【考点】 OM:二阶队列式的定义.【专题】 11 :计算题; 49 :综合法; 5R :矩阵和变换.【剖析】直接利用队列式的定义,计算求解即可.【解答】解:队列式=4×5﹣2×1=18.故答案为: 18.【评论】此题观察队列式的定义,运算法例的应用,是基本知识的观察.2.(4 分)(2018?上海)双曲线﹣y2=1的渐近线方程为±.【考点】 KC:双曲线的性质.【专题】 11 :计算题.【剖析】先确立双曲线的焦点所在座标轴,再确立双曲线的实轴长和虚轴长,最后确立双曲线的渐近线方程.【解答】解:∵双曲线的a=2,b=1,焦点在x轴上而双曲线的渐近线方程为 y=±∴双曲线的渐近线方程为y=±故答案为: y=±【评论】此题观察了双曲线的标准方程,双曲线的几何意义,特别是双曲线的渐近线方程,解题时要注意先定位,再定量的解题思想3.(4 分)(2018?上海)在( 1+x)7的二项睁开式中, x2项的系数为21(结果用数值表示).【考点】 DA:二项式定理.【专题】 38 :对应思想; 4O:定义法; 5P :二项式定理.【剖析】利用二项式睁开式的通项公式求得睁开式中x2的系数.【解答】解:二项式( 1+x)7睁开式的通项公式为 T r+1= ?x r,令 r=2,得睁开式中 x2的系数为=21.故答案为: 21.【评论】此题观察了二项睁开式的通项公式的应用问题,是基础题.4.(4 分)(2018?上海)设常数 a∈R,函数 f( x) =1og2(x+a).若 f (x)的反函数的图象经过点( 3,1),则 a= 7.【考点】 4R:反函数.【专题】11 :计算题;33 :函数思想;4O:定义法;51 :函数的性质及应用.【剖析】由反函数的性质得函数 f (x)=1og2(x+a)的图象经过点( 1, 3),由此能求出 a.【解答】解:∵常数 a∈R,函数 f (x)=1og2(x+a).f(x)的反函数的图象经过点(3,1),∴函数 f(x)=1og2( x+a)的图象经过点( 1,3),∴log2(1+a)=3,解得 a=7.故答案为: 7.【评论】此题观察实数值的求法,观察函数的性质等基础知识,观察运算求解能力,观察函数与方程思想,是基础题.5.(4 分)(2018?上海)已知复数 z 知足( 1+i)z=1﹣ 7i(i 是虚数单位),则|z|= 5.【考点】 A8:复数的模.【专题】 38 :对应思想; 4A :数学模型法; 5N :数系的扩大和复数.【剖析】把已知等式变形,而后利用复数代数形式的乘除运算化简,再由复数求模公式计算得答案.【解答】解:由( 1+i) z=1﹣7i,得,则 |z|=.故答案为: 5.【评论】此题观察了复数代数形式的乘除运算,观察了复数模的求法,是基础题.6.( 4 分)(2018?上海)记等差数列 {a n}的前 n 项和为 S n,若 a3 =0,a6+a7=14,则S7= 14.【考点】 85:等差数列的前 n 项和.【专题】 11 :计算题; 34 :方程思想; 4O:定义法; 54 :等差数列与等比数列.【剖析】利用等差数列通项公式列出方程组,求出 a1=﹣4,d=2,由此能求出S7.【解答】解:∵等差数列 {a n}的前 n 项和为 S n,a3=0,a6+a7=14,∴,解得 a1=﹣4,d=2,∴ S7=7a1+=﹣28+42=14.故答案为: 14.【评论】此题观察等差数列的前 7 项和的求法,观察等差数列的性质等基础知识,观察运算求解能力,观察函数与方程思想,是基础题.7.(5 分)(2018?上海)已知α∈{﹣2,﹣1,﹣,1,2,3},若幂函数f(x)=xα为奇函数,且在( 0,+∞)上递减,则α= ﹣1 .【考点】 4U:幂函数的观点、分析式、定义域、值域.【专题】 11 :计算题; 34 :方程思想; 4O:定义法; 51 :函数的性质及应用.【剖析】由幂函数 f( x)=xα为奇函数,且在( 0, +∞)上递减,获得 a 是奇数,且 a<0,由此能求出 a 的值.【解答】解:∵α∈ {﹣2,﹣ 1,,1,2,3},幂函数 f(x)=xα为奇函数,且在( 0, +∞)上递减,∴a 是奇数,且 a<0,∴a=﹣1.故答案为:﹣ 1.【评论】此题观察实数值的求法,观察幂函数的性质等基础知识,观察运算求解能力,观察函数与方程思想,是基础题.8.(5 分)(2018?上海)在平面直角坐标系中,已知点A(﹣ 1,0)、 B( 2,0),E、F 是 y 轴上的两个动点,且 | |=2 ,则的最小值为﹣3.【考点】 9O:平面向量数目积的性质及其运算.【专题】 11 :计算题; 35 :转变思想; 41 :向量法; 5A :平面向量及应用.【剖析】据题意可设 E( 0, a),F(0,b),进而得出 |a ﹣b|=2 ,即a=b+2,或b=a+2,并可求得,将a=b+2 带入上式即可求出的最小值,同理将 b=a+2 带入,也可求出的最小值.【解答】解:依据题意,设E(0,a),F( 0, b);∴;∴a=b+2,或 b=a+2;且;∴;当 a=b+2 时,;∵ b2﹣2的最小值为;+2b∴的最小值为﹣ 3,同理求出 b=a+2 时,的最小值为﹣ 3.故答案为:﹣ 3.【评论】观察依据点的坐标求两点间的距离,依据点的坐标求向量的坐标,以及向量坐标的数目积运算,二次函数求最值的公式.9.(5 分)(2018?上海)有编号互不同样的五个砝码,此中 5 克、 3 克、 1 克砝码各一个, 2 克砝码两个,从中随机选用三个,则这三个砝码的总质量为9 克的概率是(结果用最简分数表示).【考点】 CB:古典概型及其概率计算公式.【专题】 11 :计算题; 34 :方程思想; 49 :综合法; 5I :概率与统计.【剖析】求出全部事件的总数,求出三个砝码的总质量为9 克的事件总数,而后求解概率即可.【解答】解:编号互不同样的五个砝码,此中 5 克、 3 克、 1 克砝码各一个, 2克砝码两个,从中随机选用三个, 3 个数中含有 1 个 2; 2 个 2,没有 2,3 种状况,全部的事件总数为:=10,这三个砝码的总质量为9 克的事件只有: 5,3,1 或 5, 2,2 两个,所以:这三个砝码的总质量为9 克的概率是:=,故答案为:.【评论】此题观察古典概型的概率的求法,是基本知识的观察.10.( 5分)(2018?上海)设等比数列n 的通项公式为n n﹣1(n∈N*),前n{a } a =q项和为 S n.若= ,则 q= 3.【考点】 8J:数列的极限.【专题】 11 :计算题; 34 :方程思想; 35 :转变思想; 49 :综合法; 55 :点列、递归数列与数学概括法.【剖析】利用等比数列的通项公式求出首项,经过数列的极限,列出方程,求解公比即可.【解答】解:等比数列 {a n的通项公式为a =q n﹣1(n∈ N*),可得 a1,}=1因为=,所以数列的公比不是1,,a n+1=q n.可得====,可得 q=3.故答案为: 3.【评论】此题观察数列的极限的运算法例的应用,等比数列乞降以及等比数列的简单性质的应用,是基本知识的观察.11.(5 分)(2018?上海)已知常数 a>0,函数 f(x)=的图象经过点P(p,),Q(q,).若 2p+q,则a=6.=36pq【考点】 3A:函数的图象与图象的变换.【专题】 35 :转变思想; 51 :函数的性质及应用.【剖析】直接利用函数的关系式,利用恒等变换求出相应的 a 值.【解答】解:函数 f (x) =的图象经过点 P(p,),Q( q,).则:,整理得:=1,解得: 2p+q=a2pq,因为: 2p+q=36pq,所以: a2=36,因为 a>0,故: a=6.故答案为: 6【评论】此题观察的知识重点:函数的性质的应用,代数式的变换问题的应用.12.( 5 分)(2018?上海)已知实数x1、x2、 y1、y2知足: x12+y12=1,x22+y22=1,x1x2+y1y2=,则+的最大值为+.【考点】 7F:基本不等式及其应用;IT:点到直线的距离公式.【专题】 35 :转变思想; 48 :剖析法; 59 :不等式的解法及应用.【剖析】设 A(x1,1),(2,2),(1,1),( 2,2),由圆的方程y B x y= x y= x y和向量数目积的定义、坐标表示,可得三角形OAB 为等边三角形, AB=1,+的几何意义为点A, B 两点到直线 x+y﹣1=0 的距离 d1与 d2之和,由两平行线的距离可得所求最大值.【解答】解:设 A( x1,y1),B(x2,y2),=( x1,y1),=(x2,y2),由 x12+y12=1,x22 +y22=1,x1x2+y1y2= ,可得 A,B 两点在圆 x2+y2=1 上,且 ? =1×1×cos∠AOB= ,即有∠ AOB=60°,即三角形 OAB 为等边三角形,AB=1,+的几何意义为点A, B 两点到直线 x+y﹣ 1=0 的距离 d1与 d2之和,明显 A,B 在第三象限, AB 所在直线与直线x+y=1 平行,可设 AB:x+y+t=0,(t >0),由圆心 O 到直线 AB 的距离 d=,可得 2=1,解得 t=,即有两平行线的距离为=,即+的最大值为+,故答案为:+.【评论】此题观察向量数目积的坐标表示和定义,以及圆的方程和运用,观察点与圆的地点关系,运用点到直线的距离公式是解题的重点,属于难题.二、选择题(本大题共有 4 题,满分 20 分,每题 5 分)每题有且只有一个正确选项 .考生应在答题纸的相应地点,将代表正确选项的小方格涂黑 .13.(5 分)(2018?上海)设 P 是椭圆=1 上的动点,则 P 到该椭圆的两个焦点的距离之和为()A.2B.2C.2D.4【考点】 K4:椭圆的性质.【专题】 11 :计算题; 49 :综合法; 5D :圆锥曲线的定义、性质与方程.【剖析】判断椭圆长轴(焦点坐标)所在的轴,求出 a,接利用椭圆的定义,转变求解即可.【解答】解:椭圆=1 的焦点坐标在 x 轴, a=,P 是椭圆=1 上的动点,由椭圆的定义可知:则P 到该椭圆的两个焦点的距离之和为 2a=2.应选: C.【评论】此题观察椭圆的简单性质的应用,椭圆的定义的应用,是基本知识的考查.14.( 5 分)(2018?上海)已知a∈R,则“a>1”是“<1”的()A.充足非必需条件B.必需非充足条件C.充要条件D.既非充足又非必需条件【考点】 29:充足条件、必需条件、充要条件.【专题】 11 :计算题; 34 :方程思想; 4O:定义法; 5L :简略逻辑.【剖析】“a>1”? “”,“”?“a>1或a<0”,由此能求出结果.【解答】解: a∈R,则“a>1”? “”,“”? “a>1 或 a<0”,∴“a>1”是“”的充足非必需条件.应选: A.【评论】此题观察充足条件、必需条件的判断,观察不等式的性质等基础知识,观察运算求解能力,观察函数与方程思想,是基础题.15.( 5 分)( 2018?上海)《九章算术》中,称底面为矩形而有一侧棱垂直于底面的四棱锥为阳马,设AA1是正六棱柱的一条侧棱,如图,若阳马以该正六棱柱的极点为极点、以AA1为底面矩形的一边,则这样的阳马的个数是()A.4B.8C.12D.16【考点】 D8:摆列、组合的实质应用.【专题】 11 :计算题; 38 :对应思想; 4R:转变法; 5O :摆列组合.【剖析】依据新定义和正六边形的性质可得答案.【解答】解:依据正六边形的性质,则D1﹣1 1,1﹣1 1 知足题意,而AABB D AAFFC1, E1,C,D,E,和 D1同样,有 2×6=12,当 A1ACC1为底面矩形,有2 个知足题意,当 A1AEE1为底面矩形,有 2 个知足题意,故有 12+2+2=16应选: D.【评论】此题观察了新定义,以及清除组合的问题,观察了棱柱的特点,属于中档题.16.( 5 分)(2018?上海)设 D 是含数 1 的有限实数集, f(x)是定义在 D 上的函数,若 f(x)的图象绕原点逆时针旋转后与原图象重合,则在以下各项中,f(1)的可能取值只好是()A.B.C.D.0【考点】 3A:函数的图象与图象的变换.【专题】 35 :转变思想; 51:函数的性质及应用; 56 :三角函数的求值.【剖析】直接利用定义函数的应用求出结果.【解答】解:由题意获得:问题相当于圆上由12 个点为一组,每次绕原点逆时针旋转个单位后与下一个点会重合.我们能够经过代入和赋值的方法当 f(1)=,,0 时,此时获得的圆心角为,,0,但是此时 x=0 或许 x=1 时,都有 2 个 y 与之对应,而我们知道函数的定义就是要求一个 x 只好对应一个 y,所以只有当 x= ,此时旋转,此时知足一个 x 只会对应一个 y,所以答案就选: B.应选: B.【评论】此题观察的知识重点:定义性函数的应用.三、解答题(本大题共有 5 题,满分 76 分)解答以下各题一定在答题纸的相应地点写出必需的步骤 .17.( 14 分)( 2018?上海)已知圆锥的极点为P,底面圆心为 O,半径为 2.(1)设圆锥的母线长为 4,求圆锥的体积;(2)设 PO=4,OA、OB 是底面半径,且∠ AOB=90°,M 为线段 AB 的中点,如图.求异面直线 PM 与 OB 所成的角的大小.【考点】 LM:异面直线及其所成的角;L5:旋转体(圆柱、圆锥、圆台);LF:棱柱、棱锥、棱台的体积.【专题】 11 :计算题; 31 :数形联合; 41 :向量法; 5F :空间地点关系与距离; 5G :空间角.【剖析】(1)由圆锥的极点为 P,底面圆心为 O,半径为 2,圆锥的母线长为 4 能求出圆锥的体积.(2)以 O 为原点, OA 为 x 轴, OB 为 y 轴, OP 为 z 轴,成立空间直角坐标系,利用向量法能求出异面直线 PM 与 OB 所成的角.【解答】解:(1)∵圆锥的极点为 P,底面圆心为 O,半径为 2,圆锥的母线长为 4,∴圆锥的体积 V===.(2)∵ PO=4,OA,OB 是底面半径,且∠ AOB=90°,M为线段 AB 的中点,∴以 O 为原点, OA 为 x 轴, OB 为 y 轴, OP 为 z 轴,成立空间直角坐标系,P(0,0,4),A(2,0,0),B(0,2,0),M(1,1,0),O(0,0,0),=(1,1,﹣ 4),=(0,2,0),设异面直线 PM 与 OB 所成的角为θ,则 cosθ===.∴θ=arccos .∴异面直线 PM 与 OB 所成的角的为 arccos.【评论】此题观察圆锥的体积的求法,观察异面直线所成角的正切值的求法,观察空间中线线、线面、面面间的地点关系等基础知识,观察运算求解能力,观察函数与方程思想,是基础题.18.( 14 分)( 2018?上海)设常数 a∈R,函数( 1)若 f (x)为偶函数,求 a 的值;( 2)若 f ()=+1,求方程 f (x) =1﹣f( x) =asin2x+2cosx2.在区间 [﹣π,π]上的解.【考点】 GP:两角和与差的三角函数;GS:二倍角的三角函数.【专题】 11 :计算题; 38 :对应思想; 4R:转变法; 58 :解三角形.【剖析】(1)依据函数的奇偶性和三角形的函数的性质即可求出,(2)先求出 a 的值,再依据三角形函数的性质即可求出.【解答】解:(1)∵ f( x) =asin2x+2cosx,∴(﹣)﹣2f x = asin2x+2cosx,∵f(x)为偶函数,∴ f(﹣ x) =f(x),∴﹣ asin2x+2cosx=asin2x+2cosx,∴ 2asin2x=0,∴ a=0;( 2)∵ f() = +1,∴ asin +2cos2()=a+1=+1,∴a= ,∴ f(x)= sin2x+2cosx= sin2x+cos2x+1=2sin(2x+)+1,∵f(x)=1﹣,∴2sin(2x+ )+1=1﹣,∴sin(2x+ )=﹣,∴ 2x+ =﹣+2kπ,或 2x+ =π+2kπ,k∈Z,∴ x=﹣π+kπ,或x=π+kπ,k∈Z,∵ x∈[ ﹣π,π],∴ x=或x=或x=﹣或x=﹣【评论】此题观察了三角函数的化简和求值,以及三角函数的性质,属于基础题.19.( 14 分)(2018?上海)某集体的人均通勤时间,是指单日内该集体中成员从居住地到工作地的均匀用时.某地上班族S 中的成员仅以自驾或公交方式通勤.剖析显示:当 S 中 x%(0<x<100)的成员自驾时,自驾集体的人均通勤时间为f(x)=(单位:分钟),而公交集体的人均通勤时间不受x 影响,恒为 40 分钟,试依据上述剖析结果回答以下问题:( 1)当 x 在什么范围内时,公交集体的人均通勤时间少于自驾集体的人均通勤时间(2)求该地上班族 S 的人均通勤时间 g(x)的表达式;议论 g(x)的单一性,并说明其实质意义.【考点】 5B:分段函数的应用.【专题】 12 :应用题; 33 :函数思想; 4C :分类法; 51 :函数的性质及应用.【剖析】(1)由题意知求出 f (x)> 40 时 x 的取值范围即可;(2)分段求出 g(x)的分析式,判断 g(x)的单一性,再说明其实质意义.【解答】解;(1)由题意知,当 30< x<100 时,f(x)=2x+﹣90>40,即 x2﹣65x+900>0,解得 x<20 或 x>45,∴x∈(45,100)时,公交集体的人均通勤时间少于自驾集体的人均通勤时间;( 2)当 0<x≤30 时,g(x)=30?x%+40( 1﹣ x%)=40﹣;当 30< x<100 时,g(x)=(2x+﹣90)?x%+40(1﹣x%)=﹣x+58;∴ g( x)=;当 0<x<时, g(x)单一递减;当< x< 100 时, g( x)单一递加;说明该地上班族 S 中有小于 %的人自驾时,人均通勤时间是递减的;有大于 %的人自驾时,人均通勤时间是递加的;当自驾人数为 %时,人均通勤时间最少.【评论】此题观察了分段函数的应用问题,也观察了分类议论与剖析问题、解决问题的能力.20.(16 分)(2018?上海)设常数 t >2.在平面直角坐标系xOy 中,已知点 F(2,0),直线 l:x=t,曲线Γ:y2=8x(0≤ x≤t , y≥0). l 与 x 轴交于点 A、与Γ交于点 B.P、Q 分别是曲线Γ与线段 AB 上的动点.( 1)用 t 表示点 B 到点 F 的距离;( 2)设 t=3,|FQ|=2 ,线段 OQ 的中点在直线 FP上,求△ AQP的面积;( 3)设 t=8,能否存在以 FP、 FQ为邻边的矩形 FPEQ,使得点 E 在Γ上若存在,求点 P 的坐标;若不存在,说明原因.【考点】 KN:直线与抛物线的地点关系.【专题】 35 :转变思想; 4R:转变法; 5D :圆锥曲线的定义、性质与方程.【剖析】(1)方法一:设 B 点坐标,依据两点之间的距离公式,即可求得|BF| ;方法二:依据抛物线的定义,即可求得|BF| ;(2)依据抛物线的性质,求得 Q 点坐标,即可求得 OD 的中点坐标,即可求得直线PF的方程,代入抛物线方程,即可求得 P 点坐标,即可求得△ AQP 的面积;(3)设 P 及 E 点坐标,依据直线 k PF?k FQ=﹣1,求得直线 QF 的方程,求得 Q 点坐标,依据+ = ,求得 E 点坐标,则()2(),即可求得=8+6P 点坐标.【解答】解:(1)方法一:由题意可知:设B( t,2t),则 |BF|==t+2,∴|BF|=t+2 ;方法二:由题意可知:设B(t ,2t ),由抛物线的性质可知: |BF|=t+=t+2,∴ |BF|=t+2 ;(2) F(2,0),|FQ|=2 ,t=3,则 |FA|=1 ,∴ |AQ|= ,∴ Q( 3,),设 OQ 的中点 D,D(,),k QF==﹣,则直线PF方程:y=﹣(x﹣2),联立,整理得: 3x2﹣20x+12=0,解得: x=,x=6(舍去),∴△ AQP的面积 S= ××=;( 3)存在,设 P(,y),E(,m),则k PF==,k FQ=,直线 QF 方程为 y=(x﹣2),∴ y Q=(﹣),(,),8 2 =Q 8依据+ =,则E(+6,),∴()2=8(+6),解得: y2=,∴存在以 FP、FQ 为邻边的矩形 FPEQ,使得点 E 在Γ上,且 P(,).【评论】此题观察抛物线的性质,直线与抛物线的地点关系,观察转变思想,计算能力,属于中档题.21.( 18 分)( 2018?上海)给定无量数列 {a n},若无量数列 {b n}知足:对随意n∈ N*,都有 |b n﹣ a n| ≤ 1,则称 {b n}与{a n}“靠近”.( 1)设 {a n}是首项为 1,公比为的等比数列,b n=a n+1+1,n∈N*,判断数列{b n}能否与 {a n}靠近,并说明原因;(2)设数列 {a n}的前四项为: a1=1,a2=2, a3=4, a4 =8,{b n}是一个与 {a n}靠近的数列,记会合 M={x|x=b i,i=1,2,3,4},求 M 中元素的个数 m;(3)已知 {a n}是公差为 d 的等差数列,若存在数列 {b n }知足: {b n }与{a n}靠近,且在 b2﹣b1, b3﹣b2,,b201﹣b200中起码有 100 个为正数,求 d 的取值范围.【考点】 8M:等差数列与等比数列的综合.【专题】 34 :方程思想; 48 :剖析法; 54 :等差数列与等比数列.【剖析】(1)运用等比数列的通项公式和新定义“靠近”,即可判断;(2)由新定义可得 a n﹣1≤b n≤ a n +1,求得 b i,i=1,2,3,4 的范围,即可获得所求个数;(3)运用等差数列的通项公式可得 a n,议论公差 d>0,d=0,﹣ 2< d< 0, d≤﹣ 2,联合新定义“靠近”,推理和运算,即可获得所求范围.【解答】解:(1)数列 {b n}与 {a n}靠近.原因: {a n}是首项为 1,公比为的等比数列,可得 a n, n n+1,= b =a +1= +1则 |b n﹣n+1﹣|=1 ﹣<1,n∈N * ,a |=|可得数列 {b n}与{a n}靠近;(2){b n}是一个与{a n}靠近的数列,可得 a n﹣ 1≤ b n≤a n+1,数列 {a n}的前四项为: a1 =1,a2 =2,a3=4, a4=8,可得 b1∈ [0,2],b2∈[1,3], b3∈[3,5] ,b4∈[7, 9],可能 b1与 b2相等, b2与 b3相等,但 b1与 b3不相等, b4与 b3不相等,会合 M={x|x=b i,i=1,2,3,4},M 中元素的个数 m=3 或 4;(3) {a n}是公差为 d 的等差数列,若存在数列 {b n}知足: {b n}与 {a n}靠近,可得 a n=a1+(n﹣1)d,①若 d>0,取 b n=a n,可得 b n+1﹣b n=a n+1﹣a n=d>0,则 b2﹣b1, b3﹣b2,,b201﹣b200中有 200 个正数,切合题意;②若 d=0,取 b n1﹣,则|b n﹣ n1﹣﹣ 1<,∈N* ,=a a |=|a a |= 1 n可得 b n+1﹣n﹣>,b =0则 b2﹣b1, b3﹣b2,,b201﹣b200中有 200 个正数,切合题意;③若﹣ 2<d<0,可令 b2n﹣1=a2n﹣1﹣1,b2n=a2n+1,则 b2n﹣b2n﹣1=a2n+1﹣( a2n﹣1﹣ 1) =2+d> 0,则 b2﹣b1, b3﹣b2,,b201﹣b200中恰有 100 个正数,切合题意;④若 d≤﹣ 2,若存在数列 {b n}知足: {b n}与{a n}靠近,即为 a n﹣ 1≤ b n≤a n+1, a n+1﹣1≤b n+1≤a n+1+1,可得 b n+1﹣ b n≤a n+1+1﹣( a n﹣1)=2+d≤0,b2﹣ b1,b3﹣ b2,,b201﹣ b200中无正数,不切合题意.综上可得, d 的范围是(﹣ 2, +∞).【评论】此题观察新定义“靠近”的理解和运用,观察等差数列和等比数列的定义和通项公式的运用,观察分类议论思想方法,以及运算能力和推理能力,属于难题.感恩和爱是亲姐妹。
2018年上海市高考数学试题有答案(精校版)
2018年高考数学真题试卷(上海卷)一、填空题1.(2018•上海)行列式4125的值为 。
【答案】18 【解析】【解答】4125=45-21=18 【分析】a cb d=ad-bc 交叉相乘再相减。
【题型】填空题 【考查类型】中考真题 【试题级别】高三 【试题地区】上海【试题来源】2018年高考数学真题试卷(上海卷) 2.(2018•上海)双曲线2214x y -=的渐近线方程为 。
【答案】12y x =±【解析】【解答】2214x y -=,a=2,b=1。
故渐近线方程为12y x =± 【分析】渐近线方程公式。
注意易错点焦点在x 轴上,渐近线直线方程为22221x y b a -=时,by x a=±。
【题型】填空题 【考查类型】中考真题 【试题级别】高三 【试题地区】上海【试题来源】2018年高考数学真题试卷(上海卷)3.(2018•上海)在(1+x )7的二项展开式中,x ²项的系数为 。
(结果用数值表示) 【答案】21【解析】【解答】(1+x )7中有T r+1=7r r C x ,故当r=2时,27C =762⨯=21 【分析】注意二项式系数,与各项系数之间差别。
考点公式()na b +第r+1项为T r+1=r n r rn C a b-。
【题型】填空题 【考查类型】中考真题 【试题级别】高三 【试题地区】上海【试题来源】2018年高考数学真题试卷(上海卷)4.(2018•上海)设常数a R ∈,函数2()log ()f x x a =+,若f x ()的反函数的图像经过点31(,),则a= 。
【答案】7【解析】【解答】f x ()的反函数的图像经过点31(,),故()f x 过点3(1,),则()13f =,()2log 1a +=3,1+a=23所以a=23-1,故a=7. 【分析】原函数()f x 与反函数图像关于y=x 对称,如:原函数上任意点()00,x y ,则反函数上点为()00,y x【题型】填空题 【考查类型】中考真题 【试题级别】高三 【试题地区】上海【试题来源】2018年高考数学真题试卷(上海卷)5.(2018•上海)已知复数z 满足117i z i +=-()(i 是虚数单位),则∣z ∣= 。
2018高考上海数学带答案
2018 年一般高等学校招生全国一致考试(上海卷 )数学注意事项:1.答题前,先将自己的姓名、准考证号填写在试题卷和答题卡上,并将准考证号条形码粘贴在答题卡上的指定地址。
2.选择题的作答:每题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑,写在试题卷、稿本纸和答题卡上的非答题地域均无效。
3.非选择题的作答:用签字笔挺接答在答题卡上对应的答题地域内。
写在试题卷、稿本纸和答题卡上的非答题地域均无效。
4.考试结束后,请将本试题卷和答题卡一并上交。
一、填空题(本大题共有12 题,满分54 分第 1-6 题每题 4 分,第 7-12 题每题 5 分)411.行列式的值为。
252.双曲线x2y21的渐近线方程为。
43.在( 1+x)7的二项睁开式中,x2项的系数为。
(结果用数值表示)4.设常数a R ,函数f(x)=log2(x+a),若f(x)的反函数的图像经过点(3,1),则 a=。
(1i) z17i( i 是虚数单位),则∣ z∣ =。
5.已知复数 z 满足6.记等差数列a n的前几项和为 S n,若 a3=0, a8+a7=14,则 S7=。
7.已知α∈ { - 2,- 1,-1,1,1,2,3} ,若幂函数f ( x)x n为奇函数,且在(0,+∞)上递减,则22α=_____8.在平面直角坐标系中,已知点A(-1, 0), B(2,0), E,F 是 y 轴上的两个动点,且| EF |=2,则AE BF 的最小值为______9.有编号互不同样的五个砝码,此中 5 克、 3 克、 1 克砝码各一个, 2 克砝码两个,从中随机采用三个,则这三个砝码的总质量为9 克的概率是 ______ (结果用最简分数表示)10.设等比数列 { a n} 的通项公式为a n=q?+1(n∈ N* ),前 n 项和为 S n。
若lim Sn1,则n an 12q=____________11.已知常数 a>0,函数f (x)22的图像经过点p6、 Q q,1,若p,5(2 2ax)52 p q36 pq ,则a=__________12.已知实数 x? 、 x? 、y? 、y? 满足:x?2 y?21, x?2y?21, x?x? y?y21,则2∣ x?y? 1∣ ∣ x?y?1∣+2的最大值为 __________2二、选择题(本大题共有 4 题,满分 20分,每题 5 分)每题有且只有一个正确选项.考生应在答题纸的相应地址,将代表正确选项的小方格涂黑.13.设 P 是椭圆x 2y 2P 到该椭圆的两个焦点的距离之和为()+=1 上的动点,则53(A )22(B)2 3(C)2 5(D)4214.已知a R ,则“a﹥11)”是“﹤1”的(a(A )充足非必需条件(B )必需非充足条件(C)充要条件(D )既非充足又非必需条件15.《九章算术》中,称底面为矩形而有一侧棱垂直于底面的四棱锥为阳马.设 AA ?是正六棱柱的一条侧棱,如图,若阳马以该正六棱柱的极点为极点,以AA ?为底面矩形的一边,则这样的阳马的个数是()(A )4(B)8(C) 12(D)1616.设 D 是含数 1 的有限实数集,(f x)是定义在D上的函数,若(f x)的图像绕原点逆时针旋转π后与原图像重合,则在以下各项中,(f1))的可能取值只好是(6(A)3(B)3( C)3(D)0 23三、解答题(本大题共有 5 题,满分76 分)解答以下各题一定在答题纸的相应地址写出必需的步骤 .17.(本题满分14 分,第 1 小题满分 6 分,第 2 小题满分8 分)已知圆锥的极点为P,底面圆心为O,半径为2(1)设圆锥的母线长为 4,求圆锥的体积;(2)设 PO=4, OA, OB 是底面半径,且∠ AOB=90°, M 为线段AB 的中点,如图,求异面直线PM 与 OB 所成的角的大小 .18.(本题满分 14 分,第 1 小题满分 6 分,第2 小题满分8 分)设常数 a R ,函数(f x)asin2x2cos?x(1)若(f x)为偶函数,求 a 的值;(2)若〔〕 3 1 ,求方程(f x) 1 2 在区间[,]上的解。
2018年上海市高考数学试卷(含详细答案解析)
2018年上海市高考数学试卷一、填空题(本大题共有12题,满分54分,第1~6题每题4分,第7~12题每题5分)考生应在答题纸的相应位置直接填写结果.1.(4分)行列式的值为.2.(4分)双曲线﹣y2=1的渐近线方程为.3.(4分)在(1+x)7的二项展开式中,x2项的系数为(结果用数值表示).4.(4分)设常数a∈R,函数f(x)=1og2(x+a).若f(x)的反函数的图象经过点(3,1),则a=.5.(4分)已知复数z满足(1+i)z=1﹣7i(i是虚数单位),则|z|=.6.(4分)记等差数列{a n}的前n项和为S n,若a3=0,a6+a7=14,则S7=.7.(5分)已知α∈{﹣2,﹣1,﹣,1,2,3},若幂函数f(x)=xα为奇函数,且在(0,+∞)上递减,则α=.8.(5分)在平面直角坐标系中,已知点A(﹣1,0)、B(2,0),E、F是y轴上的两个动点,且||=2,则的最小值为.9.(5分)有编号互不相同的五个砝码,其中5克、3克、1克砝码各一个,2克砝码两个,从中随机选取三个,则这三个砝码的总质量为9克的概率是(结果用最简分数表示).10.(5分)设等比数列{a n}的通项公式为a n=q n﹣1(n∈N*),前n项和为S n.若=,则q=.11.(5分)已知常数a>0,函数f(x)=的图象经过点P(p,),Q(q,).若2p+q=36pq,则a=.12.(5分)已知实数x1、x2、y1、y2满足:x12+y12=1,x22+y22=1,x1x2+y1y2=,则+的最大值为.二、选择题(本大题共有4题,满分20分,每题5分)每题有且只有一个正确选项.考生应在答题纸的相应位置,将代表正确选项的小方格涂黑.13.(5分)设P是椭圆=1上的动点,则P到该椭圆的两个焦点的距离之和为()A.2 B.2 C.2 D.414.(5分)已知a∈R,则“a>1”是“<1”的()A.充分非必要条件 B.必要非充分条件C.充要条件D.既非充分又非必要条件15.(5分)《九章算术》中,称底面为矩形而有一侧棱垂直于底面的四棱锥为阳马,设AA1是正六棱柱的一条侧棱,如图,若阳马以该正六棱柱的顶点为顶点、以AA1为底面矩形的一边,则这样的阳马的个数是()A.4 B.8 C.12 D.1616.(5分)设D是函数1的有限实数集,f(x)是定义在D上的函数,若f(x)的图象绕原点逆时针旋转后与原图象重合,则在以下各项中,f(1)的可能取值只能是()A.B.C.D.0三、解答题(本大题共有5题,满分76分)解答下列各题必须在答题纸的相应位置写出必要的步骤.17.(14分)已知圆锥的顶点为P,底面圆心为O,半径为2.(1)设圆锥的母线长为4,求圆锥的体积;(2)设PO=4,OA、OB是底面半径,且∠AOB=90°,M为线段AB的中点,如图.求异面直线PM与OB所成的角的大小.18.(14分)设常数a∈R,函数f(x)=asin2x+2cos2x.(1)若f(x)为偶函数,求a的值;(2)若f()=+1,求方程f(x)=1﹣在区间[﹣π,π]上的解.19.(14分)某群体的人均通勤时间,是指单日内该群体中成员从居住地到工作地的平均用时.某地上班族S中的成员仅以自驾或公交方式通勤.分析显示:当S中x%(0<x<100)的成员自驾时,自驾群体的人均通勤时间为f(x)=(单位:分钟),而公交群体的人均通勤时间不受x影响,恒为40分钟,试根据上述分析结果回答下列问题:(1)当x在什么范围内时,公交群体的人均通勤时间少于自驾群体的人均通勤时间?(2)求该地上班族S的人均通勤时间g(x)的表达式;讨论g(x)的单调性,并说明其实际意义.20.(16分)设常数t>2.在平面直角坐标系xOy中,已知点F(2,0),直线l:x=t,曲线Γ:y2=8x(0≤x≤t,y≥0).l与x轴交于点A、与Γ交于点B.P、Q 分别是曲线Γ与线段AB上的动点.(1)用t表示点B到点F的距离;(2)设t=3,|FQ|=2,线段OQ的中点在直线FP上,求△AQP的面积;(3)设t=8,是否存在以FP、FQ为邻边的矩形FPEQ,使得点E在Γ上?若存在,求点P的坐标;若不存在,说明理由.21.(18分)给定无穷数列{a n},若无穷数列{b n}满足:对任意n∈N*,都有|b n ﹣a n|≤1,则称{b n}与{a n}“接近”.(1)设{a n}是首项为1,公比为的等比数列,b n=a n+1+1,n∈N*,判断数列{b n}是否与{a n}接近,并说明理由;(2)设数列{a n}的前四项为:a1=1,a2=2,a3=4,a4=8,{b n}是一个与{a n}接近的数列,记集合M={x|x=b i,i=1,2,3,4},求M中元素的个数m;(3)已知{a n}是公差为d的等差数列,若存在数列{b n}满足:{b n}与{a n}接近,且在b2﹣b1,b3﹣b2,…,b201﹣b200中至少有100个为正数,求d的取值范围.2018年上海市高考数学试卷参考答案与试题解析一、填空题(本大题共有12题,满分54分,第1~6题每题4分,第7~12题每题5分)考生应在答题纸的相应位置直接填写结果.1.(4分)行列式的值为18.【分析】直接利用行列式的定义,计算求解即可.【解答】解:行列式=4×5﹣2×1=18.故答案为:18.【点评】本题考查行列式的定义,运算法则的应用,是基本知识的考查.2.(4分)双曲线﹣y2=1的渐近线方程为±.【分析】先确定双曲线的焦点所在坐标轴,再确定双曲线的实轴长和虚轴长,最后确定双曲线的渐近线方程.【解答】解:∵双曲线的a=2,b=1,焦点在x轴上而双曲线的渐近线方程为y=±∴双曲线的渐近线方程为y=±故答案为:y=±【点评】本题考察了双曲线的标准方程,双曲线的几何意义,特别是双曲线的渐近线方程,解题时要注意先定位,再定量的解题思想3.(4分)在(1+x)7的二项展开式中,x2项的系数为21(结果用数值表示).【分析】利用二项式展开式的通项公式求得展开式中x2的系数.【解答】解:二项式(1+x)7展开式的通项公式为T r+1=•x r,令r=2,得展开式中x2的系数为=21.故答案为:21.【点评】本题考查了二项展开式的通项公式的应用问题,是基础题.4.(4分)设常数a∈R,函数f(x)=1og2(x+a).若f(x)的反函数的图象经过点(3,1),则a=7.【分析】由反函数的性质得函数f(x)=1og2(x+a)的图象经过点(1,3),由此能求出a.【解答】解:∵常数a∈R,函数f(x)=1og2(x+a).f(x)的反函数的图象经过点(3,1),∴函数f(x)=1og2(x+a)的图象经过点(1,3),∴log2(1+a)=3,解得a=7.故答案为:7.【点评】本题考查实数值的求法,考查函数的性质等基础知识,考查运算求解能力,考查函数与方程思想,是基础题.5.(4分)已知复数z满足(1+i)z=1﹣7i(i是虚数单位),则|z|=5.【分析】把已知等式变形,然后利用复数代数形式的乘除运算化简,再由复数求模公式计算得答案.【解答】解:由(1+i)z=1﹣7i,得,则|z|=.故答案为:5.【点评】本题考查了复数代数形式的乘除运算,考查了复数模的求法,是基础题.6.(4分)记等差数列{a n}的前n项和为S n,若a3=0,a6+a7=14,则S7=14.【分析】利用等差数列通项公式列出方程组,求出a1=﹣4,d=2,由此能求出S7.【解答】解:∵等差数列{a n}的前n项和为S n,a3=0,a6+a7=14,∴,解得a1=﹣4,d=2,∴S7=7a1+=﹣28+42=14.故答案为:14.【点评】本题考查等差数列的前7项和的求法,考查等差数列的性质等基础知识,考查运算求解能力,考查函数与方程思想,是基础题.7.(5分)已知α∈{﹣2,﹣1,﹣,1,2,3},若幂函数f(x)=xα为奇函数,且在(0,+∞)上递减,则α=﹣1.【分析】由幂函数f(x)=xα为奇函数,且在(0,+∞)上递减,得到a是奇数,且a<0,由此能求出a的值.【解答】解:∵α∈{﹣2,﹣1,﹣,1,2,3},幂函数f(x)=xα为奇函数,且在(0,+∞)上递减,∴a是奇数,且a<0,∴a=﹣1.故答案为:﹣1.【点评】本题考查实数值的求法,考查幂函数的性质等基础知识,考查运算求解能力,考查函数与方程思想,是基础题.8.(5分)在平面直角坐标系中,已知点A(﹣1,0)、B(2,0),E、F是y轴上的两个动点,且||=2,则的最小值为﹣3.【分析】据题意可设E(0,a),F(0,b),从而得出|a﹣b|=2,即a=b+2,或b=a+2,并可求得,将a=b+2带入上式即可求出的最小值,同理将b=a+2带入,也可求出的最小值.【解答】解:根据题意,设E(0,a),F(0,b);∴;∴a=b+2,或b=a+2;且;∴;当a=b+2时,;∵b2+2b﹣2的最小值为;∴的最小值为﹣3,同理求出b=a+2时,的最小值为﹣3.故答案为:﹣3.【点评】考查根据点的坐标求两点间的距离,根据点的坐标求向量的坐标,以及向量坐标的数量积运算,二次函数求最值的公式.9.(5分)有编号互不相同的五个砝码,其中5克、3克、1克砝码各一个,2克砝码两个,从中随机选取三个,则这三个砝码的总质量为9克的概率是(结果用最简分数表示).【分析】求出所有事件的总数,求出三个砝码的总质量为9克的事件总数,然后求解概率即可.【解答】解:编号互不相同的五个砝码,其中5克、3克、1克砝码各一个,2克砝码两个,从中随机选取三个,3个数中含有1个2;2个2,没有2,3种情况,所有的事件总数为:=10,这三个砝码的总质量为9克的事件只有:5,3,1或5,2,2两个,所以:这三个砝码的总质量为9克的概率是:=,故答案为:.【点评】本题考查古典概型的概率的求法,是基本知识的考查.10.(5分)设等比数列{a n}的通项公式为a n=q n﹣1(n∈N*),前n项和为S n.若=,则q=3.【分析】利用等比数列的通项公式求出首项,通过数列的极限,列出方程,求解公比即可.【解答】解:等比数列{a n}的通项公式为a=q n﹣1(n∈N*),可得a1=1,因为=,所以数列的公比不是1,,a n=q n.+1可得====,可得q=3.故答案为:3.【点评】本题考查数列的极限的运算法则的应用,等比数列求和以及等比数列的简单性质的应用,是基本知识的考查.11.(5分)已知常数a>0,函数f(x)=的图象经过点P(p,),Q(q,).若2p+q=36pq,则a=6.【分析】直接利用函数的关系式,利用恒等变换求出相应的a值.【解答】解:函数f(x)=的图象经过点P(p,),Q(q,).则:,整理得:=1,解得:2p+q=a2pq,由于:2p+q=36pq,所以:a2=36,由于a>0,故:a=6.故答案为:6【点评】本题考查的知识要点:函数的性质的应用,代数式的变换问题的应用.12.(5分)已知实数x1、x2、y1、y2满足:x12+y12=1,x22+y22=1,x1x2+y1y2=,则+的最大值为+.【分析】设A(x1,y1),B(x2,y2),=(x1,y1),=(x2,y2),由圆的方程和向量数量积的定义、坐标表示,可得三角形OAB为等边三角形,AB=1,+的几何意义为点A,B两点到直线x+y﹣1=0的距离d1与d2之和,由两平行线的距离可得所求最大值.【解答】解:设A(x1,y1),B(x2,y2),=(x1,y1),=(x2,y2),由x12+y12=1,x22+y22=1,x1x2+y1y2=,可得A,B两点在圆x2+y2=1上,且•=1×1×cos∠AOB=,即有∠AOB=60°,即三角形OAB为等边三角形,AB=1,+的几何意义为点A,B两点到直线x+y﹣1=0的距离d1与d2之和,显然A,B在第三象限,AB所在直线与直线x+y=1平行,可设AB:x+y+t=0,(t>0),由圆心O到直线AB的距离d=,可得2=1,解得t=,即有两平行线的距离为=,即+的最大值为+,故答案为:+.【点评】本题考查向量数量积的坐标表示和定义,以及圆的方程和运用,考查点与圆的位置关系,运用点到直线的距离公式是解题的关键,属于难题.二、选择题(本大题共有4题,满分20分,每题5分)每题有且只有一个正确选项.考生应在答题纸的相应位置,将代表正确选项的小方格涂黑.13.(5分)设P是椭圆=1上的动点,则P到该椭圆的两个焦点的距离之和为()A.2 B.2 C.2 D.4【分析】判断椭圆长轴(焦点坐标)所在的轴,求出a,接利用椭圆的定义,转化求解即可.【解答】解:椭圆=1的焦点坐标在x轴,a=,P是椭圆=1上的动点,由椭圆的定义可知:则P到该椭圆的两个焦点的距离之和为2a=2.故选:C.【点评】本题考查椭圆的简单性质的应用,椭圆的定义的应用,是基本知识的考查.14.(5分)已知a∈R,则“a>1”是“<1”的()A.充分非必要条件 B.必要非充分条件C.充要条件D.既非充分又非必要条件【分析】“a>1”⇒“”,“”⇒“a>1或a<0”,由此能求出结果.【解答】解:a∈R,则“a>1”⇒“”,“”⇒“a>1或a<0”,∴“a>1”是“”的充分非必要条件.故选:A.【点评】本题考查充分条件、必要条件的判断,考查不等式的性质等基础知识,考查运算求解能力,考查函数与方程思想,是基础题.15.(5分)《九章算术》中,称底面为矩形而有一侧棱垂直于底面的四棱锥为阳马,设AA1是正六棱柱的一条侧棱,如图,若阳马以该正六棱柱的顶点为顶点、以AA1为底面矩形的一边,则这样的阳马的个数是()A.4 B.8 C.12 D.16【分析】根据新定义和正六边形的性质可得答案.【解答】解:根据正六边形的性质,则D1﹣A1ABB1,D1﹣A1AFF1满足题意,而C1,E1,C,D,E,和D1一样,有2×4=8,当A1ACC1为底面矩形,有4个满足题意,当A1AEE1为底面矩形,有4个满足题意,故有8+4+4=16故选:D.【点评】本题考查了新定义,以及排除组合的问题,考查了棱柱的特征,属于中档题.16.(5分)设D是函数1的有限实数集,f(x)是定义在D上的函数,若f(x)的图象绕原点逆时针旋转后与原图象重合,则在以下各项中,f(1)的可能取值只能是()A.B.C.D.0【分析】直接利用定义函数的应用求出结果.【解答】解:由题意得到:问题相当于圆上由12个点为一组,每次绕原点逆时针旋转个单位后与下一个点会重合.我们可以通过代入和赋值的方法当f(1)=,,0时,此时得到的圆心角为,,0,然而此时x=0或者x=1时,都有2个y与之对应,而我们知道函数的定义就是要求一个x只能对应一个y,因此只有当x=,此时旋转,此时满足一个x只会对应一个y,因此答案就选:B.故选:B.【点评】本题考查的知识要点:定义性函数的应用.三、解答题(本大题共有5题,满分76分)解答下列各题必须在答题纸的相应位置写出必要的步骤.17.(14分)已知圆锥的顶点为P,底面圆心为O,半径为2.(1)设圆锥的母线长为4,求圆锥的体积;(2)设PO=4,OA、OB是底面半径,且∠AOB=90°,M为线段AB的中点,如图.求异面直线PM与OB所成的角的大小.【分析】(1)由圆锥的顶点为P,底面圆心为O,半径为2,圆锥的母线长为4能求出圆锥的体积.(2)以O为原点,OA为x轴,OB为y轴,OP为z轴,建立空间直角坐标系,利用向量法能求出异面直线PM与OB所成的角.【解答】解:(1)∵圆锥的顶点为P,底面圆心为O,半径为2,圆锥的母线长为4,∴圆锥的体积V===.(2)∵PO=4,OA,OB是底面半径,且∠AOB=90°,M为线段AB的中点,∴以O为原点,OA为x轴,OB为y轴,OP为z轴,建立空间直角坐标系,P(0,0,4),A(2,0,0),B(0,2,0),M(1,1,0),O(0,0,0),=(1,1,﹣4),=(0,2,0),设异面直线PM与OB所成的角为θ,则cosθ===.∴θ=arccos.∴异面直线PM与OB所成的角的为arccos.【点评】本题考查圆锥的体积的求法,考查异面直线所成角的正切值的求法,考查空间中线线、线面、面面间的位置关系等基础知识,考查运算求解能力,考查函数与方程思想,是基础题.18.(14分)设常数a∈R,函数f(x)=asin2x+2cos2x.(1)若f(x)为偶函数,求a的值;(2)若f()=+1,求方程f(x)=1﹣在区间[﹣π,π]上的解.【分析】(1)根据函数的奇偶性和三角形的函数的性质即可求出,(2)先求出a的值,再根据三角形函数的性质即可求出.【解答】解:(1)∵f(x)=asin2x+2cos2x,∴f(﹣x)=﹣asin2x+2cos2x,∵f(x)为偶函数,∴f(﹣x)=f(x),∴﹣asin2x+2cos2x=asin2x+2cos2x,∴2asin2x=0,∴a=0;(2)∵f()=+1,∴asin+2cos2()=a+1=+1,∴a=,∴f(x)=sin2x+2cos2x=sin2x+cos2x+1=2sin(2x+)+1,∵f(x)=1﹣,∴2sin(2x+)+1=1﹣,∴sin(2x+)=﹣,∴2x+=﹣+2kπ,或2x+=π+2kπ,k∈Z,∴x=﹣π+kπ,或x=π+kπ,k∈Z,∵x∈[﹣π,π],∴x=或x=或x=﹣或x=﹣【点评】本题考查了三角函数的化简和求值,以及三角函数的性质,属于基础题.19.(14分)某群体的人均通勤时间,是指单日内该群体中成员从居住地到工作地的平均用时.某地上班族S中的成员仅以自驾或公交方式通勤.分析显示:当S中x%(0<x<100)的成员自驾时,自驾群体的人均通勤时间为f(x)=(单位:分钟),而公交群体的人均通勤时间不受x影响,恒为40分钟,试根据上述分析结果回答下列问题:(1)当x在什么范围内时,公交群体的人均通勤时间少于自驾群体的人均通勤时间?(2)求该地上班族S的人均通勤时间g(x)的表达式;讨论g(x)的单调性,并说明其实际意义.【分析】(1)由题意知求出f(x)>40时x的取值范围即可;(2)分段求出g(x)的解析式,判断g(x)的单调性,再说明其实际意义.【解答】解;(1)由题意知,当30<x<100时,f(x)=2x+﹣90>40,即x2﹣65x+900>0,解得x<20或x>45,∴x∈(45,100)时,公交群体的人均通勤时间少于自驾群体的人均通勤时间;(2)当0<x≤30时,g(x)=30•x%+40(1﹣x%)=40﹣;当30<x<100时,g(x)=(2x+﹣90)•x%+40(1﹣x%)=﹣x+58;∴g(x)=;当0<x<32.5时,g(x)单调递减;当32.5<x<100时,g(x)单调递增;说明该地上班族S中有小于32.5%的人自驾时,人均通勤时间是递减的;有大于32.5%的人自驾时,人均通勤时间是递增的;当自驾人数为32.5%时,人均通勤时间最少.【点评】本题考查了分段函数的应用问题,也考查了分类讨论与分析问题、解决问题的能力.20.(16分)设常数t>2.在平面直角坐标系xOy中,已知点F(2,0),直线l:x=t,曲线Γ:y2=8x(0≤x≤t,y≥0).l与x轴交于点A、与Γ交于点B.P、Q 分别是曲线Γ与线段AB上的动点.(1)用t表示点B到点F的距离;(2)设t=3,|FQ|=2,线段OQ的中点在直线FP上,求△AQP的面积;(3)设t=8,是否存在以FP、FQ为邻边的矩形FPEQ,使得点E在Γ上?若存在,求点P的坐标;若不存在,说明理由.【分析】(1)方法一:设B点坐标,根据两点之间的距离公式,即可求得|BF|;方法二:根据抛物线的定义,即可求得|BF|;(2)根据抛物线的性质,求得Q点坐标,即可求得OD的中点坐标,即可求得直线PF的方程,代入抛物线方程,即可求得P点坐标,即可求得△AQP的面积;(3)设P及E点坐标,根据直线k PF•k FQ=﹣1,求得直线QF的方程,求得Q点坐标,根据+=,求得E点坐标,则()2=8(+6),即可求得P点坐标.【解答】解:(1)方法一:由题意可知:设B(t,2t),则|BF|==t+2,∴|BF|=t+2;方法二:由题意可知:设B(t,2t),由抛物线的性质可知:|BF|=t+=t+2,∴|BF|=t+2;(2)F(2,0),|FQ|=2,t=3,则|FA|=1,∴|AQ|=,∴Q(3,),设OQ的中点D,D(,),k QF==﹣,则直线PF方程:y=﹣(x﹣2),联立,整理得:3x2﹣20x+12=0,解得:x=,x=6(舍去),∴△AQP的面积S=××=;(3)存在,设P(,y),E(,m),则k PF==,k FQ=,直线QF方程为y=(x﹣2),∴y Q=(8﹣2)=,Q(8,),根据+=,则E(+6,),∴()2=8(+6),解得:y2=,∴存在以FP、FQ为邻边的矩形FPEQ,使得点E在Γ上,且P(,).【点评】本题考查抛物线的性质,直线与抛物线的位置关系,考查转化思想,计算能力,属于中档题.21.(18分)给定无穷数列{a n},若无穷数列{b n}满足:对任意n∈N*,都有|b n ﹣a n|≤1,则称{b n}与{a n}“接近”.(1)设{a n}是首项为1,公比为的等比数列,b n=a n+1+1,n∈N*,判断数列{b n}是否与{a n}接近,并说明理由;(2)设数列{a n}的前四项为:a1=1,a2=2,a3=4,a4=8,{b n}是一个与{a n}接近的数列,记集合M={x|x=b i,i=1,2,3,4},求M中元素的个数m;(3)已知{a n}是公差为d的等差数列,若存在数列{b n}满足:{b n}与{a n}接近,且在b2﹣b1,b3﹣b2,…,b201﹣b200中至少有100个为正数,求d的取值范围.【分析】(1)运用等比数列的通项公式和新定义“接近”,即可判断;(2)由新定义可得a n﹣1≤b n≤a n+1,求得b i,i=1,2,3,4的范围,即可得到所求个数;(3)运用等差数列的通项公式可得a n,讨论公差d>0,d=0,﹣2<d<0,d≤﹣2,结合新定义“接近”,推理和运算,即可得到所求范围.【解答】解:(1)数列{b n}与{a n}接近.理由:{a n}是首项为1,公比为的等比数列,可得a n=,b n=a n+1+1=+1,则|b n﹣a n|=|+1﹣|=1﹣<1,n∈N*,可得数列{b n}与{a n}接近;(2){b n}是一个与{a n}接近的数列,可得a n﹣1≤b n≤a n+1,数列{a n}的前四项为:a1=1,a2=2,a3=4,a4=8,可得b1∈[0,2],b2∈[1,3],b3∈[3,5],b4∈[7,9],可能b1与b2相等,b2与b3相等,但b1与b3不相等,b4与b3不相等,集合M={x|x=b i,i=1,2,3,4},M中元素的个数m=3或4;(3){a n}是公差为d的等差数列,若存在数列{b n}满足:{b n}与{a n}接近,可得a n=a1+(n﹣1)d,①若d>0,取b n=a n,可得b n+1﹣b n=a n+1﹣a n=d>0,则b2﹣b1,b3﹣b2,…,b201﹣b200中有200个正数,符合题意;②若d=0,取b n=a1﹣,则|b n﹣a n|=|a1﹣﹣a1|=<1,n∈N*,可得b n+1﹣b n=﹣>0,则b2﹣b1,b3﹣b2,…,b201﹣b200中有200个正数,符合题意;③若﹣2<d<0,可令b2n﹣1=a2n﹣1﹣1,b2n=a2n+1,则b2n﹣b2n﹣1=a2n+1﹣(a2n﹣1﹣1)=2+d>0,则b2﹣b1,b3﹣b2,…,b201﹣b200中恰有100个正数,符合题意;④若d≤﹣2,若存在数列{b n}满足:{b n}与{a n}接近,即为a n﹣1≤b n≤a n+1,a n+1﹣1≤b n+1≤a n+1+1,可得b n+1﹣b n≤a n+1+1﹣(a n﹣1)=2+d≤0,b2﹣b1,b3﹣b2,…,b201﹣b200中无正数,不符合题意.综上可得,d的范围是(﹣2,+∞).【点评】本题考查新定义“接近”的理解和运用,考查等差数列和等比数列的定义和通项公式的运用,考查分类讨论思想方法,以及运算能力和推理能力,属于难题.第21页(共21页)。
【高考】2018年上海市高考数学试题有答案
2018年高考数学真题试卷(上海卷)一、填空题1.(2018•上海)行列式4125的值为 。
【答案】18 【解析】【解答】4125=45-21=18 【分析】a cb d=ad-bc 交叉相乘再相减。
【题型】填空题 【考查类型】中考真题 【试题级别】高三 【试题地区】上海【试题来源】2018年高考数学真题试卷(上海卷) 2.(2018•上海)双曲线2214x y -=的渐近线方程为 。
【答案】12y x =±【解析】【解答】2214x y -=,a=2,b=1。
故渐近线方程为12y x =± 【分析】渐近线方程公式。
注意易错点焦点在x 轴上,渐近线直线方程为22221x y b a -=时,by x a=±。
【题型】填空题 【考查类型】中考真题 【试题级别】高三 【试题地区】上海【试题来源】2018年高考数学真题试卷(上海卷)3.(2018•上海)在(1+x )7的二项展开式中,x ²项的系数为 。
(结果用数值表示) 【答案】21【解析】【解答】(1+x )7中有T r+1=7r r C x ,故当r=2时,27C =762⨯=21 【分析】注意二项式系数,与各项系数之间差别。
考点公式()na b +第r+1项为T r+1=r n r rn C a b-。
【题型】填空题 【考查类型】中考真题 【试题级别】高三 【试题地区】上海【试题来源】2018年高考数学真题试卷(上海卷)4.(2018•上海)设常数a R ∈,函数2()log ()f x x a =+,若f x ()的反函数的图像经过点31(,),则a= 。
【答案】7【解析】【解答】f x ()的反函数的图像经过点31(,),故()f x 过点3(1,),则()13f =,()2log 1a +=3,1+a=23所以a=23-1,故a=7. 【分析】原函数()f x 与反函数图像关于y=x 对称,如:原函数上任意点()00,x y ,则反函数上点为()00,y x【题型】填空题 【考查类型】中考真题 【试题级别】高三 【试题地区】上海【试题来源】2018年高考数学真题试卷(上海卷)5.(2018•上海)已知复数z 满足117i z i +=-()(i 是虚数单位),则∣z ∣= 。
年上海高考数学真题及答案资料
精品文档年上海市高考数学试卷2018参考答案与试题解析题每7~12题每题4分,第12题,满分54分,第1~6一、填空题(本大题共有.分)考生应在答题纸的相应位置直接填写结果题5.(2018?18上海)行列式的值为1.(4分):二阶行列式的定义.OM【考点】:矩阵和变换.5R 49 :综合法;【专题】11 :计算题;直接利用行列式的定义,计算求解即可.【分析】.1=1825﹣×【解答】=4解:行列式×.18故答案为:本题考查行列式的定义,运算法则的应用,是基本知识的考查.【点评】2±.2(4分)(2018?上海)双曲线﹣y.=1的渐近线方程为:双曲线的性质.KC【考点】【专题】11 :计算题.【分析】先确定双曲线的焦点所在坐标轴,再确定双曲线的实轴长和虚轴长,最后确定双曲线的渐近线方程.解:∵双曲线的a=2,b=1,焦点在x轴上【解答】±y=而双曲线的渐近线方程为±y=∴双曲线的渐近线方程为±故答案为:y=【点评】本题考察了双曲线的标准方程,双曲线的几何意义,特别是双曲线的渐近线方程,解题时要注意先定位,再定量的解题思想72项的系数为21)+上海)在((4.3(分)2018?1x的二项展开式中,x(结精品文档.精品文档果用数值表示).【考点】DA:二项式定理.【专题】38 :对应思想;4O:定义法;5P :二项式定理.2的系数.利用二项式展开式的通项公式求得展开式中x【分析】7展开式的通项公式为x)【解答】解:二项式(1+r,=T?x1r+2的系数为x令r=2,得展开式中=21.故答案为:21.【点评】本题考查了二项展开式的通项公式的应用问题,是基础题.4.(4分)(2018?上海)设常数a∈R,函数f(x)=1og(x+a).若f(x)的反2函数的图象经过点(3,1),则a=7.【考点】4R:反函数.【专题】11 :计算题;33 :函数思想;4O:定义法;51 :函数的性质及应用.【分析】由反函数的性质得函数f(x)=1og(x+a)的图象经过点(1,3),由2此能求出a.【解答】解:∵常数a∈R,函数f(x)=1og(x+a).2f(x)的反函数的图象经过点(3,1),∴函数f(x)=1og(x+a)的图象经过点(1,3),2∴log(1+a)=3,2解得a=7.故答案为:7.【点评】本题考查实数值的求法,考查函数的性质等基础知识,考查运算求解能力,考查函数与方程思想,是基础题.5.(4分)(2018?上海)已知复数z满足(1+i)z=1﹣7i(i是虚数单位),则|z|= 5.【考点】A8:复数的模.【专题】38 :对应思想;4A :数学模型法;5N :数系的扩充和复数.精品文档.精品文档【分析】把已知等式变形,然后利用复数代数形式的乘除运算化简,再由复数求模公式计算得答案.【解答】解:由(1+i)z=1﹣7i,得,.|z|=则.5故答案为:是基础题.本题考查了复数代数形式的乘除运算,考查了复数模的求法,【点评】,=14+,若a=0,aa上海)记等差数列.(4分)(2018?{a}的前n项和为S67n63n.则S=147项和.n【考点】85:等差数列的前【专题】11 :计算题;34 :方程思想;4O:定义法;54 :等差数列与等比数列.【分析】利用等差数列通项公式列出方程组,求出a=﹣4,d=2,由此能求出S.71【解答】解:∵等差数列{a}的前n项和为S,a=0,a+a=14,76n3n∴,,d=2﹣4,a解得=1.28+42=14∴S=7a=+﹣17故答案为:14.【点评】本题考查等差数列的前7项和的求法,考查等差数列的性质等基础知识,考查运算求解能力,考查函数与方程思想,是基础题.,﹣,1,2,3{∈﹣2,﹣1},若幂函数f2018?(7.5分)(上海)已知αα为奇函数,且在(0,+∞)上递减,则α=﹣1.(x)=x【考点】4U:幂函数的概念、解析式、定义域、值域.【专题】11 :计算题;34 :方程思想;4O:定义法;51 :函数的性质及应用.α为奇函数,且在(0,+=xxf【分析】由幂函数()∞)上递减,得到a是奇数,精品文档.精品文档且a<0,由此能求出a的值.,,1,2,3∈{﹣2,﹣1},【解答】解:∵αα为奇函数,且在(0,=x+∞)上递减,幂函数f(x)∴a是奇数,且a<0,∴a=﹣1.故答案为:﹣1.【点评】本题考查实数值的求法,考查幂函数的性质等基础知识,考查运算求解能力,考查函数与方程思想,是基础题.8.(5分)(2018?上海)在平面直角坐标系中,已知点A(﹣1,0)、B(2,0),,则的最小值为=2﹣3是E、Fy轴上的两个动点,且.||【考点】9O:平面向量数量积的性质及其运算.【专题】11 :计算题;35 :转化思想;41 :向量法;5A :平面向量及应用.【分析】据题意可设E(0,a),F(0,b),从而得出|a﹣b|=2,即a=b+2,或带入上式即可求出的最小值,a=b+2b=a+2,将,并可求得的最小值.+2带入,也可求出同理将b=a【解答】解:根据题意,设E(0,a),F(0,b);∴;∴a=b+2,或b=a+2;且;;∴;时,2当a=b+2;b∵﹣+2b2的最小值为时,+23的最小值为﹣∴.的最小值为﹣3,同理求出b=a故答案为:﹣3.【点评】考查根据点的坐标求两点间的距离,根据点的坐标求向量的坐标,以及精品文档.精品文档向量坐标的数量积运算,二次函数求最值的公式.9.(5分)(2018?上海)有编号互不相同的五个砝码,其中5克、3克、1克砝码各一个,2克砝码两个,从中随机选取三个,则这三个砝码的总质量为9克的概率是(结果用最简分数表示).【考点】CB:古典概型及其概率计算公式.【专题】11 :计算题;34 :方程思想;49 :综合法;5I :概率与统计.【分析】求出所有事件的总数,求出三个砝码的总质量为9克的事件总数,然后求解概率即可.【解答】解:编号互不相同的五个砝码,其中5克、3克、1克砝码各一个,2克砝码两个,从中随机选取三个,3个数中含有1个2;2个2,没有2,3种情况,所有的事件总数为:=10,这三个砝码的总质量为9克的事件只有:5,3,1或5,2,2两个,=克的概率是:所以:这三个砝码的总质量为9,.故答案为:本题考查古典概型的概率的求法,是基本知识的考查.【点评】*n1﹣n)的通项公式为上海)设等比数列{a}a=qN,前n(∈分)10.(5(2018?nn.3S项和为.若=,则q=n【考点】8J:数列的极限.【专题】11 :计算题;34 :方程思想;35 :转化思想;49 :综合法;55 :点列、递归数列与数学归纳法.【分析】利用等比数列的通项公式求出首项,通过数列的极限,列出方程,求解公比即可.n1﹣(n∈N*)=qa}a解:等比数列【解答】{的通项公式为,可得a=1,1n精品文档.精品文档,1=,所以数列的公比不是因为n.,a=q1n+,====可得.q=3可得.3故答案为:等比数列求和以及等比数列的本题考查数列的极限的运算法则的应用,【点评】简单性质的应用,是基本知识的考查.,p的图象经过点=P(>0,函数f(x)分)11.(5(2018?上海)已知常数aqp+.),Q(q.若,)2,则a=6=36pq:函数的图象与图象的变换.3A【考点】:函数的性质及应用.51 35 :转化思想;【专题】值.a【分析】直接利用函数的关系式,利用恒等变换求出相应的.,(q)的图象经过点P(p,),)解:函数【解答】f(xQ=,则:,=1整理得:2pq+,pq解得:2=aqp+,由于:2=36pq2,所以:=36a,>0a由于.故:a=6精品文档.精品文档6故答案为:本题考查的知识要点:函数的性质的应用,代数式的变换问题的应用.【点评】2222,,x=1、y满足:x++yy=1、12.(5分)(2018?上海)已知实数x、xy21222111的最大值为 +yy+=,则.+xx2211【考点】7F:基本不等式及其应用;IT:点到直线的距离公式.【专题】35 :转化思想;48 :分析法;59 :不等式的解法及应用.),=(x,y),=(x,A(x,y,),B(xyy),由圆的方程【分析】设21212112和向量数量积的定义、坐标表示,可得三角形OAB为等边三角形,AB=1,+的几何意义为点A,B两点到直线x+y﹣1=0的距离d1与d之和,由两平行线的距离可得所求最大值.2【解答】解:设A(x,y),B(x,y),2112=(x,y),=(x,y),21122222=1,xx+,xy+yy=由x+y,=12211221122=1上,+y,可得AB两点在圆x且?=1×1×cos∠AOB=,即有∠AOB=60°,即三角形OAB为等边三角形,AB=1,+的几何意义为点A,B两点到直线x+y﹣1=0的距离d与d之和,21显然A,B在第三象限,AB所在直线与直线x+y=1平行,可设AB:x+y+t=0,(t>0),由圆心O到直线AB的距离d=,精品文档.精品文档t=,=1可得,解得2=,即有两平行线的距离为的最大值为+即,+.+故答案为:【点评】本题考查向量数量积的坐标表示和定义,以及圆的方程和运用,考查点与圆的位置关系,运用点到直线的距离公式是解题的关键,属于难题.二、选择题(本大题共有4题,满分20分,每题5分)每题有且只有一个正确选项.考生应在答题纸的相应位置,将代表正确选项的小方格涂黑.是椭圆=1上的动点,则P分)(2018?上海)设P到该椭圆的两个13.(5)焦点的距离之和为(4.A..2 B22 C.D【考点】K4:椭圆的性质.【专题】11 :计算题;49 :综合法;5D :圆锥曲线的定义、性质与方程.【分析】判断椭圆长轴(焦点坐标)所在的轴,求出a,接利用椭圆的定义,转化求解即可.a=轴,,x解:椭圆=1的焦点坐标在【解答】是椭圆=1上的动点,由椭圆的定义可知:则P到该椭圆的两个焦点的P2a=2距离之和为.故选:C.【点评】本题考查椭圆的简单性质的应用,椭圆的定义的应用,是基本知识的考查.精品文档.精品文档“<1”的(R,则“a>1”是)14.(5分)(2018?上海)已知a∈A.充分非必要条件B.必要非充分条件C.充要条件D.既非充分又非必要条件【考点】29:充分条件、必要条件、充要条件.【专题】11 :计算题;34 :方程思想;4O:定义法;5L :简易逻辑.“”?“a>1或a<【分析】“a>1”?0”“”,,由此能求出结果.“?>1”∈R,则“a解:”,【解答】a“”?“a>1或a<0”,“”的充分非必要条件.“a>1”是∴.故选:A【点评】本题考查充分条件、必要条件的判断,考查不等式的性质等基础知识,考查运算求解能力,考查函数与方程思想,是基础题.15.(5分)(2018?上海)《九章算术》中,称底面为矩形而有一侧棱垂直于底面的四棱锥为阳马,设AA是正六棱柱的一条侧棱,如图,若阳马以该正六棱柱的1顶点为顶点、以AA为底面矩形的一边,则这样的阳马的个数是()1A.4 B.8 C.12 D.16【考点】D8:排列、组合的实际应用.【专题】11 :计算题;38 :对应思想;4R:转化法;5O :排列组合.【分析】根据新定义和正六边形的性质可得答案.【解答】解:根据正六边形的性质,则D﹣AABB,D﹣AAFF满足题意,而111111C,E,C,D,E,和D一样,有2×6=12,111当AACC为底面矩形,有2个满足题意,11精品文档.精品文档当AAEE为底面矩形,有2个满足题意,11故有12+2+2=16故选:D.【点评】本题考查了新定义,以及排除组合的问题,考查了棱柱的特征,属于中档题.16.(5分)(2018?上海)设D是含数1的有限实数集,f(x)是定义在D上的)的图象绕原点逆时针旋转x后与原图象重合,则在以下各项中,函数,若f()(1)的可能取值只能是(f0..B .CAD.【考点】3A:函数的图象与图象的变换.【专题】35 :转化思想;51 :函数的性质及应用;56 :三角函数的求值.【分析】直接利用定义函数的应用求出结果.【解答】解:由题意得到:问题相当于圆上由12个点为一组,每次绕原点逆时针旋转个单位后与下一个点会重合.=(1)我们可以通过代入和赋值的方法当,,0时,此时得到的圆心角为f,,0,然而此时x=0或者x=1时,都有2个y与之对应,而我们知道函数x=只能对应一个xy,因此只有当,此时旋转,此时的定义就是要求一个满足一个x 只会对应一个y,因此答案就选:B.故选:B.【点评】本题考查的知识要点:定义性函数的应用.精品文档.精品文档三、解答题(本大题共有5题,满分76分)解答下列各题必须在答题纸的相应位置写出必要的步骤.17.(14分)(2018?上海)已知圆锥的顶点为P,底面圆心为O,半径为2.(1)设圆锥的母线长为4,求圆锥的体积;(2)设PO=4,OA、OB是底面半径,且∠AOB=90°,M为线段AB的中点,如图.求异面直线PM与OB所成的角的大小.【考点】LM:异面直线及其所成的角;L5:旋转体(圆柱、圆锥、圆台);LF:棱柱、棱锥、棱台的体积.【专题】11 :计算题;31 :数形结合;41 :向量法;5F :空间位置关系与距离;5G :空间角.【分析】(1)由圆锥的顶点为P,底面圆心为O,半径为2,圆锥的母线长为4能求出圆锥的体积.(2)以O为原点,OA为x轴,OB为y轴,OP为z轴,建立空间直角坐标系,利用向量法能求出异面直线PM与OB所成的角.【解答】解:(1)∵圆锥的顶点为P,底面圆心为O,半径为2,圆锥的母线长为4,=∴圆锥的体积V=.=(2)∵PO=4,OA,OB是底面半径,且∠AOB=90°,M为线段AB的中点,∴以O为原点,OA为x轴,OB为y轴,OP为z轴,建立空间直角坐标系,P(0,0,4),A(2,0,0),B(0,2,0),精品文档.精品文档M(1,1,0),O(0,0,0),,=(0,2,0),,﹣=(1,14)设异面直线PM与OB所成的角为θ,=.则=cosθ=.∴θ=arccosarccos所成的角的为与.OB∴异面直线PM【点评】本题考查圆锥的体积的求法,考查异面直线所成角的正切值的求法,考查空间中线线、线面、面面间的位置关系等基础知识,考查运算求解能力,考查函数与方程思想,是基础题.2x2cos.)=asin2x+a∈R,函数f(x上海)设常数18.(14分)(2018?(1)若f(x)为偶函数,求a的值;﹣在区间[﹣π,π]x=+1,求方程f()=1上的解.)若(2f)(【考点】GP:两角和与差的三角函数;GS:二倍角的三角函数.【专题】11 :计算题;38 :对应思想;4R:转化法;58 :解三角形.【分析】(1)根据函数的奇偶性和三角形的函数的性质即可求出,(2)先求出a的值,再根据三角形函数的性质即可求出.2x,=asin2x+2cosx1【解答】解:()∵f()2x,2cosasin2x=xf∴(﹣)﹣+精品文档.精品文档∵f(x)为偶函数,∴f(﹣x)=f(x),22x2cos2cos,x=asin2x+∴﹣asin2x+∴2asin2x=0,∴a=0;=+1()(2)∵f,2(+1∴,asin)=a+2cos1=+,∴a=2+)+1+1=2sin(2xx)+=sin2x2cos,sin2xx=+cos2x∴f(﹣=1x)∵f(,+,(﹣2x∴2sin+)1=1+(∴sin)=,﹣2x=π+2kπ,,或2xk+∈∴2x=+Z﹣,+2kπx=π+kπ,kπ∴x=,或﹣k∈Z,π+∵x∈[﹣π,π],﹣或或x=x=∴﹣x=或x=【点评】本题考查了三角函数的化简和求值,以及三角函数的性质,属于基础题.19.(14分)(2018?上海)某群体的人均通勤时间,是指单日内该群体中成员从居住地到工作地的平均用时.某地上班族S中的成员仅以自驾或公交方式通勤.分析显示:当S中x%(0<x<100)的成员自驾时,自驾群体的人均通勤时间为=(单位:分钟)),xf(而公交群体的人均通勤时间不受x影响,恒为40分钟,试根据上述分析结果回答下列问题:(1)当x在什么范围内时,公交群体的人均通勤时间少于自驾群体的人均通勤精品文档.精品文档时间?(2)求该地上班族S的人均通勤时间g(x)的表达式;讨论g(x)的单调性,并说明其实际意义.【考点】5B:分段函数的应用.【专题】12 :应用题;33 :函数思想;4C :分类法;51 :函数的性质及应用.【分析】(1)由题意知求出f(x)>40时x的取值范围即可;(2)分段求出g(x)的解析式,判断g(x)的单调性,再说明其实际意义.【解答】解;(1)由题意知,当30<x<100时,+﹣90>40,f(x)=2x2﹣65x+900>0即x,解得x<20或x>45,∴x∈(45,100)时,公交群体的人均通勤时间少于自驾群体的人均通勤时间;(2)当0<x≤30时,﹣;)=4040(1﹣x%)g(x=30?x%+时,<100当30<x;58﹣x40(1﹣x%)+==g(x)(2x?x%+﹣90)+=);g(x∴当0<x<32.5时,g(x)单调递减;当32.5<x<100时,g(x)单调递增;说明该地上班族S中有小于32.5%的人自驾时,人均通勤时间是递减的;有大于32.5%的人自驾时,人均通勤时间是递增的;当自驾人数为32.5%时,人均通勤时间最少.【点评】本题考查了分段函数的应用问题,也考查了分类讨论与分析问题、解决问题的能力.20.(16分)(2018?上海)设常数t>2.在平面直角坐标系xOy中,已知点F(2,2=8x(0≤x≤t,y≥0yΓx=tl)0,直线:,曲线:).l与x轴交于点A、与Γ交于精品文档.精品文档点B.P、Q分别是曲线Γ与线段AB上的动点.(1)用t表示点B到点F的距离;(2)设t=3,|FQ|=2,线段OQ的中点在直线FP上,求△AQP的面积;(3)设t=8,是否存在以FP、FQ为邻边的矩形FPEQ,使得点E在Γ上?若存在,求点P的坐标;若不存在,说明理由.【考点】KN:直线与抛物线的位置关系.【专题】35 :转化思想;4R:转化法;5D :圆锥曲线的定义、性质与方程.【分析】(1)方法一:设B点坐标,根据两点之间的距离公式,即可求得|BF|;方法二:根据抛物线的定义,即可求得|BF|;(2)根据抛物线的性质,求得Q点坐标,即可求得OD的中点坐标,即可求得直线PF的方程,代入抛物线方程,即可求得P点坐标,即可求得△AQP的面积;(3)设P及E点坐标,根据直线k?k=﹣1,求得直线QF的方程,求得Q点FQPF2(+6),即可求得=坐标,根据,求得E点坐标,则()P+=8点坐标.,))方法一:由题意可知:设【解答】解:(1B(t,t2,|+=2=t|则BF;|∴|BF=t+2,t(Bt,)2方法二:由题意可知:设+=t+2,∴|BF|=t+2;由抛物线的性质可知:|BF|=t(2)F(2,0),|FQ|=2,t=3,则|FA|=1,,),设OQ的中点,∴=Q(3D,|∴|AQ,,D()﹣(x﹣2PF﹣,则直线方程:y=),=k=QF2﹣20x+12=0,整理得:联立3x,精品文档.精品文档x=,x=6解得:(舍去),=××∴△AQP的面积;S=(Ey),k,=k,m),则,=,(3)存在,设P=(FQPF,)8,=,Qy),∴(=(8﹣2)直线QF方程为y=(x﹣2Q,)6E,根据(++=,则22=,6)∴(),解得:=8y(+,上,且P(,使得点FQ为邻边的矩形FPEQE在Γ∴存在以).FP、【点评】本题考查抛物线的性质,直线与抛物线的位置关系,考查转化思想,计算能力,属于中档题.21.(18分)(2018?上海)给定无穷数列{a},若无穷数列{b}满足:对任意n nn*,都有|b﹣a|≤1,则称{b}与{∈Na}“接近”.nnnn*,判断数列{bNn1+,=a的等比数列,是首项为}{1()设a1,公比为b∈}nnnn1+精品文档.精品文档是否与{a}接近,并说明理由;n(2)设数列{a}的前四项为:a=1,a=2,a=4,a=8,{b}是一个与{a}接近n31n42n的数列,记集合M={x|x=b,i=1,2,3,4},求M中元素的个数m;i(3)已知{a}是公差为d的等差数列,若存在数列{b}满足:{b}与{a}接近,nnnn且在b﹣b,b﹣b,…,b﹣b中至少有100个为正数,求d的取值范围.2001220132【考点】8M:等差数列与等比数列的综合.【专题】34 :方程思想;48 :分析法;54 :等差数列与等比数列.【分析】(1)运用等比数列的通项公式和新定义“接近”,即可判断;(2)由新定义可得a﹣1≤b≤a+1,求得b,i=1,2,3,4的范围,即可得到innn 所求个数;(3)运用等差数列的通项公式可得a,讨论公差d>0,d=0,﹣2<d<0,d≤n ﹣2,结合新定义“接近”,推理和运算,即可得到所求范围.【解答】解:(1)数列{b}与{a}接近.nn,公比为1的等比数列,{a}是首项为理由:n1=+1=a+,可得a,=b1nnn+*,N,n∈|+1=1﹣b则|﹣a|=|1﹣<nn可得数列{b}与{a}接近;nn(2){b}是一个与{a}接近的数列,nn可得a﹣1≤b≤a+1,nnn数列{a}的前四项为:a=1,a=2,a=4,a=8,413n2可得b∈[0,2],b∈[1,3],b∈[3,5],b∈[7,9],4132可能b与b相等,b与b相等,但b与b不相等,b与b不相等,31241323集合M={x|x=b,i=1,2,3,4},iM中元素的个数m=3或4;(3){a}是公差为d的等差数列,若存在数列{b}满足:{b}与{a}接近,nnnn精品文档.精品文档可得a=a+(n﹣1)d,1n①若d>0,取b=a,可得b﹣b=a﹣a=d>0,nn1nnn1n++则b﹣b,b﹣b,…,b﹣b 中有200个正数,符合题意;2001201223*,∈nN=<|a1﹣﹣a|,d=0②若,取b=a=﹣,则|b﹣a|11nnn1﹣>0=,可得b﹣b n1n+则b﹣b,b﹣b,…,b﹣b中有200个正数,符合题意;2001220123③若﹣2<d<0,可令b=a﹣1,b=a+1,2n2n12n12n﹣﹣则b﹣b=a+1﹣(a﹣1)=2+d>0,112n2n2n2n﹣﹣则b﹣b,b﹣b,…,b﹣b中恰有100个正数,符合题意;2002123201④若d≤﹣2,若存在数列{b}满足:{b}与{a}接近,nnn即为a﹣1≤b≤a+1,a﹣1≤b≤a+1,1nnn1nnn1+++可得b﹣b≤a+1﹣(a﹣1)=2+d≤0,nnnn11++b﹣b,b﹣b,…,b﹣b中无正数,不符合题意.2002322011综上可得,d的范围是(﹣2,+∞).【点评】本题考查新定义“接近”的理解和运用,考查等差数列和等比数列的定义和通项公式的运用,考查分类讨论思想方法,以及运算能力和推理能力,属于难题.精品文档.。
(完整版)2018年上海高考数学试卷(参考答案)
2018年普通高等学校招生全国统一考试上海 数学试卷一、填空题(本大题共有12题,满分54分,第1~6题每题4分,第7~12题每题5分)1.行列式4125的值为_________.2.双曲线2214x y -=的渐近线方程为_________. 3.在7(1)x +的二项展开式中,2x 项的系数为_________.(结果用数值表示) 4.设常数a R ∈,函数2()log ()f x x a =+。
若()f x 的反函数的图像经过点(3,1),则a =_________.5.已知复数z 满足(1)17i z i +=-(i 是虚数单位),则z =_________.6.记等差数列{}n a 的前n 项和为n S ,若30a =,6714a a +=,则7S =_________.7.已知12,1,,1,2,32α⎧⎫∈---⎨⎬⎩⎭。
若幂函数()f x x α=为奇函数,且在(0,)+∞上递减,则 α=_________.8.在平面直角坐标系中,已知点(1,0)A -,(2,0)B ,E 、F 是y 轴上的两个动点,且2EF =u u u r,则AE BF ⋅u u u r u u u r的最小值为_________.9.有编号互不相同的五个砝码,其中5克、3克、1克砝码各一个,2克砝码两个。
从中随机选取三个,则这三个砝码的总质量为9克的概率是_________.(结果用最简分数表示)10.设等比数列{}n a 的通项公式为1n n a q-=(*n ∈N ),前n 项和为n S 。
若11lim2n n n S a →+∞+=,则q =_________.11.已知常数0a >,函数2()2x x f x ax =+的图像经过点6,5P p ⎛⎫ ⎪⎝⎭、1,5Q q ⎛⎫- ⎪⎝⎭。
若236p q pq +=,则a =_________.12.已知实数1x 、2x 、1y 、2y 满足:22111x y +=,22221x y +=,121212x x y y +=,则的最大值为_________.二、选择题(本大题共有4题,满分20分,每题5分)13.设P 是椭圆22153x y +=上的动点,则P 到该椭圆的两个焦点的距离之和为( ) (A) (B) (C) (D) 14.已知a ∈R ,则“1a >”是“11a<”的( ) (A )充分非必要条件 (B )必要非充分条件 (C )充要条件 (D )既非充分又非必要条件 15.《九章算术》中,称底面为矩形而有一侧棱垂直于底面的四棱锥为阳马。
2018年上海高考数学真题和答案
2018 年上海市高考数学试卷参考答案与试题解析一、填空题(本大题共有12 题,满分54 分,第 1~6 题每题 4 分,第 7~12 题每题5 分)考生应在答题纸的相应位置直接填写结果.1.(4 分)(2018? 上海)行列式的值为18 .【考点】OM :二阶行列式的定义.【专题】11 :计算题;49 :综合法;5R :矩阵和变换.【分析】直接利用行列式的定义,计算求解即可.【解答】解:行列式=4×5﹣2×1=18 .故答案为:18.【点评】本题考查行列式的定义,运算法则的应用,是基本知识的考查.2.(4 分)(2018? 上海)双曲线﹣y2=1 的渐近线方程为±.【考点】KC:双曲线的性质.【专题】11 :计算题.【分析】先确定双曲线的焦点所在坐标轴,再确定双曲线的实轴长和虚轴长,最后确定双曲线的渐近线方程.【解答】解:∵双曲线的a=2 ,b=1 ,焦点在 x 轴上而双曲线的渐近线方程为y= ±∴双曲线的渐近线方程为y=±故答案为:y=±【点评】本题考察了双曲线的标准方程,双曲线的几何意义,特别是双曲线的渐近线方程,解题时要注意先定位,再定量的解题思想3.(4 分)(2018? 上海)在(1+x)7 的二项展开式中,x2 项的系数为21 (结果用数值表示).【考点】 DA:二项式定理.【专题】 38 :对应思想;4O:定义法;5P :二项式定理.【分析】利用二项式展开式的通项公式求得展开式中x2 的系数.【解答】解:二项式(1+x)7 展开式的通项公式为T r+1= ?x r,令 r=2,得展开式中x 2 的系数为=21.故答案为:21.【点评】本题考查了二项展开式的通项公式的应用问题,是基础题.4.(4 分)(2018? 上海)设常数 a∈R,函数f(x)=1og 2(x+a ).若f(x)的a= 7 .反函数的图象经过点(3,1),则【考点】 4R:反函数.【专题】 11 :计算题;33 :函数思想;4O :定义法;51 :函数的性质及应用.【分析】由反函数的性质得函数f(x)=1og 2(x+a )的图象经过点(1,3),由此能求出a.【解答】解:∵常数a∈R,函数f(x)=1og 2(x+a ).f(x)的反函数的图象经过点(3,1),.. ..∴log 2(1+a )=3,解得a=7 .故答案为:7.【点评】本题考查实数值的求法,考查函数的性质等基础知识,考查运算求解能力,考查函数与方程思想,是基础题.5.(4 分)(2018? 上海)已知复数z 满足(1+i)z=1﹣7i(i 是虚数单位),则|z|= 5 .【考点】A8:复数的模.【专题】38 :对应思想; 4A :数学模型法; 5N :数系的扩充和复数.【分析】把已知等式变形,然后利用复数代数形式的乘除运算化简,再由复数求模公式计算得答案.【解答】解:由(1+i)z=1﹣7i,得,则|z|= .故答案为:5.【点评】本题考查了复数代数形式的乘除运算,考查了复数模的求法,是基础题.6.(4 分)(2018? 上海)记等差数列 {a n}的前n 项和为 S n ,若a 3=0,a6+a 7=14,则S7= 14 .【考点】85:等差数列的前n 项和.【专题】11 :计算题; 34 :方程思想; 4O :定义法; 54 :等差数列与等比数列.4,d=2 ,由此能求出【分析】利用等差数列通项公式列出方程组,求出a1=﹣S7.【解答】解:∵等差数列{a n}的前n 项和为S n,a3=0,a6+a 7=14 ,∴,解得a1=﹣4,d=2 ,∴S7=7a 1+ =﹣28+42=14 .故答案为:14.,【点评】本题考查等差数列的前7 项和的求法,考查等差数列的性质等基础知识考查运算求解能力,考查函数与方程思想,是基础题.2,﹣1,﹣,1,2,3},若幂函数 f7.(5 分)(2018? 上海)已知α∈{﹣1.(x)=xα为奇函数,且在(0,+∞)上递减,则α=﹣【考点】 4U:幂函数的概念、解析式、定义域、值域.【专题】 11 :计算题;34 :方程思想;4O :定义法;51 :函数的性质及应用.【分析】由幂函数f(x)=xα为奇函数,且在(0,+∞)上递减,得到a是奇数,且 a<0,由此能求出 a 的值.1,,1, 2,3},【解答】解:∵α∈{﹣2,﹣幂函数f(x)=xα为奇函数,且在(0,+∞)上递减,∴a 是奇数,且a<0,∴a=﹣1.故答案为:﹣1.【点评】本题考查实数值的求法,考查幂函数的性质等基础知识,考查运算求解能力,考查函数与方程思想,是基础题.8.(5 分)(2018? 上海)在平面直角坐标系中,已知点A(﹣1,0)、B(2,0),E、F 是y 轴上的两个动点,且| |=2 ,则的最小值为﹣3 .【考点】9O:平面向量数量积的性质及其运算.【专题】11 :计算题;35 :转化思想;41 :向量法;5A :平面向量及应用.【分析】据题意可设 E(0,a),F(0,b),从而得出 |a ﹣b|=2 ,即a=b+2 ,或b=a+2 ,并可求得,将 a=b+2 带入上式即可求出的最小值,同理将b=a+2 带入,也可求出的最小值.【解答】解:根据题意,设E(0,a),F(0,b);∴;∴a=b+2 ,或b=a+2 ;且;∴;当a=b+2 时,;∵b2+2b ﹣2 的最小值为;∴的最小值为﹣ 3,同理求出b=a+2 时,的最小值为﹣ 3.故答案为:﹣ 3.【点评】考查根据点的坐标求两点间的距离,根据点的坐标求向量的坐标,以及向量坐标的数量积运算,二次函数求最值的公式.9.(5 分)(2018? 上海)有编号互不相同的五个砝码,其中 5 克、3 克、1 克砝码各一个, 2 克砝码两个,从中随机选取三个,则这三个砝码的总质为9 克的量).概率是(结果用最简分数表示【考点】 CB:古典概型及其概率计算公式.【专题】 11 :计算题;34 :方程思想;49 :综合法;5I :概率与统计.【分析】求出所有事件的总数,求出三个砝码的总质为9 克的事件总数,然后量求解概率即可.【解答】解:编号互不相同的五个砝码,其中 5 克、 3 克、 1 克砝码各一个, 2 克砝码两个,从中随机选取三个, 3 个数中含有 1 个 2;2 个 2,没有2,3 种情况,所有的事件总数为:=10,这三个砝码的总质量为9 克的事件只有:5,3,1 或 5,2,2 两个,所以:这三个砝码的总质量为9 克的概率是:= ,故答案为:.【点评】本题考查古典概型的概率的求法,是基本知识的考查.10.(5 分)(2018? 上海)设等比数列{a n}的通项公式为a n=q n﹣1(n∈N*),前为S n.若= ,则q= 3 .n 项和【考点】 8J:数列的极限.【专题】 11 :计算题;34 :方程思想;35 :转化思想;49 :综合法;55 :点列、递归数列与数学归纳法.【分析】利用等比数列的通项公式求出首项,通过数列的极限,列出方程,求解公比即可.【解答】解:等比数列{a n}的通项公式为 a =q n﹣1(n∈N*),可得 a 1=1,因为= ,所以数列的公比不是1,,a n+1 =q n.可得= = = = ,可得q=3 .故答案为:3.【点评】本题考查数列的极限的运算法则的应用,等比数列求和以及等比数列的简单性质的应用,是基本知识的考查.过点P11.(5 分)(2018? 上海)已知常数 a >0,函数f(x)= 的图象经(p,),Q(q,).若2p+q =36pq ,则a= 6 .【考点】 3A:函数的图象与图象的变换.51 :函数的性质及应用.【专题】 35 :转化思想;【分析】直接利用函数的关系式,利用恒等变换求出相应的 a 值.【解答】解:函数f(x)= 的图象经点P(p ,),Q(q,).过则:,整理得:=1,解得: 2p+q =a 2pq ,由于:2p+q =36pq ,所以:a2=36,由于a>0,故:a=6 .故答案为:6【点评】本题考查的知识要点:函数的性质的应用,代数式的变换问题的应用.12.(5 分)(2018? 上海)已知实数x1、x2、y1、y2 满足:x12+y2+y2=1,x 2+y1 22=1,2x1x2+y 1y2= ,则+ 的最大值为+ .【考点】7F:基本不等式及其应用;IT:点到直线的距离公式.【专题】35 :转化思想; 48 :分析法;59 :不等式的解法及应用.【分析】设A(x1,y1),B(x2,y2),=(x1,y1),=(x2,y2),由圆的方程和向量数量积的定义、坐标表示,可得三角形OAB 为等边三角形, AB=1 ,+ 的几何意义为点A,B 两点到直线x+y ﹣1=0 的距离d1 与d2 之和,由两平行线的距离可得所求最大值.【解答】解:设 A(x1,y1),B(x2,y2),=(x1,y1),=(x2,y2),由x12+y2+y2=1,x 2+y1 22=1,x1x2+y1y2= ,2可得A,B 两点在圆 x2+y 2=1 上,且? =1× 1× cos ∠AOB= ,.. ..即三角形 OAB 为等边三角形,AB=1 ,+ 的几何意义为点A,B 两点到直线 x+y﹣1=0 的距离 d 1 与d2 之和,显然A,B 在第三象限,AB 所在直线与直线x+y=1 平行,可设AB:x+y+t=0 ,(t>0),由圆心 O 到直线 AB 的距离 d= ,可得2 =1,解得 t= ,即有两平行线的距离为= ,即+ 的最大值为+ ,故答案为:+ .【点评】本题考查向量数量积的坐标表示和定义,以及圆的方程和运用,考查点与圆的位置关系,运用点到直线的距离公式是解题的关键,属于难题.二、选择题(本大题共有 4 题,满分 20 分,每题 5 分)每题有且只有一个正确选项.考生应在答题纸的相应位置,将代表正确选项的小方格涂黑.13.(5 分)(2018? 上海)设P 是椭圆=1 上的动点,则P 到该椭圆的两个焦点的距离之和为()A.2 B.2 C .2 D.4【考点】K4:椭圆的性质.【专题】 11 :计算题;49 :综合法;5D :圆锥曲线的定义、性质与方程.的轴,求出 a ,接利用椭圆的定义,转【分析】判断椭圆长轴(焦点坐标)所在化求解即可.x轴, a= ,【解答】解:椭圆=1 的焦点坐标在P 是椭圆=1 上的动点,由椭圆的定义可知:则P 到该椭圆的两个焦点的距离之和为2a=2 .故选: C.的应用,椭圆的定义的应用,是基本知识的考性质【点评】本题考查椭圆的简单查.14.(5 分)(2018? 上海)已知 a∈R,则“a> 1”是“< 1”的()A.充分非必要条件B.必要非充分条件C.充要条件D.既非充分又非必要条件【考点】 29:充分条件、必要条件、充要条件..【专题】 11 :计算题;34 :方程思想;4O :定义法;5L :简易逻辑【分析】“ a> 1”? “”,“”? “ a>1 或 a < 0”,由此能求出结果.【解答】解:a∈R,则“a> 1”? “”,“”? “ a>1 或a< 0”,∴“a> 1”是“”的充分非必要条件.故选: A.【点评】本题考查充分条件、必要条件的判断,考查不等式的性质等基础知识,考查运算求解能力,考查函数与方程思想,是基础题.15.(5 分)(2018? 上海)《九章算术》中,称底面为矩形而有一侧棱垂直于底面的四棱锥为阳马,设AA 1 是正六棱柱的一条侧棱,如图,若阳马以该正六棱柱的顶点为顶点、以AA 1 为底面矩形的一边,则这样的阳马的个数是()A.4 B.8 C.12 D.16【考点】D8:排列、组合的实际应用.【专题】11 :计算题;38 :对应思想; 4R:转化法;5O :排列组合.【分析】根据新定义和正六边形的性质可得答案.【解答】解:根据正六边形的性质,则D1﹣A1ABB1,D1﹣A1AFF1 满足题意,而C1,E1,C ,D,E,和 D1 一样,有2× 6=12 ,当A1ACC 1 为底面矩形,有 2 个满足题意,当A1AEE1 为底面矩形,有 2 个满足题意,故有12+2+2=16故选:D.【点评】本题考查了新定义,以及排除组合的问题,考查了棱柱的特征,属于中档题.16.(5 分)(2018? 上海)设D 是含数 1 的有限实数集, f(x)是定义在 D 上的函数,若 f(x)的图象绕原点逆时针旋转后与原图象重合,则在以下各项中,f(1)的可能取值只能是()A.B.C.D.0【考点】3A:函数的图象与图象的变换.【专题】35 :转化思想; 51 :函数的性质及应用;56 :三角函数的求值.【分析】直接利用定义函数的应用求出结果.【解答】解:由题意得到:问题相当于圆上由12 个点为一组,每次绕原点逆时针旋转个单位后与下一个点会重合.我们可以通过代入和赋值的方法当f(1)= ,,0 时,此时得到的圆心角为,,0,然而此时x=0 或者 x=1 时,都有 2 个y 与之对应,而我们知道函数的定义就是要求一个x 只能对应一个y,因此只有当x= ,此时旋转,此时满足一个x 只会对应一个y,因此答案就选:B.故选:B.【点评】本题考查的知识要点:定义性函数的应用.三、解答题(本大题共有 5 题,满分 76 分)解答下列各题必须在答题纸的相应位置写出必要的步骤 .17.(14 分)(2018? 上海)已知圆锥的顶点为P,底面圆心为O,半径为2.(1)设圆锥的母线长为4,求圆锥的体积;(2)设PO=4 ,OA 、OB 是底面半径,且∠AOB=90°M,为线段 AB 的中点,如图.求异面直线PM 与OB 所成的角的大小.【考点】LM:异面直线及其所成的角;L5:旋转体(圆柱、圆锥、圆台);LF:棱柱、棱锥、棱台的体积.【专题】11 :计算题;31 :数形结合; 41 :向量法; 5F :空间位置关系与距离;5G :空间角.【分析】(1)由圆锥的顶点为P,底面圆心为O,半径为 2,圆锥的母线长为 4 能求出圆锥的体积.(2)以 O 为原点,OA 为x 轴,OB 为 y 轴,OP 为z 轴,建立空间直角坐标系,利用向量法能求出异面直线PM 与OB 所成的角.【解答】解:(1)∵圆锥的顶点为P,底面圆心为O,半径为 2,圆锥的母线长为4,∴圆锥的体积V= == .(2)∵ PO=4 ,OA ,OB 是底面半径,且∠AOB=90°,A B 的中点,M 为线段∴以O 为原点, OA 为 x 轴, OB 为 y 轴, OP 为z 轴,建立空间直角坐标系,P(0,0,4),A(2,0,0),B(0,2,0),M(1,1,0),O(0,0,0),=(1,1,﹣4),=(0,2,0),设异面直线PM 与 OB 所成的角为θ,则c os θ= = = .∴θ=arccos .∴异面直线PM 与 OB 所成的角的为arccos .,考法【点评】本题考查圆锥的体积的求法,考查异面直线所成角的正切值的求力,考查解能查空间中线线、线面、面面间的位置关系等基础知识,考查运算求函数与方程思想,是基础题.18.(14 分)(2018? 上海)设常数 a ∈R,函数f(x)=asin2x+2cos 2x.(1)若f(x)为偶函数,求 a 的值;(2)若f()= +1,求方程f(x)=1﹣在区间[﹣π,π]上的解.【考点】 GP:两角和与差的三角函数;GS:二倍角的三角函数.;4R:转化法; 58 :解三角形.;38 :对应思想】 11 :计算题【专题【分析】(1)根据函数的奇偶性和三角形的函数的性质即可求出,(2)先求出 a 的值,再根据三角形函数的性质即可求出.【解答】解:(1)∵f(x)=asin2x+2cos 2x,∴f(﹣ x)=﹣asin2x+2cos 2x,∵f(x)为偶函数,∴f(﹣ x)=f(x),∴﹣ asin2x+2cos 2x=asin2x+2cos 2x,∴2asin2x=0 ,∴a=0 ;(2)∵ f()= +1,∴asin +2cos2()=a+1= +1,∴a= ,∴f(x)= sin2x+2cos2x= sin2x+cos2x+1=2sin (2x+ )+1,∵f(x)=1﹣,∴2sin(2x+ )+1=1﹣,∴sin(2x+ )=﹣,∴2x+ =﹣+2k π,或2x+ = π+2k π,k∈Z,∴x=﹣π+kπ,或x= π+kπ,k∈Z,∵x∈[﹣π,π],∴x= 或 x= 或 x=﹣或 x=﹣求值,以及三角函数的性质,属于基础题.【点评】本题考查了三角函数的化简和19.(14 分)(2018? 上海)某群体的人均通勤时间,是指单日内该群体中成员式通从居住地到工作地的平均用时.某地上班族S中的成员仅以自驾或公交方勤.分析显示:当S 中x%(0<x<100)的成员自驾时,自驾群体的人均通勤时间为f(x)= (单位:分钟),回40 分钟,试根据上述分析结果而公交群体的人均通勤时间不受x 影响,恒为答下列问题:(1)当x 在什么范围内时,公交群体的人均通勤时间少于自驾群体的人均通勤时间?论g(x)的单调性,(2)求该地上班族S的人均通勤时间g(x)的表达式;讨并说明其实际意义.【考点】 5B:分段函数的应用.【专题】 12 :应用题; 33 :函数思想;4C :分类法; 51 :函数的性质及应用.【分析】(1)由题意知求出f(x)>40 时x 的取值范围即可;意义.(2)分段求出g(x)的解析式,判断g(x)的单调性,再说明其实际【解答】解;(1)由题意知,当30<x<100 时,f(x)=2x+ ﹣90>40,65x+900 >0,即 x2﹣解得x<20 或 x>45,∴x∈(45,100)时,公交群体的人均通勤时间少于自驾群体的人均通勤时间;(2)当0<x≤30 时,x%)=40﹣;g(x) =30?x%+40(1﹣当 30<x<100 时,x%)=﹣x+58;g(x)=(2x+﹣90) ?x%+40(1﹣∴g(x)= ;;当 0<x<32.5 时,g(x)单调递减;当 32.5<x<100 时, g(x)单调递增说明该地上班族S中有小于32.5%的人自驾时,人均通勤时间是递减的;增的;有大于32.5%的人自驾时,人均通勤时间是递少.当自驾人数为32.5%时,人均通勤时间最【点评】本题考查了分段函数的应用问题,也考查了分类讨论与分析问题、解决问题的能力.20.(16 分)(2018? 上海)设常数 t>2.在平面直角坐标系x Oy 中,已知点 F(2,0),直线l:x=t ,曲线Γ:y2=8x(0≤x≤t,y≥0).l 与x 轴交于点A、与Γ交于点B.P、Q 分别是曲线Γ与线段AB 上的动点.(1)用t 表示点 B 到点 F 的距离;(2)设t=3 ,|FQ|=2 ,线段OQ 的中点在直线FP上,求△ AQP 的面积;(3)设t=8 ,是否存在以FP、FQ 为邻边的矩形FPEQ,使得点 E在Γ上?若存在,求点 P 的坐标;若不存在,说明理由.【考点】KN:直线与抛物线的位置关系.【专题】35 :转化思想; 4R:转化法;5D :圆锥曲线的定义、性质与方程.【分析】(1)方法一:设 B 点坐标,根据两点之间的距离公式,即可求得|BF| ;方法二:根据抛物线的定义,即可求得|BF| ;(2)根据抛物线的性质,求得Q 点坐标,即可求得OD 的中点坐标,即可求得直线 PF 的方程,代入抛物线方程,即可求得P 点坐标,即可求得△AQP 的面积;(3)设 P 及E 点坐标,根据直线k PF?k FQ =﹣1,求得直线QF 的方程,求得Q点坐标,根据+ = ,求得 E 点坐标,则()2=8(+6),即可求得P 点坐标.【解答】解:(1)方法一:由题意可知:设B(t,2 t),则|BF|= =t+2 ,∴|BF|=t+2 ;方法二:由题意可知:设B(t,2 t),由抛物线的性质可知:|BF|=t+ =t+2 ,∴|BF|=t+2 ;(2)F(2,0),|FQ|=2 ,t=3 ,则|FA|=1 ,∴|AQ|= ,∴Q(3,),设 OQ 的中点 D,D(,),k QF= =﹣,则直线 PF方程:y= ﹣(x﹣2),联立,整理得:3x2﹣20x+12=0 ,解得:x= ,x=6(舍去),∴△AQP 的面积 S= ××= ;(3)存在,设P(,y),E(,m ),则 k PF= = ,k FQ = ,直线 QF 方程为y= (x﹣2),∴y Q= (8﹣2)= ,Q(8,),根据+ = ,则 E(+6,),∴()2=8(+6),解得: y2= ,∴存在以 FP、FQ 为邻边的矩形FPEQ,使得点 E在Γ上,且P(,).化思想,计【点评】本题考查抛物线的性质,直线与抛物线的位置关系,考查转算能力,属于中档题.意n21.(18 分)(2018? 上海)给定无穷数列{a n},若无穷数列{b n}满足:对任a n | ≤1,则称{b n}与{a n}“接近”.*,都有 |b∈N n﹣(1)设{a n}是首项为1,公比为的等比数列, b n=a n+1 +1,n∈Nn}*,判断数列 {b*,判断数列 {b是否与 {a n}接近,并说明理由;(2)设数列 {a n}的前四项为:a1=1,a2=2,a3=4,a4=8,{b n}是一个与 {a n}接近的数列,记集合M={x|x=b i ,i=1,2,3,4},求M 中元素的个数m ;(3)已知 {a n}是公差为 d 的等差数列,若存在数列{b n}满足: {b n }与{a n}接近,b200 中至少有100 个为正数,求 d 的取值范围.且在b2﹣b1,b3﹣b2,⋯,b 201﹣【考点】 8M:等差数列与等比数列的综合.【专题】 34 :方程思想;48 :分析法; 54 :等差数列与等比数列.【分析】(1)运用等比数列的通项公式和新定义“接近”,即可判断;(2)由新定义可得a n﹣1≤b n≤ a n+1,求得b i,i=1,2,3,4 的范围,即可得到所求个数;(3)运用等差数列的通项公式可得a n,讨论公差d>0,d=0 ,﹣2<d<0,d≤﹣2,结合新定义“接近”,推理和运算,即可得到所求范围.【解答】解:(1)数列 {b n}与{a n }接近.理由: {a n}是首项为1,公比为的等比数列,可得a n = ,b n=a n+1 +1= +1,则|b n﹣a n|=| +1﹣|=1﹣<1,n∈N*,可得数列 {b n}与{a n }接近;(2){b n}是一个与 {a n }接近的数列,可得a n ﹣1≤b n≤ a n+1,a1=1,a2=2,a3=4,a4=8,数列 {a n}的前四项为:可得b1∈[0,2] ,b2∈[1,3],b 3∈[3,5],b4∈[7,9],可能b1 与 b2 相等, b2 与 b3 相等,但 b 1 与 b3 不相等, b 4 与b3 不相等,集合M={x|x=b i,i=1,2,3,4},M 中元素的个数m=3 或4;(3){a n}是公差为d的等差数列,若存在数列{b n}满足:{b n}与{a n }接近,可得a n =a 1+(n﹣1)d,①若d>0,取b n=a n,可得b n+1 ﹣b n=a n+1 ﹣a n=d >0,则b2﹣b1,b3﹣b2,⋯, b 201﹣b200 中有200 个正数,符合题意;②若d=0 ,取b n=a 1﹣,则|b n﹣a n|=|a 1﹣﹣a1|= <1,n∈N*,可得b n+1 ﹣b n= ﹣>0,则b2﹣b1,b3﹣b2,⋯, b 201﹣b200 中有200 个正数,符合题意;③若﹣ 2<d <0,可令 b 2n ﹣1=a 2n﹣1﹣1,b2n =a 2n +1,则b2n ﹣b 2n ﹣1=a 2n +1﹣( a2n﹣1﹣1)=2+d >0,则b2﹣b1,b3﹣b2,⋯, b 201﹣b200 中恰有100 个正数,符合题意;④若d≤﹣ 2,若存在数列{b n}满足:{b n}与{a n}接近,即为a n ﹣1≤b n≤ a n+1,a n+1 ﹣1≤b n+1 ≤a n+1 +1,可得b n+1 ﹣b n≤a n+1 +1﹣( a n﹣1)=2+d ≤0,b2﹣b1,b3﹣b2,⋯, b201 ﹣b 200 中无正数,不符合题意.综上可得,d 的范围是(﹣ 2,+∞).【点评】本题考查新定义“接近”的理解和运用,考查等差数列和等比数列的定义和通项公式的运用,考查分类讨论思想方法,以及运算能力和推理能力,属于难题.感恩和爱是亲姐妹。
2018年上海高考数学真题及答案
2018年上海市高考数学试卷参考答案与试题解析一、填空题(本大题共有12题,满分54分,第1~6题每题4分,第7~12题每题5分)考生应在答题纸的相应位置直接填写结果.1.(4分)(2018?上海)行列式的值为18.【考点】OM:二阶行列式的定义.【专题】11 :计算题;49 :综合法;5R :矩阵和变换.【分析】直接利用行列式的定义,计算求解即可.【解答】解:行列式=4×5﹣2×1=18.故答案为:18.【点评】本题考查行列式的定义,运算法则的应用,是基本知识的考查.2.(4分)(2018?上海)双曲线﹣y2=1的渐近线方程为±.【考点】KC:双曲线的性质.【专题】11 :计算题.【分析】先确定双曲线的焦点所在坐标轴,再确定双曲线的实轴长和虚轴长,最后确定双曲线的渐近线方程.【解答】解:∵双曲线的a=2,b=1,焦点在x轴上而双曲线的渐近线方程为y=±∴双曲线的渐近线方程为y=±故答案为:y=±【点评】本题考察了双曲线的标准方程,双曲线的几何意义,特别是双曲线的渐近线方程,解题时要注意先定位,再定量的解题思想3.(4分)(2018?上海)在(1+x)7的二项展开式中,x2项的系数为21(结果用数值表示).【考点】DA:二项式定理.【专题】38 :对应思想;4O:定义法;5P :二项式定理.【分析】利用二项式展开式的通项公式求得展开式中x2的系数.【解答】解:二项式(1+x)7展开式的通项公式为T r+1=?x r,令r=2,得展开式中x2的系数为=21.故答案为:21.【点评】本题考查了二项展开式的通项公式的应用问题,是基础题.4.(4分)(2018?上海)设常数a∈R,函数f(x)=1og2(x+a).若f(x)的反函数的图象经过点(3,1),则a=7.【考点】4R:反函数.【专题】11 :计算题;33 :函数思想;4O:定义法;51 :函数的性质及应用.【分析】由反函数的性质得函数f(x)=1og2(x+a)的图象经过点(1,3),由此能求出a.【解答】解:∵常数a∈R,函数f(x)=1og2(x+a).f(x)的反函数的图象经过点(3,1),∴函数f(x)=1og2(x+a)的图象经过点(1,3),∴log2(1+a)=3,解得a=7.故答案为:7.【点评】本题考查实数值的求法,考查函数的性质等基础知识,考查运算求解能力,考查函数与方程思想,是基础题.5.(4分)(2018?上海)已知复数z满足(1+i)z=1﹣7i(i是虚数单位),则|z|= 5.【考点】A8:复数的模.【专题】38 :对应思想;4A :数学模型法;5N :数系的扩充和复数.【分析】把已知等式变形,然后利用复数代数形式的乘除运算化简,再由复数求模公式计算得答案.【解答】解:由(1+i)z=1﹣7i,得,则|z|=.故答案为:5.【点评】本题考查了复数代数形式的乘除运算,考查了复数模的求法,是基础题.6.(4分)(2018?上海)记等差数列{a n}的前n项和为S n,若a3=0,a6+a7=14,则S7=14.【考点】85:等差数列的前n项和.【专题】11 :计算题;34 :方程思想;4O:定义法;54 :等差数列与等比数列.【分析】利用等差数列通项公式列出方程组,求出a1=﹣4,d=2,由此能求出S7.【解答】解:∵等差数列{a n}的前n项和为S n,a3=0,a6+a7=14,∴,解得a1=﹣4,d=2,∴S7=7a1+=﹣28+42=14.故答案为:14.【点评】本题考查等差数列的前7项和的求法,考查等差数列的性质等基础知识,考查运算求解能力,考查函数与方程思想,是基础题.7.(5分)(2018?上海)已知α∈{﹣2,﹣1,﹣,1,2,3},若幂函数f (x)=xα为奇函数,且在(0,+∞)上递减,则α=﹣1.【考点】4U:幂函数的概念、解析式、定义域、值域.【专题】11 :计算题;34 :方程思想;4O:定义法;51 :函数的性质及应用.【分析】由幂函数f(x)=xα为奇函数,且在(0,+∞)上递减,得到a是奇数,且a<0,由此能求出a的值.【解答】解:∵α∈{﹣2,﹣1,,1,2,3},幂函数f(x)=xα为奇函数,且在(0,+∞)上递减,∴a是奇数,且a<0,∴a=﹣1.故答案为:﹣1.【点评】本题考查实数值的求法,考查幂函数的性质等基础知识,考查运算求解能力,考查函数与方程思想,是基础题.8.(5分)(2018?上海)在平面直角坐标系中,已知点A(﹣1,0)、B(2,0),E、F是y轴上的两个动点,且||=2,则的最小值为﹣3.【考点】9O:平面向量数量积的性质及其运算.【专题】11 :计算题;35 :转化思想;41 :向量法;5A :平面向量及应用.【分析】据题意可设E(0,a),F(0,b),从而得出|a﹣b|=2,即a=b+2,或b=a+2,并可求得,将a=b+2带入上式即可求出的最小值,同理将b=a+2带入,也可求出的最小值.【解答】解:根据题意,设E(0,a),F(0,b);∴;∴a=b+2,或b=a+2;且;∴;当a=b+2时,;∵b2+2b﹣2的最小值为;∴的最小值为﹣3,同理求出b=a+2时,的最小值为﹣3.故答案为:﹣3.【点评】考查根据点的坐标求两点间的距离,根据点的坐标求向量的坐标,以及向量坐标的数量积运算,二次函数求最值的公式.9.(5分)(2018?上海)有编号互不相同的五个砝码,其中5克、3克、1克砝码各一个,2克砝码两个,从中随机选取三个,则这三个砝码的总质量为9克的概率是(结果用最简分数表示).【考点】CB:古典概型及其概率计算公式.【专题】11 :计算题;34 :方程思想;49 :综合法;5I :概率与统计.【分析】求出所有事件的总数,求出三个砝码的总质量为9克的事件总数,然后求解概率即可.【解答】解:编号互不相同的五个砝码,其中5克、3克、1克砝码各一个,2克砝码两个,从中随机选取三个,3个数中含有1个2;2个2,没有2,3种情况,所有的事件总数为:=10,这三个砝码的总质量为9克的事件只有:5,3,1或5,2,2两个,所以:这三个砝码的总质量为9克的概率是:=,故答案为:.【点评】本题考查古典概型的概率的求法,是基本知识的考查.10.(5分)(2018?上海)设等比数列{a n}的通项公式为a n=q n﹣1(n∈N*),前n 项和为S n.若=,则q=3.【考点】8J:数列的极限.【专题】11 :计算题;34 :方程思想;35 :转化思想;49 :综合法;55 :点列、递归数列与数学归纳法.【分析】利用等比数列的通项公式求出首项,通过数列的极限,列出方程,求解公比即可.【解答】解:等比数列{a n}的通项公式为a=q n﹣1(n∈N*),可得a1=1,因为=,所以数列的公比不是1,,a n+1=q n.可得====,可得q=3.故答案为:3.【点评】本题考查数列的极限的运算法则的应用,等比数列求和以及等比数列的简单性质的应用,是基本知识的考查.11.(5分)(2018?上海)已知常数a>0,函数f(x)=的图象经过点P(p,),Q(q,).若2p+q=36pq,则a=6.【考点】3A:函数的图象与图象的变换.【专题】35 :转化思想;51 :函数的性质及应用.【分析】直接利用函数的关系式,利用恒等变换求出相应的a值.【解答】解:函数f(x)=的图象经过点P(p,),Q(q,).则:,整理得:=1,解得:2p+q=a2pq,由于:2p+q=36pq,所以:a2=36,由于a>0,故:a=6.故答案为:6【点评】本题考查的知识要点:函数的性质的应用,代数式的变换问题的应用.12.(5分)(2018?上海)已知实数x1、x2、y1、y2满足:x12+y12=1,x22+y22=1,x1x2+y1y2=,则+的最大值为+.【考点】7F:基本不等式及其应用;IT:点到直线的距离公式.【专题】35 :转化思想;48 :分析法;59 :不等式的解法及应用.【分析】设A(x1,y1),B(x2,y2),=(x1,y1),=(x2,y2),由圆的方程和向量数量积的定义、坐标表示,可得三角形OAB为等边三角形,AB=1,+的几何意义为点A,B两点到直线x+y﹣1=0的距离d1与d2之和,由两平行线的距离可得所求最大值.【解答】解:设A(x1,y1),B(x2,y2),=(x1,y1),=(x2,y2),由x12+y12=1,x22+y22=1,x1x2+y1y2=,可得A,B两点在圆x2+y2=1上,且?=1×1×cos∠AOB=,即有∠AOB=60°,即三角形OAB为等边三角形,AB=1,+的几何意义为点A,B两点到直线x+y﹣1=0的距离d1与d2之和,显然A,B在第三象限,AB所在直线与直线x+y=1平行,可设AB:x+y+t=0,(t>0),由圆心O到直线AB的距离d=,可得2=1,解得t=,即有两平行线的距离为=,即+的最大值为+,故答案为:+.【点评】本题考查向量数量积的坐标表示和定义,以及圆的方程和运用,考查点与圆的位置关系,运用点到直线的距离公式是解题的关键,属于难题.二、选择题(本大题共有4题,满分20分,每题5分)每题有且只有一个正确选项.考生应在答题纸的相应位置,将代表正确选项的小方格涂黑.13.(5分)(2018?上海)设P是椭圆=1上的动点,则P到该椭圆的两个焦点的距离之和为()A.2 B.2 C.2 D.4【考点】K4:椭圆的性质.【专题】11 :计算题;49 :综合法;5D :圆锥曲线的定义、性质与方程.【分析】判断椭圆长轴(焦点坐标)所在的轴,求出a,接利用椭圆的定义,转化求解即可.【解答】解:椭圆=1的焦点坐标在x轴,a=,P是椭圆=1上的动点,由椭圆的定义可知:则P到该椭圆的两个焦点的距离之和为2a=2.故选:C.【点评】本题考查椭圆的简单性质的应用,椭圆的定义的应用,是基本知识的考查.>1”是“<1”的()14.(5分)(2018?上海)已知a∈R,则“aA.充分非必要条件 B.必要非充分条件C.充要条件D.既非充分又非必要条件【考点】29:充分条件、必要条件、充要条件.【专题】11 :计算题;34 :方程思想;4O:定义法;5L :简易逻辑.【分析】“a>1”?“”,“”?“a>1或a<0”,由此能求出结果.【解答】解:a∈R,则“a>1”?“”,“”?“a>1或a<0”,∴“a>1”是“”的充分非必要条件.故选:A.【点评】本题考查充分条件、必要条件的判断,考查不等式的性质等基础知识,考查运算求解能力,考查函数与方程思想,是基础题.15.(5分)(2018?上海)《九章算术》中,称底面为矩形而有一侧棱垂直于底面的四棱锥为阳马,设AA1是正六棱柱的一条侧棱,如图,若阳马以该正六棱柱的顶点为顶点、以AA1为底面矩形的一边,则这样的阳马的个数是()A.4 B.8 C.12 D.16【考点】D8:排列、组合的实际应用.【专题】11 :计算题;38 :对应思想;4R:转化法;5O :排列组合.【分析】根据新定义和正六边形的性质可得答案.【解答】解:根据正六边形的性质,则D1﹣A1ABB1,D1﹣A1AFF1满足题意,而C1,E1,C,D,E,和D1一样,有2×6=12,当A1ACC1为底面矩形,有2个满足题意,当A1AEE1为底面矩形,有2个满足题意,故有12+2+2=16故选:D.【点评】本题考查了新定义,以及排除组合的问题,考查了棱柱的特征,属于中档题.16.(5分)(2018?上海)设D是含数1的有限实数集,f(x)是定义在D上的函数,若f(x)的图象绕原点逆时针旋转后与原图象重合,则在以下各项中,f(1)的可能取值只能是()A.B.C.D.0【考点】3A:函数的图象与图象的变换.【专题】35 :转化思想;51 :函数的性质及应用;56 :三角函数的求值.【分析】直接利用定义函数的应用求出结果.【解答】解:由题意得到:问题相当于圆上由12个点为一组,每次绕原点逆时针旋转个单位后与下一个点会重合.我们可以通过代入和赋值的方法当f(1)=,,0时,此时得到的圆心角为,,0,然而此时x=0或者x=1时,都有2个y与之对应,而我们知道函数的定义就是要求一个x只能对应一个y,因此只有当x=,此时旋转,此时满足一个x只会对应一个y,因此答案就选:B.故选:B.【点评】本题考查的知识要点:定义性函数的应用.三、解答题(本大题共有5题,满分76分)解答下列各题必须在答题纸的相应位置写出必要的步骤.17.(14分)(2018?上海)已知圆锥的顶点为P,底面圆心为O,半径为2.(1)设圆锥的母线长为4,求圆锥的体积;(2)设PO=4,OA、OB是底面半径,且∠AOB=90°,M为线段AB的中点,如图.求异面直线PM与OB所成的角的大小.【考点】LM:异面直线及其所成的角;L5:旋转体(圆柱、圆锥、圆台);LF:棱柱、棱锥、棱台的体积.【专题】11 :计算题;31 :数形结合;41 :向量法;5F :空间位置关系与距离;5G :空间角.【分析】(1)由圆锥的顶点为P,底面圆心为O,半径为2,圆锥的母线长为4能求出圆锥的体积.(2)以O为原点,OA为x轴,OB为y轴,OP为z轴,建立空间直角坐标系,利用向量法能求出异面直线PM与OB所成的角.【解答】解:(1)∵圆锥的顶点为P,底面圆心为O,半径为2,圆锥的母线长为4,∴圆锥的体积V===.(2)∵PO=4,OA,OB是底面半径,且∠AOB=90°,M为线段AB的中点,∴以O为原点,OA为x轴,OB为y轴,OP为z轴,建立空间直角坐标系,P(0,0,4),A(2,0,0),B(0,2,0),M(1,1,0),O(0,0,0),=(1,1,﹣4),=(0,2,0),设异面直线PM与OB所成的角为θ,则cosθ===.∴θ=arccos.∴异面直线PM与OB所成的角的为arccos.【点评】本题考查圆锥的体积的求法,考查异面直线所成角的正切值的求法,考查空间中线线、线面、面面间的位置关系等基础知识,考查运算求解能力,考查函数与方程思想,是基础题.18.(14分)(2018?上海)设常数a∈R,函数f(x)=asin2x+2cos2x.(1)若f(x)为偶函数,求a的值;(2)若f()=+1,求方程f(x)=1﹣在区间[﹣π,π]上的解.【考点】GP:两角和与差的三角函数;GS:二倍角的三角函数.【专题】11 :计算题;38 :对应思想;4R:转化法;58 :解三角形.【分析】(1)根据函数的奇偶性和三角形的函数的性质即可求出,(2)先求出a的值,再根据三角形函数的性质即可求出.【解答】解:(1)∵f(x)=asin2x+2cos2x,∴f(﹣x)=﹣asin2x+2cos2x,∵f(x)为偶函数,∴f(﹣x)=f(x),∴﹣asin2x+2cos2x=asin2x+2cos2x,∴2asin2x=0,∴a=0;(2)∵f()=+1,∴asin+2cos2()=a+1=+1,∴a=,∴f(x)=sin2x+2cos2x=sin2x+cos2x+1=2sin(2x+)+1,∵f(x)=1﹣,∴2sin(2x+)+1=1﹣,∴sin(2x+)=﹣,∴2x+=﹣+2kπ,或2x+=π+2kπ,k∈Z,∴x=﹣π+kπ,或x=π+kπ,k∈Z,∵x∈[﹣π,π],∴x=或x=或x=﹣或x=﹣【点评】本题考查了三角函数的化简和求值,以及三角函数的性质,属于基础题.19.(14分)(2018?上海)某群体的人均通勤时间,是指单日内该群体中成员从居住地到工作地的平均用时.某地上班族S中的成员仅以自驾或公交方式通勤.分析显示:当S中x%(0<x<100)的成员自驾时,自驾群体的人均通勤时间为f(x)=(单位:分钟),而公交群体的人均通勤时间不受x影响,恒为40分钟,试根据上述分析结果回答下列问题:(1)当x在什么范围内时,公交群体的人均通勤时间少于自驾群体的人均通勤时间?(2)求该地上班族S的人均通勤时间g(x)的表达式;讨论g(x)的单调性,并说明其实际意义.【考点】5B:分段函数的应用.【专题】12 :应用题;33 :函数思想;4C :分类法;51 :函数的性质及应用.【分析】(1)由题意知求出f(x)>40时x的取值范围即可;(2)分段求出g(x)的解析式,判断g(x)的单调性,再说明其实际意义.【解答】解;(1)由题意知,当30<x<100时,f(x)=2x+﹣90>40,即x2﹣65x+900>0,解得x<20或x>45,∴x∈(45,100)时,公交群体的人均通勤时间少于自驾群体的人均通勤时间;(2)当0<x≤30时,g(x)=30?x%+40(1﹣x%)=40﹣;当30<x<100时,g(x)=(2x+﹣90)?x%+40(1﹣x%)=﹣x+58;∴g(x)=;当0<x<32.5时,g(x)单调递减;当32.5<x<100时,g(x)单调递增;说明该地上班族S中有小于32.5%的人自驾时,人均通勤时间是递减的;有大于32.5%的人自驾时,人均通勤时间是递增的;当自驾人数为32.5%时,人均通勤时间最少.【点评】本题考查了分段函数的应用问题,也考查了分类讨论与分析问题、解决问题的能力.20.(16分)(2018?上海)设常数t>2.在平面直角坐标系xOy中,已知点F(2,0),直线l:x=t,曲线Γ:y2=8x(0≤x≤t,y≥0).l与x轴交于点A、与Γ交于点B.P、Q分别是曲线Γ与线段AB上的动点.(1)用t表示点B到点F的距离;(2)设t=3,|FQ|=2,线段OQ的中点在直线FP上,求△AQP的面积;(3)设t=8,是否存在以FP、FQ为邻边的矩形FPEQ,使得点E在Γ上?若存在,求点P的坐标;若不存在,说明理由.【考点】KN:直线与抛物线的位置关系.【专题】35 :转化思想;4R:转化法;5D :圆锥曲线的定义、性质与方程.【分析】(1)方法一:设B点坐标,根据两点之间的距离公式,即可求得|BF|;方法二:根据抛物线的定义,即可求得|BF|;(2)根据抛物线的性质,求得Q点坐标,即可求得OD的中点坐标,即可求得直线PF的方程,代入抛物线方程,即可求得P点坐标,即可求得△AQP的面积;(3)设P及E点坐标,根据直线k PF?k FQ=﹣1,求得直线QF的方程,求得Q点坐标,根据+=,求得E点坐标,则()2=8(+6),即可求得P点坐标.【解答】解:(1)方法一:由题意可知:设B(t,2t),则|BF|==t+2,∴|BF|=t+2;方法二:由题意可知:设B(t,2t),由抛物线的性质可知:|BF|=t+=t+2,∴|BF|=t+2;(2)F(2,0),|FQ|=2,t=3,则|FA|=1,∴|AQ|=,∴Q(3,),设OQ的中点D,D(,),k QF==﹣,则直线PF方程:y=﹣(x﹣2),联立,整理得:3x2﹣20x+12=0,解得:x=,x=6(舍去),∴△AQP的面积S=××=;(3)存在,设P(,y),E(,m),则k PF==,k FQ=,直线QF方程为y=(x﹣2),∴y Q=(8﹣2)=,Q(8,),根据+=,则E(+6,),∴()2=8(+6),解得:y2=,∴存在以FP、FQ为邻边的矩形FPEQ,使得点E在Γ上,且P(,).【点评】本题考查抛物线的性质,直线与抛物线的位置关系,考查转化思想,计算能力,属于中档题.21.(18分)(2018?上海)给定无穷数列{a n},若无穷数列{b n}满足:对任意n ∈N*,都有|b n﹣a n|≤1,则称{b n}与{a n}“接近”.(1)设{a n}是首项为1,公比为的等比数列,b n=a n+1+1,n∈N*,判断数列{b n}是否与{a n}接近,并说明理由;(2)设数列{a n}的前四项为:a1=1,a2=2,a3=4,a4=8,{b n}是一个与{a n}接近的数列,记集合M={x|x=b i,i=1,2,3,4},求M中元素的个数m;(3)已知{a n}是公差为d的等差数列,若存在数列{b n}满足:{b n}与{a n}接近,且在b2﹣b1,b3﹣b2,…,b201﹣b200中至少有100个为正数,求d的取值范围.【考点】8M:等差数列与等比数列的综合.【专题】34 :方程思想;48 :分析法;54 :等差数列与等比数列.【分析】(1)运用等比数列的通项公式和新定义“接近”,即可判断;(2)由新定义可得a n﹣1≤b n≤a n+1,求得b i,i=1,2,3,4的范围,即可得到所求个数;(3)运用等差数列的通项公式可得a n,讨论公差d>0,d=0,﹣2<d<0,d≤﹣2,结合新定义“接近”,推理和运算,即可得到所求范围.【解答】解:(1)数列{b n}与{a n}接近.理由:{a n}是首项为1,公比为的等比数列,可得a n=,b n=a n+1+1=+1,则|b n﹣a n|=|+1﹣|=1﹣<1,n∈N*,可得数列{b n}与{a n}接近;(2){b n}是一个与{a n}接近的数列,可得a n﹣1≤b n≤a n+1,数列{a n}的前四项为:a1=1,a2=2,a3=4,a4=8,可得b1∈[0,2],b2∈[1,3],b3∈[3,5],b4∈[7,9],可能b1与b2相等,b2与b3相等,但b1与b3不相等,b4与b3不相等,集合M={x|x=b i,i=1,2,3,4},M中元素的个数m=3或4;(3){a n}是公差为d的等差数列,若存在数列{b n}满足:{b n}与{a n}接近,可得a n=a1+(n﹣1)d,①若d>0,取b n=a n,可得b n+1﹣b n=a n+1﹣a n=d>0,则b2﹣b1,b3﹣b2,…,b201﹣b200中有200个正数,符合题意;②若d=0,取b n=a1﹣,则|b n﹣a n|=|a1﹣﹣a1|=<1,n∈N*,可得b n+1﹣b n=﹣>0,则b2﹣b1,b3﹣b2,…,b201﹣b200中有200个正数,符合题意;③若﹣2<d<0,可令b2n﹣1=a2n﹣1﹣1,b2n=a2n+1,则b2n﹣b2n﹣1=a2n+1﹣(a2n﹣1﹣1)=2+d>0,则b2﹣b1,b3﹣b2,…,b201﹣b200中恰有100个正数,符合题意;④若d≤﹣2,若存在数列{b n}满足:{b n}与{a n}接近,即为a n﹣1≤b n≤a n+1,a n+1﹣1≤b n+1≤a n+1+1,可得b n+1﹣b n≤a n+1+1﹣(a n﹣1)=2+d≤0,b2﹣b1,b3﹣b2,…,b201﹣b200中无正数,不符合题意.综上可得,d的范围是(﹣2,+∞).【点评】本题考查新定义“接近”的理解和运用,考查等差数列和等比数列的定义和通项公式的运用,考查分类讨论思想方法,以及运算能力和推理能力,属于难题.感恩和爱是亲姐妹。
2018年普通高等学校招生全国统一考试(上海卷) 数学试题及详解
2018年普通高等学校招生全国统一考试上海 数学试卷一、填空题(本大题共有12题,满分54分第1-6题每题4分,第7-12题每题5分)1.行列式4125的值为 。
2.双曲线2214x y -=的渐近线方程为 。
3.在(1+x )7的二项展开式中,x ²项的系数为 。
(结果用数值表示)4.设常数a R ∈,函数f x x a =+()㏒₂(),若f x ()的反函数的图像经过点31(,),则a= 。
5.已知复数z 满足117i z i +=-()(i 是虚数单位),则∣z ∣= 。
6.记等差数列{} n a 的前几项和为S n ,若87014a a a =+=₃,,则S 7= 。
7.已知21123α∈---{,,,,,,},若幂函数()n f x x =为奇函数,且在0+∞(,)上速减,则α=_____8.在平面直角坐标系中,已知点A (-1,0),B (2,0),E ,F 是y 轴上的两个动点,且|EF |=2,则AE ·BF 的最小值为______9.有编号互不相同的五个砝码,其中5克、3克、1克砝码各一个,2克砝码两个,从中随机选取三个,则这三个砝码的总质量为9克的概率是______(结果用最简分数表示)10.设等比数列{a n }的通项公式为a n =q ⁿ+1(n ∈N *),前n 项和为S n 。
若1Sn 1lim2n n a →∞+=,则q=____________11.已知常数a >0,函数222()(2)f x ax =+的图像经过点65p p ⎛⎫⎪⎝⎭,、15Q q ⎛⎫- ⎪⎝⎭,,若236p q pq +=,则a=__________12.已知实数x ₁、x ₂、y ₁、y ₂满足:²²1x y +=₁₁,²²1x y +=₂₂,212x x y y +=₁₂₁,则的最大值为__________二、选择题(本大题共有4题,满分20分,每题5分)每题有且只有一个正确选项.考生应在答题纸的相应位置,将代表正确选项的小方格涂黑.13.设P 是椭圆 ²5x +²3y =1上的动点,则P 到该椭圆的两个焦点的距离之和为( )(A )2√2 (B )2√3 (C )2√5 (D )4√214.已知a R ∈,则“1a ﹥”是“1a1﹤”的( )(A )充分非必要条件 (B )必要非充分条件(C)充要条件(D)既非充分又非必要条件15.《九章算术》中,称底面为矩形而有一侧棱垂直于底面的四棱锥为阳马.设AA₁是正六棱柱的一条侧棱,如图,若阳马以该正六棱柱的顶点为顶点,以AA₁为底面矩形的一边,则这样的阳马的个数是()(A)4 (B)8(C)12 (D)1616.设D是含数1的有限实数集,f x()是定义在D上的函数,若f x()的图像绕原点逆时针旋转π6后与原图像重合,则在以下各项中,1f()的可能取值只能是()(A)3(B)3(C)3(D)0三、解答题(本大题共有5题,满分76分)解答下列各题必须在答题纸的相应位置写出必要的步骤.17.(本题满分14分,第1小题满分6分,第2小题满分8分)已知圆锥的顶点为P,底面圆心为O,半径为2(1)设圆锥的母线长为4,求圆锥的体积;(2)设PO=4,OA,OB是底面半径,且∠AOB=90°,M为线段AB的中点,如图,求异面直线PM与OB所成的角的大小.18.(本题满分14分,第1小题满分6分,第2小题满分8分)设常数a R ∈,函数f x ()22?asin x cos x =+ (1)若f x ()为偶函数,求a 的值; (2)若4f π〔〕1=,求方程1f x =()ππ-[,]上的解。
2018年上海市高考数学试题答案(word、精校、详细解析版)
2018年上海市高考数学试题(详细解析版)1.解:行列式=4×5﹣2×1=18.故答案为:18.2.解:∵双曲线的a=2,b=1,焦点在x轴上而双曲线的渐近线方程为y=±∴双曲线的渐近线方程为y=±故答案为:y=±3.解:二项式(1+x)7展开式的通项公式为T r+1=•x r,令r=2,得展开式中x2的系数为=21.故答案为:21.4.解:∵常数a∈R,函数f(x)=1og2(x+a).f(x)的反函数的图象经过点(3,1),∴函数f(x)=1og2(x+a)的图象经过点(1,3),∴log2(1+a)=3,解得a=7.故答案为:7.5.解:由(1+i)z=1﹣7i,得,则|z|=.故答案为:5.6.解:∵等差数列{a n}的前n项和为S n,a3=0,a6+a7=14,∴,解得a1=﹣4,d=2,∴S7=7a1+=﹣28+42=14.故答案为:14.7.解:∵α∈{﹣2,﹣1,,1,2,3},幂函数f(x)=xα为奇函数,且在(0,+∞)上递减,∴a是奇数,且a<0,∴a=﹣1.故答案为:﹣1.8.解:根据题意,设E(0,a),F(0,b);∴;∴a=b+2,或b=a+2;且;∴;当a=b+2时,;∵b2+2b﹣2的最小值为;∴的最小值为﹣3,同理求出b=a+2时,的最小值为﹣3.故答案为:﹣3.9.解:编号互不相同的五个砝码,其中5克、3克、1克砝码各一个,2克砝码两个,从中随机选取三个,3个数中含有1个2;2个2,没有2,3种情况,所有的事件总数为:=10,这三个砝码的总质量为9克的事件只有:5,3,1或5,2,2两个,所以:这三个砝码的总质量为9克的概率是:=,故答案为:.10.解:等比数列{a n}的通项公式为a=q n﹣1(n∈N*),可得a1=1,因为=,所以数列的公比不是1,,a n+1=q n.可得====,可得q=3.故答案为:3.11.解:函数f(x)=的图象经过点P(p,),Q(q,).则:,整理得:=1,解得:2p+q=a2pq,由于:2p+q=36pq,所以:a2=36,由于a>0,故:a=6.故答案为:612.解:设A(x1,y1),B(x2,y2),=(x1,y1),=(x2,y2),由x12+y12=1,x22+y22=1,x1x2+y1y2=,可得A,B两点在圆x2+y2=1上,且•=1×1×cos∠AOB=,即有∠AOB=60°,即三角形OAB为等边三角形,AB=1,+的几何意义为点A,B两点到直线x+y﹣1=0的距离d1与d2之和,显然d1+d2≤AB=1,即+的最大值为1,故答案为:1.13.解:椭圆=1的焦点坐标在x轴,a=,P是椭圆=1上的动点,由椭圆的定义可知:则P到该椭圆的两个焦点的距离之和为2a=2.故选:C.14.解:a∈R,则“a>1”⇒“”,“”⇒“a>1或a<0”,∴“a>1”是“”的充分非必要条件.故选:A.15.解:根据正六边形的性质可得D1F1⊥A1F1,C1A1⊥A1F1,D1B1⊥A1B1,E1A1⊥A1B1,则D1﹣A1ABB1,D1﹣A1AFF1满足题意,而C1,E1,C,D,E和D1一样,故有2×6=12,故选:C.16.解:设D是含数1的有限实数集,f(x)是定义在D上的函数,若f(x)的图象绕原点逆时针旋转后与原图象重合,故f(1)=cos=,故选:B.17.解:(1)∵圆锥的顶点为P,底面圆心为O,半径为2,圆锥的母线长为4,∴圆锥的体积V===.(2)∵PO=4,OA,OB是底面半径,且∠AOB=90°,M为线段AB的中点,∴以O为原点,OA为x轴,OB为y轴,OP为z轴,建立空间直角坐标系,P(0,0,4),A(2,0,0),B(0,2,0),M(1,1,0),O(0,0,0),=(1,1,﹣4),=(0,2,0),设异面直线PM与OB所成的角为θ,则cosθ===.∴θ=arccos.∴异面直线PM与OB所成的角的为arccos.18.解:(1)∵f(x)=asin2x+2cos2x,∴f(﹣x)=﹣asin2x+2cos2x,∵f(x)为偶函数,∴f(﹣x)=f(x),∴﹣asin2x+2cos2x=asin2x+2cos2x,∴2asin2x=0,∴a=0;(2)∵f()=+1,∴asin+2cos2()=a+1=+1,∴a=,∴f(x)=sin2x+2cos2x=sin2x+cos2x+1=2sin(x+)+1,∵f(x)=1﹣,∴2sin(x+)+1=1﹣,∴sin(x+)=﹣,∴x+=﹣+2kπ,或x+=π+2kπ,k∈Z,∴x=﹣π+2kπ,或x=π+2kπ,k∈Z,∵x∈[﹣π,π],∴x=或x=π.19.解(1)由题意知,当30<x<100时,f(x)=2x+﹣90>40,即x2﹣65x+900>0,解得x<20或x>45,∴x∈(45,100)时,公交群体的人均通勤时间少于自驾群体的人均通勤时间;(2)当0<x≤30时,g(x)=30•x%+40(1﹣x%)=40﹣;当30<x<100时,g(x)=(2x+﹣90)•x%+40(1﹣x%)=﹣x+58;∴g(x)=;当0<x<32.5时,g(x)单调递减;当32.5<x<100时,g(x)单调递增;说明该地上班族S中有小于32.5%的人自驾时,人均通勤时间是递减的;有大于32.5%的人自驾时,人均通勤时间是递增的;当自驾人数为32.5%时,人均通勤时间最少.20.解:(1)方法一:由题意可知:设B(t,2t),则|BF|==t+2,∴|BF|=t+2;方法二:由题意可知:设B(t,2t),由抛物线的性质可知:|BF|=t+=t+2,∴|BF|=t+2;(2)F(2,0),|FQ|=2,t=3,则|FA|=1,∴|AQ|=,∴Q(3,),设OQ的中点D,D(,),k QF==﹣,则直线PF方程:y=﹣(x﹣2),联立,整理得:3x2﹣20x+12=0,解得:x=,x=6(舍去),∴△AQP的面积S=××=;(3)存在,设P(,y),E(,m),则k PF==,k FQ=,直线QF方程为y=(x﹣2),∴y Q=(8﹣2)=,Q(8,),根据+=,则E(+6,),∴()2=8(+6),解得:y2=,∴存在以FP、FQ为邻边的矩形FPEQ,使得点E在Γ上,且P(,).21.解:(1)数列{b n}与{a n}接近.理由:{a n}是首项为1,公比为的等比数列,可得a n=,b n=a n+1+1=+1,则|b n﹣a n|=|+1﹣|=1﹣<1,n∈N*,可得数列{b n}与{a n}接近;(2){b n}是一个与{a n}接近的数列,可得a n﹣1≤b n≤a n+1,数列{a n}的前四项为:a1=1,a2=2,a3=4,a4=8,可得b1∈[0,2],b2∈[1,3],b3∈[3,5],b4∈[7,9],可能b1与b2相等,b2与b3相等,但b1与b3不相等,b4与b3不相等,集合M={x|x=b i,i=1,2,3,4},M中元素的个数m=3或4;(3){a n}是公差为d的等差数列,若存在数列{b n}满足:{b n}与{a n}接近,可得a n=a1+(n﹣1)d,①若d>0,取b n=a n,可得b n+1﹣b n=a n+1﹣a n=d>0,则b2﹣b1,b3﹣b2,…,b201﹣b200中有200个正数,符合题意;②若d=0,取b n=a1﹣,则|b n﹣a n|=|a1﹣﹣a1|=<1,n∈N*,可得b n+1﹣b n=﹣>0,则b2﹣b1,b3﹣b2,…,b201﹣b200中有200个正数,符合题意;③若﹣2<d<0,可令b2n﹣1=a2n﹣1﹣1,b2n=a2n+1,则b2n﹣b2n﹣1=a2n+1﹣(a2n﹣1﹣1)=2+d>0,则b2﹣b1,b3﹣b2,…,b201﹣b200中恰有100个正数,符合题意;④若d≤﹣2,若存在数列{b n}满足:{b n}与{a n}接近,即为a n﹣1≤b n≤a n+1,a n+1﹣1≤b n+1≤a n+1+1,可得b n+1﹣b n≤a n+1+1﹣(a n﹣1)=2+d≤0,b2﹣b1,b3﹣b2,…,b201﹣b200中无正数,不符合题意.综上可得,d的范围是(﹣2,+∞).。
2018年上海高考数学试卷(参考答案)
2018年普通高等学校招生全国统一考试上海 数学试卷一、填空题(本大题共有12题,满分54分,第1~6题每题4分,第7~12题每题5分)1.行列式4125的值为_________. 2.双曲线2214x y -=的渐近线方程为_________. 3.在7(1)x +的二项展开式中,2x 项的系数为_________.(结果用数值表示) 4.设常数a R ∈,函数2()log ()f x x a =+。
若()f x 的反函数的图像经过点(3,1),则a =_________.5.已知复数z 满足(1)17i z i +=-(i 是虚数单位),则z =_________.6.记等差数列{}n a 的前n 项和为n S ,若30a =,6714a a +=,则7S =_________.7.已知12,1,,1,2,32α⎧⎫∈---⎨⎬⎩⎭。
若幂函数()f x x α=为奇函数,且在(0,)+∞上递减,则 α=_________.8.在平面直角坐标系中,已知点(1,0)A -,(2,0)B ,E 、F 是y 轴上的两个动点,且2EF =,则AE BF ⋅的最小值为_________.9.有编号互不相同的五个砝码,其中5克、3克、1克砝码各一个,2克砝码两个。
从中随机选取三个,则这三个砝码的总质量为9克的概率是_________.(结果用最简分数表示)10.设等比数列{}n a 的通项公式为1n n a q-=(*n ∈N ),前n 项和为n S 。
若11lim2n n n S a →+∞+=,则q =_________.11.已知常数0a >,函数2()2x x f x ax =+的图像经过点6,5P p ⎛⎫ ⎪⎝⎭、1,5Q q ⎛⎫- ⎪⎝⎭。
若236p q pq +=,则a =_________.12.已知实数1x 、2x 、1y 、2y 满足:22111x y +=,22221x y +=,121212x x y y +=,则的最大值为_________.二、选择题(本大题共有4题,满分20分,每题5分)13.设P 是椭圆22153x y +=上的动点,则P 到该椭圆的两个焦点的距离之和为( ) (A) (B) (C) (D)14.已知a ∈R ,则“1a >”是“11a<”的( ) (A )充分非必要条件 (B )必要非充分条件 (C )充要条件 (D )既非充分又非必要条件 15.《九章算术》中,称底面为矩形而有一侧棱垂直于底面的四棱锥为阳马。
2018年上海高考数学真题和答案
2018年上海市高考数学试卷参考答案与试题解析一、填空题(本大题共有12题,满分54分,第1~6题每题4分,第7~12题每题5分)考生应在答题纸的相应位置直接填写结果.1.(4分)(2018上海)行列式的值为18.【考点】OM:二阶行列式的定义.【专题】11 :计算题;49 :综合法;5R :矩阵和变换.【分析】直接利用行列式的定义,计算求解即可.【解答】解:行列式=4×5﹣2×1=18.故答案为:18.【点评】本题考查行列式的定义,运算法则的应用,是基本知识的考查.2.(4分)(2018•上海)双曲线﹣y2=1的渐近线方程为±.【考点】KC:双曲线的性质.【专题】11 :计算题.【分析】先确定双曲线的焦点所在坐标轴,再确定双曲线的实轴长和虚轴长,最后确定双曲线的渐近线方程.【解答】解:∵双曲线的a=2,b=1,焦点在x轴上而双曲线的渐近线方程为y=±∴双曲线的渐近线方程为y=±故答案为:y=±【点评】本题考察了双曲线的标准方程,双曲线的几何意义,特别是双曲线的渐近线方程,解题时要注意先定位,再定量的解题思想3.(4分)(2018•上海)在(1+x)7的二项展开式中,x2项的系数为21(结果用数值表示).【考点】DA:二项式定理.【专题】38 :对应思想;4O:定义法;5P :二项式定理.【分析】利用二项式展开式的通项公式求得展开式中x2的系数.【解答】解:二项式(1+x)7展开式的通项公式为T r+1=•x r,令r=2,得展开式中x2的系数为=21.故答案为:21.【点评】本题考查了二项展开式的通项公式的应用问题,是基础题.4.(4分)(2018•上海)设常数a∈R,函数f(x)=1og2(x+a).若f(x)的反函数的图象经过点(3,1),则a=7.【考点】4R:反函数.【专题】11 :计算题;33 :函数思想;4O:定义法;51 :函数的性质及应用.【分析】由反函数的性质得函数f(x)=1og2(x+a)的图象经过点(1,3),由此能求出a.【解答】解:∵常数a∈R,函数f(x)=1og2(x+a).f(x)的反函数的图象经过点(3,1),∴函数f(x)=1og2(x+a)的图象经过点(1,3),∴log2(1+a)=3,解得a=7.故答案为:7.【点评】本题考查实数值的求法,考查函数的性质等基础知识,考查运算求解能力,考查函数与方程思想,是基础题.5.(4分)(2018•上海)已知复数z满足(1+i)z=1﹣7i(i是虚数单位),则|z|= 5.【考点】A8:复数的模.【专题】38 :对应思想;4A :数学模型法;5N :数系的扩充和复数.【分析】把已知等式变形,然后利用复数代数形式的乘除运算化简,再由复数求模公式计算得答案.【解答】解:由(1+i)z=1﹣7i,得,则|z|=.故答案为:5.【点评】本题考查了复数代数形式的乘除运算,考查了复数模的求法,是基础题.6.(4分)(2018•上海)记等差数列{a n}的前n项和为S n,若a3=0,a6+a7=14,则S7=14.【考点】85:等差数列的前n项和.【专题】11 :计算题;34 :方程思想;4O:定义法;54 :等差数列与等比数列.【分析】利用等差数列通项公式列出方程组,求出a1=﹣4,d=2,由此能求出S7.【解答】解:∵等差数列{a n}的前n项和为S n,a3=0,a6+a7=14,∴,解得a1=﹣4,d=2,∴S7=7a1+=﹣28+42=14.故答案为:14.【点评】本题考查等差数列的前7项和的求法,考查等差数列的性质等基础知识,考查运算求解能力,考查函数与方程思想,是基础题.7.(5分)(2018•上海)已知α∈{﹣2,﹣1,﹣,1,2,3},若幂函数f (x)=xα为奇函数,且在(0,+∞)上递减,则α=﹣1.【考点】4U:幂函数的概念、解析式、定义域、值域.【专题】11 :计算题;34 :方程思想;4O:定义法;51 :函数的性质及应用.【分析】由幂函数f(x)=xα为奇函数,且在(0,+∞)上递减,得到a是奇数,且a<0,由此能求出a的值.【解答】解:∵α∈{﹣2,﹣1,,1,2,3},幂函数f(x)=xα为奇函数,且在(0,+∞)上递减,∴a是奇数,且a<0,∴a=﹣1.故答案为:﹣1.【点评】本题考查实数值的求法,考查幂函数的性质等基础知识,考查运算求解能力,考查函数与方程思想,是基础题.8.(5分)(2018•上海)在平面直角坐标系中,已知点A(﹣1,0)、B(2,0),E、F是y轴上的两个动点,且||=2,则的最小值为﹣3.【考点】9O:平面向量数量积的性质及其运算.【专题】11 :计算题;35 :转化思想;41 :向量法;5A :平面向量及应用.【分析】据题意可设E(0,a),F(0,b),从而得出|a﹣b|=2,即a=b+2,或b=a+2,并可求得,将a=b+2带入上式即可求出的最小值,同理将b=a+2带入,也可求出的最小值.【解答】解:根据题意,设E(0,a),F(0,b);∴;∴a=b+2,或b=a+2;且;∴;当a=b+2时,;∵b2+2b﹣2的最小值为;∴的最小值为﹣3,同理求出b=a+2时,的最小值为﹣3.故答案为:﹣3.【点评】考查根据点的坐标求两点间的距离,根据点的坐标求向量的坐标,以及向量坐标的数量积运算,二次函数求最值的公式.9.(5分)(2018•上海)有编号互不相同的五个砝码,其中5克、3克、1克砝码各一个,2克砝码两个,从中随机选取三个,则这三个砝码的总质量为9克的概率是(结果用最简分数表示).【考点】CB:古典概型及其概率计算公式.【专题】11 :计算题;34 :方程思想;49 :综合法;5I :概率与统计.【分析】求出所有事件的总数,求出三个砝码的总质量为9克的事件总数,然后求解概率即可.【解答】解:编号互不相同的五个砝码,其中5克、3克、1克砝码各一个,2克砝码两个,从中随机选取三个,3个数中含有1个2;2个2,没有2,3种情况,所有的事件总数为:=10,这三个砝码的总质量为9克的事件只有:5,3,1或5,2,2两个,所以:这三个砝码的总质量为9克的概率是:=,故答案为:.【点评】本题考查古典概型的概率的求法,是基本知识的考查.10.(5分)(2018•上海)设等比数列{a n}的通项公式为a n=q n﹣1(n∈N*),前n 项和为S n.若=,则q=3.【考点】8J:数列的极限.【专题】11 :计算题;34 :方程思想;35 :转化思想;49 :综合法;55 :点列、递归数列与数学归纳法.【分析】利用等比数列的通项公式求出首项,通过数列的极限,列出方程,求解公比即可.【解答】解:等比数列{a n}的通项公式为a=q n﹣1(n∈N*),可得a1=1,因为=,所以数列的公比不是1,,a n+1=q n.可得====,可得q=3.故答案为:3.【点评】本题考查数列的极限的运算法则的应用,等比数列求和以及等比数列的简单性质的应用,是基本知识的考查.11.(5分)(2018•上海)已知常数a>0,函数f(x)=的图象经过点P(p,),Q(q,).若2p+q=36pq,则a=6.【考点】3A:函数的图象与图象的变换.【专题】35 :转化思想;51 :函数的性质及应用.【分析】直接利用函数的关系式,利用恒等变换求出相应的a值.【解答】解:函数f(x)=的图象经过点P(p,),Q(q,).则:,整理得:=1,解得:2p+q=a2pq,由于:2p+q=36pq,所以:a2=36,由于a>0,故:a=6.故答案为:6【点评】本题考查的知识要点:函数的性质的应用,代数式的变换问题的应用.12.(5分)(2018•上海)已知实数x1、x2、y1、y2满足:x12+y12=1,x22+y22=1,x1x2+y1y2=,则+的最大值为+.【考点】7F:基本不等式及其应用;IT:点到直线的距离公式.【专题】35 :转化思想;48 :分析法;59 :不等式的解法及应用.【分析】设A(x1,y1),B(x2,y2),=(x1,y1),=(x2,y2),由圆的方程和向量数量积的定义、坐标表示,可得三角形OAB为等边三角形,AB=1,+的几何意义为点A,B两点到直线x+y﹣1=0的距离d1与d2之和,由两平行线的距离可得所求最大值.【解答】解:设A(x1,y1),B(x2,y2),=(x1,y1),=(x2,y2),由x12+y12=1,x22+y22=1,x1x2+y1y2=,可得A,B两点在圆x2+y2=1上,且•=1×1×cos∠AOB=,即有∠AOB=60°,即三角形OAB为等边三角形,AB=1,+的几何意义为点A,B两点到直线x+y﹣1=0的距离d1与d2之和,显然A,B在第三象限,AB所在直线与直线x+y=1平行,可设AB:x+y+t=0,(t>0),由圆心O到直线AB的距离d=,可得2=1,解得t=,即有两平行线的距离为=,即+的最大值为+,故答案为:+.【点评】本题考查向量数量积的坐标表示和定义,以及圆的方程和运用,考查点与圆的位置关系,运用点到直线的距离公式是解题的关键,属于难题.二、选择题(本大题共有4题,满分20分,每题5分)每题有且只有一个正确选项.考生应在答题纸的相应位置,将代表正确选项的小方格涂黑.13.(5分)(2018•上海)设P是椭圆=1上的动点,则P到该椭圆的两个焦点的距离之和为()A.2 B.2 C.2 D.4【考点】K4:椭圆的性质.【专题】11 :计算题;49 :综合法;5D :圆锥曲线的定义、性质与方程.【分析】判断椭圆长轴(焦点坐标)所在的轴,求出a,接利用椭圆的定义,转化求解即可.【解答】解:椭圆=1的焦点坐标在x轴,a=,P是椭圆=1上的动点,由椭圆的定义可知:则P到该椭圆的两个焦点的距离之和为2a=2.故选:C.【点评】本题考查椭圆的简单性质的应用,椭圆的定义的应用,是基本知识的考查.14.(5分)(2018•上海)已知a∈R,则“a>1”是“<1”的()A.充分非必要条件 B.必要非充分条件C.充要条件D.既非充分又非必要条件【考点】29:充分条件、必要条件、充要条件.【专题】11 :计算题;34 :方程思想;4O:定义法;5L :简易逻辑.【分析】“a>1”⇒“”,“”⇒“a>1或a<0”,由此能求出结果.【解答】解:a∈R,则“a>1”⇒“”,“”⇒“a>1或a<0”,∴“a>1”是“”的充分非必要条件.故选:A.【点评】本题考查充分条件、必要条件的判断,考查不等式的性质等基础知识,考查运算求解能力,考查函数与方程思想,是基础题.15.(5分)(2018•上海)《九章算术》中,称底面为矩形而有一侧棱垂直于底面的四棱锥为阳马,设AA1是正六棱柱的一条侧棱,如图,若阳马以该正六棱柱的顶点为顶点、以AA1为底面矩形的一边,则这样的阳马的个数是()A.4 B.8 C.12 D.16【考点】D8:排列、组合的实际应用.【专题】11 :计算题;38 :对应思想;4R:转化法;5O :排列组合.【分析】根据新定义和正六边形的性质可得答案.【解答】解:根据正六边形的性质,则D1﹣A1ABB1,D1﹣A1AFF1满足题意,而C1,E1,C,D,E,和D1一样,有2×6=12,当A1ACC1为底面矩形,有2个满足题意,当A1AEE1为底面矩形,有2个满足题意,故有12+2+2=16故选:D.【点评】本题考查了新定义,以及排除组合的问题,考查了棱柱的特征,属于中档题.16.(5分)(2018•上海)设D是含数1的有限实数集,f(x)是定义在D上的函数,若f(x)的图象绕原点逆时针旋转后与原图象重合,则在以下各项中,f (1)的可能取值只能是()A. B. C. D.0【考点】3A:函数的图象与图象的变换.【专题】35 :转化思想;51 :函数的性质及应用;56 :三角函数的求值.【分析】直接利用定义函数的应用求出结果.【解答】解:由题意得到:问题相当于圆上由12个点为一组,每次绕原点逆时针旋转个单位后与下一个点会重合.我们可以通过代入和赋值的方法当f(1)=,,0时,此时得到的圆心角为,,0,然而此时x=0或者x=1时,都有2个y与之对应,而我们知道函数的定义就是要求一个x只能对应一个y,因此只有当x=,此时旋转,此时满足一个x只会对应一个y,因此答案就选:B.故选:B.【点评】本题考查的知识要点:定义性函数的应用.三、解答题(本大题共有5题,满分76分)解答下列各题必须在答题纸的相应位置写出必要的步骤.17.(14分)(2018•上海)已知圆锥的顶点为P,底面圆心为O,半径为2.(1)设圆锥的母线长为4,求圆锥的体积;(2)设PO=4,OA、OB是底面半径,且∠AOB=90°,M为线段AB的中点,如图.求异面直线PM与OB所成的角的大小.【考点】LM:异面直线及其所成的角;L5:旋转体(圆柱、圆锥、圆台);LF:棱柱、棱锥、棱台的体积.【专题】11 :计算题;31 :数形结合;41 :向量法;5F :空间位置关系与距离;5G :空间角.【分析】(1)由圆锥的顶点为P,底面圆心为O,半径为2,圆锥的母线长为4能求出圆锥的体积.(2)以O为原点,OA为x轴,OB为y轴,OP为z轴,建立空间直角坐标系,利用向量法能求出异面直线PM与OB所成的角.【解答】解:(1)∵圆锥的顶点为P,底面圆心为O,半径为2,圆锥的母线长为4,∴圆锥的体积V===.(2)∵PO=4,OA,OB是底面半径,且∠AOB=90°,M为线段AB的中点,∴以O为原点,OA为x轴,OB为y轴,OP为z轴,建立空间直角坐标系,P(0,0,4),A(2,0,0),B(0,2,0),M(1,1,0),O(0,0,0),=(1,1,﹣4),=(0,2,0),设异面直线PM与OB所成的角为θ,则cosθ===.∴θ=arccos.∴异面直线PM与OB所成的角的为arccos.【点评】本题考查圆锥的体积的求法,考查异面直线所成角的正切值的求法,考查空间中线线、线面、面面间的位置关系等基础知识,考查运算求解能力,考查函数与方程思想,是基础题.18.(14分)(2018•上海)设常数a∈R,函数f(x)=asin2x+2cos2x.(1)若f(x)为偶函数,求a的值;(2)若f()=+1,求方程f(x)=1﹣在区间[﹣π,π]上的解.【考点】GP:两角和与差的三角函数;GS:二倍角的三角函数.【专题】11 :计算题;38 :对应思想;4R:转化法;58 :解三角形.【分析】(1)根据函数的奇偶性和三角形的函数的性质即可求出,(2)先求出a的值,再根据三角形函数的性质即可求出.【解答】解:(1)∵f(x)=asin2x+2cos2x,∴f(﹣x)=﹣asin2x+2cos2x,∵f(x)为偶函数,∴f(﹣x)=f(x),∴﹣asin2x+2cos2x=asin2x+2cos2x,∴2asin2x=0,∴a=0;(2)∵f()=+1,∴asin+2cos2()=a+1=+1,∴a=,∴f(x)=sin2x+2cos2x=sin2x+cos2x+1=2sin(2x+)+1,∵f(x)=1﹣,∴2sin(2x+)+1=1﹣,∴sin(2x+)=﹣,∴2x+=﹣+2kπ,或2x+=π+2kπ,k∈Z,∴x=﹣π+kπ,或x=π+kπ,k∈Z,∵x∈[﹣π,π],∴x=或x=或x=﹣或x=﹣【点评】本题考查了三角函数的化简和求值,以及三角函数的性质,属于基础题.19.(14分)(2018•上海)某群体的人均通勤时间,是指单日内该群体中成员从居住地到工作地的平均用时.某地上班族S中的成员仅以自驾或公交方式通勤.分析显示:当S中x%(0<x<100)的成员自驾时,自驾群体的人均通勤时间为f(x)=(单位:分钟),而公交群体的人均通勤时间不受x影响,恒为40分钟,试根据上述分析结果回答下列问题:(1)当x在什么范围内时,公交群体的人均通勤时间少于自驾群体的人均通勤时间(2)求该地上班族S的人均通勤时间g(x)的表达式;讨论g(x)的单调性,并说明其实际意义.【考点】5B:分段函数的应用.【专题】12 :应用题;33 :函数思想;4C :分类法;51 :函数的性质及应用.【分析】(1)由题意知求出f(x)>40时x的取值范围即可;(2)分段求出g(x)的解析式,判断g(x)的单调性,再说明其实际意义.【解答】解;(1)由题意知,当30<x<100时,f(x)=2x+﹣90>40,即x2﹣65x+900>0,解得x<20或x>45,∴x∈(45,100)时,公交群体的人均通勤时间少于自驾群体的人均通勤时间;(2)当0<x≤30时,g(x)=30•x%+40(1﹣x%)=40﹣;当30<x<100时,g(x)=(2x+﹣90)•x%+40(1﹣x%)=﹣x+58;∴g(x)=;当0<x<时,g(x)单调递减;当<x<100时,g(x)单调递增;说明该地上班族S中有小于%的人自驾时,人均通勤时间是递减的;有大于%的人自驾时,人均通勤时间是递增的;当自驾人数为%时,人均通勤时间最少.【点评】本题考查了分段函数的应用问题,也考查了分类讨论与分析问题、解决问题的能力.20.(16分)(2018•上海)设常数t>2.在平面直角坐标系xOy中,已知点F(2,0),直线l:x=t,曲线Γ:y2=8x(0≤x≤t,y≥0).l与x轴交于点A、与Γ交于点B.P、Q分别是曲线Γ与线段AB上的动点.(1)用t表示点B到点F的距离;(2)设t=3,|FQ|=2,线段OQ的中点在直线FP上,求△AQP的面积;(3)设t=8,是否存在以FP、FQ为邻边的矩形FPEQ,使得点E在Γ上若存在,求点P的坐标;若不存在,说明理由.【考点】KN:直线与抛物线的位置关系.【专题】35 :转化思想;4R:转化法;5D :圆锥曲线的定义、性质与方程.【分析】(1)方法一:设B点坐标,根据两点之间的距离公式,即可求得|BF|;方法二:根据抛物线的定义,即可求得|BF|;(2)根据抛物线的性质,求得Q点坐标,即可求得OD的中点坐标,即可求得直线PF的方程,代入抛物线方程,即可求得P点坐标,即可求得△AQP的面积;(3)设P及E点坐标,根据直线k PF•k FQ=﹣1,求得直线QF的方程,求得Q点坐标,根据+=,求得E点坐标,则()2=8(+6),即可求得P点坐标.【解答】解:(1)方法一:由题意可知:设B(t,2t),则|BF|==t+2,∴|BF|=t+2;方法二:由题意可知:设B(t,2t),由抛物线的性质可知:|BF|=t+=t+2,∴|BF|=t+2;(2)F(2,0),|FQ|=2,t=3,则|FA|=1,∴|AQ|=,∴Q(3,),设OQ的中点D,D(,),k QF==﹣,则直线PF方程:y=﹣(x﹣2),联立,整理得:3x2﹣20x+12=0,解得:x=,x=6(舍去),∴△AQP的面积S=××=;(3)存在,设P(,y),E(,m),则k PF==,k FQ=,直线QF方程为y=(x﹣2),∴y Q=(8﹣2)=,Q(8,),根据+=,则E(+6,),∴()2=8(+6),解得:y2=,∴存在以FP、FQ为邻边的矩形FPEQ,使得点E在Γ上,且P(,).【点评】本题考查抛物线的性质,直线与抛物线的位置关系,考查转化思想,计算能力,属于中档题.21.(18分)(2018•上海)给定无穷数列{a n},若无穷数列{b n}满足:对任意n∈N*,都有|b n﹣a n|≤1,则称{b n}与{a n}“接近”.(1)设{a n}是首项为1,公比为的等比数列,b n=a n+1+1,n∈N*,判断数列{b n}是否与{a n}接近,并说明理由;(2)设数列{a n}的前四项为:a1=1,a2=2,a3=4,a4=8,{b n}是一个与{a n}接近的数列,记集合M={x|x=b i,i=1,2,3,4},求M中元素的个数m;(3)已知{a n}是公差为d的等差数列,若存在数列{b n}满足:{b n}与{a n}接近,且在b2﹣b1,b3﹣b2,…,b201﹣b200中至少有100个为正数,求d的取值范围.【考点】8M:等差数列与等比数列的综合.【专题】34 :方程思想;48 :分析法;54 :等差数列与等比数列.【分析】(1)运用等比数列的通项公式和新定义“接近”,即可判断;(2)由新定义可得a n﹣1≤b n≤a n+1,求得b i,i=1,2,3,4的范围,即可得到所求个数;(3)运用等差数列的通项公式可得a n,讨论公差d>0,d=0,﹣2<d<0,d≤﹣2,结合新定义“接近”,推理和运算,即可得到所求范围.【解答】解:(1)数列{b n}与{a n}接近.理由:{a n}是首项为1,公比为的等比数列,可得a n=,b n=a n+1+1=+1,则|b n﹣a n|=|+1﹣|=1﹣<1,n∈N*,可得数列{b n}与{a n}接近;(2){b n}是一个与{a n}接近的数列,可得a n﹣1≤b n≤a n+1,数列{a n}的前四项为:a1=1,a2=2,a3=4,a4=8,可得b1∈[0,2],b2∈[1,3],b3∈[3,5],b4∈[7,9],可能b1与b2相等,b2与b3相等,但b1与b3不相等,b4与b3不相等,集合M={x|x=b i,i=1,2,3,4},M中元素的个数m=3或4;(3){a n}是公差为d的等差数列,若存在数列{b n}满足:{b n}与{a n}接近,可得a n=a1+(n﹣1)d,①若d>0,取b n=a n,可得b n+1﹣b n=a n+1﹣a n=d>0,则b2﹣b1,b3﹣b2,…,b201﹣b200中有200个正数,符合题意;②若d=0,取b n=a1﹣,则|b n﹣a n|=|a1﹣﹣a1|=<1,n∈N*,可得b n+1﹣b n=﹣>0,则b2﹣b1,b3﹣b2,…,b201﹣b200中有200个正数,符合题意;=a2n﹣1﹣1,b2n=a2n+1,③若﹣2<d<0,可令b2n﹣1则b2n﹣b2n﹣1=a2n+1﹣(a2n﹣1﹣1)=2+d>0,则b2﹣b1,b3﹣b2,…,b201﹣b200中恰有100个正数,符合题意;④若d≤﹣2,若存在数列{b n}满足:{b n}与{a n}接近,即为a n﹣1≤b n≤a n+1,a n+1﹣1≤b n+1≤a n+1+1,可得b n+1﹣b n≤a n+1+1﹣(a n﹣1)=2+d≤0,b2﹣b1,b3﹣b2,…,b201﹣b200中无正数,不符合题意.综上可得,d的范围是(﹣2,+∞).【点评】本题考查新定义“接近”的理解和运用,考查等差数列和等比数列的定义和通项公式的运用,考查分类讨论思想方法,以及运算能力和推理能力,属于难题.感恩和爱是亲姐妹。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2018年高考数学真题试卷(上海卷)一、填空题1.(2018•上海)行列式4125的值为 。
【答案】18 【解析】【解答】4125=45-21=18 【分析】a cb d=ad-bc 交叉相乘再相减。
【题型】填空题 【考查类型】中考真题 【试题级别】高三 【试题地区】上海【试题来源】2018年高考数学真题试卷(上海卷) 2.(2018•上海)双曲线2214x y -=的渐近线方程为 。
【答案】12y x =±【解析】【解答】2214x y -=,a=2,b=1。
故渐近线方程为12y x =± 【分析】渐近线方程公式。
注意易错点焦点在x 轴上,渐近线直线方程为22221x y b a -=时,by x a=±。
【题型】填空题 【考查类型】中考真题 【试题级别】高三 【试题地区】上海【试题来源】2018年高考数学真题试卷(上海卷)3.(2018•上海)在(1+x )7的二项展开式中,x ²项的系数为 。
(结果用数值表示) 【答案】21【解析】【解答】(1+x )7中有T r+1=7r r C x ,故当r=2时,27C =762⨯=21 【分析】注意二项式系数,与各项系数之间差别。
考点公式()na b +第r+1项为T r+1=r n r rn C a b-。
【题型】填空题 【考查类型】中考真题 【试题级别】高三 【试题地区】上海【试题来源】2018年高考数学真题试卷(上海卷)4.(2018•上海)设常数a R ∈,函数2()log ()f x x a =+,若f x ()的反函数的图像经过点31(,),则a= 。
【答案】7【解析】【解答】f x ()的反函数的图像经过点31(,),故()f x 过点3(1,),则()13f =,()2log 1a +=3,1+a=23所以a=23-1,故a=7. 【分析】原函数()f x 与反函数图像关于y=x 对称,如:原函数上任意点()00,x y ,则反函数上点为()00,y x【题型】填空题 【考查类型】中考真题 【试题级别】高三 【试题地区】上海【试题来源】2018年高考数学真题试卷(上海卷)5.(2018•上海)已知复数z 满足117i z i +=-()(i 是虚数单位),则∣z ∣= 。
【答案】5【解析】【解答】∵117i z i +=-()∴()11171i i z i i -+=--()()()221187i z i i -=-+()z i 2=-6-8z i =-3-4故根据复数模长公式z ==5【分析】复数转化关系公式21i =-,共轭复数去点模长公式z =【题型】填空题 【考查类型】中考真题 【试题级别】高三 【试题地区】上海【试题来源】2018年高考数学真题试卷(上海卷) 6.(2018•上海)记等差数列{}n a 的前n 项和为S n,若87014a a a =+=₃,,则S 7= 。
【答案】14【解析】【解答】a 3=a 1+2d=0 a 6+a 7=a 1+5d+a 1+6d=14故112021114a d a d +=⎧⎨+=⎩,142a d =-⎧⎨=⎩故()112n n n S na d-=+()1422n n n S n -=-+⨯25n S n n =-故S 7=72-5×7=14。
【分析】等差数列的通项公式()11n a a n d =+-,等差数列前n 项和公式S n=()112n n na d -+,求出a 1,d 。
【题型】填空题 【考查类型】中考真题 【试题级别】高三 【试题地区】上海【试题来源】2018年高考数学真题试卷(上海卷)7.(2018•上海)已知112112322α∈---{,,,,,,},若幂函数()a f x x =为奇函数,且在0+∞(,)上递减,则α=_____ 【答案】-1【解析】【解答】a=-2时,()f x =x-2为偶函数,错误a=-1时,()f x =x-1为奇函数,在0+∞(,)上递减,正确a=-12时,()f x =12x -非奇非偶函数,错误a=12时,()f x =12x 非奇非偶函数,错误 a=1时,()f x =x 在0+∞(,)上递增,错误a=2时,()f x =x 2在0+∞(,)上递增,错误a=3时,()f x =x 3在0+∞(,)上递增,错误【分析】关于幂函数性质的考查,在第一项限a>0时,()f x ↑,a<0时,()f x ↓,若a>0为偶数,则()f x 为偶,若a 为奇数,()f x 为奇。
【题型】填空题 【考查类型】中考真题 【试题级别】高三 【试题地区】上海【试题来源】2018年高考数学真题试卷(上海卷)8.(2018•上海)在平面直角坐标系中,已知点A (-1,0),B (2,0),E ,F 是y 轴上的两个动点,且|EF u u r |=2,则AE u u u r ·BF u u u r的最小值为______【答案】-3【解析】【解答】设E(0,y 1),F(0,y 2),又A (-1,0),B (2,0),所以AE u u u r =(1,y 1),BF u u u r=(-2,y 2) AE u u u r BF u u u r=y 1 y 2-2 ① 又|EF u u r|=2,故(y 1-y 2)2=422121224y y y y +-=又2212y y +≥122y y ,当12y y ≠时等号不成立。
故假设122y y =+代入①,AE u u u r·BF u u u r=222223y y +-≥-【分析】本题主要考查向量坐标运算,基本不等式的运用,点与向量坐标互化。
【题型】填空题 【考查类型】中考真题 【试题级别】高三 【试题地区】上海【试题来源】2018年高考数学真题试卷(上海卷)9.(2018•上海)有编号互不相同的五个砝码,其中5克、3克、1克砝码各一个,2克砝码两个,从中随机选取三个,则这三个砝码的总质量为9克的概率是______(结果用最简分数表示) 【答案】15【解析】【解答】根据古典概率公式21105m P n === 【分析】五个砝码,从中随机选取三个为35C ,三个砝码的总质量为9克,可种情况有5,3,1和5,2,2【题型】填空题 【考查类型】中考真题 【试题级别】高三 【试题地区】上海【试题来源】2018年高考数学真题试卷(上海卷) 10.(2018•上海)设等比数列{n a }的通项公式为a n=qn-1(n ∈N*),前n 项和为S n。
若n 1S 1lim2n n a →∞+=,则q=____________ 【答案】3【解析】【解答】1nn a q +=,111nn a a q S q-=-,又1n na q -=∴1a =1故()111Sn 11lim lim lim (1)12n n n n n n n n a a q q a q q q q →∞→∞→∞+--===-- 当|q|>1时,有1111lim3112nn q q q q →∞--==⇒=-- 当|q|<1时,()1lim 1nn n q q q →∞-→+∞-(舍)【分析】111nn a a q S q-=-(等比数列前n 项和公式)【题型】填空题 【考查类型】中考真题 【试题级别】高三【试题地区】上海【试题来源】2018年高考数学真题试卷(上海卷) 11.(2018•上海)已知常数a >0,函数2()2x x f x ax =+的图像经过点65p p ⎛⎫ ⎪⎝⎭,、15Q q ⎛⎫- ⎪⎝⎭,,若236p q pq +=,则a =__________【答案】6【解析】【解答】26512526p pp ap ap =⇒+=+①, 2115252q q qaqaq =-⇒+=-+②, 故()2112662662p p q qapa pq aq +⎧=-⎪⎪⇒=-⨯-⎨⎪=-⎪⎩=1,又236p qpq +=,所以2136a pqpq=。
所以2a =36,a =6(a >0)【分析】函数赋值,分式,指数化简 【题型】填空题 【考查类型】中考真题 【试题级别】高三 【试题地区】上海【试题来源】2018年高考数学真题试卷(上海卷) 12.(2018•上海)已知实数x ₁、x ₂、y ₁、y ₂满足:22111x y +=,22221x y +=,12121+2x x y y =,__________+【解析】【解答】设A(x 1,y 1),B(x 2,y 2), 故有x 2+y 2=1,使A ,B 在圆上,又x 1x 2+y 1y 2=12,得出12OA OB ⋅=u u u r u u u r ,故60AOB ∠=o , 构造直线x+y-1=0,A 、B 两点到直线x+y-1=0距离和最大值。
特殊位置取最值,当AB 平行l 直线时取最值,又三角形ABO为等边三角形,故ON =,又0012OM +-=22=, 故11221122x y x y +-+-+最大值为32+。
【分析】运用构造法,极端假设法解答即可。
【题型】填空题 【考查类型】中考真题 【试题级别】高三 【试题地区】上海【试题来源】2018年高考数学真题试卷(上海卷) 二、选择题13.(2018•上海)设P 是椭圆 ²5x + ²3y =1上的动点,则P 到该椭圆的两个焦点的距离之和为( ) A.22B.23C.25D.42【答案】C 【解析】【解答】5a =,故1225PF PF +=故答案为:C 【分析】椭圆定义122PF PF a +=【题型】单选题 【考查类型】中考真题 【试题级别】高三 【试题地区】上海【试题来源】2018年高考数学真题试卷(上海卷) 14.(2018•上海)已知a R ∈,则“1a >”是“1a<1”的( ) A.充分非必要条件 B.必要非充分条件 C.充要条件D.既非充分又非必要条件【答案】A 【解析】【解答】11a <,所以1a >或a <0,所以11a<不能直接推出1a >, 1a >能直接推出11a <,故“1a >”是“1a<1”的充分非必要条件。
故答案为:A 。
【分析】根据小范围⇒大范围求解。
【题型】单选题 【考查类型】中考真题 【试题级别】高三 【试题地区】上海【试题来源】2018年高考数学真题试卷(上海卷)15.(2018•上海)《九章算术》中,称底面为矩形而有一侧棱垂直于底面的四棱锥为阳马.设AA ₁是正六棱柱的一条侧棱,如图,若阳马以该正六棱柱的顶点为顶点,以AA ₁为底面矩形的一边,则这样的阳马的个数是( )A.4B.8C.12D.16 【答案】D【解析】【解答】以AA 1取矩形分别讨论,找到AA 1所在矩形个数,并根据每个矩形可做4个阳马的基本位置关系,可得答案为D 。