奥数乘除法巧算
五年级奥数,乘除法巧算,带答案
1.计算:( )。
A.B.C.D.答案:B 解析:2.计算:,结果是多少?A.B.C.D.答案:A 解析:利⽤,计算。
原式3.( )A.B.C.D.答案:C解析:换元法令,原式故选:4.计算:( )A.B. 2.3÷0.08÷1.25=230232.30.232.3÷0.08÷1.25=2.3÷(0.08×1.25)=2.3÷0.1=231991×199219921992−1992×1991199119910101000100000000000199219921992=1992×100010001199119911991=1991×100010001=1991×1992×100010001−1992×1991×100010001=02012.25×2013.75−2010.25×2015.75=5678a =2013.75b =2010.25=(b +2)×a −b ×(a +2)=(ab +2a )−(ab +2b )=2a −2b =2(a −b )=2×(2013.75−2010.25)=2×3.5=7C912÷789×369÷456×789÷123=12C.D.答案:D解析:5.简便计算:,结果是多少?A.B.C.D.答案:B 解析:原式6.。
A.B.C.D.答案:C 解析:设,.则:36912÷789×369÷456×789÷123=(912÷456)×(369÷123)×(789÷789)=2×3×1=63.1×0.75+0.75×6.2+9.3×0.258.99.31011.2=(3.1+6.2)×0.75+9.3×0.25=9.3×0.75+9.3×0.25=9.3×(0.75+0.25)=9.3(1+0.12+0.23)×(0.12+0.23+0.34)−(1+0.12+0.23+0.34)×(0.12+0.23)=0.120.230.3410.12+0.23=x 0.12+0.23+0.34=y (1+0.12+0.23)×(0.12+0.23+0.34)−(1+0.12+0.23+0.34)×(0.12+0.23)=(1+x )y −(1+y )x=y +xy −x −xy=y −x=(0.12+0.23+0.34)−(0.12+0.23)=0.12−0.12+0.23−0.23+0.34=0.347.( )A.B.C.D.答案:C 解析:原式8.计算:。
四年级奥数——速算与巧算(加减乘除)
四年级奥数状元郎网络教育平台旗舰店(百度文库) 速算与巧算四年级奥数春季班速算与巧算计算是数学的基础,小学生要学好数学,必须具有过硬的计算本领。
准确、快速的计算能力既是一种技巧,也是一种思维训练,既能提高计算效率、节省计算时间,更可以锻炼记忆力,提高分析、判断能力,促进思维和智力的发展。
我们在三年级已经讲过一些四则运算的速算与巧算的方法,本讲和下一讲主要介绍加法的基准数法和乘法的补同与同补速算法。
例1 四年级一班第一小组有10名同学,某次数学测验的成绩(分数)如下:86,78,77,83,91,74,92,69,84,75。
求这10名同学的总分。
分析与解:通常的做法是将这10个数直接相加,但这些数杂乱无章,直接相加既繁且易错。
观察这些数不难发现,这些数虽然大小不等,但相差不大。
我们可以选择一个适当的数作“基准”,比如以“80”作基准,这10个数与80的差如下:6,-2,-3,3,11,-6,12,-11,4,-5,其中“-”号表示这个数比80小。
于是得到总和=80×10+(6-2-3+3+11-=800+9=809。
实际计算时只需口算,将这些数与80的差逐一累加。
为了清楚起见,将这一过程表示如下:通过口算,得到差数累加为9,再加上80×10,就可口算出结果为809。
例1所用的方法叫做加法的基准数法。
这种方法适用于加数较多,而且所有的加数相差不大的情况。
作为“基准”的数(如例1的80)叫做基准数,各数与基准数的差的和叫做累计差。
由例1得到:总和数=基准数×加数的个数+累计差,平均数=基准数+累计差÷加数的个数。
在使用基准数法时,应选取与各数的差较小的数作为基准数,这样才容易计算累计差。
同时考虑到基准数与加数个数的乘法能够方便地计算出来,所以基准数应尽量选取整十、整百的数。
例2 某农场有10块麦田,每块的产量如下(单位:千克):462,480,443,420,473,429,468,439,475,461。
小学奥数---乘除法巧算专项练习46题(有答案)
速算与巧算(乘除法)专项练习46题(有答案)1.888×999= _________ .2.251×4+(753﹣251)×2= _________ .3.先观察前面三个算式,从中找出规律,并根据找出的规律,直接在_________ 内填上适当的数.(1)123456789×9=1111111101,(2)123456789×18=2222222202,(3)123456789×27=3333333303,(4)123456789×72= _________ ,(5)123456789×63= _________ ,(6)6666666606÷54= _________ ,(7)9999999909÷81= _________ ,(8)5555555505÷123456789= _________ .4.111111×999999= _________ .5. 1326÷396. 520×1257. 248×68﹣17×248+248×488. 999×99×9.10.125×24.11.907×99+907.12.巧算两位数与101相乘.①101×43,②101×89.13.巧算三位数与11相乘.432×11=4752.14. 372÷162×5415. 132×288÷(24×11)16. 616÷36×18÷2217. 14×44×10418. 8100÷5÷90×1519. 7777×3333÷111120. (4+7+…+25+28)﹣(2+5+…+23+26)22. 97×9623. 95×9324. 98×9725. 99×9226. 88×8927. 95×85.28.93×84速算为.29.90000÷125÷2÷8÷5.30.巧算三位数与1001相乘.1001×132 1001×436.31.巧算两位数与11相乘.32. 8÷(8÷7)÷(7÷6)÷(6÷5)÷(5÷4)÷(4÷3)÷(3÷2)33.(574×275×87)÷(82×25×29)34. 11×2235. 12×3336. 14×5537. 15×66.38.3600000÷125÷32÷25.39. 99×99+99=40.巧算一个数与99相乘.41.1÷(2÷3)÷(3÷4)÷(4÷5)÷…÷(2002÷2003)÷(2003÷2004)42.3600000÷125÷32÷2543. 1.25×6.78+25×3.47+125×0.038244. 20042005×20052004﹣20042004×20052005.45.巧算一个数乘以10,100,1000…46.33×44+44×55+55×66﹣66×77.参考答案:1.888×999=888×(1000-1)= 887112 .2.251×4+(753﹣251)×2=251×4+502×2=251×4+(251×2)×2=251×4+251×(2×2)=251×4+251×4, =251×(4+4)=251×8=2008;故答案为:20083.根据观察前面三个算式知,第一个因数为:123456789,第二个因数分别为9的倍数,结果以0为分界,0的左边用第二个因数中9的个数乘以8,0的右边用第二个因数中9的个数乘以1,可知(4)、(5)两题答案为:8888888808, 7777777707;根据除法各部分之间的关系可知(6)、(7)、(8)三道题的答案为:123456789,123456789,45;故答案为:8888888808,7777777707,123456789,123456789,454.111111×999999=111111×(1000000﹣1)=1000000×111111﹣111111=111111000000﹣111111=111110888889.故答案为:1111108888895.1326÷39=1326÷(13×3)=1326÷13÷3=102÷3=34;这题我们将3(9分)解为39=13×3,然后按性质去做.6. 520×125=520×(1000÷8)=520×1000÷8=520÷8×1000=65×1000=65000;7. 248×68﹣17×248+248×48=248×(68﹣17+48)=248×99=248×(100﹣1)=248×100﹣248=24552;8. 999×99×9=(1000﹣1)×99×9=(99000﹣99)×9=98901×(10﹣1)=989010﹣98901=890109 9.99999×26+33333×22=33333×3×26+33333×22=33333×(3×26+22)=33333×100=333330010.125×24=125×8×3=1000×3=300011.907×99+907=907×(99+1)=907×100=9070012. 101×43=(100+1)×43=100×43+43=4300+43=4343;101×89=(100+1)×89=100×89+89=8900+89=8989;观察发现“4343、8989”,可得两位数与101相乘,积是把这个两位数连续写两遍.13.432×11=432×(10+1)=4320+432=4752;根据结果,最高位与最低位的数就是432的最高位与最低位上的数,中间的两位数是432相邻的数字相加的和,例如:867×11=9537,308×11=3388,所以三位数与11相乘的速算方法可以概括为“两边拉,中间加”,注意中间是相邻位相加14. 372÷162×54=372÷(162÷54)=372÷3=124;15. 132×288÷(24×11)=132×288÷24÷11=132÷11×288÷24=(132÷11)×(288÷24)=12×12=144;16. 616÷36×18÷22=616×18÷36÷22=14;17. 14×44×104=2×7×4×11×8×13=(7×11×13)×(2×4×8)=1001×64=64064;18. 8100÷5÷90×15=8100×15÷5÷90=(8100×15)÷(5×90)=121500÷450=270;19. 7777×3333÷1111=1111×7×1111×3÷1111=7×3×1111×1111÷1111=(7×3)×1111×(1111÷1111) =21×1111×1=23331;20. (4+7+…+25+28)﹣(2+5+…+23+26)=4+7+…+25+28﹣2﹣5﹣…﹣23﹣26,=(4﹣2)+(7﹣5)+…+(25﹣23)+(28﹣26)=2+2+…2+2=2×9=18;21. 100﹣96=4,<1>差 100﹣98=2,<2>差96﹣2=94, 98﹣4=94,4×2=8,所以96×98=940822. 100﹣97=3<1>差, 100﹣96=4<2>差,97﹣4=93,3×4=12,所以:97×96=9312;23. 100﹣95=5<1>差, 100﹣93=7<2>差, 95﹣7=88, 5×7=35,所以:95×93=8835;24. 100﹣98=2<1>差, 100﹣97=3<2>差, 98﹣3=95,2×3=6,所以:98×97=9506;25. 100﹣99=1<1>差,100﹣92=8<2>差, 99﹣8=91,1×8=8,所以:99×92=9108;26. 100﹣88=12<1>差,100﹣89=11<2>差, 88﹣11=77,11×12=132,所以:88×89=7832;27. 100﹣95=5<1>差, 100﹣85=15<2>差, 95﹣15=80, 15×5=75,所以:98×85=807528. 100﹣93=7<1>差,100﹣84=16<2>差,93﹣16=77,16×7=112,所以:93×84=7812(注意百位上的1要向前进位)29.90000÷125÷2÷8÷5=90000÷[(125×8)×(2×5)]=90000÷10000=930.1001×132=(1000+1)×132=1000×132+132=132000+132=1321321001×436=(1000+1)×436=1000×436+436=436000+436=436436通过观察可知:三位数与1001相乘,积是把这个三位数连续写两遍.31.12×11=132,34×11=374,53×11=583,49×11=539,发现两位数与11相乘,只要把这个两位数打开,个位数字做积的个位,十位数字做积的百位,个位数字与十位数字相加做积的十位,如果满十,就向百位进1.即方法是:两边一拉,中间相加,满十进1.如:49×11=539竖式验算:所以,两位数乘11的巧算方法是:两边一拉,中间相加,满十进132. 8÷(8÷7)÷(7÷6)÷(6÷5)÷(5÷4)÷(4÷3)÷(3÷2)=8÷8×7÷7×6÷6×5÷5×4÷4×3÷3×2,=(8÷8)×(7÷7)×(6÷6)×(5÷5)×(4÷4)×(3÷3)×2=1×2=2;33.(574×275×87)÷(82×25×29)=(574÷82)×(275÷25)×(87÷29)=7×11×3=23134. 11×22,=(10+1)×22=10×22+1×22=220+22=242;35. 12×33=33×(10+2)=33×10+33×2=330+66=396;36. 14×15=15×(10+4)=15×10+15×4=150+60=210;37. 15×66=66×(10+5)=10×66+5×66=660+330=99038、 3600000÷125÷32÷25=3600000÷(125×32×25)=3600000÷(125×4×8×25)=3600000÷[(125×8)×(25×4)]=3600000÷[1000×100]=3600000÷100000=3639. 99×99+99=99×(99+1)=99×100=9900;40.例如:99×1=99=(100﹣1),99×2=198=(200﹣2),99×5=495=500﹣5,99×8=792=800﹣8,99×13=1287=1300﹣13,…一个数与99相乘的规律:一个数与99相乘,先在这个数后添2个0,再减去此数就是积41.1÷(2÷3)÷(3÷4)÷(4÷5)÷(5÷6)…÷(2002÷2003)÷(2003÷2004)=1÷2×3÷3×4÷4×5÷5×6…÷2002×2003÷2003×2004=1÷2×2004=100242. 3600000÷125÷32÷25=3600000÷(125×32×25)=3600000÷[(125×8)×(4×25)],=3600000÷[1000×100]=3600000÷100000=36;43. 1.25×6.78+25×3.47+125×0.0382=1.25×6.78+1.25×20×3.47+1.25×3.82,=1.25×(6.78+69.4+3.82)=1.25×80=100;44. 20042005×20052004﹣20042004×20052005=20042005×(20052005﹣1)﹣20042004×20052005,=20042005×20052005﹣20042005﹣20042004×20052005=20052005×(20042005﹣20042004)﹣20042005, =20052005﹣20042005=1000045. ①一个数乘以10,就是在这个数后添一个0;②当一个数乘以100时,就是在这个数后添两个0;③当一个数乘以1000时,就是在这个数后添三个0.46.33×44+44×55+55×66﹣66×77=3×11×4×11+4×11×5×11+5×11×6×11+6×11×7×11,=11×11×(3×4+4×5+5×6﹣6×7)=121×20=2420.。
(完整版)三年级奥数乘除法巧算
1、乘除法巧算这一讲介绍的是乘除法巧算的一些基本方法,同加减法一样,通过“带符号搬家”来适当改变运算顺序。
例题1计算:(1)2×13×5(2)51÷17×17÷51(3)12×7÷3÷7分析:仔细观察算式,如何改变运算顺序来使得计算简单些呢?练习1、计算:(1)4×7×25 (2)21×19÷7÷19 .在乘法巧算时,有三组乘法在巧算时经常用到:2×5=10,4×25=100, 8×125=1000 .还有许多两位数乘法中的乘数,十位相同,个位相加得10,例如:47和43,72和78、65和65等,我们把这样的情况称为“头同尾合十”。
对于“头同尾合十”的两个数可以这样进行计算:把“尾×尾”的结果作为得数的末两位,“头×(头+1)”的结果作为得数的头。
例题2计算:(1)25×28 ;125×24 ;(2)300÷25 ;8000÷125 ;(3)45×45 ;41×49 .分析:前两个小题中都有25或者125,这两个数能够如何巧算呢?第3小题的每组数有什么特点?练习:2、计算:(1)25×24 ;(2)2000÷125 ;(3)88×82 .在计算连续乘除法运算时,式子中经常会出现括号。
在乘除法中去括号同在加减法中去括号类似,要注意变号的问题,具体来说,乘除法中去括号的法则是:例题3计算:(1)(126÷9)×(9÷3)÷(6÷3);(2)512÷(512÷16×8).分析:在去括号的时候要注意些什么?去括号后算式变成了什么样?能够如何巧算?练习3、计算:(10÷7)×(7÷6)×(6÷5)例题4计算:(1)23×70×22÷11÷7 ;(2)300×13÷4÷25分析:(1)算式中有几个数有倍数关系,该如何计算?(2)看到4和25,能不能让它俩相乘呢?练习4、计算:3000×28÷125÷8÷14除了“带符号搬家”、“添、脱括号”等巧算方法之外,还有一个非常重要的方法,那就是运用乘法分配律进行巧算。
五年级奥数:小数乘除法巧算
小数乘除法巧算一、小数四则运算方法1、12.18—(0.18+3.5×0.12)2、 4.6×(1—0.25)+0.075×7×0.583、9×(0.01÷2.5)+3.75×0.8÷0.25二、扩缩法巧算。
1、3.14×16.8-31.4×0.54-314×0.0142、19.98×37+1998×0.82-199.8×1.93、20.06×3.2+100.3×0.44+2004×0.012+1.002×84三、代数法巧算1、(1+0.23+0.34)×(0.23+0.34+0.45)—(1+0.23+0.34+0.45)×(2、(0.1+0.12+0.123+0.1234)×(0.12+0.123+0.1234+0.12345)—(0.1+0.12+0.123+0.1234+0.12345)×(0.12+0.123+0.1234)1、在算式12÷()=()()中,不同的余数有多少个?2、甲、乙两数的和是23,甲数除以乙数商2余2,求甲数和乙数。
3、5.832除以一个不为0的数,所得的商是一个两位小数,商保留一位小数是3.2。
除数最小是多少?4、小明从一楼到四楼一共用了1.8分钟,照这样计算,他到十楼还需几分钟?5、一条彩带长75.5厘米,每7.8厘米做一个圆环,每15个圆环做成一串拉花,12条这样的彩带最多可以做几串拉花?(提示:圆环的数量和拉花的串数要采取去尾法)6、一个小数的小数点向右移动一位,这个数就比原来大3.06,原来数是多少?。
奥数——巧算乘除法
算式只能是60 ÷ 5。
□ × □= □ 2=□ □ ÷ □
奥数——巧算乘除法
例5 在下列等号左边的每两面三刀个数之间, 添上加号或减号,也可以用括号,使算式成 立。
1 2 3 4 5=1
解: 1 2 3 4 5这五个数之和是15,使几 个数的和是8,减去其于的数(和是7), 于是可想到 1+3+4-(2+5)=1或1+2+5- ( 3+4)=1 即1-2+3+4-5=1或1+2-3-4+5=1
=1÷2×3÷3×4÷4×5÷5×6
=1 ÷2 ×6
=3
奥数——巧算乘除法
随堂练习2
计算: 2 ÷ (4÷ 6) ÷ (6 ÷ 8)÷ (8 ÷ 10)
÷( 10÷ 12)…..÷(98÷100) =2÷4×6÷6×8÷8×10÷10……×9 8÷98×100 =2÷4×100 =50
奥数——巧算乘除法
奥数——巧算乘除法
例1,计算
(1)25 ×5 ×64 ×125
(2)56 × 165÷7÷11
分析:(1)在计算乘、除法时,我们通常 可以运用2 × 5、4 × 25、8 × 125来进行 巧妙的计算! (2)运用除法的性质,带着符号“搬家”。
奥数——巧算乘除法
解:
(1)25 × 5 × 64 × 125 = 25 × 5 × 2 × 4 × 8 × 125 =( 25 × 4)×( 5 ×2 )×(8 ×125) = 100 ×10 ×1000 = 1000 000
奥数——巧算乘除法
分析: (1)题运用性质: a ÷b ÷c= a ÷c ÷b= a ÷ ( b × c) (2)将9999分成3333 ×3就与3333 ×3334出现了相同的因数,可逆用乘 法分配律计算。
四年级奥数第4专题-乘除巧算
第五讲乘除法的巧算四年级奥数在乘、除法的速算中,我们经常用到的有乘法结合律、乘法交换律、乘法分配律以及一些基本的运算技巧,还有积与商的变化规律等等。
灵活地应用这些定律与规律,就可以达到巧算与速算的目的。
1,乘法交换律:a×b = b×a2,乘法结合律:a×b×c = a×(b×c)3,乘法分配率:(a+b)×c=a×c+b×c由此可推出:a×c+b×c=(a+b)×c(a-b)×c=a×c-b×c4,除法的性质:a÷b÷c=a÷c÷b=a÷(b×c)利用乘法、除法的这些性质,先凑整得10、100、1000……会使计算更简便。
导入新课——快速填空:25×7×4 = ______×______×7125×(8×14) = (125×______)×143×4×8×5 = (3×4)×(______×______)例1、用简便方法计算下面各题。
(1)25×125×32 (2)799×25(3)125×65+75×65 (4)(20-4)×25【思路导航】算式(1)中,32可以写成8×4,而25与4的乘积是100,125与8的乘积是1000,这就促使我们思考,能不能先把32写成8×4,再利用乘法交换律和结合律,把25与4、125与8先分别乘起来,使计算简便。
25×125×32=25×125×8×4=(25×4)×(125×8)=100×1000=100000算式(2)中,799和25相乘,很难口算出结果,但是799和800只相差1,可以考虑将799写成800-1的形式,再利用乘法分配律,使计算简便。
乘除法巧算奥数题
乘除法巧算奥数题1. 题目:计算25×125×4×8- 解析:- 根据乘法交换律和结合律,我们可以将式子重新组合。
- 因为25×4 = 100,125×8=1000。
- 所以原式=(25×4)×(125×8)=100×1000 = 100000。
2. 题目:计算125×32×25- 解析:- 先把32分解成8×4。
- 原式就变为125×8×4×25。
- 根据乘法结合律,(125×8)×(4×25)=1000×100 = 100000。
3. 题目:计算99×85- 解析:- 把99写成(100 - 1)。
- 然后根据乘法分配律,99×85=(100 - 1)×85=100×85-1×85 = 8500 - 85=8415。
4. 题目:计算101×36- 解析:- 把101写成(100+1)。
- 根据乘法分配律,101×36=(100 + 1)×36=100×36+1×36 = 3600+36 = 3636。
5. 题目:计算18×125- 解析:- 把18写成2×9。
- 原式变为2×9×125=(2×125)×9 = 250×9=2250。
6. 题目:计算25×37×4- 解析:- 根据乘法交换律,先计算25×4 = 100。
- 再乘以37,100×37 = 3700。
7. 题目:计算56×125- 解析:- 把56写成7×8。
- 则56×125 = 7×(8×125)=7×1000 = 7000。
小学四年级奥数002乘除法巧算
例4.巧算一个数与99相乘。
分析:先填空,再观察一个数与99相乘的规律。
99 1=99=1100-199 2 =198 二200 - 299 5 二495 二500 -99 8 =792 - -899 13 二=1300 -13观察发现:“一个数与99相乘,先在这个数后添00,再减去此数”即可。
如果是个数与999相乘,是否也具有这样的规律呢?请你先填空,再总结规律。
999 1 = 999 =1000 -1 999 2 = 1998 = 2000 -2 999 3 = = 3000 - [ i999 4 ==-4999 5 -i i : i i- i i由此得到:几与999相乘,就用几千减去几? 练习一下:999 99 9248x68 — 17^248 + 248x48例5巧算两位数与11相乘。
分析:12 11=13234 11=374 53 11 二 583 49 11 =539观察上面一组数,发现两位数与11相乘,只要把这个两位数打开,个位数字做积的个位,十位数字做积的百位, 个位数字与十位数字相加做积的十位,如果满十,就向百位进1。
女口: 12 11=132121 2 / / 1 3249 11=539 4 9 / 5 3 9方法是:两边一拉,中间相加,满十进1。
例6.巧算三位数与11相乘。
432 11 二 47524 32 ZX 4 75 2867 11 二 95378 6 7 9 53 7308 11 二 33883 一 0 一 8. 3388分析:三位数与11相乘的速算方法同样可以概括为“两边拉,中间加”。
注意中间是相X11 竖式:1212 13 2邻位相加。
练一练:134 11 - 529 1仁 2345 11 - 68 1仁例7.巧算两位数与101相乘。
101 43竖式:101 8910 110 1 X 4 3 X 8 9 3 0 3 9 0 9 4 0 4 8 0 8 4 3 4 38 9 8 9观察发现“ 4343、 8989”,两位数与 练一练:36 101101 58 二 101 39 = 42 101 =1001相乘。
小学奥数《举一反三》之乘除巧算
到一些运算定律,例如乘法交换律、乘法结合律、乘
法分配律等等。善于运用运算定律是提高巧算能力的 关键。
王牌例题一
(1)25×14×4 (2)8×18×125 (3)8×25×4×125 (4)125×2×8×5
(1)25×14×4 =25×4×14 =100×14
=224
举一反三(三) •(1)32000÷125 •(2)78000÷125 •(3)43000÷125
(1)32000÷125 (2)78000÷125
=(32000×8)
=(78000×8)
÷(8×125)
÷(8×125)
=256000÷1000
=604000÷1000
=256
=604
(3)43000÷125 =(43000×8)÷(8×125) = 344000÷1000
乘除巧算
前面我们已给小朋友们介绍了加、减法中的巧算,大
家学会了运用“凑整”的方法进行巧算,实际上这种
“凑整”的方法也同样可以运用在乘、除计算中。为 了更好地凑整,大家要牢记以下几个计算结 果:2×5=10,4×25= 100,8×125= 1000。 要提高计算能力,除了加、减、乘、除基本运算要熟
举一反三(一)
•(1)25×23×4 •(2)125×27×8
(1)25×23×4 =25×4×23 =100×23
=2300
(2)125×27×8 =125×8×27 =1000×27
=27000
举一反三(二) •(1)5×25×2×4 •(2)125×4×8×25 •(3)2×125×8×5
=4000
(3)48×125 =6×8×125 =6×(8×125) =6×1000
五年级奥数:小数乘除法巧算
小数乘除法巧算一、小数四则运算方法1、12.18—(0.18+3.5×0.12)2、 4.6×(1—0.25)+0.075×7×0.583、9×(0.01÷2.5)+3.75×0.8÷0.25二、扩缩法巧算。
1、3.14×16.8-31.4×0.54-314×0.0142、19.98×37+1998×0.82-199.8×1.93、20.06×3.2+100.3×0.44+2004×0.012+1.002×84三、代数法巧算1、(1+0.23+0.34)×(0.23+0.34+0.45)—(1+0.23+0.34+0.45)×(2、(0.1+0.12+0.123+0.1234)×(0.12+0.123+0.1234+0.12345)—(0.1+0.12+0.123+0.1234+0.12345)×(0.12+0.123+0.1234)1、在算式12÷()=()()中,不同の余数有多少个?2、甲、乙两数の和是23,甲数除以乙数商2余2,求甲数和乙数。
3、5.832除以一个不为0の数,所得の商是一个两位小数,商保留一位小数是3.2。
除数最小是多少?4、小明从一楼到四楼一共用了1.8分钟,照这样计算,他到十楼还需几分钟?5、一条彩带长75.5厘米,每7.8厘米做一个圆环,每15个圆环做成一串拉花,12条这样の彩带最多可以做几串拉花?(提示:圆环の数量和拉花の串数要采取去尾法)6、一个小数の小数点向右移动一位,这个数就比原来大3.06,原来数是多少?。
四年级奥数,乘除法巧算,带答案
1.。
A.B.C.D.答案:B解析:2.简便计算:。
A.B.C.答案:A解析:加括号时注意除号变乘号。
3.计算:。
A.B.C.答案:C解析:4.计算计算:222×33+889×66=空类2600006600010000011000222×33+889×66=111×2×33+889×66=111×66+889×66=(111+889)×66=1000×66=660005000÷125÷8=空类258105000÷125÷8=5000÷(125×8)=5000÷1000=525×96×125=空类230000003000030000025×96×125=25×(4×3×8)×125=(25×4)×3×(8×125)=100×3×1000=300000125×64×25×5A.B.C.答案:C解析:5.。
A.B.C.D.答案:C解析:6.计算:A.B.C.答案:B解析:7.计算:A.B.100001000001000000125×64×25×5=125×8×8×25×5=125×8×4×2×25×5=(125×8)×(4×25)×(2×5)=1000×100×10=1000000计算:21×32+58×68+32×37=空类2540056005800600021×32+58×68+32×37=(21+37)×32+58×68=58×32+58×68=58×(32+68)=58×100=58008×18×1251800180001800008×18×125=8×125×18=1000×18=1800012000÷125÷1258C.答案:B解析:带着符号交换位置。
奥数乘除法巧算
第二讲速算和巧算(二)一、乘法中的巧算1.两数的乘积是整十、整百、整千的,要先乘.为此,要牢记下面这三个特殊的等式:5×2=1025×4=100125×8=1000例1 计算①123×4×25 ② 125×2×8×25×5×42.分解因数,凑整先乘。
例2 计算① 24×25 ② 56×125③ 125×5×32×53.使用乘法分配律。
例3 计算① 175×34+175×66 ②67×12+67×35+67×52+6(原式中最后一项67可看成 67×1)例4 计算① 123×101 ② 123×994.几种特殊因数的巧算。
例5 一个数×10,数后添0;一个数×100,数后添00;一个数×1000,数后添000;以此类推。
如:15×10=15015×100=150015×1000=15000例6 一个数×9,数后添0,再减此数;一个数×99,数后添00,再减此数;一个数×999,数后添000,再减此数;…以此类推。
如:12×9=120-12=10812×99=1200-12=118812×999=12000-12=11988例7 一个偶数乘以5,可以除以2添上0。
如:6×5=3016×5=80116×5=580。
例8 一个数乘以11,“两头一拉,中间相加”如:2222 11如:2456×11=27016例9 一个偶数乘以15,“加半添0”.24×15例10 个位为5的两位数的自乘:十位数字×(十位数字加1)×100+25如15×15=25×25=35×35=45×45=55×55=65×65=75×75=85×85=95×95=二、除法及乘除混合运算中的巧算1.在除法中,利用商不变的性质巧算商不变的性质是:被除数和除数同时乘以或除以相同的数(零除外),商不变.利用这个性质巧算,使除数变为整十、整百、整千的数,再除。
四年级奥数教程(二)巧算乘除法
课题巧算乘除法四则运算中巧算的方法很多,它主要是根据已学过的知识,通过一些运算定律、性质和一些技巧性方法,达到计算正确而快捷的目的。
实际进行乘、除法以及乘除法混合运算式可利用到以下性质进行巧算:①乘法交换律:a×b = b×a②乘法结合律: a×b×c = a×(b×c)③乘法分配律: (a + b)×c = a×c + b×c由此可推出:a×b + a×c = a×(b + c)(a - b) ×c = a×c - b×ca×b - a×c = a×(b - c)④除法的性质: a÷b÷c = a÷b÷c = a÷(b×c)a÷(b÷c)= a÷b×c利用乘法、除法的这些性质,先凑整得10、100、1000……使计算更简便.教学目标1、熟练掌握乘除法运算法定律及性质2、善于运用运算定律和性质(包括正用、逆用、连用)。
教学重难点重点:乘法运算律,特殊的由原有规律推出的定律难点:把乘除运算律延用到乘除法混合运算中,尤其在含有括号或多项的题目中。
教学过程一、复习引入1、利用乘法运算律,填空:15×10 = 16×______25×7×4 = ______×______×7(60×25)×______ = 60×(______×8)125×(8×______) = (125×______)×143×4×8×5 = (3×4)×(______×______)2、下面哪些运算运用了乘法分配律?117×3 + 117×7 = 117×(3 + 7)24×(5 + 12) = 24×174×a + a×5 = (4 + 5)×a36×(4×6) = 36×6×43、用乘法分配律计算下面各题103×12 20×55 24×205= = == = == = =有了上面的复习,我们把四年级课本上有关乘法的运算律都进行了一个回顾与掌握,今天我们将就如何在巧算中用上这些规律进行讲解。
奥数乘除法巧算
例题与方法例1 计算(1)25×5×64×125;(2)75×16。
例2 (1)125×(10+8);(2)(20-4)×25×;(3)4004×25;(4)125×798。
例3 计算(1)146×31÷75;(2)1248÷96×24;(3)1000÷(125÷4)。
例4 计算(1)625÷25;(2)例5 计算(1)(350+165)÷5;(2)(702213-414)÷3思考与练习×17+184×83 +5×9810+49×981×837-496×637 ×68-17×248+248×48×28+4896÷48例题与方法例1 计算99999×88888÷11111例2 计算864×37×27例3 计算×9例4 计算111111×111111例5 计算999999×999996思考与练习1.计算下列各题。
(1)5×7×9×11×13 (2)454500÷(25×45) (3)273×23×74 (4)67×12×24 (5)4444×7777÷11111第8讲数的整除性例题与方法例1 在□内填上适当的数,使六位数32787□能被4或25整除例2 六位数3ABABA是6的倍数,这样的六位数有多少个例3 在865后面补上三个数字,组成一个六位数,使它能被3、4、5整除,且使这个数值尽可能的小。
例4 六位数12□34□是88的倍数,这个数除以88所得的商是多少例5 一个三位数减去它的各位数字之和,其差还是一上三位数73□。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第二讲速算与巧算(二)
一、乘法中的巧算
1.两数的乘积是整十、整百、整千的,要先乘.为此,要牢记下面这三个特殊的等式:
5×2=10
25×4=100
125×8=1000
例1 计算①123×4×25 ② 125×2×8×25×5×4
2.分解因数,凑整先乘。
例2 计算
① 24×25 ② 56×125
③ 125×5×32×5
3.应用乘法分配律。
例3 计算① 175×34+175×66 ②67×12+67×35+67×52+6
(原式中最后一项67可看成 67×1)
例4 计算① 123×101 ② 123×99
4.几种特殊因数的巧算。
例5 一个数×10,数后添0;
一个数×100,数后添00;
一个数×1000,数后添000;
以此类推。
如:15×10=150
15×100=1500
15×1000=15000
例6 一个数×9,数后添0,再减此数;
一个数×99,数后添00,再减此数;
一个数×999,数后添000,再减此数;…
以此类推。
如:12×9=120-12=108
12×99=1200-12=1188
12×999=12000-12=11988
例7 一个偶数乘以5,可以除以2添上0。
如:6×5=30
16×5=80
116×5=580。
例8 一个数乘以11,“两头一拉,中间相加”
如:2222 11
如:2456×11=27016
例9 一个偶数乘以15,“加半添0”.
24×15
例10 个位为5的两位数的自乘:十位数字×(十位数字加1)×100+25
如15×15=
25×25=
35×35=
45×45=
55×55=
65×65=
75×75=
85×85=
95×95=
二、除法及乘除混合运算中的巧算
1.在除法中,利用商不变的性质巧算
商不变的性质是:被除数和除数同时乘以或除以相同的数(零除外),商不变.利用这个性质巧算,使除数变为
整十、整百、整千的数,再除。
例11 计算①110÷5 ②3300÷25
③ 44000÷125
2.在乘除混合运算中,乘数和除数都可以带符号“搬家”。
例12 864×27÷54
3.当n个数都除以同一个数后再加减时,可以将它们先加减之后再除以这个数。
例13① 13÷9+5÷9 ②21÷5-6÷5
③2090÷24-482÷24 ④187÷12-63÷12-52÷12
4.在乘除混合运算中“去括号”或添“括号”的方法:如果“括号”前面是乘号,去掉“括号”后,原“括
号”内的符号不变;如果“括号”前面是除号,去掉“括号”后,原“括号”内的乘号变成除号,原除号就要变成
乘号,添括号的方法与去括号类似。
即a×(b÷c)=a×b÷c 从左往右看是去括号,
a÷(b×c)=a÷b÷c 从右往左看是添括号。
a÷(b÷c)=a÷b×c
例14 ①1320×500÷250 ②4000÷125÷8
③5600÷(28÷6)④372÷162×54
⑤2997×729÷(81×81)
习题二
一、用简便方法求积:
①17×100
②1112×5
③23×9
④23×99
⑤12345×11
⑥56789×11
⑦36×15
二、速算下列各题:
①123×25×4
②456×2×125×25×5×4×8
③25×32×125
三、巧算下列各题:
①15000÷125÷8 ②1200÷25÷4
③24000÷(125×3)④360×40÷60
四、巧算下列各题:
①11÷3+4÷3 ②19÷5-9÷5 ③234×11+234×88。